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TOTALLY REAL SUBMANIFOLDS

BANG-YEN CHEN, CHORNG-SHI HOUH & HUEI-SHYONG LUE

1. Introduction

Among all submanifolds of a Kaehler manifold M, there are two typical
classes: one is the class of complex submanifolds and the other is the class of
totally real submanifolds. A submanifold M of a Kaehler manifold M is said
to be complex (resp. totally real) if each tangent space of M is mapped into
itself (resp. the normal space) by the complex structure of M.

In [3] Chen and Ogiue studied some fundamental properties of totally real
submanifolds. In particular, some characterizations of totally real submani-
folds and some classifications of totally real submanifolds in complex space
forms are obtained [3]. (See also [7]).

In this paper, we shall continue to study fundamental properties of totally
real submanifolds. In particular, we shall obtain two reduction theorems for
totally real submanifolds in complex space forms and also study totally real
submanifolds with parallel mean curvature vector.

2. Basic formulas

Let M2m be a 2ra-dimensional1 Kaehler manifold with complex structure /
and metric tensor g. Let V (resp. R) be the Levi-Civita connection (resp. the
curvature tensor) of M2m. We denote by V (resp. R) the induced Levi-Civita
connection (resp. the curvature tensor) of an ^-dimensional totally real sub-
manifold M. Then the second fundamental form σ of the immersion is given
by

(2.1) σ(X,Y) = VxY -VXY ,

where X, Y, , etc. are vector fields in M. The mean curvature vector H is
then given by H = (1 jή) Tr σ. For a normal vector field ξ, we write

(2.2) Vxξ = -AζX + Dxξ ,

where — AξX (resp. Dxξ) denotes the tangential (resp. normal) component
of Vxξ. Then we have g(σ(X, Y), ξ) = g(AξX, Y). Let RD denote the curva-
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1 In this paper we consider only real dimensions of manifolds.
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ture tensor of the normal connection D, i.e., RD(X, Y) = DXDY — DYDX —
Dιχ,γy Then the Gauss, Codazzi and Ricci equations are given respectively
by

g(R(X, Y)Z, W) = g(R(X, Y)Z, W) + g(σ(X, Z), σ(Y, W))

- g(σ(Y,Z),σ(X,W)) ,

(2.4) (R(X, Y)Z)N = (Fxσ)(Y, Z) - (Fγσ)(X, Z) ,

(2.5) g(R(X, Y)ξ, η) = g(RD(X, Y)ξ, yj) - g([Aξ, AV](X), Y) ,

where (Fxσ)(Y, Z) = Dzσ(Y, Z) - σ(FxY, Z) - σ(Y, FXZ), (R(X, Y)Z)N is
the normal component of R(X, Y)Z, and ξ,η, - , etc. are normal vector
fields of M i n M 2 m .

A Kaehler manifold M2 m is a complex space form of constant holomorphic
sectional curvature c, denoted by M2m(c), if its curvature tensor R satisfies

(2.6) Λ ( * ' Ϋ)2 = J{g(Ϋ> ^ ~ g{ϊ>Ϊ)Ϋ + g(JΫ'

where X, Ϋ, Z, , etc. are vector fields in M2m. If the ambient space M2m

is a complex space form M2m(c), then (2.3), (2.4) and (2.5) reduce respec-
tively to

g(R(X, Y)Z, W) = g(σ(X, W), σ(Y, Z)) - g(σ(X, Z), σ(Y, W))

+ j{g(X, W)g(Y, Z) - g(X, Z)g(Y, W)} ,

(2.8) (Fxσ)(Y, Z) = (Fγσ)(X, Z) ,

g(RD(X, Y)ξ, η) = g([Aξ, AV](X), Y)

( 2 9 ) ^ ) - g(JX, ξ)g(JY,

A normal vector field ξ is called a parallel section in the normal bundle
Γ-LM if Dξ — 0. A wn/ί normal vector field ξ is called an isoperimetric section
ΊίΎτ Aξ is constant. A subbundle Q of the normal bundle TL(M) is holomor-
phic if 2 is invariant under /, i.e., if JQ c Q A subbundle Q of Γ^M is said
to be parallel if 2 is invariant under parallel translation, i.e., if Dxξ is also
a section in Q for every local section ξ in Q. It is clear that a unit normal
vector field ξ is parallel if and only if the line bundle generated by ξ is paral-
lel. For a subbundle Q of Γ^M, there exists a unique subbundle β c of ΊLM
such that β and Qc are orthogonal and β θ β c = TLM. We called β c the
complementary subbundle of β It is clear that for a totally real submanifold
M in M, the complementary subbundle {J(TM))C of /(ΓM) is always holomor-
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phic, and a subbundle Q is parallel if and only if its complementary subbunble
Qc is parallel. The complementary subbundles of holomorphic subbundles of
TLM is called a coholomorphic subbundles of TLM. It is clear that a sub-
bundle Q of TLM is coholomorphic if and only if Q is the direct sum of J(TM)
and a holomorphic subbundle of

3. Reduction theorems

Let M be an ^-dimensional totally real submanifold of a 2ra-dimensional
Kaehler manifold M2m. If there exists a 2r-dimensional parallel holomorphic
subbundle Q of TLM, then for any section ξ in Q and vector fields X, Y in
M we have

g(σ(X, Y), ξ) = g(F xY, f) =

= g(DxJY,Jξ) = -g(JY,DxJξ) = 0 ,

from which we see that σ\Q (restriction of a to Q) vanishes. Thus we have
Lemma 1. Let M be an n-dίmensional totally real submanifold of a 2m-

dίmensional Kaehler manifold M2m. If Q is a 2r-dimensional parallel holomor-
phic subbundle of T^M, then σ\Q = 0.

Let Q be a holomorphic subbundle of T^M. Then the coholomorphic sub-
bundle Qc contains J(TM) as its subbundle and Q is parallel if and only if Qc

is parallel. Hence from Lemma 1 we obtain

Lemma 2. Let M be an n-dimensional totally real submanifold of a 2m-
dimensional Kaehler manifold M2m. If Q is a parallel coholomorphic subbundle
of T^M, then I n K j C β , where Im σ = {σ(X, Y):X,Yz TM).

In particular, if the ambient space is a complex space form, then from
Lemma 2 we have

Theorem 1. Let M be an n-dίmensional totally real submanifold of a 2m-
dimensional complex space form M2m(c). Then M is a totally real submanifold
of a 2(n + s)-dimensional totally geodesic complex submanifold M2{n+S)(c) of
M2m(c) if and only if there exists an (n + 2s)-dimensional parallel coholomor-
phic subbudle of TLM.

The "only if" part is trivial, and the "if" part follows from Lemma 2 and
an argument similar to the proof of Proposition 9 given in [1] with only slight
modifications.

In the following theorem, we shall give some necessary and sufficient con-
ditions for the codimension of totally real submanifolds which can be reduced
to minimal one.

Theorem 2. Let M be an n-dimensional totally real submanifold of a 2m-
dimensional complex space form M2m(c). Then M is contained in a 2n-dimen-
sional totally geodesic complex submanifold M2n(c) of M2m(c) if and only if
one of the following statements holds:
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( i ) JiTM) is parallel.
(ii) Im<7C/(ΓM).
(iii) (J(TM))C is parallel.

Proof. Since J(TM) is coholomorphic, Theorem 1 implies that M is a to-
tally real submanifold of a 2n-dimensional totally geodesic complex submani-
fold M2n(c) of M2m(c) if and only if statement (i) holds. Hence it suffices to
prove the equivalences of (i), (ii) and (iii). The equivalence of (i) and (iii) are
clear. Moreover, Lemma 1 shows that (iii) implies (ii). Thus the theorem fol-
lows from

Lemma 3. "Im σ C J(TM)" implies "(JiTM))0 is parallel."
Proof. Let ξ be any section of the holomorphic subbundle (J(TM))C and

Im σ C J(TM). Then we have σ\{J(TM))C = 0 and hence

= g(FxJY, ~ξ) = -g(DxJY,ξ) = g(JY,Dxξ) .

Since this is true for all X and Y e TM, (J(TM))C is parallel, q.e.d.
As an application of Theorems 1 and 2, we have the following.
Corollary 1. Let M be an n-dimensional totally real, totally umbilical sub-

manifold (n > 2) of a 2m-dimensional complex space form M2m(c), c Φ 0.
(i) If H = 0, then M is contained in a 2n-dimensional totally geodesic

complex submanifold M2n(c) of M2m(c).
(ii) If H ^ 0, then M is contained in a 2(n + l)-dimensional totally geo-

desic complex submanifold M 2 ( w + 1 )(c) of M2m(c).
Proof. Since M is totally real and totally umbilical in M2m(c), Theorem 1

of [4] implies either (1) M is totally geodesic in M2m(c) or (2) the mean cur-
vature vector H is nonzero and parallel. If Case (1) holds, then Theorem 2
shows that M is contained in a 2«-dimensional totally geodesic complex sub-
manifold M2n(c) of M2m(c). If Case (2) holds, then H and JH span a holomor-
phic plane subbundle of TLM9 say, V. From (2.9) of Ricci, we find that V is
perpendicular to JiTM). Hence J(TM) 0 V is an (n -f- 2)-dimensional coho-
lomorphic subbundle of TLM. Now, since H is parallel, for any vector fields
X, Y in M we have

(3.1) JVXY + Jσ(X, Y) = -ΛJY(X) + DX(JY) ,

(3.2) -ΛJH(X) + DX(JH) = -JΛH(X) .

On the other hand, by the total umbilicity of M we find σ(X, Y) = g(X, Y)H.
Thus (3.1) and (3.2) give

(3.3) DX(JH), DX(JY) e J(TM) 0 V .

From these, we see that the subbundle J(TM) 0 V is a parallel coholomorphic
subbundle of TLM. Hence, by Theorem 1, M is contained in a 2(n + ̂ -di-
mensional totally geodesic complex submanifold M2{n+1)(c) of M2m(c).
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4. Submanifolds with parallel mean curvature vector

In this section we shall assume that M is a 2n-dimensional Kaehler manifold
M2n. Then from (2.1) and (2.2) we immediately have

(4.1) DX{JY) = JFXY , JAjYX = σ{X, Y) ,

(4.2) Vx{Jξ) = JDxξ .

From the first equation of (4.1) we obtain

(4.8) RD(X, Y){JZ) = JR(X, Y)Z .

Moreover, (4.1) implies
Lemma 4. Let M be an n-dίmensional totally real submanijold of a In-

dimensional Kaehler manifold M2n. Then the normal bundle TLM admits a
parallel nontrivial {local) section if and only if the tangent bundle admits a
parallel nontrivial {local) section.

Remark 1. Lemma 4 implies that the sectional curvature of every plane
section containing Jξ vanishes if ξ is parallel. In particular, if M is of constant
sectional curvature, then the normal bundle admits no nontrivial parallel sec-
tions unless M is flat.

In the following, we shall assume that the ambient space M2n is a complex
space form M2n{c). If £ is a parallel section in TLM, then (2.8) of Codazzi
reduces to

(4.4) {VxAξ)Y = {FγAξ)X .

Let eί9 , en, ξ19 , ξn be a local field of orthonormal vectors in M2n{c),
defined along M, such that el9 , en are tangent to M (and hence ξ19 , ξn

are normal to M). We put hk

tj = g{Aket, e3), where Ak = Aζ . Let Ktj de-
note the sectional curvature of the plane section π{eue3). Then Ktj =
g{R{et, ej)ej9 et). By (2.7) of Gauss, (4.4) of Codazzi and an argument similar
to Smyth [6] we may prove

Lemma 5. Let M be an n-dimensional totally real submanifold of M2n{c).
If M admits a parallel isothermal section ξ, then

(4.5) ΪΔ<JiA>) = Σ Uu + Σ (Aϊ,)'}α - . + l l ^ ι l Γ

where Δ is the Laplacian on M, e15 , en orthonormal eigenvectors of Aξ with
eigenvalues λλ, λn9 and Ktj the sectional curvature of the plane section
π{eue3).

If M is compact and of nonnegative sectional curvatures, then Lemma 2,
together with Hopf's lemma, gives

(4.6) { κ t i + Σ ( Λ y ! } ϋ * - λj) = 0 , i ψ j ,
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(4.7) FAξ = 0 .

Without loss of generality we may assume that

*1 — * * * — "vi = Pi ? ^ϋi + 1 =

where p19 , pr are all distinct. We put

W = K + * + ^ - i + 1, , Vi + + vt_λ + vt) ,

t= 1, .

From (4.6) it follows that

(4.8) hl = Kυ = 0, k= 1, . . . , n , / e f ^ l , / e ^ J , / =£ J .

Thus with respect to the eigenvectors e19 , en of Aξ we find

(4.9)

Bl 0 . . . 0
0 B} 0

I 0 0 Bk

r

where Bk

t is a vt X ^ r matrix.
Now let us consider the orthonormal frame field given by

(4.10) " ? ^n> •'^1 — S U " * ' 5 ^^7i — S n 5

where ^ , , ^ are still eigenvectors of Aζ. With respect such frame fields,.
Ak

9s still have the forms (4.9). Moreover Ak's satisfy [3]

(4.11) h% = hξj = h{k , i, /, Λ = 1, , n .

By using (4.8) and (4.11) we obtain
Lemma 6. Let M be a compact totally real submanίjold in M2n(c). If M

has nonnegative sectional curvature and admits a parallel isoperimetric section
ξ, then with respect to the frame field (4.10), Ak's are given in the following
forms:

A* =

Γ o o
0 0

0 0

0
0
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Vi + - - + vs-ι < k <vλ+ ••• + vs, 1 < s <r ,

where Bk

s is a vs X vs-matrίx.

By using Lemma 6 we may prove
Theorem 3. Let M be a compact n-dimensional manifold with nonnegative

sectional curvature immersed in a 2n-dimensional complex space form M2n(c)
as a totally real submanifold. Then the normal bundle TLM admits no paral-
lel isoperimetric section unless M2n(c) is fiat.

Proof. We assume that ξ is a parallel isoperimetric section. We shall di-
vide the proof into two cases.

Case a. λλ = = λn = λ. In this case, M is umbilical with respect ξ.
Hence we may choose e19 , en in such a way that Je1 = ξ. Lemma 4 then
implies that Kxj = 0 for / > 1. On the other hand, (2.7) of Gauss gives Kλj

= c/4 + ΣJC {htfήj - (hij)2}. Thus by (4.11) we find c = 0.
Case b. λι Φ λt for some i. In this case, (4.8) implies Kλj = 0 for / e [λj.

On the other hand, Lemma 6 gives Σ* {hϊifήj - (Λfy)
2} = 0. Thus (2.7) of

Gauss implies c = 0.
Corollary 2. Under the hypothesis of Theorem 3, if the mean curvature

vector H is parallel, then either (i) c > 0 and M is minimal in M2n(c) or (ii)
M2n(c) is flat, i.e., c = 0.

Proof. Since Tr ̂  = \H\2, the parallelism of H implies that either H — 0
or H/\H\ is a parallel isoperimetric section. If H = 0, then M is minimal in
M2n(c), and the sectional curvatures of M is < \c. Thus by the hypothesis
we have c > 0. If H Φ 0, and H/\H\ is an isoperimetric section, then Theo-
rem 3 implies that M2n(c) is flat.

Remark 2. If M2 n(c) is flat, then there exist compact submanifolds of M2n(c)
which satisfy the assumptions of Theorem 3 and also admit parallel isoperi-
metric section. For example, let Sι be a unit circle in the complex plane C1.
Then S1 x Sι is a such totally real surface in C2.

In view of Theorem 3, it is interesting to study totally real submanifolds
of the complex number space Cn which admits a parallel isoperimetric section.
The proofs of the following two theorems are similar to that of Theorem 2 in
[6]. So we just only give the necessary outlines of the proofs.

Theorem 4. Let M be a compact n-dimensional totally real submanifold
imbedded in Cn. If M has nonnegative sectional curvature, and it admits a
parallel isoperimetric section ξ, then M is a product submanifold Mxχ X
Mr, where Mt is a compact vt-dimensional totally real submanifold imbedded
in some CVt, and Mt is contained in a hypersphere of CVt.

Outline of proof. The assumption of the theorem implies that VAξ = 0.
Thus the distinct eigenspaces Tl9 , Tr of Λξ define parallel distributions of
M. By the de Rham decomposition theorem, M is a product of Riemannian
manifold M1 x x Mr, where the tangent bundle of Ms corresponds to Ts.
By Lemma 6 and a lemma of Moore [5] we see that M = Mλ x x Mr
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is a product submanifold imbedded in Cn = CVl X χCVr. Moreover,
Lemma 6 implies that each of Mt's is a totally real submanifold imbedded
in some CVt:

imbedding
Mλ x x Mr -—> C*1 X X C " .

Let πt(ξ) be the component of ξ in the subspace C n . Then πt(ξ) is a parallel
normal section of Mt in CVt, and M έ is umbilical with respect to πt(ξ). From
these it follows that Mt is contained in a hypersphere of CVt (see, for instance,
[2]).

Theorem 5. Lei M be a compact n-dimensional totally real submanifold
imbedded in Cn. If M has nonnegatve sectional curvature and parallel mean
curvature vector H, then M is a product submanifold Mλχ X M r , where
Mt is a compact vt-dimensίonal totally real submanifold imbedded in some
CVt, and Mt is also a minimal submanifold of a hypersphere in CVt.

Outline of proof. Since the mean curvature vector H is parallel and there
exists no compact minimal submanifold in Cn, H/\H\ is a parallel isoperimetric
section. By Theorem 4, M is a product submanifold M1 x x Mr such
that Mt is totally real in some CVt and Mt is umbilical with respect to the
component πt(H) of H in the subspace Cυt. Since πt(H) is parallel and is the
mean curvature vector of Mt in CVt, Mt is a minimal submanifold of a hyper-
sphere in CVt.
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