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COMPACT REAL HYPERSURFACES WITH CONSTANT
MEAN CURVATURE OF A COMPLEX

PROJECTIVE SPACE

MASAFUMI OKUMURA

Introduction

The differential geometry of hypersurfaces of a Riemannian manifold of con-
stant curvature and complex hypersurfaces of a Kaehlerian manifold has been
studied for a long time. In particular, many global results have been obtained
(for example [1], [3]) since the establishment of J. Simons' formula [6] for the
Laplacian of the second fundamental form. However, the differential geometry
of real hypersurfaces of a Kaehlerian manifold has not been explored to any
great extent, even in the case where the ambient manifold is a complex projective
space CPm. One of the main reasons for us not to be able to get many results
on a real hypersurface is the lack of enough "words" to describe differential
geometric properties of the hypersurface. For instance, totally geodesic hyper-
surfaces and totally umbilical hypersurfaces characterize respectively hyper-
planes and hyperspheres, when the ambient manifold is a Euclidean space, and
they respectively characterize great and small spheres, when the ambient mani-
fold is a sphere. But if the ambient manifold is a CPm, as a consequence of
Codazzi equation, we know that there exist neither totally geodesic hypersur-
faces nor totally umbilical hypersurfaces (for example, [7]). One way to overcome
such poverty of vocabulary has been established by H. B. Lawson [2] who in-
troduced the notion of generalized equator Me

PiQ of a CPm. His idea is to con-
struct a circle bundle over a real hypersurface, which is compatible with the
Hopf fibration. Thus we can use many words to characterize remarkable classes
of submanifolds of a sphere. By making use of the second fundamental form
and the fundamental tensor of submersion, the present author [4] gave a con-
dition for the circle bundle over a real hypersurface of a CPm to be a product
of two spheres.

Keeping this point of view, in this paper we study compact real hypersur-
faces of a CPm with constant mean curvature.

In § 1, we review necessary results obtained in [2] and [4] for the use in § 3.
In § 2 we compute the Laplacian of the length of the second fundamental form
of a real hypersurface of a CPm.
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Arranging so nicely the terms appeared in the Laplacian that we may use the
results stated in § 1 and § 3, we first prove Lawson's theorem by a different
method and then prove two theorems which give sufficient conditions for a real
hypersurface of a CPm to be Me

OίP.

1. Submersions and real hypersurfaces of a complex projective space

Let Sn+2 be an odd-dimensional unit sphere, CP(n+ί)/2 the complex projective
space, and ft the Riemannian submersion of Sn+2 to CP(n+1)/2 defined by the
Hopf fibration. The almost complex structure / of CP(n+1)/2 is nothing but the
fundamental tensor of the submersion ft, and the Riemannian metric G of

Cp<n+D/2 i s induced naturally from that of Sn+2. With respect to (J, G),
Cpu+υ/2 j s a Kaehlerian manifold of constant holomorphic sectional curvature
4. For a real hypersurface M of CP(n+1)/2 the circle bundle M over M which is
compatible with the submersion ft is a hypersurface of Sn+2. Thus we have the
following commutative diagram of submersions ft, π and imbeddings 1 and /:

M —> CP(n+1)/2

i

The imbedding ϊ is an isometry on the fibres. The diagram implies that for
the unit vertical vector field V of M, ϊ(V) is also a unit vertical field of Sn+2

and that for any tangent vector field X to M, i(X)L = Ί(XL), where XL denotes
the horizontal lift of X. For an arbitrary point p e M we may choose a field of
unit normal vectors N to M defined in a neighborhood ^ of p. Let p be an
arbitrary point of the fibre over p. Then the lift NL of TV is a field of unit nor-
mal vectors to M defined in a tubular neighborhood over fy.

Let D and D be the Riemannian connections of Sn+2 and CP(n+1)/2 respec-
tively. Then the respective Riemannian connections V, V and the second funda-
mental forms h, h of M and M are given by

(1.1) Dϊ(Σ)i(7) = lφΣΫ) + h(X, 7) , DUX)ί(Y) = i(VxY) + h(X, Y) .

We denote the Weingarten maps corresponding to h and h by H and H respec-
tively, that is, h(X, 7) =• g(Hi, 7)NL, h(X, Y) = g(HX, Y)N. On the other
hand, the fundamental equations of submersions ft and π are given by

DY.,X'L = (Dr,xγ + G(JY>, X')Π(V) ,

VγLXL = (FrX)L + g(FY, X)LV ,

where F is the fundamental tensor of the submersion π.
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For the second fundamental tensors of M and M, we have the following
identities [4]:

(1.3) g(HXL

9Y
L)=g(HX,Y)L,

(1.4) (Ji(X))L = Ί(FX)L ~ g(HV, XL)NL ,

(1.5) HXL = (HX)L + g(HXL, 7)7 ,

(1.6) trace ϊf = (trace H)L ,

(1.7) g(H79 V) = 0 .

Furthermore in [4] we proved
Lemma 1.1. In order that the Weίngarten map H of M be covarίant constant,

it is necessary and sufficient that the Weίngarten map H of M commutes with the
fundamental tensor F of π.

Now we consider the transforms Ji(X) and JN of i{X) and N by / at a point
p € M. Then from the skew symmetric property of / and (1.4), we may put

Ji(X) = i(FX) + u(X)N , JN = - i

for some U e Tp(M). Using (1.4) again, we get

(1.8) g(HV,XL)= -g(U,X)L ,

(1.9)

Making use of (1.5) and (1.8), we can easily prove
Lemma 1.2. Let X be an eigenvector of H corresponding to an eigenvalue λ.

If X is perpendicular to U, XL is an eigenvector of H corresponding to the
eigenvalue λ.

By iterating the operator / on i(X) and N, we obtain

(1.10) F2X= -X + u(X)U ,

(1.11) FU = 0,

(1.12) g(U,V)=l.

As to the covariant derivatives of F and U, we have

(1.13) (FYF)X = u(X)HY - g(HX, Y)U ,

(1.14) FXU=FHX,

because of the fact that / is a covariant constant.
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2. Laplacian for the length of the second fundamental form

Let M be a real hypersurface of CP(n+1)/2 with constant mean curvature, that
is, (trace H)/n is constant. If trace H vanishes identically on M, M is said to
be minimal. Since the curvature tensor of CP(n+1)/2 is given by

R'(X\ Yf)Z' = G(Yf,Z')Xr - G(Xr,Zr)Yr + G(JY\Z')JX'

-G(JX', Zf)JYf - 2G(JX', Yf)JZf ,

where X\ Y\ Zf are tangent vector fields on CP ( π + 1 ) / 2 , the Gauss equation for
the curvature tensor R of M and the Codazzi equation become, respectively,

R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + g(FY, Z)FX - g(FX, Z)FY

-2g(FX, Y)FZ + g(HY, Z)HX - g(HX, Z)HY ,

(2.3) (VXH)Y - (FYH)X = u(X)FY - u(Y)FX - 2g(FX, Y)U .

Now we consider the function / = trace H2, which is globally defined on M,
and will compute its Laplacian Δf. Denoting the restricted Laplacian for H by
Δ'H, we have

(2.4) W = g{ΔΉ, H) + g(FH, PH) ,

where we have extended the metric g to the tensor space in the standard fash-
ion. Since the mean curvature of M is constant, making use of (1.11), (1.12),
(1.13), (1.14), (2.3) and computing in entirely the same way as in [3], we obtain

(2.5) <=i

+ 3FHFX + 3(trace H)u(X)U - 3u(HX)U ,

where {El9 , En} is an orthonormal frame at a point p e M.
Substituting (2.2) in the right-hand side of (2.5) gives

= Σ {R(EU X)HEt - HR(Ei9 X)Eί)
ί = l

+ 3FHFX + 3(trace H)u(X)U - 3u(HX)U

= 6FHFX + 3(trace H)u(X)U - 3u(HX)U + (n + 3)HX

- (trace H)X - (trace H2)HX - 3u(X)HU + (trace H)H2X .

Thus it follows that

g(ΔΉ, H) = trace (ΔΉ)H

= 6 trace (FH)2 + 3(trace H)u(HU) - 6u(H2U)
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+ (n + 3) trace H2 - (trace H)2 - (trace H2)2

+ (trace i/)(trace W) ,

from which we obtain

\Δf =6 trace (FH)2 + 3(trace H)u(HU) - 6u(H2U)

(2.6) + (n + 3) trace # 2 - (trace H)2 - (trace # 2 ) 2

+ (trace #)(trace H3) + g(FH, FH) .

In order to translate the conditions imposed on M into those on M we have to
change (2.6) to a more favorable form. For this purpose we calculate the length
of HF — FH. Since HF — FH is a symmetric linear transformation on TP(M),
it follows that

g(HF - FH, HF - FH) = trace (JΪF -

(2.7) = 2 trace {HF)2 - 2 trace H2F2

= 2 trace (i/F)2 + 2 trace # 2 - 2u(H2U) ,

because of (1.10). From the last two equations, we have

\Δf = 3g(HF - FH, HF - FH) + (n - 3)(trace H2)

(2.8) + 3(trace H)u(HU) - (trace H)2 - (trace if2)2

+ (trace #)(trace W) + 2(μ - 1) + g(FH, FH) ,

where we put

(FYH)X = (FYH)X + u{X)FY + g(FY, X)U .

3. Theorems on compact real hyper surf aces of C P ( n + 1 ) / 2

Before we state our results we should explain the models which will appear in
our theorems. In Sn+2 we have the family of generalized Clifford surfaces MP ) 3

= Sp x Sq

9 where p + q = n + 1. By choosing the spheres to lie in complex
subspaces we get fibrations S1 —> M2p+lt2q+1 —> Mc

PiQ compatible with the Hopf
fibration, where p + q = n. In the special case p — 0, this surface is diffeo-
morphic to the sphere.

Remark. In [1] and [2], MVΛ always means Sp X Sq which is immersed in
Sn+ι minimally, and so the radius of Sp and Sq are respectively/?/^ + 1) and
qj{n + 1). But here we do not necessarily need the condition that M is minimal.

We begin with
Theorem 3.1 (H. B. Lawsoή). Let M be a compact n-dimensional real mini-

mal hyper surface of CP(n+1)/2 over which the second fundamental form satisfies
the inequality
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trace H2 < n - 1 .

Then trace H2 = n — 1 and M = Mc

p^q for some p and q.
Proof. The right hand side of (2.8) becomes

3g(HF - FH, HF - FH) + {(trace H2) + 2}{(n - 1) - trace H2}

+ (trace H){(3u(HU) - (trace H) + (trace H2)} + g(FH, FH) .

Thus, if M is minimal and trace H2 < n — 1, from Bochner's lemma Δf = 0
and consequently trace H2 = n — 1 it follows that HF = F/7. Hence, because
of Lemma 1.1, M has parallel second fundamental form. This and a result of
Ryan [5] show that M is a sphere *Sn+1 or a product of two spheres. Since the
ίibration π: M —> M is compatible with the Hopf fibration, we have M = MC

VΛ

for some ?̂, ^. This completes the proof.

In order to get further results, we need
Lemma 3.2. On a real hypersurface M of CP(n+1)/2 the inequality

(3.1) (trace H)2 < (n - l)(trace H2) + 2u(HU)(tmce H)

holds.
Proof For any X e Tp(M), set

(3.2) KX = HX + — ί (trace H)u(X)U .
n — 1

Since AT is a symmetric linear transformation on Tp(M), we have

n trace AT2 > (trace K)2 ,

which implies (3.1).
Theorem 3.3. Let M be a compact real hypersurface of CP ( W + 1 ) / 2 with con-

stant mean curvature on which the second fundamental form is semίdefinίte. If
trace H2 <n — 1, then trace H2 = n — 1 and M = Mc

v^0.
Proof By means of Lemma 3.2, (2.8) becomes

\Δf > 3g(HF - FH, HF - FH) + (trace #)(trace W) - (trace H2)2

( 3 ' 3 ) + (trace H)u(HU) + 2{(n - 1) - (trace H2)} + g(FH FH) .

Since the second fundamental form is semidefinite, it follows that

(3.4) HF= FH,

(3.5) (trace #)(trace if3) = (trace # 2 ) 2 ,

(3.6) u(HU) = 0 ,
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trace H2 = n - 1 .

(FYH)X = -u(X)FY - g(FY, X)U

, an be eigenvalues of H. Then (3.5) becomes

(3.7)

(3.8)

Let al9

which, together with the fact that CP ( Λ + 1 ) / 2 has no totally umbilical real hy-
persurfaces, implies that H has exactly two eigenvalues and one of them must
be zero. Moreover (3.4) and (3:9) show that U is one of the eigenvectors corre-
sponding to zero, i.e., HU = 0. Differentiating covariantly this equation and
making use of (1.11), (1.14) and (3.8), we obtain

H2X- X + u(X)U=0 ,

so that only the vectors in the direction of U correspond to eigenvalue zero of
H. Thus from (3.7) it follows that with repect to the orthonormal frame formed
by the eigenvectors, H takes one of the following forms:

0
0

1

(0

or (H) =

- 1
0

- 1

-lJ

Hence, because of (1.6) and Lemma 1.2, it follows that with respect to a suita-
ble orthonormal frame H of M takes one of the following forms:

0
— a

1

or (H) =

a
0

— a

- 1

Since the respective unit eigenvectors X, Y of H corresponding to a and — a
can be written in the form

X = V cos 0 + UL sin 0 , 7 = - V sin 0 + UL cos 0 ,

we have

HX = HVcosθ + HUL ύnθ = aVcosθ + aUL sin θ ,

HΫ = -HVsin θ + HUL cos θ = aV sin θ - aUL cos θ .
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Computing the inner product g(HX, V) and making use of (1.7), (1.8), we

get a = —tan θ. On the other hand computing g(HX, UL) gives a = —cot θ.

Thus a = ± 1 and

- 1
0

υ

or

1

- 1
0

- 1

In both cases we have M = S1 x Sn and consequently M — MJ fP, /? =

\{n — 1). This completes the proof.

Theorem 3.4. Let M be a compact real hypersurface of CP(n+1)/2 with con-

stant mean curvature such that the second fundamental form is semidefinite. If

(trace H)2 < (n - I)2, then M = Me

OiP, p = \{n - 1).

Proof From (2.8) and Lemma 3.2, we have

\Δf > 3g(HF - FH, HF - FH) + (trace #)(trace H3) - (trace Ή2)2

n - 1
(trace H)u(HU) +

n - 1
{n - I)2 - (trace H)2} .

If (trace H)2 <(n- I)2, we get (3.4), (3.5), (3.6), (3.8) and (trace H)2 =

(n — I)2. Thus we can prove the theorem in entirely the same way as we proved

Theorem 3.3.
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