RIEMANNIAN SUBMERSIONS COMMUTING WITH THE LAPLACIAN

S. I. GOLDBERG \& T. ISHIHARA

1. Introduction

Let M and N be smooth Riemannian manifolds. Let $\Delta_{M}^{p}=d \delta+\delta d: \bigwedge^{p}(M)$ $\rightarrow \wedge^{p}(M)$ denote the Laplace-Beltrami operator on the differential p-forms of M. Define the set

$$
\begin{aligned}
\Omega^{p}(M, N)= & \{\varphi: M \rightarrow N \mid \varphi \text { is a smooth surjective mapping with } \\
& \left.\operatorname{rank} \varphi_{*} \geq 1 \text { and } \varphi^{*} \Delta_{N}^{p} A=\Delta_{M}^{p} \varphi^{*} A \text { for all } A \in \bigwedge^{p}(N)\right\}
\end{aligned}
$$

of p th Laplacian-commuting mappings. If $\Omega^{p}(M, N)$ is empty, it is said to be trivial. The condition on the rank is not necessary in defining $\Omega^{0}(M, N)$ because any surjective mapping $\varphi: M \rightarrow N$ with $\varphi^{*} \Delta_{N} f=\Delta_{M} \varphi^{*} f$ for all smooth functions f on N satisfies rank $\varphi_{*}=n=\operatorname{dim} N$. In this paper, we ask for the mappings contained in $\Omega^{p}(M, N)$. Watson [4] showed that $\varphi: M \rightarrow N$ is contained in $\Omega^{0}(M, N)$ if and only if it is a harmonic Riemannian submersion. He also proved that the nontriviality of $\Omega^{p}(M, N), p \geq 0$, implies that the elements of $\Omega^{p}(M, N)$ are Riemannian submersions. We therefore ask for the Riemannian submersions which commute with the Laplacian. It is an immediate consequence of our main result that $\Omega^{1}(M, N)=\Omega^{2}(M, N)=\cdots=\Omega^{n}(M, N)$.

In § 2, the basic facts of a Riemannian submersion will be described, especially its structure tensor. Several relations between the curvature tensors of M and N and the structure tensor are given in $\S 3$.The set $\Omega^{1}(M, N)$ is studied in $\S 4$, and in the last section the set $\Omega^{p}(M, N), p \geq 2$, is examined.

2. Riemannian submersions

Let M (resp. N) be an m (resp. n)-dimensional manifold with Riemannian metric $d s_{M}^{2}\left(\right.$ resp. $\left.d s_{N}^{2}\right)$, and let $\varphi: M \rightarrow N$ be a Riemannian submersion. Then we may assume $n<m$; for, if $m=n$, a Riemannian submersion (Riemannian covering) commutes with the Laplacian [4]. We choose local forms $\omega_{1}, \cdots, \omega_{m}$ on M and $\theta_{1}, \cdots, \theta_{n}$ on N such that $d s_{M}^{2}=\Sigma \omega_{a}^{2}, d s_{N}^{2}=\Sigma \theta_{i}^{2}$, and

$$
\begin{equation*}
\varphi^{*}\left(\theta_{i}\right)=\omega_{i}, \quad i=1, \cdots, n \tag{2.1}
\end{equation*}
$$

Communicated by K. Yano, July 7, 1976.
(In the sequel, the indices i, j, k, \cdots run from 1 to $n ; a, b, c, \cdots$ from 1 to m, and $\alpha, \beta, \gamma, \cdots$ from $n+1$ to m.)

The structure equations of M are

$$
\begin{equation*}
d \omega_{a}=\Sigma \omega_{b} \wedge \omega_{b a}, \quad d \omega_{a b}=\Sigma \omega_{a c} \wedge \omega_{c b}-\frac{1}{2} \Sigma R_{a b c d} \omega_{c} \wedge \omega_{d} \tag{2.2}
\end{equation*}
$$

where $\omega_{a b}=-\omega_{b a}$ and the $R_{a b c d}$ are the components of its curvature tensor. The components of the curvature tensor of N will be denoted by $K_{i j k l}$.

Taking the exterior derivative of (2.1), we get

$$
\Sigma \omega_{j} \wedge\left(\varphi^{*} \theta_{j i}-\omega_{j i}\right)-\Sigma \omega_{\alpha} \wedge \omega_{\alpha i}=0
$$

This allows us to put

$$
\begin{equation*}
\omega_{j i}-\varphi^{*} \theta_{j i}=\Sigma L_{j i a} \omega_{a}, \quad \omega_{i \alpha}=\Sigma L_{i \alpha a} \omega_{a} \tag{2.3}
\end{equation*}
$$

where $L_{i j k}=0, L_{i j \alpha}=-L_{j i \alpha}, L_{i j \alpha}=L_{i \alpha j}$ and $L_{i \alpha \beta}=L_{i \beta \alpha}$. In the sequel, we will drop φ^{*} from such formulas when its presence is clear from the context. We call the tensor, whose components are the $L_{i a b}$, the structure tensor of φ. If $\Sigma L_{i a a}=0$, that is, if $\Sigma L_{i \alpha \alpha}=0\left(\right.$ resp. $\left.L_{i \alpha \beta}=0\right), \varphi$ is called a harmonic (resp. totally geodesic) mapping.

The inverse image $\varphi^{-1}(x)$ of a point x of N is said to be a fibre of φ. A fibre of φ is a closed submanifold of M of dimension $m-n$. It is evident that $\omega_{1}=\cdots$ $=\omega_{n}=0$ on the fibres, and that the restriction of $\Sigma \omega_{\alpha}^{2}$ to a fibre gives the induced Riemannian metric. The $L_{i_{\alpha \beta}}$ may be regarded as the second fundamental forms of the submanifold $\varphi^{-1}(x)$. Hence, if $\Sigma L_{i \alpha \alpha}=0$ (resp. $L_{i \alpha \beta}=0$), then $\varphi^{-1}(x)$ is a minimal (resp. totally geodesic) submanifold of M. Suppose M is complete. Then M becomes a fibre space in Ehressman's sense. If, moreover, the fibres are totally geodesic, $\varphi: M \rightarrow N$ is a fibre bundle with structural group the Lie group of isometries of a fibre [1], [2]. The horizontal distribution, which is defined by $\omega_{n+1}=\cdots=\omega_{m}=0$, is integrable if the $L_{i j \alpha}=0$. If M is complete, and the $L_{i \alpha \beta}$ and $L_{i j_{\alpha}}$ vanish, then M is locally the Riemannian product of a fibre $\varphi^{-1}(x)(x$ is any fixed point of $N)$ and N, that is, there is an open covering $\left\{U_{A}\right\}$ of N such that $\varphi^{-1}\left(U_{A}\right)$ is isometric to the Riemannian product $\varphi^{-1}(x) \times$ U_{A}.

3. The covariant differential of the structure tensor

The components $L_{i a b c}$ of the covariant differential of the structure tensor $L_{i a b}$ are given by

$$
\begin{equation*}
\Sigma L_{i a b c} \omega_{c}=d L_{i a b}+\Sigma L_{j a b} \theta_{j i}+L_{i c b} \omega_{c a}+\Sigma L_{i a c} \omega_{c b} \tag{3.1}
\end{equation*}
$$

This yields, in particular, by means of (2.3),

$$
\begin{equation*}
L_{i j k a}=-\Sigma\left(L_{i k \alpha} L_{j a_{\alpha}}+L_{i j \alpha} L_{k a_{\alpha}}\right) \tag{3.2}
\end{equation*}
$$

Differentiating (2.3) and using the structure equations (2.2), as well as their analogues in N, we get

$$
\begin{equation*}
L_{i a b c}-L_{i a c b}=R_{i a b c}-\sum \delta_{a j} \delta_{b l} \delta_{c k} K_{i j l k} \tag{3.3}
\end{equation*}
$$

From this and (3.2) it follows that

$$
\begin{equation*}
R_{i j k l}-K_{i j k l}=\Sigma\left(L_{i l \alpha} L_{j k \alpha}-L_{i k \alpha} L_{j l \alpha}+2 L_{i j \alpha} L_{l k \alpha}\right) \tag{3.4}
\end{equation*}
$$

Contracting (3.3), we obtain

$$
\Sigma\left(L_{i j a a}-L_{i a a j}\right)=R_{i j}-K_{i j}, \quad \Sigma\left(L_{i \alpha a a}-L_{i a a \alpha}\right)=R_{i \alpha}
$$

where $R_{a b}$ (resp. $K_{i j}$) is the Ricci tensor given by $\Sigma R_{a c b c}$ (resp. $\Sigma K_{i k j k}$). Since $\Sigma L_{i a a}=0$ implies $\Sigma L_{i a a b}=0$, the above equations lead us to

Lemma 1. If φ is a harmonic mapping, then

$$
\begin{equation*}
\Sigma L_{i j a a}=R_{i j}-K_{i j}, \quad \Sigma L_{i \alpha a a}=R_{i \alpha} . \tag{3.5}
\end{equation*}
$$

If the $L_{i j_{\alpha}}$ vanish, then the $L_{i a b c}$ have a simple form. In fact, from (3.1) we get
Lemma 2. If the $L_{i j \alpha}=0$, then,

$$
\begin{equation*}
L_{i j k a}=0, \quad L_{i j \alpha k}=0, \quad L_{i j \alpha \beta}=-\sum_{i \alpha \gamma} L_{j \beta \gamma} \tag{3.6}
\end{equation*}
$$

4. The Laplacian on functions and 1 -forms

In this section we study the set $\Omega^{1}(M, N)$. The sets $\Omega^{p}(M, N), p \geq 2$, will be discussed in the next section.

The following lemma is useful in finding conditions for a mapping to commute with the Laplacian.

Lemma 3. Let x be a point of N. For given $1 \leq i_{1}<\cdots<i_{p} \leq n$ and $1 \leq$ $k \leq n$, there exists a smooth p-form $A=\Sigma A_{j_{1} \cdots j_{p}} \theta_{j_{1}} \wedge \cdots \wedge \theta_{j_{p}}$, where the sum is taken over all j_{1}, \cdots, j_{p} with $j_{1}<\cdots<j_{p}$, such that $A_{j_{1} \cdots j_{p}}(x)=0$, $A_{i_{1} \cdots i_{p}, k}(x)=1$ and all other $A_{j_{1}, \cdots, j_{p}, l}$ vanish. The $A_{j_{1}, \cdots, j_{p}, l}$ are the coefficients of the covariant differential of A.

Proof. Let $\left(\left\{x_{i}\right\}, U\right)$ be a normal coordinate system at x, and let V be an open subset of U. For given constants $C_{0}, C_{1}, \cdots, C_{n}$, there is a smooth function h on N satisfying $h(x)=C_{0}, \partial h / \partial x_{i}(x)=C_{i}, i=1, \cdots, n$, and $h=0$ on $M-V$. Since $\left\{x_{i}\right\}$ is a normal coordinate system, covariant differentiation at x with respect to $\partial / \partial x^{i}$ is identical with ordinary partial differentiation. Thus a smooth p-form can be constructed whose covariant differential takes arbitrarily given values at x. The desired result now follows easily.

Let f be a smooth function on N, and put $d f=\Sigma f_{i} \theta_{i}$. The covariant differential of $d f$ is given by $\Sigma f_{i j} \theta_{j}=d f_{i}+\Sigma f_{j} \theta_{j i}$. Then $\Delta_{N} f=-\Sigma f_{i i}$. Similarly,
$\Delta_{M} \varphi^{*} f=-\Sigma f_{i i}-\Sigma f_{j} L_{j \alpha \alpha}$. The commutation condition $\varphi^{*} \Delta_{N} f=\Delta_{M} \varphi^{*} f$ may then be expressed by $\Sigma f_{j} L_{j \alpha \alpha}=0$. Applying Lemma 3, we obtain

Theorem 1. Let φ be a smooth mapping from M onto N. For any smooth function f on $N, \Delta_{M} \varphi^{*} f=\varphi^{*} \Delta_{N} f$ if and only if φ is a harmonic Riemannian submersion.

This was first proved by Watson [4].
Let $A=\Sigma A_{i} \varphi_{i}$ be a 1-form on N. The components $A_{i j}$ of the covariant differential $\nabla_{N} A$ are given by $\Sigma A_{i j} \theta_{j}=d A_{i}+\Sigma A_{j} \theta_{j i}$, and the components $A_{i j k}$ of the second covariant differential $\nabla_{N}^{2} A$ of A are given by $\sum_{\tilde{\sim}} A_{i j k} \theta_{k}=d A_{i j}+$ $\sum_{\tilde{k j}} A_{k i}+\theta_{\tilde{A}_{a}} A_{i k} \theta_{k j}$. Set $\varphi^{*} A=\Sigma \tilde{A}_{a} \omega_{a}$ and $\nabla_{M} \varphi^{*} A=\Sigma \tilde{A}_{a b} \omega_{a} \wedge \omega_{b}$. Then $\tilde{A}_{i}=A_{i}, \tilde{A}_{\alpha}=0, \tilde{A}_{i j}=A_{i j}, \tilde{A}_{i \alpha}=\Sigma A_{j} L_{j i \alpha}, \tilde{A}_{\alpha i}=\Sigma A_{j} L_{j \alpha i}, \tilde{A}_{\alpha \beta}=\Sigma A_{j} L_{j \alpha \beta}$, $i=1, \cdots, n ; \alpha=n+1, \cdots, m$. Moreover, the components of $\nabla_{M}^{2} \varphi^{*} A$ are

$$
\begin{align*}
& \tilde{A}_{i j k}=A_{i j k}+\Sigma A_{l} L_{l i j k} \\
& \tilde{A}_{i \alpha \beta}=\Sigma A_{l} L_{l i \alpha \beta}+\Sigma A_{i l} L_{l \alpha \beta}, \tag{4.1}\\
& \tilde{A}_{\alpha i j}=\Sigma A_{l} L_{l \alpha i j}+\Sigma A_{l j} L_{l \alpha i}+\Sigma A_{l i} L_{l \alpha j}, \\
& \tilde{A}_{\alpha \beta r}=\Sigma A_{l} L_{l \alpha \beta r}
\end{align*}
$$

To deduce the first equation of (4.1), we use (3.2). Since $\Delta_{M} \varphi^{*} A=-\Sigma\left(\tilde{A}_{a b b}-\right.$ $\left.\tilde{A}_{b} R_{b a}\right) \omega_{a}$ and $\varphi^{*} \Delta_{N} A=-\Sigma\left(A_{i j j}-A_{j} K_{j i}\right) \omega_{i}$, formula (4.1) yields

Lemma 4.

$$
\begin{align*}
\Delta_{M} \varphi^{*} A-\varphi^{*} \Delta_{N} A= & \Sigma\left\{A_{j}\left(R_{j i}-K_{j i}-\Sigma L_{j i a a}\right)-A_{i j} \Sigma L_{j \alpha \alpha}\right\} \omega_{i} \\
& +\Sigma\left\{A_{j}\left(R_{j \alpha}-\Sigma L_{j_{\alpha a a}}\right)-2 \Sigma A_{j i} L_{j i \alpha}\right\} \omega_{\alpha} . \tag{4.2}
\end{align*}
$$

We introduce the operator $H: \bigwedge^{1}(M) \rightarrow \bigwedge^{1}(M)$ defined by $H\left(\Sigma B_{a} \omega_{a}\right)=$ $\Sigma B_{i} \omega_{i}$. This definition does not depend on the choice of the local forms ω_{α}. Using Lemmas 1 and 3, we obtain from Lemma 4

Proposition 1. Let $\varphi: M \rightarrow N$ be a Riemannian submersion. For any 1-form A on $N, H\left(\Delta_{M} \varphi^{*} A\right)=\varphi^{*} \Delta_{N} A$ if and only if φ is a harmonic Riemannian submersion.

If $\Delta_{M} \varphi^{*} A=\varphi^{*} \Delta_{N} A$ for any 1 -form A, then φ is harmonic, and $\Sigma L_{j \alpha a a}=R_{j \alpha}$ by Lemma 1. Hence the coefficient of ω_{α} in (4.2) vanishes if and only if the $L_{j i a}$ $=0$. Conversely, if $\Sigma L_{i \alpha \alpha}=0$ and the $L_{i j \alpha}=0$, then (4.2) implies $\Delta_{M} \varphi^{*} A=$ $\varphi^{*} \Delta_{N} A$ for any 1-form A. Thus we have

Proposition 2. Let $\varphi: M \rightarrow N$ be a smooth surjective mapping with rank $\varphi_{*} \geq$ 1. For any 1-form A on $N, \Delta_{M} \varphi^{*} A=\varphi^{*} \Delta_{N} A$ if and only if φ is a harmonic Riemannian submersion and the $L_{i j \alpha}$ vanish.

5. The Laplacian on p-forms

Let $A=\Sigma A_{i_{1} \cdots i_{p}} \theta_{i_{1}} \wedge \cdots \wedge \theta_{i_{p}}$ be a p-form on N, and set $\varphi^{*} A=$ $\Sigma \tilde{A}_{a_{1} \cdots a_{p}} \omega_{a_{1}} \wedge \cdots \wedge \omega_{a_{p}}$. Then $\tilde{A}_{i_{1} \cdots i_{p}}=A_{i_{1} \cdots i_{p}}$, and all other components vanish. Denote the components of $\nabla_{N} A\left(\operatorname{resp} . \nabla_{M} \varphi^{*} A\right)$ by $A_{i_{1} \cdots i_{p, j}}$ (resp. $\left.\tilde{A}_{a_{1} \ldots a_{p}, b}\right)$ and the components of $\nabla_{N}^{2} A\left(\operatorname{resp} . V_{M}^{2} \varphi^{*} A\right)$ by $A_{i_{1} \cdots i_{p}, j k}\left(\right.$ resp. $\left.\tilde{A}_{a_{1} \cdots a_{p}, b c}\right)$. We have

$$
\begin{aligned}
\Delta_{N} A=-\sum(& \sum_{j} A_{i_{1} \cdots i_{p}, j j}-\sum_{\rho=1}^{p} \sum_{j} A_{i_{1} \cdots i_{\rho-1} j i_{\rho+1} \cdots i_{p}} K_{j i_{\rho}} \\
& \left.+\sum_{\rho \neq \sigma}^{p} \sum_{i, j} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{\sigma-1} j i_{\sigma+1} \cdots i_{p}} K_{i i_{\rho j} i_{\sigma}}\right) \theta_{i_{1}} \wedge \cdots \wedge \theta_{i_{p}}
\end{aligned}
$$

as well as a similar expression for $\Delta_{M} \varphi^{*} A$. Put

$$
\begin{equation*}
\Delta_{M} \varphi^{*} A-\varphi^{*} \Delta_{N} A=\Sigma B_{a_{1} \cdots a_{p}} \omega_{a_{1}} \wedge \cdots \wedge \omega_{a_{p}} \tag{5.1}
\end{equation*}
$$

As in the previous section, $\tilde{A}_{a_{1} \cdots a_{p}, b c}$ can be expressed in terms of the $A_{i_{1} \cdots i_{p}}$, $A_{i_{1} \cdots i_{p}, j}, A_{i_{1} \cdots i p, j k}, L_{i a b}$ and $L_{i a b c}$. For example,

$$
\tilde{A}_{i_{1} \cdots i_{p}, i_{j}}=A_{i_{1} \cdots i_{p}, i j}-\sum_{\rho=1}^{p} \sum_{j, \alpha} A_{i_{1} \cdots i_{\rho-1 k i} i_{\rho+1} \cdots i_{p}}\left(L_{i j \alpha} L_{k i_{\rho} \alpha}-L_{k i \alpha} L_{i_{\rho} j_{\alpha}}\right) .
$$

Employing relations of this type, we get
Lemma 5. The coefficients in (5.1) may be expressed as

$$
\begin{align*}
& B_{i_{1} \cdots i_{p}}=\sum_{\rho=1}^{p} \sum_{i} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{p}}\left(R_{i i_{\rho}}-K_{i i_{\rho}}-\sum_{a} L_{i i_{\rho} a a}\right) \tag{5.2}\\
& \quad+\sum_{\rho \neq \sigma}^{p} \sum_{\substack{i, j \\
\alpha}} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{\sigma-1} i_{\sigma+1} \cdots i_{p}} L_{i j_{\alpha}} L_{i_{\rho} i_{\sigma \alpha}}-\sum_{i, \alpha} A_{i_{1} \cdots i_{p}, i} L_{i \alpha \alpha} \\
& B_{i_{1} \cdots i_{\rho-1} \alpha i_{\rho+1} \cdots i_{p}}=\sum_{i} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{p}}\left(R_{i \alpha}-\sum_{a} L_{i \alpha a a}\right) \\
& \quad-2 \sum_{\sigma=1}^{p} \sum_{j} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{\sigma-1} j i_{\sigma+1} \cdots i_{p}}\left(R_{i \alpha j i_{\sigma}}+\sum_{\beta} L_{i \alpha \beta} L_{j i_{\sigma \beta}}\right) \tag{5.3}\\
& \quad-2 \sum_{i, j} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{p}, j} L_{i j_{\alpha}}, \\
& B_{i_{1} \cdots i_{\rho-1} i_{\rho+1} \cdots i_{\sigma-1} i_{\sigma+1} \cdots i_{p}} \\
& \quad=-\sum_{i, j} A_{i_{1} \cdots i_{\rho-1} i i_{\rho+1} \cdots i_{\sigma-1} j i_{\sigma+1} \cdots i_{p}}\left(R_{i j_{\alpha \beta}}+2 \sum_{a} L_{i \alpha a} L_{j \beta a}\right), \tag{5.4}\\
& B_{a_{1} \cdots \alpha \cdots \beta \cdots a_{p}}=0 . \tag{5,5}
\end{align*}
$$

If for any p-form A, the corresponding $B_{i_{1} \cdots i_{p}}$ vanish, then from (5.2) and Lemma 3 we have $\Sigma L_{i \alpha \alpha}=0$. If, in addition, the $B_{i_{1} \cdots i_{\rho-1} \alpha i_{\rho+1} \cdots i_{p}}=0$, then (5.3) implies that the $L_{i j \alpha}=0$. Conversely, assume $\Sigma L_{i \alpha \alpha}=0$ and the $L_{i j \alpha}=0$. Then by Lemmas 1 and 2 we conclude that the $B_{a_{1} \cdots a_{p}}=0$ for any p-form A. Taking account of Proposition 2, we obtain
Theorem 2. Let $\varphi: M \rightarrow N$ be a smooth surjective mapping with rank $\varphi_{*} \geq 1$. Let $p(\geq 1)$ be fixed. For any p-form $A, \Delta_{M} \varphi^{*} A=\varphi^{*} \Delta_{N} A$ if and only if $\varphi: M \rightarrow N$ is a harmonic Riemannian submersion with integrable horizontal distribution.

Corollary 1. $\quad \Omega^{1}(M, N)=\Omega^{2}(M, N)=\cdots=\Omega^{n}(M, N)$.
It was shown in [4] that if $\Omega^{p}(M, N)$ is nontrivial for a fixed p, then $b_{p}(N)$ $\leq b_{p}(M)$, where b_{p} denotes the p-th betti number. Thus
Corollary 2. Let $\phi: M \rightarrow N$ be a smooth surjective mapping with rank $\phi_{*} \geq 1$. Then a necessary condition that ϕ be a harmonic Riemannian submersion with integrable horizontal distribution is $b_{p}(N) \leq b_{p}(M)$ for all $p=1, \cdots, n$.

Bibliography

[1] R. Hermann, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle, Proc. Amer. Math. Soc. 11 (1960) 236-242.
[2] T. Nagano, On fibred Riemann manifolds, Sci. Rep. Coll. Gen. Ed. Univ. Tokyo 10 (1960) 17-27.
[3] B. O'Neill, The fundamental equations of a submersion, Mich. Math. J. 13 (1966) 459-469.
[4] B. Watson, Manifold maps commuting with the Laplacian, J. Differential Geometry 8 (1973) 85-94.

University of Illinois, Urbana Tokushima University, Japan \& University of Illinois

