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PSEUDO-HERMΓΠAN STRUCTURES ON A REAL
HYPERSURFACE

S. M. WEBSTER

Introduction

The invariance properties of a real hyper surf ace M (of real dimension In + 1)
in complex (n + 1) space Cn+1 with respectt o the infinite pseudo-group of bi-
holomorphic transformations are the object of study in pseudo-conformal geo-
metry. The systematic study of such properties for hypersurfaces with nondege-
nerate Levi form was first made by Cartan [2] in 1932. More recently, the study
of invariants for such M was taken up by S. S. Chern and J. Moser [6]. A main
aspect of the theory is the existence of a complete system of local differential

invariants.
In this paper we take a somewhat different point of view. Such a manifold

M has an integrable, nondegenerate, Cauchy-Riemann structure. In particular,
there is a subbundle H(M) of the tangent bundle T(M) each fiber of which has
the structure of a complex ^-dimensional vector space. We single out a real
nonvanishing one-form θ annihilating H(M) and consider invariants of the pair
(M, θ). (M, θ) will be called a pseudo-hermitian manifold.

In § 1 we apply the Cartan method of equivalence [3] to find a compete
system of invariants. This results in a connection and curvature forms on the
coframe bundle of M. These are not, in general, pseudo-conformal invariants;
they depend on the choice of θ. In § 3 we consider the relation between these
two systems of invariants. (3.8) gives a formula for the fourth order curvature
tensor of Chern and Moser. A similar formula was given by Bochner [1] as a
formal analogue of the conformal curvature tensor for a Kahler manifold. Here
a geometric interpretation of the formula is given. In § 4 we apply the theory
to some examples. It is shown that an ellipsoid is not, in general, equivalent
to a sphere.

Also, the author wishes to remark that the theory developed here provides a
complete system of invariants for nondegenerate real hypersurfaces under vol-
ume-preserving biholomorphic transformations, when the ambient complex
space is equipped with a volume form.

We will follow the notation adopted in [6]. Small Greek indices run from 1
to n, and the summation convention is used. The Levi form gaβ and its inverse
g?a are used to lower and raise indices, e.g.,
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As — Qsr
β — 6

Thus the vertical as well as the horizontal position of an index carries infor-
mation. Also, complex conjugation will be reflected in the indices, e.g.,

ββ _ ββ TJ S _ ?7 a ~Λ — A

The work presented in this paper was submitted as part of the author's thesis
at the University of California at Berkeley in June of 1975.

1. The equivalence problem

Let (M, θ) denote a (2n + l)-dimensional pseudo-hermitian manifold, θ is a
fixed real one-form, and locally we can choose n complex one-forms θa, so that
(θ, θa, θs) form a basis of complex covectors. They are determined up to

(1.1) 0 = 0 ' , θa = θ/βUβ

a + θva , 6s = θ'Wf + θv* .

We require our structure to be integrable in the sense that

(1.2) dθ = dθa = 0, mod 0,0\

Because θ = 0, we must have

(1.3) dθ = igaβθ
a Λ 0̂ " + 0 Λ (ηaθ

a + r]sθ
s) ,

where ηs = ηa, and gaβ is hermitian:

0-4) gaβ = Sβa = gβa

Under the change (1.1) we have

(i.5) ga-β = u-vg'P,u-y .

We will also assume that (M, 0) is nondegenerate in the sense that the ma-
trix (1.4) is nonsingular at each point. It will have a signature, say/? negative
and q positive eigenvalues, p + q = n, which we will speak of as the signa-
ture of (M, 0). If gaβ is negative definite, (M, 0) will be said to be strongly pseudo-
convex. In the computations to follow gaβ and its inverse g'βa will be used to
lower and raise indices.

In other words, we have a nondegenerate, integrable G-structure on M, G
being the group of matrices

(1.6) 0 £// 0 , t e C , (Uβ«) e GL(n, C) .
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To study the equivalence problem we begin by reducing the group (1.6). Sub-
stituting (1.1) with Uβ* = δβ

a into (1.3), we get

dθ = igaβθ
/a A θ'ϊ + θ A Waθ

ίa + η'JS") ,

where

Since gaΐ is nondegenerate we can choose vr so that rf a = 0, and if ηa = rf a = 0,
then v" = 0.

Hence by requiring

(1.7) dθ = igaβθ
a A θ* ,

we can reduce our group (1.6) to GL(n9 C), that is, to changes

(1.8) θ* = P'Uf , θa = ff*Uf .

By also requiring

(1.9) gaβ = const. = ±δaβ ,

we can reduce our group further to U(p9 q), the unitary group with signature
(p, q). The conditions (1.7) and (1.9) are invariant under maps preserving our
structure.

For a geometric interpretation of (1.7) let us consider the dual frame

a ,
(1.10) X=X, Xa

to (0, θ\ 6s). The transformation (1.1) gives

(1.11) X' = X+ vaXa + v*Xs , Xa = U/Xβ , Xs = UjXβ .

The condition (1.7) then singles out a unique transversal X to H(M).
Our admissible coframes are now those (θ, θa, θs) for which (1.7) holds. We

allow gaβ to be variable. Let P be the bundle of such coframes with structure
group GL(n, C). On P we have globally defined functions gaβ given locally by
(1.5) and globally defined complex one-forms θa, θa defined by (1.8), where now
the Uβ

a are independent fibre coordinates on P. We also have the real one-form
θ pulled up to P and can view (1.7) as an equation on P. Since the real dimen-
sion of P is In2 + In + 1, we must find In2 more independent, intrinsically
defined one-forms on P.

We first differentiate (1.8) and see that locally

(1.12) dθa = θβ A (-U-'/dUf) + dθ'βUβ

a .

Because of the integrability condition (1.2) for 0, θ/a, we have
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(i.i3) dθ/βuβ« = θβ A ξβ

a + Θ Λ r

for some one-forms ξβ

a

9 ξ
a satisfying

(1.14) ξβ« = ξ« = oy moάθ,θ*,θf .

It follows from (1.12), (1.13) ,(1.14), and Cartan's lemma that the most general
such expression of type (1.12) is

(1.15) dθa = θβ A ωβ

a + θ A τa ,

where ωβ

a and τa are one-forms satisfying

(1.16) ωf = - U-\rdUγ« , mod θ, 0% θ? ,

(1.17) τa = 0, moάθ,θr,θf .

From the form of (1.15) we see that we may require

(1.18) r α Ξ θ , m o d 0 f .

Now the ωβ

a are determined up to a transformation of the form

(1.19) ωβ* = ώf + Cβ

a

rωr , Cβ% = Cr

a

β ,

and the τa are completely determined. The condition (1.18) allows us to put

(1.20) τa = Aarθ
r .

Now we differentiate (1.7), using (1.15), to get

(1.21) 0 = i(dgaβ - ωjgrβ - garωβ

f) Λ ^ Λ θβ + iθ A (τa Λ ^ + ^ Λ τa) .

With (1.20) substituted into (1.21), we see that

(1-22) dgaβ - ωaβ - ωβa = Aaβΐθ' + Baβΐθ
f ,

where

A a β γ = A r β a , Baβf = Bafβ ,

and that

(1.23) TaAθa = 0 , oτAaΐ = Ara .

The hermitian condition (1.4) implies

Baβ? — Aβaf .

It therefore follows that the change
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(1.23a) ωβa-+ωβa + AβSΐθ*

is of the form (1.19) and reduces (1.22) to

(1.24) dgaβ - ωjgrβ - gafωf = 0 .

The condition (1.24) for both ωβ

a and ώβ

a implies that Cβ"r = 0 in (1.19), so
that the ωβ

a are uniquely determined. We have derived the following theorem.
Theorem (1.1). Let (M, θ) be a nondegenerate, integrable pseudohermitίan

manifold. Then in the bundle P over M described above there is an intrinsic
basis of one-forms

{θ, θ% P, ωβ% ωf} ,

one-forms τa, and functions gaβ satisfying (1.7), (1.15), (1.18), and (1.24). We also
have the relations (1.20) and (1.23).

Now that the one-forms ωβ

a are determined, we want to compute their ex-
terior derivatives. If we differentiate (1.15) and make use of (1.7) and (1.15) itself,
we get

(1.25) 0 = θβ Λ {dωβ

a - ω/ A ωr

a - iθβ /\ τa) + θ A {dτa - τβ A ωβ

a} .

Next, we differentiate (1.24) to get

(1.26) 0 = (dωj - ω/ A ω/)gΐβ + gaf(dωf - ωf A ω/) .

Therefore, if we put

(1.27) Ωβ

a = dωβ

a - ω/ A ωr

a - iθβ A τa + iτβ A θa ,

(1.28) Ωa = dτa - τβ A ωβ

a ,

then we get from (1.25), noting (1.23),

(1.29) 0 = θβ A Ωβ

a + θ A Ωa .

From (1.26) it follows that

(1.30) 0 = Ω/grs + gβfΩJ = Ωβa + Ωaβ .

For future use we can, via (1.24), write (1.28) as

(1.31) Ωa = dτa-ωJ Aτβ .

(1.29) implies that

(1.32) Ωβa = χβaβΛΘ> + λβaΛΘ
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for certain one-forms χβsp and λβs, which we may assume contain no terms in
θ. From (1.30) and (1.32) we have

0 = χβap Aθp + χaβ-σ A θ~σ + (λβa + λaβ) A θ ,

which implies

jίβ&p βap'fJ βclpσ ?

where

(1.33)

and furthermore

(1.34)

Thus we have

(1.35)

which, substituted

(1.36)

R β

Ωβa =

into (1.29),

Bpspr

Spd •**

gives

Rββpo

= Bβ«rr

u, = *

Λθ* +

— RpSβσ

θ,

This last condition implies that

(1.37) Ωa = -θβ A λβ

a + μa A θ ,

in which μa is some one-form, which we assume to have no #-term.
Now we differentiate (1.23) using (1.31) and (1.15). It follows that

(1.38) 0 = Ωa A θa + θ A τa A τa .

Putting (1.37) into (1.38) gives

(1.39) 0 = ^ Λ ^ Λ ^ + ^ Λ ( r f f Λ r α - / / δ Λ θa) .

Since λβs was chosen to have no #-term, (1.39) implies that

lβ. = Wβaγθr + Nβsfθ? ,

where

(1.40) Wβsr = WΐSβ ,

and, because of (1.34),
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We can now put

(1.41) Ωβ

a = Rβ

a

p-σθ
p A θ* + Wβ\θp A θ - Wa

β-β~σ A θ ,

and the exterior derivatives dωβ

a are determined.
(1.39) and the expression (1.20) for τa also imply

0 = 0 Λ 0> Λ (Aβγτr + μβ) ,

so that

where

(\ Aΐ\ B — B

yi.t^j Jjβγ — uγβ .

Finally, (1.37) becomes

(1.43) Ωa = W\-βp A θ* - Aa

fτ
f A θ + B%θd A θ ,

and we have also determined the derivatives dτa.
We sum these results up in the following:
Theorem (1.1a). The exterior derivatives of the forms ωβ

a and τa of Theorem
(1.1) are given by (1.27) and (1.28), respectively\ where Ωβ

a and Ωa are given by
(1.41) and (1.43), respectively. The coefficients satisfy (1.33), (1.36), (1.40), and
(1.42).

The existence of the invariant forms ωβ

a on the bundle P with structure group
reduced to U(p, q) gives the following.

Theorem (1.2). The group PsH{M, θ) of all pseudo-hermitian transformations
of the pseudo-hermitian space (M, θ) of dimension In + 1 is a Lie transformation
group of dimension not exceeding (n + I)2, with isotropy subgroups of dimension
not exceeding n2. If M is strongly pseudo-covex, then the isotropy groups are
compact, and PsH(M, θ) is compact for compact M.

2. Geometric interpretation

We shall interpret the ωβ

a of Theorem (1.1) as connection forms of a con-
nection on the complex vector bundle H{M). If we choose local forms θfa on
M9 then according to (1.8) and (1.16) we can put

(2.1) Ufωr + dUβ

a = ω'fU; ,

where

ω'i = 0 , mod θ9 θ'\ θ'* .
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In the usual manner [3] we see that the coefficients of the ω'/ are independ-
ent of U; by differentiating (2.1). Using (2.1) to eliminate dUβ

a we get

(2.2) Uj(dω/ - ω/ A ω/) = (dω'J - ω'a' A ω'/)U/ .

By (1.27) and (1.41) we see that the left hand side of (2.2) is a two-form in
0, θa, θs, therefore so is dω'J, and so ω/'β

a is a one-form on M.
Now we consider θa, as well as θ'a, as local one-forms on M and (1.8) as a

change of coframe. Let (X, Xa, Xs) be the dual frame to (0, θ% θ% and let V =
U-1; then

(2.3) Xa = V/X'β .

Define an operator D locally by

(2.4) DXa = ω/Xβ , D: Γ(H(M)) -> Γ(T*(M) ® H(M)) .

Under the change (2.3) we get from (2.1)

(2.5) ω/Vr« = dVβ« + Vfω'r

hence, (2.4) defines a connection on H(M).
We can define an hermitian metric ( , ~) in the fibres of H(M) by

(2-6) V.,X,) = g.,.

The condition (1.24) yields that D is a metric connection. τa in (1.15) can be
viewed as a kind of torsion. The condition (1.18) on τa is analogous to the re-
quirement in hermitian geometry that the torsion form be of a given type (i.e.,
of type (2,0)) [5].

With these interpretations we can restate Theorem (1.1) as
Theorem (2.1). Let (M, θ) be a nondegenerate, integrable pseudo-herrnίtίan

manifold. Then there are a unique hermitian metric (2.6) determined by the Levi
form and a unique metric connection D on H(M) with torsion form satisfying

τa = 0 , mod ff .

Under the change (1.8) (or (2.3)) we have

(2.7) θ'β = Uβ"θa ,

(2.8) τ'fiUf = τa , τf

β = Uβ

aτa .

By (2.2) the curvature matrix of ωβ

a,

(2.9) Πβ

a = dωβ

a - ω/ A ωr

a = Ωβ* + iθβ A τa - iτβ A θa ,

transforms by
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(2.10) UjΠf = Π'Jϋf .

We also have

(2.11) UjΩf = Ω'JU/ .

The two curvature matrices are equal when the torsion τa vanishes.
The vanishing of the torsion has a more geometric interpretation. Let Lx be

Lie derivation by the transversal X to H(M). By the standard formula

Lx - ιx°d + d°cx ,

(1.7) and (1.15) imply

(2.12) Lxθ = 0 , Lxθ« = -φβ

a(Xψ - τa(X)θ + τa .

So if τa = 0, then X is an infinitesimal pseudo-conformal transformation.
Conversely, given a transverse infinitesimal pseudo-conformal transformation

X, complete it to a basis by choosing Xa. On the dual coframe we have

(2.13) Lxθ = uθ , Lzθ" = θβUβ

a + θva .

From (1.3) it follows that

Lxθ = ηaθ« + Vsθ
s

hence ηa = n = 0, and we have an admissible coframe with respect to θ. From
(2.12) we see that τa = 0.

Hence we have shown
Proposition (2.2). The torsion τa vanishes if and only if the transversal X de-

termined by θ is an infinitesimal pseudo-conformal transformation.
Proposition 2.2 gives the condition required by Tanaka in [9].
Using the curvature tensor Rβspd in (1.41), we can define a kind of curvature

for holomorphic plane sections in H(M) as follows: if

(2.14) Z = ?Xa,

then

(2.15) K(Z) = -i(RβsP-σξ
βζsξΨ)l(gaβξaξβy

The coefficient — \ makes the unit hypersphere in Cn+1 have constant curvature
+ 1 (see § 4). We also define the Ricci tensor

(2.16) R p , = Ra%-σ

and the scalar curvature
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(2.17) R = g»Rβ9.

Finally, we can define a Riemannian metric on T{M) by

ds2 = θ (x) θ - Re (gαo-0α (g) θp)
C2 18̂

= θ®θ- \{gaβθ° ® θ? + gsβθ* (X) ΘO .

This metric is invariant under a pseudo-hermitian transformation.

3. Relation to pseudo-conformal invariants

The object of this section is to derive pseudo-conformal invariants from the
curvature tensors introducted in part one. To do this we start with a local co-
frame field

(3.1) ω = θ , ωa = θa , ω* = θa

adapted to the particular choice of θ. We then try to find local forms φβ

a, φa,
and ψ which will satisfy the structure equations [6, (A.l)-(A.ό), p. 269] and [6,
(4.21), p. 253]. Note that with our normalization

(3.2) 0 = 0 .

Because of (3.2), (1.15), (1.23), and (1.24) the choice

φβ

a = ωβ

a , φa = τa , ψ = 0

satisfies [6, (A.I), (A.2), (A.3), and (4.21)]. The transformation [6, (4.35)] indi-
cates that we should try

(3.3) φβ* = ωβ

a + Dfθ , φa = τa + Dγ

aθr , ψ = 0 ,

where

(3.4) Dβa + Dsβ = 0.

By the procedure of [6, § 4] the Dβs are determined by requiring that the
contraction of equation [6, (A.4)] be trivial, mod θ. Substituting (3.3) into this
contracted equation gives

Φa

a = β / + i{Dgrσ + (n + 2)Dpd)θ? A θ*

(R + i(D + (n + 2)D,,))Θ> A θ* , mod θ ,

where

D = Da

a ,

and we have made use of (1.23), (1.27), and (1.41).
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To make (3.5) vanish, mod θ. we choose

,3.6, D,, Λ , , 2 ( n + 1 X ι ι + 2 ) ^ , .

Then the φβ° in (3.3) is the intrinsic (pseudo-conformal) connection form.
The substitution of (3.3) and (3.6) into [6, (A.4)] gives

Φβ" = Ωβ" + i{Dβ"gp, + Df'gβt + δβ"DpS + δ;Dβ,)θ» A θ*

= Sβt>%θ" A ΘF , mod θ .

It now follows that Chern's pseudo-conformal curvature tensor is given by

S,,'. = R,',. - ~Γj(Rί?2e* + V*ί» + δβ"RfiS + δ,"Rβf)

(3.8)

+
 (H + i χ B + 2 ) < δ ^ + 3 ; g ^ •

Formula (3.8) is similar to H. WeyPs formula for the conformal curvature
tensor of a Riemannian manifold (see [7]). The trace of S with respect to β and
a is zero, so S vanishes identically when n = 1. When n > I, S vanishes if and
only if M is locally equivalent to the real hypersphere in Cn+1 (see [6] and [10]).
Formula (3.8) will be used to compute S for specific hypersurfaces in the next
section.

We could continue the procedure of [6] to determine further relations, how-
ever, when n > 1, the Bianchi identities [6] can be used to show that all higher
order invariants are obtained from S by covariant diίferentation with respect to
the pseudo-conformal connection [10]. It can then be shown, with the aid of
(3.2), (3.3), (3.6), and (3.8), that these invariants can be expressed in terms of
the curvatures of (M, θ) and their covariant derivatives with respect to the con-
nection ωβ

a. Such expressions will be valid only with respect to coframes satis-
fying (3.2).

As a system of local functions on M, S transforms tensorially (explicit details
are in [10]). Under the structure group (4.1) of [6] we have the changes

(3.9) θ = uθ, ugaP = §,,Ua>Uf, Sβpa-σ = SμvnUfU;UJW .

If we define the norm of S with respect to θ by

(3.10)

then (3.9) gives

(3.11)
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If M is strongly pseudo-convex, for example, we can restrict to changes (3.9)
with u > 0. If, in addition, S does not vanish (3.11) shows that we can choose
a unique θ* with respect to which S has norm one. This θ* and all the invari-
ants of (M, θ*) are intrinsic to the C-R structure of M. In particular, the cor-
responding transversal X (1.10) and its integral curves are intrinsic to M. The
latter are called principal curves [2].

Let N be a Kahler manifold with Kahler form χ. Each point of N has a
neighborhood U, with holomorphic coordinate vector Z, on which there is a
positive function h satisfying

χ = idd log h .

On U X C define

r = λ(Z, Z)wvP - 1 , Z e ί / , w <= C ,

and let M be the real hypersurface on which r vanishes. Then χ is also the
Levi form of (M, θ = idr). It is easily seen that the torsion τa vanishes, and
that Rβapσ is also the curvature tensor of the Kahler metric associated to χ. Sβp

a

d

is then the same tensor defined by Bochner [1].

4. The curvature for real hypersurfaces in Cn + 1, spaces of constant

curvature, & ellipsoids

In this section we will give a procedure for computing the torsion and cur-
vature tensors for a real hypersurface (M, θ) in Cn+1 defined as the zero set of
a given real valued function r.

We have coordinates

and, for the applications we have in mind, will assume that the Z and w vari-
ables are separated in r, i.e.,

(4.1) r(Z, w, Z, w) = p(Z, Z) + q(w, w) ,

p and q being real valued. We choose the one-form

(4.2) θ = idr = i(padza + qwdw) .

Throughout we shall use the abbreviations

pa = dp/dza , qw = dq/dw , etc.

Then we have

(4.3) dθ = iddr = igaBdza A dz? + Vadza A θ + ηadzs A θ = igaβθ* A θβ ,
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where

(4.4) gaβ = -paβ- Qpapβ , Q = (qww)l(qwqώ ,

(4.5) τ]a = -Qpa , rf = ga% ,

(4.6) θa = dza + iηaθ .

The coframe (0, 0α, 0") is admissible for (M, 0). Our computation will be valid
where qw Φ 0. The dual frame, characterized by

(4.7) df = Xfθ + XJΘ« + XJΘ*

for any function / on Λf, is given by

X= -iηa{dldz°) + iγ(3/3zβ) - i(l - ptf){qwY\dldv>)

+ /(I - Pβ^XqJΛd/dw) ,

(4.9) Xα = (3/3zβ) - pa(qwY\dldW) , Xδ = 5 ; .

We first compute the connection and torsion forms ω^, τα. Differentiating
(4.6) gives

J0« = ^ Λ ( - ^ + iXβV
aθ) + θ A (-ίXrη

aθf) = θβ A ω'f + θ A τa .

Next, we compute

dgβa ~ ω'βa - ω\β = (Xrgβs + ηβgra)θ' + (X7gβs + Ύ]agβr)θf ,

where the #-term vanishes by (1.22). Therefore the change (1.23a) yields

(4.10) ωβs = Bβar0r + Cβsfθ
f + Eβsθ ,

where

(4.H) Bβar = Xrgβa + ηβgar , C ^ f = -7]s

Also, the torsion form is

(4.12) τa = Λaγθr ,

where

(4.13) Λaγ = feβ^ = ι T Λ β -

To find the curvature tensor Rβspd, we substitute (4.10) and (4.12) into

Ωβs = dωβa — ωsγ A ω/ — ίθβ Λ r s + iτβ A θs ,
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and compute mod θ. We need to consider only the θp Λ #*-term. The coefficient
of this term is

(4 14) Rβap9 X*BΪSP
^βaf^σ p ^β σ^Sγp \ lI^ βag pσ^β ^S \ lI^ βag pσ '

If we substitute (4.11) into (4.14) we get

Rβapa = —X9Xpgβa + grPXpgβμ'Xogar + gpϋrfXβgar

(4.15) - gp-ση
rXrgβs - gspX-σ7]β - g

Examples. A. Spaces of constant curvature. We will consider here three ex-
amples in Cn+1 which are locally equivalent in the pseudo-conformal sense but
differ according to the choice (4.2) of θ.

(4.16.1) Qo: r0 = haβz
az? + -L(w - w) = 0 .

(4.16.2) β + (<0: r+ = haβz
azβ + ww = c .

(4.16.3) δ-(c) : ^- = haβz
ttzp - ww = -c .

The constant c is positive, and haβ is a constant nonsingular hermitian matrix
with signature p positive and q negative eigenvalues, p + q = n.

The transformation

(4.17) w = c\wf , za = \l~czfa\w'

maps β_(c) onto Q+(c) minus {w = 0}. A transformation mapping Qo onto
Q+(c) minus a point is given in [6]. However, these transformations do not
preserve the one-forms θ = idr.

(1) Qo. Let Go be the group of (n + 1) X (n + 1) matrices

(4.18)

where

(4.19) BjhτtBf = h.t , ba = 2iB/hpfb
f , 0 = j-(b - b)

Go acts on Cn+1 by

(4.20) z" = b" + z'Bf , w = b + z^bβ + w ,



PSEUDO-HERMITIAN STRUCTURES 39

preserves the function r0 defining β0, and hence preserves θ = idr.
The isotropy group of (0, 0) in Qo is the unitary group U(p, q) of the her-

mitian form haβ. It follows that β 0 is homogeneous,

(4.21) Qo = Go/U(p9q).

If we choose as our coframe

θ, θa = dz% θa = dzs ,

then

dθ = -ihaβθ
a A θ'β ,

and ωβ

a = τa = 0 since rf0β = 0. The curvature and torsion of (β 0, θ) vanish

identically.

(2) Q+(c). The function r+ in (4.16.2) is an hermitian form of signature

(p + 1, q). The unitary group U(p + 1, q) acts transitively on Q+(c) and pre-

serves ^ = ίdr+. The isotropy group at (Z = 0, w = V c ) is U(p, q)\ hence

(4.22) Q+(c)= U(p+ l,q)IU(p,q).

(3) Q_(c). The function r_ in (4.16.3) is an hermitian form of signature
(/?, q + 1), 0 = /3r is invariant under C/(/?, g + 1), and

(4.23) β - ( O = C^(Λ^+ l)IU(p,q).

Because β + (c) and β_(c) are homogeneous, it suffices to compute their cur-
vature and torsion at a point where Z = 0. From (4.13), (4.5), and (4.9) we
see that Aaγ vanishes when Z = 0. Also, substituting (4.4) and (4.5) into (4.15),
we see that, when Z = 0,

c

where e = + 1 for β + (c) and ε = —1 for Q_(c). From the definition of sec-
tional curvature (2.15), we have K = 1/c for β + (c) and K = — 1/c for β_(c).

β0, β+(c), and Q_(c) each have a transformation group of dimension (n + I)2.
It is easily seen from (3.8) that the tensor Sβps^ vanishes identically in each case.

B. Ellipsoids. For a less trivial example we consider the general ellipsoid E
in Cn+1 defined by

r = A,(XJ + Bλ{fY + + An(x*γ + Bn(y»γ
(4.24)

+ A ( u f + B ( v ) 2 - 1 = 0 ,

where xa + ίya = zα, u + iv = w, and 4̂, Aa, B, Ba are all positive constants.
We rewrite this as
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(4.25) r = Σ (aa(za)2 + aa(z*)2 + baz
azs) + a(w2 + Ψ) + bww - 1 - 0 ,

where

(4 26) a = i(A-B), aa

b = i(A + B)>0, ba = i(Aa + Ba)>0.

More generally, we take

(4.27) r=p(Z,Z) + q(w,w),

where

(4.27a) p = aaβz
az? + asβz*z? + baβz

az? ,

(4.27b) q = aw2 + aw2 + bww — 1 ,

all the coefficients are constant, aaβ is symmetric, baβ is positive definite her-
mitian, and b is positive.

We will compute the curvature tensor Sβpa9 for E along the curve E Π (Z = 0)
by computing Rβap9 and using (3.8). We let |0 denote evaluation at Z = 0. We
have

ί 4 2 8 ) P«\o = 0, qw\0^0,

Paβ = baβ , paγ = 2aar .

This, together with the expressions (4.4) and (4.5), gives

Xpgβa = —PpPβP* - QPβbpS - 2Qaβpps ,

( 4 ' 2 9 ) ~X-MXPgβs) = QΦrσbpS + 4aβpasd) ,

*,lote,.) = o , x,\o(Vβ)= -Qbβz

Substituting (4.29) into (4.15) gives

(4.30) Rβsp-σ\o = -Q(bβabp-σ + bpabrσ - 4aβpass) ,

where Q = Q\o Φ 0. Let bβa be the inverse matrix of bβs. Then

(4.31) Rf9\0 = Q((n + \)bp-σ - 4b»aμβa,,) ,

(4.32) R\o = -Q(n(n + 1) - W>b«aμaaΛ) .

Now, if we put (4.30), (4.31), and (4.32) into (3.8) with the index a lowered,
we get, after simplification,
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(4.33)

Now let us assume we have the form (4.25)-(4.26). Then

It follows that if n = 1, Snϊ ϊ |o = 0, as expected. However, if n > 2, then Saaaa\0

vanishes for some a if and only if ax = = an = 0. Since we can relable

our variables, say z1 ^> w, we see that E has nonflat points if a Φ 0, or if α0 ^ 0

for some or. Hence

Theorem (4.1). Let n>2. The ellipsoid E given by (4.24) is equivalent to the

real hyper sphere if and only if

In [8] Fefferman has shown that a biholomorphic map between two bounded

strongly pseudo-convex domains with smooth boundaries extends smoothly to

the boundaries. Theorem (4.1) then gives a necessary and sufficient condition

for an ellipsoidal domain to be equivalent to the unit ball.
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