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TOTALLY REAL SUBMANIFOLDS

BANG-YEN CHEN, CHORNG-SHI HOUH & HUEI-SHYONG LUE

1. Introduction

Among all submanifolds of a Kaehler manifold M, there are two typical
classes: one is the class of complex submanifolds and the other is the class of
totally real submanifolds. A submanifold M of a Kaehler manifold M is said
to be complex (resp. totally real) if each tangent space of M is mapped into
itself (resp. the normal space) by the complex structure of M.

In [3] Chen and Ogiue studied some fundamental properties of totally real
submanifolds. In particular, some characterizations of totally real submani-
folds and some classifications of totally real submanifolds in complex space
forms are obtained [3]. (See also [7]).

In this paper, we shall continue to study fundamental properties of totally
real submanifolds. In particular, we shall obtain two reduction theorems for
totally real submanifolds in complex space forms and also study totally real
submanifolds with parallel mean curvature vector.

2. Basic formulas

Let M*™ be a 2m-dimensional’ Kaehler manifold with complex structure J
and metric tensor g. Let I (resp. R) be the Levi-Civita connection (resp. the
curvature tensor) of M?™. We denote by I’ (resp. R) the induced Levi-Civita
connection (resp. the curvature tensor) of an n-dimensional totally real sub-

manifold M. Then the second fundamental form ¢ of the immersion is given
by

2.1 oX,Y) =V, Y — V.Y,

where X,Y, . - -, etc. are vector fields in M. The mean curvature vector H is
then given by H = (1/n) Tr ¢. For a normal vector field &, we write

(2-2) ,72(5 = —AeX + DXS 5

where —A.X (resp. Dx) denotes the tangential (resp. normal) component
of I/ x&. Then we have g(¢(X,Y), &) = g(4.X,Y). Let R? denote the curva-
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ture tensor of the normal connection D, i.e., R?(X,Y) = DyDy — DD —
D x,vy;- Then the Gauss, Codazzi and Ricci equations are given respectively

by

SRX,Y)Z, W) = ¢R(X,Y)Z, W) + go(X, Z), s(Y, W))
— 80(Y, 2),0(X, W) ,

(2.4) RX,Y)Z)¥ = Fxo)(Y,2Z) — Tyo)(X,2) ,

(2.5) e(R(X,Y)E, n) = gRP(X,Y)E, ) — g(4., 4,1(X), Y) ,

(2.3)

where (V30)(Y,Z) = Dyo(Y,Z) — oV Y, Z) — o(Y,VxZ), (R(X,Y)Z)¥ is
the normal component of R(X,Y)Z, and &, 7y, -++, etc. are normal vector
fields of M in M*™.

A Kaehler manifold M*™ is a complex space form of constant holomorphic
sectional curvature ¢, denoted by M?*™(c), if its curvature tensor R satisfies

2.6 REDZ = LoV, DX — o, DY + g0¥, 21X
— gUX,2)IY + 2(X,IV)IZ} ,

where X,Y,Z, .-, etc. are vector fields in M?®™. If the ambient space M
is a complex space form M*™(c), then (2.3), (2.4) and (2.5) reduce respec-
tively to

SRX,Y)Z, W) = ga(X, W), a(Y, 2)) — 8(o(X, Z),0(Y, W))

2.7 + £ {g0X, WY, 2) — g(X, Dg(Y. W)}
2.8) 7)Y, 2) = Pro)(X, 2) ,

e(RP(X, V)£, 7) = ¢([Ap, A,1(X), ¥)
2.9)

+ %{g(JY, £eUX,n) — gUX,8sJY, )} .

A normal vector field & is called a parallel section in the normal bundle
TM if D€ = 0. A unit normal vector field ¢ is called an isoperimetric section
if Tr A, is constant. A subbundle Q of the normal bundle T+(M) is holomor-
phic if Q is invariant under J, i.e., if JO C Q. A subbundle Q of T+M is said
to be parallel if Q is invariant under parallel translation, i.e., if D¢ is also
a section in Q for every local section £ in Q. It is clear that a unit normal
vector field £ is parallel if and only if the line bundle generated by & is paral-
lel. For a subbundle Q of TLM, there exists a unique subbundle Q°¢ of T+*M
such that Q and Q¢ are orthogonal and Q @ Q° = T'M. We called Q° the
complementary subbundle of Q. It is clear that for a totally real submanifold
M in M, the complementary subbundle (J(TM))° of J(TM) is always holomor-
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phic, and a subbundle Q is parallel if and only if its complementary subbunble
Q¢ is parallel. The complementary subbundles of holomorphic subbundles of
TM is called a coholomorphic subbundles of T-M. It is clear that a sub-
bundle J of T-M is coholomorphic if and only if Q is the direct sum of J(TM)
and a holomorphic subbundle of 7-M.

3. Reduction theorems

Let M be an n-dimensional totally real submanifold of a 2m-dimensional
Kaehler manifold M?*™. If there exists a 2r-dimensional parallel holomorphic
subbundle Q of T1M, then for any section & in Q and vector fields X, Y in
M we have

80X, Y),8) = gWrY, &) = g(W1IY,J&)

from which we see that ¢|, (restriction of ¢ to Q) vanishes. Thus we have

Lemma 1. Let M be an n-dimensional totally real submanifold of a 2m-
dimensional Kaehler manifold M*™. If Q is a 2r-dimensional parallel holomor-
phic subbundle of T*M, then g|y = 0.

Let Q be a holomorphic subbundle of 7+M. Then the coholomorphic sub-
bundle Q° contains J(T'M) as its subbundle and Q is parallel if and only if Q°
is parallel. Hence from Lemma 1 we obtain

Lemma 2. Let M be an n-dimensional totally real submanifold of a 2m-
dimensional Kaehler manifold M*™. If Q is a parallel coholomorphic subbundle
of T*M, then Im ¢ C Q, where Imo = {o(X,Y): X,Y e TM}.

In particular, if the ambient space is a complex space form, then from
Lemma 2 we have

Theorem 1. Let M be an n-dimensional totally real submanifold of a 2m-
dimensional complex space form M*™(c). Then M is a totally real submanifold
of a 2(n + s)-dimensional totally geodesic complex submanifold M*™*9(c) of
M*™(c) if and only if there exists an (n + 2s)-dimensional parallel coholomor-
phic subbudle of T-M.

The “oniy if” part is trivial, and the “if” part follows from Lemma 2 and
an argument similar to the proof of Proposition 9 given in [1] with only slight
modifications.

In the following theorem, we shall give some necessary and sufficient con-
ditions for the codimension of totally real submanifolds which can be reduced
to minimal one.

Theorem 2. Let M be an n-dimensional totally real submanifold of a 2m-
dimensional complex space form M*™(c). Then M is contained in a 2n-dimen-
sional totally geodesic complex submanifold M*™(c) of M*™(c) if and only if
one of the following statements holds :
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(i) J(TM) is parallel.

(ii) Ime C J(TM).

(iii)) (J(TM))° is parallel.

Proof. Since J(TM) is coholomorphic, Theorem 1 implies that M is a to-
tally real submanifold of a 2n-dimensional totally geodesic complex submani-
fold M*(c) of M*(c) if and only if statement (i) holds. Hence it suffices to
prove the equivalences of (i), (ii) and (iii). The equivalence of (i) and (iii) are
clear. Moreover, Lemma 1 shows that (iii) implies (ii). Thus the theorem fol-
lows from

Lemma 3. “Imo¢ C J(TM)” implies “(J(TM))¢ is parallel.”

Proof. Let & be any section of the holomorphic subbundle (J(TM))¢ and
Im ¢ C J(TM). Then we have g7y, = 0 and hence

0 = glo(X, Y),J&) = WY, J&)
=gWxIY, -8 = —g(DJY, ) = gUY,D8) .

Since this is true for all X and Y ¢ TM, (J(TM))¢ is parallel. q.e.d.

As an application of Theorems 1 and 2, we have the following.

Corollary 1. Let M be an n-dimensional totally real, totally umbilical sub-
manifold (n > 2) of a 2m-dimensional complex space form M*™(c), ¢ # 0.

(i) If H=0, then M is contained in a 2n-dimensional totally geodesic
complex submanifold M*(c) of M*™(c).

(i) If H == 0, then M is contained in a 2(n + 1)-dimensional totally geo-
desic complex submanifold M*™*v(c) of M*™(c).

Proof. Since M is totally real and totally umbilical in M*™(c), Theorem 1
of [4] implies either (1) M is totally geodesic in M*™(c) or (2) the mean cur-
vature vector H is nonzero and parallel. If Case (1) holds, then Theorem 2
shows that M is contained in a 2n-dimensional totally geodesic complex sub-
manifold M?"(c) of M*™(c). If Case (2) holds, then H and JH span a holomor-
phic plane subbundle of T+M, say, V. From (2.9) of Ricci, we find that V' is
perpendicular to J(TM). Hence J(TM) @ V is an (n + 2)-dimensional coho-
lomorphic subbundle of 7M. Now, since H is parallel, for any vector fields
X, Y in M we have

(3.1 WyY +Jo(X,Y) = —A;v(X) + DxUY),
(3.2) —A;7(X) + DxUH) = —JAx(X) .

On the other hand, by the total umbilicity of M we find ¢(X,Y) = g(X, Y)H.
Thus (3.1) and (3.2) give

3.3) Dx(JH),D;(JY) e J(TM)DV .

From these, we see that the subbundle J(TM) @ V is a parallel coholomorphic

subbundle of T-M. Hence, by Theorem 1, M is contained in a 2(n + 1)-di-
mensional totally geodesic complex submanifold M*™*V(c) of M*™(c).
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4. Submanifolds with parallel mean curvature vector

5 In this section we shall assume that M is a 2n-dimensional Kaehler manifold
M?*. Then from (2.1) and (2.2) we immediately have

@.1 DY) =I,Y, JA X =eX,Y),
“4.2) V,(J&) = IDyE .

From the first equation of (4.1) we obtain

4.8) R?(X,Y)JZ) =JR(X,Y)Z .

Moreover, (4.1) implies

Lemma 4. Let M be an n-dimensional totally real submanifold of a 2n-
dimensional Kaehler manifold M**. Then the normal bundle T*M admits a
parallel nontrivial (local) section if and only if the tangent bundle admits a
parallel nontrivial (local) section.

Remark 1. Lemma 4 implies that the sectional curvature of every plane
section containing J¢ vanishes if ¢ is parallel. In particular, if M is of constant
sectional curvature, then the normal bundle admits no nontrivial parallel sec-
tions unless M is flat.

In the following, we shall assume that the ambient space M?*" is a complex
space form M(c). If & is a parallel section in T1M, then (2.8) of Codazzi
reduces to

4.4) FxA)Y = FyA)X .
Lete,---,e, &, --,&, be alocal field of orthonormal vectors in M?*"(c),
defined along M, such that e, - - -, e, are tangent to M (and hence &, - - -, &,

are normal to M). We put hf;, = g(A4,e;, e;), where 4, = A, Let K;; de-
note the sectional curvature of the plane section x{e;,e;). Then K;; =
g(R(e;, e))e;, e;). By (2.7) of Gauss, (4.4) of Codazzi and an argument similar
to Smyth [6] we may prove

Lemma 5. Let M be an n-dimensional totally real submanifold of M*"(c).
If M admits a parallel isothermal section &, then

@5 T Ay =3 {K“ + 3 (hfj)Z}(zi ) IPAR,
1<J
where 4 is the Laplacianon M, e, - - -, e,, orthonormal eigenvectors of A, with
eigenvalues 1, - - -2,, and K,;; the sectional curvature of the plane section
(e, e;).
If M is compact and of nonnegative sectional curvatures, then Lemma 2,
together with Hopf’s lemma, gives

(4.6) {Ki, + ¥ (h';j)Z}(zi ) =0, i=j,
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“.7) VA, =0.
Without loss of generality we may assume that
A= e =2y = 1> Apps1 = 0 = Qg = P25
. '3'21)1+"‘+’Ur—1+1 === Or >

where py, - - -, p, are all distinct. We put

lod ={v,+ - +v.,+ 1L -0, 4+ -+ +v,,+ v},
t=1,---,r.

From (4.6) it follows that
4.8) hy, =K;; =0, k=1,.--,n,iclpl,jelpl, t #s.

Thus with respect to the eigenvectors e, - - -, e, of 4, we find

(Bf 0 .--0

[0 B:... 0
4.9) Av=1]. .,

[o 0 ...B

where BY is a v, X v,-matrix.
Now let us consider the orthonormal frame field given by

(410) en"‘aem"elzsla""‘,en:Sn,

where ey, - - -, e, are still eigenvectors of 4,.. With respect such frame fields,
A,’s still have the forms (4.9). Moreover A,’s satisfy [3]

4.11) hi, = R, = hi, , ij,k=1,---,n.

By using (4.8) and (4.11) we obtain

Lemma 6. Let M be a compact totally real submanifold in M), If M
has nonnegative sectional curvature and admits a parallel isoperimetric section
&, then with respect to the frame field (4.10), A,’s are given in the following
forms:

(0 0 0)
0O O 0

Ak'— .Bic ’
0 O 0
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?)1+°"+7)S_1<k£’01+"'+7)S,ISSSI',

where BY is a v, X v,-matrix.

By using Lemma 6 we may prove

Theorem 3. Let M be a compact n-dimensional manifold with nonnegative
sectional curvature immersed in a 2n-dimensional complex space form M?*"(c)
as a totally real submanifold. Then the normal bundle T-M admits no paral-
lel isoperimetric section unless M*™(c) is flat.

Proof. We assume that & is a parallel isoperimetric section. We shall di-
vide the proof into two cases.

Case a. 2, = ... = 1, = 1. In this case, M is umbilical with respect &.
Hence we may choose e, - - -, €, in such a way that Je, = £&. Lemma 4 then
implies that K,; = 0 for j > 1. On the other hand, (2.7) of Gauss gives K,;
=c/4 + X, {hihE, — (KF)?}. Thus by (4.11) we find ¢ = 0.

Case b. A, # A; for some i. In this case, (4.8) implies K,; = 0 for j e [1,].
On the other hand, Lemma 6 gives ), {hfh%; — (h};)’} = 0. Thus (2.7) of
Gauss implies ¢ = 0.

Corollary 2. Under the hypothesis of Theorem 3, if the mean curvature
vector H is parallel, then either (i) ¢ > 0 and M is minimal in M**(c) or (ii)
M*(c) is flat, i.e., c = O.

Proof. Since Tr Ay = |H[, the parallelism of H implies that either H = 0
or H/|H| is a parallel isoperimetric section. If H = 0, then M is minimal in
M?(c), and the sectional curvatures of M is < 1c. Thus by the hypothesis
we have ¢ > 0. If H = 0, and H/|H| is an isoperimetric section, then Theo-
rem 3 implies that M?"(c) is flat.

Remark 2. If M*"(c) is flat, then there exist compact submanifolds of M*(c)
which satisfy the assumptions of Theorem 3 and also admit parallel isoperi-
metric section. For example, let S* be a unit circle in the complex plane C'.
Then S§* x S'is a such totally real surface in C2.

In view of Theorem 3, it is interesting to study totally real submanifolds
of the complex number space C* which admits a parallel isoperimetric section.
The proofs of the following two theorems are similar to that of Theorem 2 in
[6]. So we just only give the necessary outlines of the proofs.

Theorem 4. Let M be a compact n-dimensional totally real submanifold
imbedded in C". If M has nonnegative sectional curvature, and it admits a
parallel isoperimetric section &, then M is a product submanifold M, X --- X
M,, where M, is a compact v,~-dimensional totally real submanifold imbedded
in some C", and M, is contained in a hypersphere of C®t.

Outline of proof. The assumption of the theorem implies that 4, = 0.
Thus the distinct eigenspaces T, - - -, T, of A, define parallel distributions of
M. By the de Rham decomposition theorem, M is a product of Riemannian
manifold M, X -.- X M,, where the tangent bundle of M, corresponds to T,.
By Lemma 6 and a lemma of Moore [5] we see that M = M, X --- X M,
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is a product submanifold imbedded in C* = C*™ X .- X C". Moreover,

Lemma 6 implies that each of M,’s is a totally real submanifold imbedded
in some C®¢:

imbeddin,
Mlx"'XMy L)gcle,,,xcvr'

Let 7,(¢) be the component of & in the subspace C**. Then r,(£) is a parallel
normal section of M, in C*t, and M, is umbilical with respect to =,(£). From
these it follows that M, is contained in a hypersphere of C*¢ (see, for instance,
[2D.

Theorem 5. Let M be a compact n-dimensional totally real submanifold
imbedded in C™. If M has nonnegatve sectional curvature and parallel mean
curvature vector H, then M is a product submanifold M, X --- X M,, where
M, is a compact v,-dimensional totally real submanifold imbedded in some
C*, and M, is also a minimal submanifold of a hypersphere in C":.

Outline of proof. Since the mean curvature vector H is parallel and there
exists no compact minimal submanifold in C*, H/|H| is a parallel isoperimetric
section. By Theorem 4, M is a product submanifold M, X --- X M, such
that M, is totally real in some C** and M, is umbilical with respect to the
component r,(H) of H in the subspace C*. Since n,(H) is parallel and is the
mean curvature vector of M, in C*t, M, is a minimal submanifold of a hyper-
sphere in C.
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