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ON THE PRINCIPLE OF UNIFORMIZATION

R. S. KULKARNI

The uniformization theorem for Riemann surfaces is a milestone in the clas-
sical function theory which has led to several developments in different branches
of mathematics. In topology one usually associates the concept of a covering
space as directly arising from uniformization. While this is undoubtedly true the
classical uniformization theory has a different group theoretical aspect which
goes substantially beyond the usual covering space theory. What we have in
mind is the special role played by the group of Mobius transformations in the
classical uniformization. In several respects it comes close to the more elemen-
tary idea of "development" used in differential geometry, and in this form it
seems worthwhile to generalize it in other situations. In the classical case there
are two broad classes of groups appearing in uniformization. The first class is
the class of Fuchsian groups which act discontinuously on the unit disc. The
second class is that of Kleinian groups which act discontinuously on some region
on the 2-sphere. Even in this classical case it is only in the last decade that
Kleinian groups have been vigorously studied thanks to Ahlfors, Bers, Maskit,
Kra and others. Higher dimensional generalization of Fuchsian groups have
been studied in considerable detail as they arise naturally in the arithmetic pro-
blems and the modulii problems. On the other hand the Kleinian case has re-
ceived much less attention. The method of Kleinian groups leads to construc-
tion of new manifolds with far more complicated topology than those arising
in the Fuchsian case. Relating the properties of these manifolds to those of the
corresponding model spaces and groups is a problem of intrinsic interest.

Here is a brief outline of the contents of the paper.
In § 1 we develop the theory of uniformization. It is implicit in certain classi-

cal problems. For instance as mentioned above it appears in its most elemen-
tary form in the discussion of developable (i.e., curvature zero) surfaces, and
more generally in the theory of space forms (i.e., Riemannian manifolds of con-
stant curvature). In a deeper way it appears in the conformal development of
Riemann surfaces. In differential geometry it is implicit in the concept of holo-
nomy especially in the case of integrable G-structures. The author's motivation
mainly came from Kuiper [12], [13] and Gunning [7]. The problem of uniform-
ization is the same as that of studying special coordinate coverings proposed by
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Gunning [7]. It may be considered as a special (but interesting!) case of more
general theories, e.g., Grothendieck's theory of fiber spaces [6]. It is worth em-
phasizing that we make only a mild quasianalyticity hypothesis—the condition
(U) of § 1—about the group and no further differentiability conditions are
imposed. A fuller account of the theory, although desirable, would have taken
longer than intended here. We have tried to present the essential points and hope
that it is sufficient to generate interests of geometers and topologists.

In § 2 we study uniformization in the context of G-structures. A basic prob-
lem in the theory of G-structures is to describe manifolds admitting a G-struc-
ture for "interesting" G's. In the case of G-structures of finite type (cf. § 2 for
the definition) uniformization theory provides such a description. This result
should be regarded as a natural generalization of the Liouville's theorm in con-
formal geometry in dimensions > 3. This approach via the uniformization the-
ory appears to be by far the more revealing than the purely connection-theo-
retic approach which the differential geometers are accustomed to use.

We illustrate this result in § 3 through § 5 by discussing a notion of "quater-
nionic structure" on a manifold. As an extension of the notion of a complex
manifold this notion has attracted a good deal of attention of differential ge-
ometers; cf. Ehresmann [3], Obata [17], Ishihara [9], Fueter [5]. Although vari-
ous variants can be formulated, one conceivable notion of a quaternionic struc-
ture on a Φz-dimensional manifold is that of an integrable GL7l(//')-structure,
where H stands for the field of quaternions. It is known from Obata [17] that
this notion is too rigid to allow even P\H), i.e., the one-dimensional quater-
nionic projective space to be "quaternionic". In this paper a quaternionic mani-
fold is defined to be one with integrable GLn(//) GL^J^-structure cf. §3.
This modification allows Pn(H) to be quaternionic. The main result whose proof
extends over § 3 thorugh § 5 is

Theorem 3.4. A differ entiable manifold Min is quaternionic if and only if it is
uniformizable over Pn(H) with respect the group of quaternionic projective trans-
formations.

It appears remarkable that just as a l-dimensonal complex manifold is the same
as an orient able 2-dimensional real manifold with conformally Euclidean geometry,
so also a 1-dimensional quaternionic manifold is the same as an orientable 4-di-
mensίonal real manifold with conformally Euclidean geometry, cf. § 6.

In § 7 we prove a certain "geometric surgery" theorem, a consequence of
which is

Theorem 7.2. A connected sum of conformally Euclidean manifolds admits a
conformally Euclidean structure.

This theorem should be compared to "combination theorems" of Klein in
the theory of Kleinian groups which have been recently generalized by Maskit;
cf. Ford [4, § 25], Maskit [15]. In these theorems one starts with groups Γ/s of
fractional linear transformations of the Riemann sphere such that each Γi acts
properly discontinuously on a nonempty open subset of the Riemann sphere,
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and one shows that under certain conditions certain amalgamated products of
ZYs also act properly discontinuously on some nonempty open subsets of the
Riemann sphere. In Theorem 7.2 we deal directly with manifolds rather than
groups. We note here, paranthetically, that the conformally Euclidean manifolds
obtained by means of Theorem 7.2 are not in general obtainable by means of
"combination theorems" even in the classical case of 2-dimensional conformal
geometry.

From a differential geometric standpoint the possibility of combination the-
orems as well as of Theorem 7.2 may be traced to the possibility of "inversions"
in conformal geometry. In 2-(resp. 4-) real dimensions identifying a conformally
Euclidean structure (locally) with a complex (resp. quaternionic) structure such
an inversion may be expressed as a holomorphic (resp. quaternionic) transfor-
mation. So one can put a complex {resp. quaternionic) structure on a connected
sum of l-dimensional complex (resp. quaternionic) manifolds I

In 2-dimensional conformal geometry the only possibility of inversion is that
in a circle. In dimension > 2 one may ask the possibility of inversion not only
in 1-codimensional spheres but also in other 1-codimensional submanifolds. In
Theorem 8.2 we show that many such examples can be constructed. Curiously,
the procedure is real-algebraic. We show moreover

Theorem 8.4. For any g = 0, 1, 2 there exists a conformal inversion of
the standard 3-sphere which turns a closed oriented surface of genus g inside out.

This paper is an outgrowth of the author's work on conformal geometry in
higher dimensions which was inspired by Kuiper [12], [13] and the conformal
nonimmersion theorems started by Chern and Simons [2], The present work
and the work on conformal geometry (cf. [14]) has been reported in the Bers
seminar at Columbia; the author gratefully acknowledges the comments by the
members of the seminar.

1. Uniformization

Let S be a topological space, and G a group of homeomorphisms of S. We
shall assume that G satisfies the following condition:
(U) For any gl9 g2 in G if their action coincides on a nonempty open subset

of S, then gλ = g2.
The condition may be rephrased by saying that an element of G is determined

uniquely by its action on an open set. The pair (S, G) will be fixed once and for
all and will be referred to as the model space.

Definition 1.1. A topological space M is said to be uniformized by (S, G) if
the following holds:

There exist a covering {Ua}aeA of M and homeomorphisms φa: Ua —> S such
that for every pair a, β in A such that Ua ΓΊ Uβ Φ 0 the mapping

φaoφ^:φβ(Ua Π Uβ) - φa(Ua Π Uβ)

is a restriction of an element gaβ of G.
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We shall say in this case that {Ua, ψa) define a uniformization of M with re-
spect to (S, G). Let {Va,}a>ζiAf be a refinement of {Ua}a€A. Let j : Ar —• A be a re-
finement map. Suppose that there exist homeomorphisms ψα,: Va, —» 5 such
that {Fα/, ψv} also define a uniformization with respect to (S, G). We shall say
that {Va,, ψv} is an admissible refinement of {Ua, ψa) if there exist elements
{ga'}a'€A' m G such that ψa, = ga, o φJ(aΊ restricted to Va.. If this is the case, then

Let {£/α, ^α}α6^, {Fα/, ψvjvg^/ be two uniformizations of M with respect to
(S, G). These uniformizations are said to be equivalent if there exists a unifor-
mization {Wa,,, θa"}a>><=A>< which is an admissible refinement common to both

Definition 1.3. An equivalence class of uniformizations will be called an
(S, G)-structure on M.

Suppose that S is a differentiable manifold and G is a group of diffeomor-
phisms of S. An (S, G)-structure on a differentiable manifold M is said to be
differentiable if each of the maps φa appearing in some uniformization belonging
to the (S, G)-structure is a diffeomorphism. Similarly, the notions of real analytic
(S, G)-structure etc. may be defined. For convenience we shall not keep the logi-
cal distinction between a uniformization and the underlying (S, G)-structure if
there is no possibility of confusion.

The condition (U) of (1.1) on the group G implies that

(1.4) gaa = 1 , g«β°gβr = g«T '

This defines a 1-cocycle on M with values in the sheaf of germs of continuous
G-valued functions where G is given the discrete topology. In cohomological
terms (1.2) and (1.4) together imply that an (S, G)-structure on M canonically
defines a cohomology class in Hι(M, G).

The bundle ξ and the section σ. Let M have an (S, G)-structure. Let {Ua,
ψa}aζA define a uniformization of M which defines the (S, G)-structure. We con-
struct a bundle ξ with base M, fiber S and group G with discrete topology as fol-
lows. The total space Eξ is obtained by taking a disjoint union [Ua X S}a£A and
factoring by the equivalence relation: for x e Ua Π Uβ

(1.5) (x, sa) - (x, sβ) iff sa = gaβsβ .

It is easy to see that since by construction G acts effectively on S the bundle ξ
depends only on the (S, G)-structure and not on the choice of the uniformization
{Ua, φa}. Consider the section

(1.6) σ:M^Eζ

defined as follows: if x e Ua, set σ{x) = (x, φa(x)). Since φa = gaβψβ this is well
defined, σ depends on a choice of the uniformization.
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If N is uniformizable on (S, G) and/: M —> N a, local homeomorphism, then
pulling back a uniformization of N via / defines a uniformization of M.

We can now make spaces uniformizable on (S, G) into a category. If M and
N are two such spaces, a morphism, or an (S, G)-mαp, or a G-mαp (if the refer-
ence to 5 is clear) is a local homeomorphism/: M —> N such that the pullback
of the uniformization on N by / is a uniformization equivalent to the given uni-
formization of M. In particular, a homeomorphism/: M —> M which is a G-map
is called a G-automorphism.

Holonomy. It is standard, cf. e.g. Steenrod [18], that H\M, G) is in 1-1 cor-
Tespondence with homomorphisras of the fundamental group of M into G:

(1.7) p:πι(M)^G

up to inner automorphisms of G. If a cohomology class in Hι{M, G) arises from
a uniformization, the corresponding p will be called the holonomy representa-
tion of the uniformization.

From the above discussion the following propositions are obvious.
Proposition 1.8. If M is uniformizable on (S, G), so is any covering space Mx

of M. Conversely, if Mλ is a reqular covering space which is uniformizable on
(S, G), and the group of covering transformations of Mλ over M consists of G-
automorphisms, then M is uniformizable on (5, G).

Proposition 1.9. If M, N are uniformizable on (S, G), f:M—>Nίsa G-map,
and pN: πx(N) —• G is a holonomy representation of N, then the induced map
PN ° / * is a holonomy representation of M.

We apply these considerations to the following situation. Let M be uniformi-
zable on (S, G), and p: πx(M) —> G be a corresponding holonomy representation.
Let k be the kernel of p, and M k the corresponding regular covering space of
M. Let p: Mk —> M be the projection map. Then pk = po p^ which is a holo-
nomy representation of Mk, is obviously trivial. Let ξ be the bundle on M con-
structed as above. Then p*ξ is obviously the corresponding bundle on Mk.
Since the holonomy representation pk is trivial, the bundle p*ξ is isomorphic to
the product bundle so that the total space

(1.10) EvH « Mkχ S .

Let σk: Mk —> Ep*ξ be the section constructed as above. Then δk = pr2 o akJ

where pr2 is the projection into the second factor by the isomorphism (1.10) is
a local homeomorphism of Mk into S. If p: M —> Mk is any covering space,
then δkop is also a local homeomorphism. We shall use the same letter 3 for
any map of the type δk o p unless there is a possibility of confusion.

Definition 1.11. δ is called a development map of the uniformization.
Apart from any other geometrical structure which may be available, the rep-

resentation p and the development map δ contain the most important informa-
tion about the uniformization.
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We shall now prove two basic theorems governing uniformization.
Theorem 1.12. Let M be uniformizable on (S, G). Suppose that M and S are

connected, arc connected and locally simply connected. If M is compact and sim-
ply connected, then M covers S. In particular, any two (S, G)-structures on M are
isomorphic. Moreover, if S is also simply connected, then M zz S.

Proof The development map δ: M —» S is a local homeomorphism. Let q be
a point in S. The set δ~\q) must be finite, for otherwise since M is compact,
δ~\q) would have a limit point p and δ would fail to be a local homeomorphism
in a neighborhood at/?. For each/?^ in δ~\q) let Ut be a connected neighbor-
hood on which δ is a local homeomorphism and Ut Γ) V3 = 0 if pt Φ Pj.
Then V = Π δ(U^) is a neighborhood of q. Let Vo be the component of V con-
taining q. Then each component of δ~\V^ is mapped homeomorphically onto
Vθ9 i.e., δ is a covering map. The last statement is clear, q.e.d.

For the next theorem we shall assume that S is a differentiable manifold, and
we shall consider differentiable uniformizations only.

Theorem 1.13. Let S be a Riemannian manifold of class C1, and G a group of
ίsometries of S. Let M be a differentiable manifold differentiably uniformizable on
(S, G), and p: M—>M its simply connected covering space. Then M, M admit Rie-
mann metrics such that p and δ are local ίsometries. If moreover M is complete,
then M covers S.

Proof Let {Ua9 φa} be a uniformization of M. We introduce Riemann met-
rics on Ua by pulling back the metric on φa(Ua). Two metrics on Ua ΓΊ Uβ agree
since G is a group of isometries. Thus M admits a Riemann metric and by pull-
back by /?, M admits a Riemann metric. By construction the development map
δ is a local isometry. If M is complete, so is M. To show that δ is a covering
map for a fix q e S. δ~\q) is discrete since δ is a local homeomorphism. Let mt

be a point in δ~\q), and choose an ε-ball Ϊ74 around mu which is mapped iso-
metrically by δ on the ε-ball V around q where ε is a sufficiently small positive
number. δ~ι(V) clearly is a union of ε-balls U5 around each ra^ in δ~\q). Since
M is complete, δ maps each Uj isometrically on V. Also if mj Φ mk, then Uά

Π Uk must be empty for otherwise it will contain a point x such that the dis-
tance d(x, mj) is different from d(x9 mk). This is a contradiction for each d(x, mά)
and d(x, mk) must equal d(δ(x), q). So δ is a covering map.

Remark. In the above theorem in particular if S is simply connected, then
M « S. This theorem essentially covers the "Fuchsian case." In this case uni-
formization does not give much beyond the usual covering space theory. When
G cannot be made into a group of isometries—which is the case if the isotropy
subgroup at some point is noncompact—then uniformization goes further. An
example of this situation which arises naturally is that of conformally Euclidean
manifolds of dimension n, which are precisely the manifolds uniformizable on
the standard π-sphere Sn with respect to the full group of conformal transforma-
tion. When n = 2 and we restrict to orientation preserving conformal trnsforma-
tions, this is the classical uniformization for Riemann surfaces. Similarly it is
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not too difficult to see that every paracompact 2-dimensional manifold may also
be uniformized on RP2—the real projective plane with respect to the group of
projective transformations. Similar problems may be posed in several complex
variables. Another interesting set-up is: S = G/P where G is a real semisimple
noncompact Lie group and P is a parabolic subgroup of G. This is a natural
set-up in which a generalization of the classical theory of Kleinian groups may
be sought.

2. Uniformization and (7-structures

Let G be a subgroup of GLn(R), and ξ a bundle of rank n on a manifold M.
We say that ξ carries a (/-structure if the structure group of ξ can be reduced
from GLn(R) to G. Equivalently, a G-structure amounts to specifying a princi-
pal (/-bundle which is a subbundle of the bundle of frames associated to ξ. If
such a bundle is specified, a frame belonging to this subbundle will be called a
G-frame.

Let ιG be the group obtained by taking transposes of elements of G. If ξ ad-
mits a G-structure, then the dual bundle ξ* admits a 'G-structure. In particular
for G = *G, ξ carries a G-structure iff ξ* does. This observation will be used
later.

Let Mn be a differentiable manifold, and ξ = τ(M) the tangent bundle of M.
A G-structure on τ(M) is called a G-structure on M. Moreover, a G-structure on
M is said to be ίntegrable if for every p e M there exists a coordinate neigh-
borhood of p with coordinates {x1, , x71} such that the coordinate frames
{d/dx\ , d/dx71} are G-frames.

While the language of G-structures is very convenient to formulate geometri-
cal notions, it is usually a difficult problem for a given G to describe manifolds
carrying a G-structure or an integrable G-structure. The following proposition
gives a source of examples of manifolds carrying a G-structure or an integrable
G-structure.

Proposition 2.1. Let K be a Lie group acting effectively, transitively, and dif-
ferentiably on a differentiable manifold S. Fix a base point s e S. Let H be the
isotropy subgroup at s, and c\ H —• τs(S) be the isotropy representation. Let G =
ι(H). Then S carries a G-structure, and any manifold uniformized on (S, K) car-
ries a G-structure. If the G-structure on S is integrable, so is the G-structure on
any manifold uniformized on (S, K).

Proof Fix a frame / at s and operating by G a set Fs of frames which we
shall take to be the G-frames at s. For k e K we take k^(Fs) to be the G-frames
at ks. This is well defined, for if kγs = k2s, then kϊλk2 is in H and (kϊ1k2)^Fs =
Fs so fcx*(Fe) = k2*(Fs). The frames {k*Fs\keK} clearly define a principal G-
subbundle of the bundle of frames. So S carries a G-structure. Also K isa. group
of automorphisms of this G-structure. If M is a manifold uniformized on (5, K),
choose a uniformization {Ua, φa}. Define a G-structure on Ua as a pullback of
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the G-structure on ψa{Ua) by φ-£. Two G-structures on Ua Π Uβ if nonempty,
match since φa o φj1 e K. The final observation is also clear.

Remark. To say that a manifold uniformized on (S, K) carries a G-structure,
we only need that K is a group of G-automorphisms. The full strength of S =
KjH is not needed.

In the following we are interested in the problem: given a subgroup G of
GLn(R) describe the differentiate manifolds carrying integrable G-structures.
In general this is a difficult problem. We shall deal with the case where the G-
structure is of finite type in the sense described below. For a fuller account of
this notion cf. Sternberg [9] which also deals with the nonintegrable case.

Fix a subgroup G of GLn(R). Consider Rn with standard Cartesian coordi-
nates. We can equip Rn with a canonical integrable G-structure. We are actually
interested only in the "germ" of this G-structure at the origin. A local diffeo-
morphism x —>f(x) is an automorphism of the G-structure if it carries G-frames
into G-frames. This is so iff the Jacobian matrix (βfJ/dx^p for any p in a suffi-
ciently small neighborhood of the origin belongs to G. In particular if {ft} is a
local 1-parameter group of G-automorphisms and Xj = df{/dt\t=0 then (dXl/dx^p
for any p in a sufficiently small neighborhood of the origin belongs to the Lie
algebra g of G where g is considered as a matrix subalgebra of $ln(R) in a ca-
nonical way. A vector field of class C1

n 3

ξ = Σ X'4Ί

defined on a neighborhood of the origin with the property (dX^dx1) e g is called
an infinitesimal automorphism of the G-structure.

Definition 2.2. G is said to be of finite type if the Lie algebra of infinitesimal
automorphisms of the above G-structure is finite dimensional.

With this definition we formulate
Theorem 2.3 (A generalized Liouville's theorem). Let G be a subgroup of

GLn(R) of finite type. Then there exists an n-dίmensional differentiable manifold S
together with a transitive effective Lie group K acting on S so that S carries an
integrable G-structure, and a manifold Mn admits an integrable G-structure iff it
is unίformizable on (S, K).

Proof Consider Rn with standard Cartesian coordinates, and consider the
germ of the standard integrable G-structure at the origin. Let g be the Lie al-
gebra of G, and K the Lie algebra of infinitesimal G-automorphisms which is fi-
nite dimensional since G is of finite type. Let ϊ) be the isotropy subalgebra of K
at the origin, i.e.,

Let c\ ί) —> §ln{R) be the linear isotropy representation, K clearly contains g and
the algebra ?Γ of translations ^Rn. Also g C ξ , and if g is identified with the
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subalgebra of &ln(R) then t(§) = g. Let K' be the simply connected Lie group
with the Lie algebra rc9 and let H' be the connected integral subgroup of K' with
the Lie algebra \ Then H' is closed. For if it were not closed then, its closure
H' will be of dimension greater than that of H\ and the same is true for their
Lie algebras f) and ϊ). Sufficiently small neighborhoods of the identity in H' and
H' act on a neighborhood of the origin in Rn, and by construction the origin
is the fixed point of this action. So ξ is contained in the isotropy subalgebra ϊ).
Hence dim ξ equals dim ή which is a contradiction. Thus Hr is closed and S =
K'/H' is a manifold. If N is the (necessarily discrete) subgroup of Kf acting
trivially on S, then N is normal and closed in both Kr and Hf. Set K" — K'/N,
H" = H'/N so that we have also S = K"\H". Let s be the base point corres-
ponding to the coset (H"). A sufficiently small neighborhood of the origin in
Rn may be mapped homeomorphically and ^"-equivariantly onto a neighbor-
hood of the base point s in S. Using this isomorphism consider the isotropy rep-
resentation c: H" -> GLn{R) « Autr^S). Then e(H") = say G" is clearly a
subgroup of G which is in fact the connected component of the identity of G.
By Proposition 2.1, S carries an integrable (/"-structure, in particular an in-
tegrable G-structure. Let K be the full group of G-automorphisms of S. We
claim that every locally defined G-isomorphism is a restriction of an element of
K. Indeed let V, W be open nonempty subsets, and g: V —> W a G-isomorphism.
Composing with suitable elements of K" we may assume that V, W are neigh-
borhoods of the base point s. Then for k lying in a sufficiently small neighbor-
hood of the identity in K\ gkg~ι is defined and is an element of K\ Thus g in-
duces a local automorphism of a neighborhood of the identity in Kr which
extends to an automorphism of Kf since Kr is connected and simply connected.
We denote this automorphism by k —> ks. Clearly Ng = N so that we get an
automorphism again denoted by k —> A:̂  of A77. If /? is any point of 5, then
choose k e K" such that ks = p and set gp = kg(gs). As H" is connected it
follows that gH"g~ι is the isotropy subgroup of K" at gs, and this fact easily
shows that the action of g on S described above is well defined. Thus g and in
the same way g" 1 extend to maps of S into S. Using the well-known fact that
a local automorphism of an integrable G-structure of finite type is analytic,
we see that gg~λ = 1 everywhere since it is so on a nonempty open subset. So
g extends to a G-automorphism of S.

Let now Mn be a manifold with an integrable G-structure. Then every point
p e M has a neighborhood Up and a G-isomorphism <pp: Up^ S. By what has
been said above if Up Π Uq Φ 0 then φp o φ-1 is a restriction of an element
of K, i.e., M is uniformizable over (S, K). This completes the proof.

A generalization. In the above theorem we have restricted to "first order" G-
structures, i.e., where G is a subgroup of GLn(R). We shall briefly outline a gen-
eralization to the higher order structures. As the main interest here is in the
integrable case we restrict the discussion to this case only. For more details con-
cerning higher order structures see e.g., Kobayashi [10] and Sternberg [19].
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Consider all C°° diffeomorphisms x -^f(x) defined in some neighborhood of
the origin of Rn such that /(0) = 0. Two such diffeomorphisms are considered
equivalent if they coincide in some neighborhood of the origin. An equivalence
class of diffeomorphisms is called a germ of a diffeomorphism. Under composi-
tion this obviously defines a group structure on the set of germs. Let us denote
this group by G(n). If we fix a coordinate system at the origin, the subgroup of
G(n) defined by linear automorphisms can obviously be identified with GLn(R).
Let U be an open subset of Rn (with standard coordinates). Let / : U -* Rn be a
diffeomorphism. Define Df: U —> G(ή) as follows: if/O) = q, and τp (resp. τq)
is the translation carrying the origin to p (resp. q), then Df(p) is the equivalence
class of τ'1 °/° τy Let G be a subgroup of Gin), and Mn an ^-dimensional dif-
ferentiable manifold. We shall now define the notion of an integrable G-struc-
ture on M as follows. Mn is said to admit an integrable G-structure if there exists
a covering {Ua} by coordinate neighborhoods such that if {gaβ} are the coordinate
transition functions then for each p in Ua Π Uβ9 Dgaβ(p) is an element of G.
Two systems of coordinate neighborhoods defining an integrable G-structure
are compatible if their union also defines an integrable G-structure. The union of
all compatible coordinate systems is called the maximal atlas of the G-structure.
A diffeomorphism of M is a G-automorphism if it carries the maximal atlas into
itself. Similarly an infinitesimal G-automorphism may be defined. Consider the
"germ" of the canonical G-structure defined at the origin in Rn. G is said to be
finite type if the infinitesimal G-automorphisms of this G-structure at the origin
in Rn form a Lie algebra which is finite dimensional. With minor modifications
Theorem 2.3 is generalized to

Theorem 2.3'. Let G CZ G{ή) be of finite type. Then there exists a manifold S
with an integrable G-structure such that an n-dimensional differentiable manifold
Mn admits an integrable G-structure iff it is unίformizable on (S, K) where K is
its full group of G-automorphisms.

As an example where Theorem (2.3/ applies but Theorem (2.3) does not, we
may consider G c: G(n) defined by the germs of real respective complex projec-
tive transformations of the real respective complex projective space. If the di-
mension of the projective space is > 2, in fact 2-jets of the germs suffice. If di-
mension = 1, one needs 3-jets which corresponds to the third order differential
equation ("Schwarzian derivative") satisfied by the projective transformations.

The group K. The structure of the group K appearing in Theorem 2.3 or 2.3'
is in general complicated. In particular it may have infinitely many components.
In this connection in the important case when S is compact, the following results
based on some standard results from Lie theory are quite useful.

Theorem 2.4. Let S = K/H be as in Theorem 2.3 or 2.3'. Let Ko (resp. Ho)
be the connected component of the identity in K (resp. H). Let P (resp. Q) be a
maximal compact subgroup of Ko (resp. Ho) such that P 13 Q. Assume that S is
compact. Then the following hold:

(a) 5
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(b) If KQ is semisimple, then K has finitely many components.
(c) If the Euler characteristic of S is nonzero, then Ho and Q have only finitely

many fixed points.
Proof, (a) By the Lie theory P (resp. Q) is homotopic to Ko (resp. Ho).

Hence the homotopy sequence

πt(Q) • πlP) • πi(PIQ)

the five lemma and the Whitehead theorems show that P/Q is homotopic to
KQ/HQ = S. Since P/Q and S are compact manifolds, the canonical inclusion
P/Q —» S must be a homeomorphism.

(b) Consider the map φ: K —> Aut Ko defined by φ(k)x = kxk~\ Since KQ

is semisimple, the qroup of inner automorphisms Inn Ko is of finite index in
Aut KQ. SO for our purpose without loss of generality we may assume that φ{K)
is contained in Inn Ko. Let Z be the centralizer of Ko in K. Given k in K there ex-
ists k0 in Ko such that φ(k) = φ{k0), i.e., kk^1 belongs to Z. Hence K = ZK0. Since

κ/κ0 « zκjκQ « z/z n κ0

is discrete and Z Π KQ is also discrete, since Z Π Ko is a central subgroup and
KQ is semisimple, it follows that Z is discrete. We assert that Z acts without fixed
points on S. For suppose p is a fixed point of an element z of Z. Then for every
k0 in KQ, zkop = &oz/? = Â Z7- Since ^Γo is transitive on S we see that z = 1. Since
Z is discrete and acts without fixed points on the compact space S, it follows
that Z is finite, and hence K has finitely many components.

(c) We show the statement for H0. The proof for Q is similar. The set F(H0)
of fixed points of Ho is clearly closed and hence compact. Let N be the normal-
izer of Ho in Ko. Then N is transitive on F(H0) so that N/Ho « F ( # o ) is a com-
pact Lie group. If N/H « ^(#0) is n o t finite, its dimension is greater than one
and its Euler characteristic is zero since a Lie group is parallelizable. But then
S = KQ/HQ is the total space of the fiber bundle with base KJN and fiber N/Ho.
Hence, if N/Ho is not finite the Euler characteristic of S would be zero.

Remarks, (i) The part (a) is a consequence of Mostow [16]. See [16, § 3] for
a different proof.

(ii) Under the hypothesis of part (c) it can be proved that P must be semi-
simple. See Kobayashi and Nomizu [11, Vol. II, p. 336].

3. Quaternionic structure

In § 3 through § 5 we develop the notion of a quaternionic manifold which is
just "tailormade" for the procedure described in § 3. We need the following
definition.
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Definition 3.1. A differentiable manifold M4n is quaternionic if it has an in-

tegrable GLn(H) GZ^/O-structure.
We shall discuss this definition below. There is an interesting relationship be-

tween complex manifolds, quaternionic manifolds and conformally Euclidean
manifolds. There are different levels of rigidity in these structures which will be
clear later.

In the above definition H stands for the noncommutative field of quaterni-
on with center R. Let Rin be identified with Hn as a right //-vector space of
n X 1 coulmn vectors with quaternion entries. Let GLn(H) denote the group of
//-linear invertible transformations of Hn acting on the left which, after a choice
of a base, may be identified with (n x ή) invertible matrices with quaternion en-
tries. GLλ(H) = H* acts on Hn as acalar multiplication on the right. Two
actions commute and are /^-linear. Let GLn{H) GLλ(H) denote the image of
GLn(H) X GLX{H) in GLin(R) via this action. It is easy to see that

{(r, r"1) I r e R - (0)} C GLn(H) X GLX{H) ,

the kernel of this action.
Some explanation of the definition is in order. In comparison with the complex

structure which is the same as an integrable GLn(C)-structure it may seem more
natural to define a quaternionic structure as an integrable GΊ^(//)-structure.
However this notion leads to a very restricted class of manifolds, e.g., let
(#i> * * •> Qn) be a system of local admissible quaternionic coordinates. Let σ:
H —•> H be a field automorphism; then (</ί, , qζ) is not in general admissible
with respect to GLπ(//)-structure. Now all field automorphisms of H are of the
form q —> λqλ~\ λ e H*. So, if we want to allow {λqλλ~ι, , λqnλ~ι) to be an
admissible coordinate system, GLn{H)-GLλ(H) is forced on us. Similarly a
GΊ^/fJ-structure, integrable or not, would imply the existence of three auto-
morphisms /, /, K of the tangent bundle satisfying

p = p = κ2 = -1 , u= K , JK = i, κi = J .

Any of /, /, K is an almost complex structure. Thus e.g., P\H) which is diίfeo-
morphic to S4 would not carry a quaternionic structure, for as is well known,
Si does not carry any almost complex structure. The condition that M4n carries
/, /, K satisfying the above relations and some variants of this condition have
been investigated previously by Ehresman [3], obata [17] and others. See [17] for
further references before 1956 and the paper by S. Ishihara [9] for recent work.
Also for a 'quaternion calculus' see Fueter [5]. Considering the rigidity in these
higher dimensional phenomena—basically arising from the overdetermined
nature of the underlying differential equations—the function-theoretic interest
must be considered as very special to Riemann surfaces. The Fuchsian or
Kleinian group theoretic interest however remains the same.

I wish to thank T. Smith for telling me about quaternionic structures and re-
lated literature.
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In view of the above discussion it is important to observe the following:
Lemma 3.2. The quaternίonic projectίve space Pn(H) of real dimension An car-
ries an integrable GLn(H) GLλ(H) structure.

Proof. It suffices to show that the cotangent bundle carries an integrable
structure since GLn(H) GL^H) is invariant under the operation of taking a
transpose. Let

be the usual covering. On Uλ we may choose the quaternionic coordinates ζ\ =
qiqj1

9 ί ψ λ. Setting ζ\ = 1 we see that these coordinates are related on the
overlap Uλ Π Uμ by the relations

Hence

which clearly implies the lemma, q.e.d.
Also note the following useful fact.
Lemma 3.3. A quaternionic manifold is orientable.
Proof GLn(H) GLλ(H) is connected, q.e.d.
The main theorem about quaternionic manifolds is the following.
Theorem 3.4. A differentiable manifold Min is quaternionic if and only if it is

unformizable with respect to (Pn(H), PGLn+1(H)).
The proof extends over the next two sections. In § 4 and § 5 we shall deter-

mine, respectively, the infinitesimal automorphisms of a quaternionic structure
and the full group of quaternionic transformations of Pn(H). Some Lie-theo-
retic generalizations of this proof seem plausible.

4. Theorem 3.4, first part

We first need a matrix representation of the Lie algebra of GLn(H) GLX{H).
Write

qi = xι + y\ + zλj + t\ , λ = l , 2 , - " , n ,

where 1, /,./, k is the usual basis of H over R. We shall use {x1, , xn, y\ , yn,
z1, , zn, t\ , tn} as coordinates for Rin in this specific order. An n X n
matrix A with quaternionic entries may be written as

A = Ax + Ayi + AJ +Atk ,

where Ax, Ay, Az, At are n X n matrices with real entries. A quaternion n X 1

column vector may be written as
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Q = X + Yi + Zj + Tk ,

where X, Y, Z, T are n X 1 real column vectors. Then

AQ = {AXX - AyY - AZZ - AtT] + {AXY + AyX + AZT - AtZ}ί

+ {AXZ + AZX - AyT + AtY}j + {AXT + AtX + AyZ - AzY}k ,

so that A may be identified with the An X An real matrix

Ax Ay Az At

Ay Ax At Az

A A A A
Slz S±t Ή-x Ή-y

At -Az Ay Ax

Similarly if A is an n X n scalar quaternion matrix acting on the right

A = λx + λyi + λj + λtk .

Then a similar calculation shows that A may be identified with the matrix
Aχ Ay AZ /

Ay Ax At — A

Λz Λ t **χ Λ.

At AZ Ay A.

in Min{R). The Lie algebra of GLn{H) GLλ{H) is therefore given by

(4.1)

χ I Aχ A-y Ay Az AZ

s±y -r ΛX s±x

Λz + λz At-

At + λt —Az

A J_
Λx Λ ί ^ At
7 A 4- ]
At Ά x i Ax

) A
i\z SXy Λy

Let ξ = Σiξ2 where 1 < λ < n, and

(4.2) e -- ^

-At - λt

Az-λz

y ' *"y

Λx + λx

rz 3

dxλ dyλ dzλ dtλ

is a vector field on a neighborhood of the origin in Rin on which a quaternionic
structure is defined. Then (4.1) implies the following.

Proposition 4.3. Let ξ = Σλ ξ\ 1 < λ < n, be as in (4.2). Then ξ is an infi-
nitesimal automorphism of the quaternionic structure if and only if

(1) Xίμ = Y\μ = Zlμ = Γtμ,

\ Δ ) ΛVμ Z Xμ> ΛZμ ^Xμ9
 Λ t μ

 2Xμ>

γλ yλ γλ ηrλ yλ fx
± Zμ ^Vμ> * tμ A Vμ"> ^ tμ "* Zμl

(3) X\μ = Z\μ, X\ = T\μ, X\ = Yi for X φ μ.
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Proof. The part (1) follows from the equality of the diagonal terms in (4.1).
The proof of (2) and (3) is similar, q.e.d.

The first step in the proof of Theorem 3.4 is the determination of the algebra
of infinitesimal automorphisms of a quaternionic structure. We state the main
conclusion.

Theorem 4.4. A quaternionic structure is of finite type, and the dimension
(over R) of the algebra of infinitesimal automorphisms of the germ of a quaternionic
structure on Rin is 4(n + I)2 — 1.

Proof. We first prove
Lemma 4.5.
(a) XlμZμ = 0= . . . .
(b) IfλΦμ,λΦ p, then X>XμXp = X'VμVp = X\μZp = 0 = .
(c) All third order derivatives of Xλ, are zero.
Here in (a), (b), (c) the dots denote that similar expressions involving other

coefficients of ξ and other coordinates obtainable from symmetry considerations
are zero.

Proof of (a). Repeated use of (2) of Proposition 4.3 gives

vλ γλ ryλ γλ en Yλ Π
ΛVμZμ — ~ * XμZμ ~ ^ XμVμ ~ ΛZμVμ

 b U ^VμZμ ~ U '

Proof of (b). Using (1) and (2) of Proposition 4.3, and from symmetry con-
siderations we get

Λ
 XμXp

 ±
 y

μ
Xp

 Λ
 VμVp

 A
 ZμZp

 Λ
 tμtp *

Also by (2) and (3) of Proposition 4.3, assuming λ Φ μ, λ Φ p we have

γλ yλ γλ γλ
ΛVμyP — ^Vμtp — L Zμtp — Λtμtp ?

which clearly imply that

γλ γλ ί)
^XμXp ^VμVp W *

In the process we have also shown that Zλ

yμtp = 0. So (b) follows from symmetry
considerations.

Proof of (c). In view of (a) and (b) and the symmetry we need only to show
that

Now

Similarly

λ (\ γλ
xλxλx9 ~ ~ xλxλVp '

γλ γλ γλ γλ yλ
Λ XμXvXp •* VμXyXp Λ VμVvXp A VμVvVp ZμZ»Zp '

γλ __ __yλ
A VμVvVp ^Zμ
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Combining the two equations we get in particular XXχXχXp = 0. To prove XXχXχVp

= 0we consider two cases. If λ — p then by (a)

yx y Q

If λ Φ p, then

X^ χ = —X* — —Zλ

 t —Zλ

zzt

But also

Combining these two sets of equations we get XXχXχVp = 0. This finishes the proof
of the lemma.

The part (c) of the lemma clearly implies that the coefficients {X\ « } of ξ
are polynomials of degree < 2 in the coordinates. We shall now compute a
maximal set of linearly independent infinitesimal transformations. First note
that the parts (1) and (2) of Proposition 4.3 easily imply that the only ξ for
which the coefficients are of degree < 1 are given by

r> = a\ - Σμ Kχμ + Σμ <yμ + Σμ W + Vδμ)zμ - Σμ« + γδλ

μ)tμ,

Zλ = aλ

z- Σμ c>μ - Σμ (dλ

μ + r)δμ)yμ + Σμ <*μ + Σμ (K + βδλ

μ)tμ ,

τ* = al- Σμ dλ

μχμ + Σμ« + γδμ)yμ - Σμ (K + βδλ

μ)zμ + Σμ <tμ,

where δλ

μ is the Kronecker delta, and

4 , aλ

t, aμ dλ

μ, β, γ, η

are arbitrary real constants. Thus this is a family of dimension An2 + An + 3.
The determination of ξ whose coefficients are of degree 2 is more complicated

but straightforward. We shall noly briefly indicate it. Suppose X1 contains a se-
cond degree term. Then by the previous lemma, the term must be of the form
xl or xxxμ (1 Φ μ). For definiteness suppose that

X1 = x\ + . . . .

We show that the term xffi/dx1 uniquely determines an infinitesimal transforma-
tion. We have observed in the process of proving the lemma that

γx γx γx γx
ΛWx — ~~ΛvχVχ — ~Λ*x*x — ~Λhh

Using this and the parts (1), (2) of Proposition 4.3 we have

(4.7) γ x

Y1 = 2xiyι + , Z 1 = 2xιZι + , Γ1 = 2xjx + .
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Since

X\x - Z\ = -2yλ + = Xyχ - Zlλ, λ = 2, 3, . . . ,

we see that X1 contains a term involving yxyλ, or Zλ contains a term involving
yxtλ. Suppose for definiteness that

where c is a constant to be determined. Again noting that

γλ γλ
Λχλχμ — ^yλyμ —

we see by applying Proposition 4.3 that

X* = c{xλxλ - yλyλ - zλzλ - txtλ) + ,

Yλ = c{y,x, + xxyλ + hzλ - zxtλ} + ,

Zλ = c{z,xλ - tτyλ + xxzλ + y,tλ} + ,

Tλ = c{hxx + zλyλ - yxzλ + x,tx} + .

Now

Xyi Z t l = 2 y λ + = Xyλ Z t χ = 2 c y λ - ) - • • •

implies that c = 1. If in (4.7) and (4.8) we put the terms denoted by dots equal
to zero, we see that we have obtained an infinitesimal transformation preserving
the quaternionic structure. In this construction if instead of choosing Xλ =
c{ — y\yχ + •} we had started with Zλ = c{y1tλ + •}, it is easy to see that
we would have obtained the same infinitesimal transformation. Finally we could
have started the construction with

instead of X1 = x\ + . It is equally easy to see that in this case we would
have obtained a vector field similar to the one obtained where the roles of 1 and
/i0 are interchanged. Thus in all there are An infinitesimal transformations whose
coefficients are of degree 2. Hence the total number of linearly independent in-
finitesimal quaternionic transformations is

4n2 + 4n + 3 + 4n = 4(/i + I)2 - 1 .

This finishes the proof of the theorem.

5. Theorem 3.4, second part

We shall prove
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Theorem 5.1. PGLn+1(H) is the full group of quaternionίc transformations of
Pn(H).

Proof The group PGLn+1(H) is connected. So to see that it is a group of
quaternionic transformations we may restrict to a small neighborhood of the
identity. Choose a neighborhood on Pn(H), say

On U we may take coordinates ζ3 = q^o1, j = 1, 2, n. Set ζ0 = 1. Repre-
sent an element of PGLn+1(H) by an (n + I) X (n + 1) invertible matrix (α^ )
of quaternions 0 < i,j < n. Then the corresponding projective transformation
is given by

Thus

2 aQjdζj

and PGLn+ι(H) consists of quaternionic transformations.
We have seen in Theorem 4.4 that the dimension (over R) of the algebra of

infinitesimal automorphisms of the germ of a quaternionic structure on R4n is
4(n + I)2 — 1 which is also the dimension of PGLn+ι(H) over R. It is now clear
that the manifold S of Theorem 2.3 corresponding to G = GLn(H) GL^H) is
PTO(/f). The only point which is not at all afortiori clear is that PGLn+1(H) is the
full group of quaternionic transformations of Pn(H). The proof of this fact is
not quite elementary. The function-theoretic methods used in similar questions
for complex projective spaces are not available in our case. The author is indebt-
ed to W. Schmid for a helpful conversation on this point.

Let K be the full group of quaternionic transformations. By what has been
said above PGLn+1(H) is the connected component of the identity of K. Let us
call it Ko. We have to show K = KQ. We first need a technical lemma.

Lemma 5.2. The automorphism group of PGLn(H) modulo the inner automor-
phisms is Z2for n > 2, and consists of inner automorphisms only for n = 1.

Proof Let

SLn(H) = GLn(H)/R ,

where R « {rln \ r > 0}. SLn(H) has center = ± 1 and is simply connected. More-
over PGLn(H) = SLn(H)/(± 1). Let sln(H) be the Lie algebra of SLn(H). It is
obvious that every automorphism of SLn(H) induces an automorphism of
PGLn(H) and the automorphisms of SLn(H), the Lie algebra automorphisms
of sln{H), and the automorphisms of PGLJJH) are in a canonical 1-1 corre-
spondence.
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sln(H) is a real simple Lie algebra and may be identified with (n X ή) matrices
(μtj) with quaternionic entries such that Re Σιίau = 0 I t s complexification is
Λ / 2 7 1(C) since H®RC « M2(C)9 the full matrix ring of 2 X 2 matrices with com-
plex entries. Explicitly the map sln(H) —> sl2n(C) may be described as follows:
write 4̂ e sln(H) as

where Z, W are n X « matrices with complex entries. Map

-W 2

Since Re J]t zu = 0 we see that the trace 4̂C = 0 so Ac e sl2n(C). The induced

map

is easily seen to be a Lie algebra isomorphism.
Let σ be an automorphsim of sln(H). By complexification it induces an auto-

morphism σc of sl2n(C). The group of outer automorphisms over C of s!2n(C) can
be constructed from its Dynkin diagram; cf. Helgason [8, Chap. 9, § 2]. For n = 2
all automorphisms of J7 2 (C) are inner, whereas for n > 2 the group of outer
automorphisms is generated by

where M is the transpose of A. The lemma now follows in two steps:
(i) If an inner automorphism of sl2n{C) leaves sln{H) invariant, it is induced

by an inner automorphism of sln(H).
(ii) The outer automorphism a is induced by an outer automorphism of

sln(H).
Proof of (i). The group of inner automorphisms of SL2n(C) is PSL2n(C)

which is connected. So it sufiices to show (i) for an inner automorphism induced
by an element g sufficiently close to the identity, and so taking log g it suffices

to show that if Γ a & 1 e sl2n(C) is such that

fa βlϊ Z WΛXZ WΛXa ^ 1
 =
 Γ Z

ίγ δ\l-W z\ l-W Z\Yγ δ\ l-W

for all Z, W, then \ a \? e sln{H). This is seen easily by a simple calculation

from the above equation.

Proof of {ii). The automorphism a: A —> — ιA restricted to sln{H) becomes
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ί -
Y-w

- ' Z tψ

i.e., Z + Wj —> — tZ + tW. For n > 1 this is easily seen to be an outer auto-
morphism of sl2n(H). Thus the proof of the lemma is complete.

Remark 5.3. Modulo an inner automorphism by I 1 A this is the same

as A —> — ιΆ where the bar denotes the quaternionic conjugation.
We return to the proof of the theorem. Recall that we have to show K = Ko.

Let k e K. By conjugation it induces an automorphism σk: h —> khk~ι of Ko.
First suppose that this automorphism is inner. Thus σk = σko where k0 e Ko, so
that σko_lk = 1. Let Po be the isotropy subgroup of Ko at the base point m of
Pn(H). It may be represented by a matrix of the form

Then for every p ς. Po

.0

k^kpm =

6 SLn+1(H)

= pk^km ,

i.e., k^km is also a fixed point of Po. But by the above matrix representation
of Po it is clear that m is the only fixed point Po. So k^km = m. Hence

k^khm = hk^km = Am for all h in Ko ,

i.e., = 1 or k == A:o.
It remains to consider the case where 0^ is an outer automorphism. By the

lemma above and the remark following it we may assume that

σk\A^>ιA

Thus σk(P0) is represented by matrices

0 0

L *

where δ e GLn(H). Since for every p e Po, kpk~\km) = km is a fixed point of
σk(PQ). If n > 2 it is not difficult to see that σk(P0) has no common fixed point,
i.e., σk cannot be an outer automorphism. This finishes the proof for n>2.

The case n = 1 needs a separate argument which is based on the following
proposition of independent interest.
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Proposition 5.4. M4 admits a quaternίonίc structure if and only if it is orientable
and admits a conformally Euclidean structure.

Proof. We have already seen that a quaternionic manifold is orientable; cf.
Lemma 3.3. On the other hand GLλ(H) GL,(H) = SO(4) x R>0. Thus an inte-
grable GL^IΓ^-GL^H) structure means the existence of coordinate charts
(x, y, z, t) such that the Jacobian of the transition function are conformal ma-
trices. This clearly means that an integrable GL^H) - GL^H) structure is the
conformally Euclidean structure with orientation, q.e.d.

To complete the proof of the theorem we only note the well known fact that
the group of orientation preserving conformal transformations of Pι(H) « S4

is the connected component of the identity of the group SO(5, 1).
This finishes the proof of the Theorem 5.1 and so by §§2 and 3 also the proof

of Theorem 4.3.
Remark 5.5. It is remarkable that in the above proof we needed the fact that

K preserves the quaternionic structure only in the case n = 1. For « > 2 w e only
need the group structure of G. The underlying reason for this is to be traced to
the existence of special transformations, namely, q —> (q)~ι of P\H). These
would be "quaternionic transformations" if we ask for integrability only with re-
spect to O(n) X R>0. There are no such transformations for n > 1. It may also
be remarked that since q±q2 = q2qλ the formula (qQ, , qn) —> (q0, , qn) does
not determine a map of Pn(H).

6. Complements—topology of quaternionic manifolds

In § 5 we have already noted that a 1-dimensional quaternionic manifold is
the same as an oriented conformally Euclidean 4-dimensional manifold. It is
amusing to note that a complex 1-dimensional manifold, i.e., a Riemann surface,
is also the same as an oriented conformally Euclidean 2-dimensional manifold.
This analogy persists in some gross form. A Riemann surface is uniformizable
on P\C) with group of Mobius transformations

~ az + b

cz + a

A quaternionic 1-dimensional manifold is uniformizable on Pι(H) with respect
to the group of quaternionic transformations which again may be represented as

C -> (flζ + b)(cζ + J )- 1 ,

where quaternionic multiplication is intended.
As in the case of Riemann surfaces we have
Theorem 6.1. A connected sum of l-dίmensίonal quaternionic manifolds ad-

mits a quaternionic structure.
This will follow by a surgery theorem in the next section.
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Theorem 6.2. A quaternίonίc l-dimensional compact manifold bounds an ori-
ent able manifold.

Proof We shall use the Thorn Pontryagin's basic theorem that an oriented
compact manifold bounds iff its Stiefel Whitney numbers and the Pontryagain
numbers are zero. For an oriented real 4-dimensional manifold the only possibly
nonzero Stiefel Whitney numbers are w\ and vv4, and w\ = w4 by the Wu rela-
tions. w4 = 0 iff the Euler characteristic is even. By Chern and Simons [2] one
knows that the Pontryagin forms are conformally invariant. So for a conformally
Euclidean manifold and in particular for a l-dimensional quaternionic manifold
the first Pontryagin number is zero. Hence the signature is zero, so the middle
Betti number is even. It follows that the Euler characteristic is even also, q.e.d.

It is of interest to ask when is the second Stiefel Whitney class w2 = 0? One
knows from differential topology that vanishing of w2 is a necessary and suffi-
cient condition for the existence of a spin structure. The following theorem an-
swers this question.

Theorem 6.3. Let SLn+ί(H) > PGLn+1(H) be the canonical projection. Let
Mn be a quaternionic manifold, and p\ πλ(M) —> PGLn+ι(H) its holonomy re-
presentation. Then w2 = 0 iff p lifts to p: πx(M) —* SLn+1(H) such that p = p- p.
If a lifting exists, all possible liftings are parametrized by H\MZ2)-

Proof Consider the bundle ξ of quaternionic frames on M. Its fiber is G =
GLn(H) GLX{H). Let G be its simply connected double cover. If K is a maximal
compact subgroup of G projecting onto a maximal compact subgroup K of G,
then we have a diagram

K • Spin (4/i)

K >SO(4n) .

Thus w2 = 0 is a necessary and sufficient condition for a lifting of the structure
group from K to K, which implies a lifting from SO(4n) to spin (4n). For Pn(H),
w2 vanishes and we can construct a bundle | 0 with fiber G which covers the bundle
ξQ with fiber G. Then SLn+1(H) is the group of bundle automorphisms of f.

Fix a uniformization {Ua, φa} of M. Then it is not difficult to see that p: πx{M)
—> PGLn+ι(H) lifts to SLn+1(H) iff the corresponding cocycle {gaβ} with values
in PGLn+1(H) lifts to a cocycle {gaβ} with values in SLn+1(H). Finally the ex-
istence of the bundle f covering ξ is clearly equivalent to the existence of the
cocycle (gaβ).

The final assertion in the theorem follows from the exact sequence (cf. [6])

-> H\M, Z2) -> H\M, K) -> H\M9 K) -> H2(M, Z2) .

Remarks. (1) In general w2 Φ 0. If M is weakly Kleinian, i.e., if im p is
discrete, then one may show that M has a finite covering for which w2 = 0.
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- 1

0

1

1

0

0

•
0

1

(2) The argument given above may be used in other uniformization prob-
lems, e.g., in the case of oriented conformally Euclidean manifolds, the connect-
ed group SO0(n + 1 , 1 ) has a double cover Spin (n + 1,1) and the lifting of the
holonomy representation p:^-^ soQ(n + 1,1) to p: πx —> Spin (n + 1,1) is again
equivalent to w2 = 0. This observation seems to be new even in the case of mani-
folds of constant curvature. For compact Riemannian flat manifolds Mn a finer
statement may be made: w2 = 0 if and only if the Riemannian holonomy group
which is a finite subgroup of SO(ή) is an isomorphic image of a subgroup of
Spin (n). Thus, e.g., if the Riemannian holonomy group contains an element

σ =

then w2 Φ 0, for σ is of order 2 whereas the two elements of Spin (n) mapping
onto a are of order 4. This gives a simple proof of a therem of Auslander and
Sczarba [1] to the effect that oriented solvmanifolds are not in general parallel-
izable. In fact in the explicit example they construct which is a flat Riemannian
manifold, it is easily seen that the holonomy group contains an element of the
type a.

(3) It seems very likely that in general there are strong restictions on the real
characteristic classes of all manofolds uniformizable on a given pair (S, K).

7. Complements—a surgery theorem

Given a model space (S, G) where G satisfies the uniformization condition
(U), it is a problem of great interest to "construct" manifolds uniformizable on
(S, G). The constructions will very much depend on the topological and analytic
structure of S and the group structure of G. In the classical Fuchsian case the
methods have been manily function theoretic, geometric and arithmetic. In the
Kleinian case a powerful group theoretic method is that of "combination theo-
rems" of Klein and Maskit; cf. [13], [14], [15]. The underlying geometric idea in
this latter method is simple, and this section deals with its higher dimensional
analogues. We first discovered it in the case of conformally Euclidean mani-
folds by a purely Riemann geometric method. We tend to feel that the present
approach from the "Kleinian" point of view is more basic. It should also be re-
marked that this method may be used in the classical case of Riemann surfaces
also, and the structures so obtained do not necessarily arise from the Klein
Maskit constructions. This is because in the Klein Maskit constructions the
image of the holonomy representation is always discontinuous, whereas this is
not necessarily the case in what follows.
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We wish to express our appreciation of R. Sharpe's comments on this section.
We need the following notion: Let A and B be ^-dimensional manifolds such

that their respective boundaries dA and dB are homeomorphic by a homeomor-
phism φ. Then the connected sum of A and B via φ denoted by A \φ B is the
manifold obtained from A U B by identifying dA with dB via φ. If φt9 0 < t < 1,
is a 1-parameter family of homeomorphisms of dA with dB, it is clear that A%9B
and 4̂ #P1 i? are homeomorphic.

Let G be a group of homeomorphisms of the ^-sphere Sn, and H^" 1 a con-
nected compact submanifold of Sn which has a neighborhood V « W X [— 1,1].
If pp*"1 is embedded in an open disc Z>w, it disconnects Dn into two components.
One of the components which is relatively compact in Dn will be called the
inside of W.

Theorem 7.1. Let G, W be as above. Suppose that (a) given a compact subset
K Q Sn and a nonempty open subset U there exists g € G such that K CI gU;

(b) there exists g0 £ G leaving V « W X [—1, 1] invariant so that

Let Mn, Nn be two manifolds uniformizable on (Sn, G). Then there exists an em-
bedding of W in a small disc contained in M (resp. N) so that if Mx (resp. NJ is
the manifold with boundary ^ W obtained by removing the inside of W, then Mx

%fQ Nx is also uniformizable on (Sn, G).
Proof Fix a uniformization (Ua, φa) on M. Choose a point p and disc Df

around p, which is mapped homeomorphically by some φ = φa onto a disc D
is S. Changing φ by an element of G whose existence is asusmed in condition
(a), we may assume that D contains V « W X [—1,1]. By changing the para-
metrization of [— 1,1] by t —• — t if necessary we may also assume that the in-
side of W X {1} contains the inside of W X {—1}. Let U be the inside of W X
{ — \) and set

Mλ = M - ψ~\U) .

By a similar construction we obtain Nv Then Ml9 N± are manifolds with bound-
ary « W such that each boundary has a neighborhood G-isomorphic to W X
[ — h 1] £ V- W e n o w identify the part of the neighborhood « W X [—J, J]
in Mx to the similar part in Nλ by the map g0 whose existence is guaranteed in
(b). We clearly obtain a manifold &M1 # / o Nτ with a well defined uniformization.

Remarks. In the above proof we have not explicitly used the fact that the
ambient manifold on which G acts is the /z-sphere. But the condition (a) in the
theorem already implies that the ambient manifold can be covered by two discs,
hence it must be Sn. Topologically M # / o N as constructed in the theorem is
easily seen to be homeomorphic to the usual connected sum. The specific unifor-
mization obtained on M # / 0 JV depends on the map g0. This has bearing on the
"deformation" of this structure and roughly explains, e.g., how the deforma-
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tions of a compact Riemann surface increase with the genus. In the proof the
condition (a) is used only to insure that there exist some appropriate embed-
dings of W in any arbitrary M and N. If instead we knew that for particular M
and N embeddings of W exist with neighborhoods G-isomorphic to V « W X
[—1, 1], then the condition (a) can be dropped and the ambient manifold need
not be Sn.

In the case of the group Wln of conformal transformations of the sphere the
condition (a) of the surgery theorem 7.1 is satisfied, e.g., consider the homo-
theties x —> λx, x e Rn, λ e R>0 pulled back to Sn via the stereographic pro-
jection which maps an arbitrary neighborhood of the origin onto an open
subset containing any given compact subset not containing the point at infinity.

As a first application we formulate
Theorem 7.2. A connected sum of conformally Euclidean manifolds admits a

conformally Euclidean structure. If the manifolds are oriented, then a connected
sum can also be constructed with orientation which restricts to given orientation on
the factors.

Proof By definition a connected sum of two manifolds M\ and M1 is ob-
tained by choosing closed discs D\ in M£, / = 1,2, removing the inside ί)™ of
D"l and glueing MJ — D? and M£ — Dl along the boundary (n — l)-spheres
by some homeomorphism. Take Wn~ι to be the equatorial (n — l)-sphere, and
g0 the reflection in the equatorial w-plane. By the surgery theorem the first as-
sertion is proved. It is equally easy to choose g0 which is an orientation-preserv-
ing map of Sn. If Ml and Ml are oriented conformally Euclidean manifolds,
we may choose their uniformizing local homeomorphisms (cf. φa in Definition
1.2) to be orientation-preserving. Then a connected sum of Ml and Ml via an
orientation preserving g0 is clearly oriented. This proves the second assertion.

Corollary 7.3. Every paracompact topologίcal surface {i.e., dim = 2) is uni-
formizable on (S2, SK2) where 3K2 is the full group of conformal transformations.
In particular, every orientable paracompact surface admits a complex structure.

As is well known in the case of orientable paracompact surfaces, this follows
from the classical uniformization theorem which proves it in a stronger form,
namely, every Riemann surface is so uniformizable. On the other hand existence
of a complex structure on a topological oriented 2-manifold is usually proved by
using isothermal coordinates. Corollary 7.3 is a simple geometric proof of a finer
assertion.

Proof Note that 9K2 consists of both orientation-preserving and orientation-
reversing conformal transformations. Using the antipodal map (resp. a lattice of
translations) we can uniformize the real projective plane (resp. the torus). Since
all compact surfaces are connected sums of real projective planes and torii, they
are also so uniformizable. A paracompact noncompact orientable surface im-
merses in S2. Any such immersion provides a uniformization. Finally a nonori-
entable paracompact surface may be represented as a connected sum of an ori-
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entable surface and a certatin number of copies of a real projective plane. So
any such surface is uniformizable also.

8. Inversions

Inversions in circles, e.g., the map z —> 1/z is a distinctive feature of conformal
geometry. In higher dimensions one has of course inversions in 1-codimensional
spheres as in Theorem 7.1, but one can ask for other possibilities. Let us for-
mulate the following notion.

Definition 8.1. Let Wn~ι be a compact connected submanifold of Sn which
disconnects Sn into two components S+9 S_ say. An inversion in W is an involu-
tion of Sn which maps S+ (resp. S_) into S_ (resp. S+). W is called the trace of
the inversion.

Any such inversion gives a choice of W'm Theorem 7.1 and indicates a higher-
dimensional "combination theorem." We shall now construct some inversions.
The use of real algebraic submanifolds in these constructions seems to be note-
worthy.

Theorem 8.2. Let f(xu - - -, xn+ι) be a homogeneous polynomial with real co-
efficients. Let

W= {xeRn+1\f(x) = 0, | |* | | = 1} .

Assume that W is a connected submanifold of the unit sphere so that grad / Φ 0
on W. Suppose moreover thatf considered as a polynomial in some of the variables
say xl9 , xk is homogeneous and of odd degree. Then there exists an inversion
in Έln {with trace W.

Proof By definition

Since/is homogeneous, grad/ is tangential to Sn at x in W so that it gives a
trivialization of the normal bundle of W in Sn. Consider σ given by

•xt , / < A: ,

*i ? i J> k .

Then

= Σ

whereas
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= -Σ |A*)/- + Σ |A*)/-
ί<k dX dX i dX dX

Thus dσ is orientation-reversing on the normal bundle of W which clearly im-
plies that σ is an inversion with trace W, and obviously σ is in 3Kn.

Example 8.3. If / is a linear polynomial, then the construction gives the an-
tipodal map in the equator. If n = 3, and

j\Xι, X21 = X1X3 T X2X4

considered as a homogeneous polynomial in xl9 x2, then the construction gives
an inversion in the Clifford torus.

In this context we shall prove
Theorem 8.4. For any g = 0, 1, 2, there exists an inversion a of S3 such

that σ e 2K3 and the trace of σ is a surface of genus g.
Proof Consider the equation/(x, y) = 0, e. g.,

m

f{x, y) = x Π {(* - «ί)2 + (y - bty - c?}
ί = l

with appropriate constants whose zero locus in R2 consists of a line and m circles
exterior to each other and lying on one side of the line. See Fig. 1. Moreover

Fig. 1

we may assume that when / = 0, grad/ ψ 0 and that / is positive on the shaded
part. Consider the affine surface

and its projectivization F(x, y, z, t) = 0 obtained by homogenizing this equation.
Intersection of the affine surface with a large enough ball is clearly homeomor-
phic to a surface of genus m with a disc removed so that its Euler characteristic
is 1 — 2m. It is easily checked that the projective surface is nonsingular, its in-
tersection with the plane at infinity t = 0 is a projective line, and so the surface
is a nonorientable surface with Euler characteristice 1 — 2m. The surface

is clearly a double covering of this nonorientable projective surface. Σ is clearly
a surface of genus 2m defined by an odd degree polynomial. Thus by Theorem
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8.2 we can do conformal surgery along J]. This proves the theorem for surfaces
with even genus.

We shall construct an appropriate surface for each odd genus. Consider the
the protective surface P defined by the homogeneous equation

m

G(x, y, z,t)= \\{x- aiy){y + aιX) - t2m + z2m = 0 ,
ί = l

where at are mutually distinct. It is easily checked that when G = 0, grad G Φ 0,
so P is nonsingular. Consider its affine part where t Φ 0. Intersected with a
sufficiently large ball it is seen that we get a sphere minus 2m discs cf. Fig. 2

Fig. 2

for m = 2. Hence its Euler characteristic is 2 — 2m. The part of P on the plane
at infinity t = 0 consists of m circles. G is of even degree, so G regarded as a
function on the unit 3-sphere descends to a well defined function on the real pro-
jective 3-space. Since grad G Φ 0 on P, it follows that P is orientable and is in-
deed a surface of genus m. Let

P = {xeS3\G(x) =

P contains the circle C

x — axy = 0 , t = z

which does not disconnect P. P is obtained as follows. Let Pλ be the surface with
boundary obtained by cutting P along C. Take two copies of Pλ and glue the four
boundary components pairwise to obtain P. This description shows that P is a
surface of genus 2m — 1. Let g0 be the map (x, y, z, t) —> (y, —x91, z). It is easy
to see that g0 leaves P invariant. Moreover, at a point (0, 0, z, t) the induced
map on the normal boundle is clearly — 1 , hence by analyticity it is identically
— 1. So we can do surgery along P. This finishes the proof of the theorem.

9. Concluding remarks

It is worth remarking that there is no analogue of Theorem 7.1 in the category
of complex manifolds. More precisely, we have

Proposition 9.1. Let M2n~ι be a compact connected submanifold of Cn with a
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tubular neighborhood N, n > 2. Then there does not exist a holomorphic map
leaving N invariant, which maps the inner boundary ofN into the outer boundary.

Proof. Any holomorphic map of N into itself by Hartog's phenomenon ex-
tends to the inside of M, so by the maximum principle it cannot map the inner
boundary into the outer boundary, q.e.d.

Thus, for instance, in general a connected sum of two complex manifolds does
not carry a complex structure, e.g., it is not difficult to see that a connected sum
of two Hopf surfaces each homeomorphic to S3 X S1 does not carry even an
almost complex structure.

Remark 9.2. In the examples of uniformization discussed in this paper the
group under consideration was always a Lie group. While this is certainly an im-
portant case it is important to note that the uniformization condition (U) re-
quires only a weak type of analyticity. We shall discuss one example here which
was suggested by P. Shalen.

Proposition 9.3. Let G be the group of homeomorphisms of Sn which are real-
analytic on an open dense subset. Let Mn be an analytic manifold covered by
Rn. Then Mn is unίformίzable on (Sn, G).

Proof Note first that clearly G satisfies the condition (£/). The fundamental
group acts on Rn as an analytic homeomorphism. This action clearly extends to
Sn and defines elements of G. Hence the result follows. q.e.d.

The proposition is of special interest in the three-dimensional topology where
a large class of compact manifolds are known to be covered by R3. It may be
asked whether every compact 3-manifold is uniformizable on (S3, G)Ί The depth
of this question can be gauged when one notices that the affirmative answer
would imply the Poincare conjecture; cf. Theorem 2.1. To answer it negatively
also seems difficult.
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