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THE LENGTH SPECTRA OF SOME COMPACT MANIFOLDS
OF NEGATIVE CURVATURE

RAMESH GANGOLLI

1. Introduction

Let i ? b e a compact Riemannian manifold. In each free homotopy class γ
of closed paths on R, there exists a geodesic whose length is minimal among
the paths in f let l(γ) be its length. The distinct members of the set of lengths
l(f) as f varies over all such classes can be arranged in increasing order 0 <
Zi < Z2 < . The sequence {/*}*>!, finite or infinite, is by definition the length
spectrum of R. It may happen that /(f) = Z(f') for two distinct classes. Let,
for each ί > 1, raέ be the number of free homotopy classes f such that /(f) = lt.
The sequence {(Zί5 m^}^ may be called the length spectrum with multiplicity.

Let Δ be the Laplace-Beltrami operator of R. Then the space L2(R) (with
respect to the Riemannian measure) decomposes as the Hubert space direct
sum of finite dimensional eigenspaces for Δ. Let {ΛJ^i be the distinct eigen-
values, and nt the multiplicity of Xt. The sequence {(Xi9 ni)}ί^ι is the spectrum
of Δ. We may assume the λt to be arranged so that 0 > λY > λ2 >

In this paper, we shall study the length spectrum and its relation to the spec-
trum of Δ for a very special type of compact manifold of negative sectional
curvature. Specifically, we shall consider a compact manifold R whose simply
connected Riemannian covering manifold H is a symmetric space of noncom-
pact type and of rank 1. As is well-known, H can then be represented as G/K,
where G is a noncompact connected simple Lie group of R-τank one, with
finite center, and K is a maximal compact subgroup of G. As a consequence
R can be represented as Γ\G/K, where Γ is a discrete subgroup of G, acting
freely on G/K, such that Γ\G is compact. Γ can be identified with the fun-
damental group of R. The metric on R is fixed to be the one obtained from
the canonical G-invariant metric on G/K. Cf. [11], [27].

For such a manifold R, let {(li9 m j } ^ ! be the length spectrum with multi-
plicity, and for any / > 0, define Qλ(ΐ) = Σ{i;ii<i} mί- Thus gi(0 is the num-
ber of free homotopy classes γ such that l(f) < I. It can be seen easily that
βi(0 is finite for each finite /. We shall show that the asymptotic behaviour of
βi(Z) as I —> oo can be described precisely in terms of the covering space G/K.
In fact, we find that Qx{ΐ) — (2 \p\ ΐ)~ι exp 2 \p\ I as / -* oo, where p is the half
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sum of the positive roots of the symmetric space G/K, and | | is the usual
Cartan-Killing norm. This is the main result of the present paper. In particu-
lar the asymptotic behaviour of Qλ(ΐ) depends only on the covering manifold,
and is independent of the subgroup Γ, a somewhat unexpected result.

In the course of proving this result, we shall also see that the length spec-
trum {/̂ >i is determined by the spectrum of the Laplacian Δ. This has been
known for certain kinds of manifolds, [1], [19], and the question has been raised
whether it is true in general for an arbitrary compact manifold.1

A result similar to our main result has been announced by Margulis [13].
See also Sinai [20]. Margulis works in the context of an arbitrary compact
manifold of negative curvature; his result is that Qλ{ΐ) — C/"1 exp dl where
C, d are positive constants. Bounds for d can be obtained. In our special con-
text, the precise value of d can be obtained in terms of the structure of G/K.
Margulis' proof has not appeared as far as the author knows. In any case,
his proof is based on ergodic theory and is totally different. Cf. [13].

The free homotopy classes of closed paths on R can be easily seen to be
in a natural one-to-one correspondence with the set CΓ of conjugacy classes
of elements of Γ. Thus our main result gives us some information about the
distribution of these conjugacy classes. Actually we get somewhat more. An
element γ e Γ, γ Φ 1, is said to be primitive if it cannot be expressed as a
positive power of any other element of Γ. Let PrΓ be the subset of CΓ con-
sisting of conjugacy classes of primitive elements of Γ. The corresponding
free homotopy classes will be said to be primitive. Let Q0(ΐ) be the number of
primitive classes f such that l(f) < I. Then we shall see that Q0(l) has the
same asymptotic behaviour as QX{1) as / —> oo.

A particular case of our main results was proved by H. Huber [12], who
considered the case of compact Riemann surfaces of genus > 2. Thus G =
SL(2,R). Hϋber's method is slightly different; it was followed by Berard-
Bergery in [1], where the case G = SO0(d, 1) was considered.

Our method is to apply the Selberg trace formula to the fundamental solu-
tion of the heat equation on M, and analyse the resulting theta relation closely.
That this is useful for other problems in the context of Γ\G is indicated by
[4], Eaton [3] or Wallach [22]. In [14] McKean considered G = SL(2,R)
and by applying the trace formula to the heat kernel, gave an independent
proof of Huber's result. Our method in proving the main result is a generaliza-
tion of McKean's method.

Huber utilizes methods involving the Green's function of the upper half

1 After this work was completed, the author came to know that recently J. J.
Duistermaat and V. W. Guillemin [The spectrum of positive elliptic operators and
periodic bicharacteristics, Invent. Math. 29 (1975) 39-79] have proved the general
result that the length spectrum of any generic compact Riemannian manifold is de-
termined by the spectrum of the Laplacian. The author understands that their method
usss the wave equation on M. The method of ths present paper uses the heat equation,
as will be apparent below.
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plane to prove a remarkable formula [12, p. 26], cf. (4.32) below, which is
his main tool. We shall indicate below how Hiiber's formula can be generalized
to our setting by an application of Selberg's trace formula. By using this, one
can get some more geometric information. Specifically, for each x, y € G, and
r > 0, let Q(x, y, r) be the number of elements γ e Γ such that the Riemannian
distance between γxK and yK is less than r. Then the asymptotic behaviour
of Q(x, y, r) can be determined. Cf. § 4 below. This may be regarded as a
4locaΓ version of the main result.

2. Preliminaries

Let G be a connected noncompact simple Lie group with finite center, and
K a maximal compact subgroup of G. Let g, ϊ be the respective Lie algebras
of G and K, and let g = ϊ + p be the Cartan decomposition, with respect to
the involution Θ determined by ϊ. Denote by <•, •) the Cartan Killing form
for any X e g, we put \X\2 = — (X, ΘZ>. Then | j is a norm on g. Let ap be
a maximal abelian subspace of p. Throughout this paper, we assume that
dim ap = 1. Extend ap to a maximal abelian θ-stable subalgebra α of g, so that
a = at + αp, where at = α Π ϊ, ap = α Π p. Then α is a Cartan subalgebra of
g. Denote by gc, α c etc. the complexifications of g, α, etc, and let Φ(gc, ac) be
the set of roots of (gc, α c). Order the dual spaces of ap and ap + iat compact-
ibly as usual (Cf. [11]), and let Φ+ be the set of positive roots under this order.
Let P+ = {a € Φ+ a Έ£ 0 on α j and P_ = {a e Φ+ a = 0 on α j , and let
i O ^ έ Σ α e p + ^ L e t ^« be a root vector belonging to aeΦ, and let nc =
Σ«€P+ ^ ^ « Then, if n = n c Π g, we have the Iwasawa decompositions g =
ϊ + ctp + n, G = KAPN where 4̂̂  = exp ap, N = exp n. n is equal to
Σ«ep+ ^^« Let M be the centralizer of Ap in ,ίC, M/ the normalizer of 4̂ p in
K, and P^ = W(G,AP) the Weyl group M''/M. W operates naturally on Ap9

ap, (αp)*, (αf)*, etc.

Let ί̂ be the real dual of ap, and Λc its complexification. For >ϊ e ^tc, we put
^ = Re λ + / Im λ with Re ^, Im λ in Λ. We extend the form < , > to α c, Λc,
in the obvious way. W preserves <(•, •>.

We let dk be the normalized Haar measure on K. Let da, dn be the Haar
measures on Ap, N given by the Euclidean structure on Ap, n furnished by the
inner product — (X, ΘY}, and the exponential map. Then the Haar measure
dx on G can be so normalized that for any / e CC(G), we have

ί f(x)dx = ί ί ί j{kaή) exp 2/o(log a)dk da dn .
J G J K J Ap J N

These narmalizations will be fixed from now on.
Denote by C?(K\G/K) the subspace of C°°(G) consisting of those / € C~(G)

such that f(kιxk2) = /(*), x e G, Λ15 /:2 e K. Such functions are said to be spheri-
cal. The spaces L^KXGjK), L2(K\G/K) etc. are defined analogously. For



406 RAMESH GANGOLLI

any x eG, let H(x) e ap be the unique element of ap such that x e K exp H(x)N.

Then for any λ e Λc, the function φλ(x) = exp (iλ — p)(H(xk))dk is the ele-

mentary spherical function corresponding to λ. For / € L^^G/K) and Λ € Λ€>

define the spherical Fourier transform

(2.1) Kλ)= f
J

where djc is the Haar measure on G.
Let / e Lλ{K\GIK), and define

(2.2) F/fl) = exp^(logfl) f f(an)dn .

Then F 7 e Lλ(Ap). Ff is the so-called Abel transform of /, and it is known
that

(2.3) f(λ) = ί Ff(a) exp «(log a)da - F*«) ,

where F^ϋ) is the Euclidean Fourier transform of Ff.
For x eG, we have x = k exp X, k € K, X €p. Put σ(Z) = | Z | . σ(x) is

spherical, smooth and will play a role below. Let Ξ(x) be the elementary

spherical function φo(x) = exp —p(H(xk))dk. The Harish-Chandra-Schwartz

space #(G) is then defined as in [10]. For each left or right invariant
differential operator D on G, and an integer r > 0, define τD>r{f) =
S u p ^ ^ S ' W - ^ l + σ(*)) r |D/Caθ|, for/€CTO(G). ^(G) then consists of those
/ e C°°(G) for which τDtr(j) < oo for all D, r. &(G) is a Frechet space under
these seminorms. Similarly we define seminorms vD,r(f) = Supx€GS(x)~2(l +
σ(x)Y \Df(x)\, and put ^ ( G ) = {/ g C~(G) vDtr(f)'< oo for all £>, r}. Then
^i(G) C ^(G) C L2(G). ^i(G) c LX(G). The space ^ ( G ) was introduced and
studied by Trombi-Varadarajan [21].

The spaces of spherical functions in #(G), ^Ί(G) will be denoted by
&(K\G/K), V^KxG/K) respectively.

Let Σ be the set of restrictions to αp of elements of P+. Then one knows,
since rank (G/K) = 1, that we can select β e Σ such that 2/3 is the only other
possible element of Σ. Let p be the number of roots in P+ whose restriction
to ap equals β, and let q be the number of remaining elements. Let Ho be the
element of αp such that β(H0) = 1, and Hβ the element such that (H, Hβy =
/3(//), // e αp. Then it is known that <# 0 , Ho> = 2p + Sq, p(H0) = J(p + 2^)
and Hβ = (2p + 8(?)-Ή0. It follows that < |0, ^ = \{p + 2q)\2p + Sq)~\
which will be used below.
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3. The trace formula

Let Γ be a discrete subgroup of G such that Γ\G is compact. Fix a G-
invariant measure dx on Γ\G by requiring that for each / e CC(G), we have

f(x)dx = ( Σ r e r Kγx)dx. Let Γ be an irreducible unitary representation
J G J Γ\G

of JΓ on a finite dimensional vector space V, and denote by U the representa-
tion of G induced by T. Thus U acts on the Hubert space H consisting of

functions /: G -> V which satisfy (i) f(γx) = T(γ)f(x) and (ii) ί (/( c), /(*))</*

< oo where ( , ) is the inner product on V. The action of G on H is by right
translation. Thus (U(x)f)(y) = f(yx), x,y eG,f εH. U is a unitary represen-
tation of G. Under our assumption of compactness for Γ\G, it is well known
that U is a discrete direct sum of irreducible unitary representations of G,
each occurring with finite multiplicity. Denoting by £{G) the set of equivalence
classes of irreducible unitary representations of G, we let nΓ(ω, T) be the
number of summands of U which lie in the class ω. Then we can write U =
Σωεs(G) nΓ(ω, T)ω, and nΓ(ω, T) < oo for each ω.

For / β L,(G) let [/(/) = ί j{x)U{x)dx. U(f) is a bounded operator on H.
JG

As in [18], [7], we say that / is admissible if (i) the series Σrf(y-λγx)T(γ)
converges absolutely, uniformly on compacts of G X G, to a continuous
End (F)-valued function F(x, y, T) and (ii) the operator [/(/) is of trace class.
When / is admissible, we have the trace formula

(3.1) Σ "r(ω, T) Trace Uω(f) = ί Trace F(x, x, T)dx ,
ωζ.δ{G) J Γ\G

where Ua is a representation of class ω e £(G). Of course, Uω(f) has a trace
because £/(/) does.

As in [18], one rewrites the right side of (3.1) to get the Selberg trace for-
mula

(3.2) Σ nΓ(ω, T) Trace Uω(f) - Σ Trace T(γ) Vol (Γr\Gr)Ir(f) ,
ζe{G) rς.cΓ

where CΓ is a complete set of representatives in Γ of the conjugacy classes of
elements of Γ, and Gγ is the centralizer of γ in G, Γr — Γ Π G r. Since Γ\G
is compact, every element of Γ is semisimple, and Gγ is reductive, and Γr\Gr

is compact. We fix a Haar measure dxγ on G r in a manner analogous to the
manner in which the Haar measure on G was fixed, following the Iwasawa
decomposition of G r, and put άxr for the invariant measure on Γr\Gr The
volume Vol (Γr\Gr) is computed with respect to this measure. Finally, Ir(fy=

f(x~ιrx)dx* where dx? is the G-invariant measure on GΛG normalized
JGr\G

so that dx = dxrdxf.
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The use of (3.2) depends on having a stock of admissible functions. The
following proposition was proved in [7].

Proposition 3.1. Let f e #Ί(X\G//Q. then f is admissible.
A similar assertion holds if / € #Ί(G) and is left and right Infinite. We shall

only need this special case.
Let / e Vά^G/K). Then Ua(f) = 0 unless is of class one with respect to

K, i.e., unless the restriction of Uω to K contains the trivial representation of
K. When Uω is of class one, there is associated with it a unique positive defi-
nite elementary spherical function φλω say, λω e Λc. Then Trace UJj) — f(λj,
where ) is as in (2.1). (Cf. [6]). Thus, when / e V^G/K), we get

(3.3) Σ nΓ(ω, T) f(Ό = Σ Trace T(γ). Vol (Γr\Gr)Ir(f) ,

where <?(G, 1) stands for these elements in £(G) which are of class one.
We shall now compute the integrals Ir(f) for / e #\(X\G/10, in a form

suitable for use in § 4.
An element x € G is said to be elliptic, if it is conjugate to some element of

K and is then automatically semisimple. x e G is said to be hyperbolic, if it is
semisimple but not elliptic. In all other cases x is said to be parabolic. When
G/Γ is compact, Γ does not contain parabolic elements.

It is well-known that γ e Γ is elliptic if and only if it is of finite order. Both
these properties are equivalent to the property that γ has a fixed point on
G/K. We assume throughout that Γ contains no nontrivial elliptic elements.
Thus each γ e Γ, γ Φ 1, is hyperbolic.

The integrals Ir(f) can be computed for hyperbolic γ quite simply, and can
be expressed in terms of the Abel transform Ff of (2.2) when / is spherical.

Let / be a Cartan subgroup of G with Lie algebra j , Φ+ a set of positive
roots for Φ = Φ(QC, j c ) . For any a € Φ+ let ξβ be the corresponding character
of /. Put (Oj = i Σ«6ί+ α ' a n d ξpj = exp pQogh). We may assume that ζPj

is a well-defined character of /. Put Δj(h) = ξp(h) Π«e<z>+ (1 — fαW"1), Λ e /,
and let ΦJ

f be the invariant integral of / relative to / (cf. [9]). Thus

(3.4) ΦJ

f(h) = εi(h)Aj(h) ί
JJ\G

Here εJ

R(h) = sign [J α 6 ί + (1 — ξXh)'1), the product being over the set Φ% of
real roots in Φ+, i.e., those which are real on j , the Lie algebra of /. The
Haar measure dh on / is normalized as mentioned in § 2 above, and dx* is
the G-invariant measure on J\G such that dx = dhdx*. ΦJ

f is defined and
smooth on / ' = / Π G' — the regular points in /.

For γ e Γ, let Gr be its centralizer with Lie algebra gr, and let \γ be a Θ-
stable Cartan subalgebra of gr which is fundamental. Then one knowns t hat
Ir(f) and Φjr are related to each other, thanks to a theorem of Harish-Chandra
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[10, p. 33]. If we let Φr

+ be the set of positive roots of (gr

c, j r

c), and put Πr =
Y[a€Φ+ Hv then we know that

(3.5) Ir(f) = Cr0
J/(r;nr); Cr Φ 0 ,

where Φτ/(γ Πγ) is the result of applying the differential operator Πr to the
function ΦJ/, and evaluating the result at γ. All this is well-known and can be
found, e.g., in [23].

The value of C7 will be useful for us. It can be computed by using [10,
Lemma 23], and [23, II, Chap. 8]. One should bear in mind that our normal-
izations of Haar measure differ from those used in [23, II, Chap. 8]. The
value of Cγ is found to be

(3.6) f Ί

x |f,(r) Π (i - fir)"1)"1 \eί(r).
1 J

Here mr = |(dim G r — rank Gγ — dim Kr + rank Xr), wr = ^(dim (Gr/Kr)
— rank (Gr/Kr))9 WKγ is the Weyl group of Kγ and [P^^r] is its cardinality,
Φ+κ stands for the compact roots in Φr

+, pKγ is the half sum of these roots, and
Φ+/Sr is the complement of Φr

+ in Φ+.
Recall that we have assumed that rank (G/K) = 1. In this case there can

be at most two nonconjugate Cartan subgroups. One of these is always non-
compact, namely A = AtAp, and d i m ^ = 1. When another nonconjugate
Cartan subgroup exists, it is compact, and we may call it B. Thus there are
two invariant integrals Φj and ΦB

f.

We shall compute Φj for / € «?
1(X\G/X) and relate it to Ff. Let ΰ b e a

regular element of A, and let a = atap, at e At, ap e Ar Then

(3.7) Ff(ap) = ξp(ap) [ f(apn)dn = ξp(ap)[ f(an)dn ,
JN JN

Since f(aή) = f(atatn) = f(afn).

For regular a, the map n-^a~ιn~ιan is a diffeomorphism of N onto N whose
Jacobian is computable. (See e.g. [11, Chapter X]). Thus

(3.8)
Π+ (i - f.W 1)

Π (1-£.(«)-')

aή)dnί ft""1

f ί f(k-λn-ιank)dn dk .
J K J N

since / is spherical.

The last integral can be transformed as in [10]. It equals | f(x~1ax)dxfy
J AP\G
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where dx = dap dx*. Since At is compact and carries normalized Haar measure,

this last integral equals f(x~1ax)dx*. Also, if a € P+, so does a. Hence the
J A\G

product Π U P + (1 — fα(β)" 1) i s r e a i a n d h a s the same sign as ΓL<=p+ C1 — frfa)"1),
αreal

which of course is precisely e#(<z). Using all this, we get

Ff(ap) = £,(fl,)4(a) Π (1 - fαW"1)- ί Kx'1ax)dx*
(3.9) «ep+ J^\G

aζP-

where we have used the fact that for α e P _ , ξa(ap) = 1 so that f β(α) = £β(α f).
Thus finally, we have

(3.10) Φj(a) = ξp(at) [ ] ( 1 - ί.C*,)"1) •*>,,) , * € Λ' .
α€P-

Now suppose that γ € Γ, γ Φ 1, so that ^ is hyperbolic. Let h = /z(f) be an
element of A to which p is conjugate. Then Ir(j) = Ih(f). Let h — hpht then
hp Φ 1, since p is hyperbolic. Clearly, α c is a Cartan subalgebra of gf. If α e
Φ+(flίr

Jctc), then fβ(A) = 1, so ξa(hp)ξa(h^) = 1. Since α is real on αp, and
purely imaginary on αf, it follows that ξa(hp) = 1. Since d i m ^ = 1, and fβ

is real on Ap, we conclude that ξa = 1 on ^ and so o: vanishes on ap. Thus
α β P _ . Therefore Φ+(gf, αc) c P_. It follows that Gh c M^^, and Λ^ is in the
center of Gh. Hence A is fundamental in Gh. The operator Πh equals
Π{«€P-; eβ(Λ)=ij #«• I n particular, each £Γβ occurring here is in α f. Thus, in ap-
plying Πh to (3.10), we need only worry about the factor ξp(at) Π«<=p- (1 ~~
fαC^ϊ)'1)? since Πh will not act on Ff(ap) at all. The result of applying Πh to
this function and evaluating the result at h is seen to be equal to

wKhλ π <*, pκn> x e,(Ar) x π (i - fαίΛ)-1)
{ = P f ( Λ ) l } { ζ P ί ( Λ ) ^ l }

Cf. [10, Lemma 24] for a similar computation. Using (3.5), (3.6), we have the
following proposition.

Proposition 3.2. Let γ be a hyperbolic element of G, and let h = h(γ) be
an element of A to which it is conjugate. Let h = hthp9 ht e At, hp e Ap. Then

(3.11) Ir(f) = /,(/) = C(h) Ff(hp) , / € nK\G/K) ,

where C(ft) = εi(/z)(f//zp) Π«βp+ d - f.CA)"1))"1.
One should note that CQϊ) is actually positive. For later use, we shall

examine C(h) a little more carefully. Since ξp(hp) = exp pQog hp) =
e x P έ Π«€P+ ^(loghp), we see that C(fi) equals

εί(h) Π
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Since any a is purely imaginary on αf, we must have ξa{h^)~ι = ξa(ht) if a is
a real root, then of course ξa(ht) = 1. Now it is well-known in our case that
there is at most one real root in P+. Denote this root by a0 when it exists.
Then the factor corresponding to it is exp α:0(log Ap)/2 — exp — aQ(loghp)/2.
The remaining roots in P + will be denoted by P°+. These are all complex, and
occur in conjugate pairs a, a. Thus we can find a subset Q°+ of P°+ so that P°+

= Q\ u W+.
Now let a e Q°+, and consider the factors corresponding to a and a in the

above product. We have f ^ ) " 1 = ξa(Ht) = ξa(ht). Let θa(ht) be the argument
of ξa(ht). Thus ξa(ht) = exp iθa(ht). Then these two factors have the product
exp a(log hp) + exp — a(loghp) — 2 cos Θa(ht). Now all the numbers a(loghp)
are of the same sign, depending on which Weyl chamber hp lies in. Using this
remark one quickly finds that

C(h) = exp - \p(loghp)\ x (1 - exp -

n i 9Λ X Π C1 - 2 c o s Θ«(Λ() exp - |αr(log hp) \

+ exp - 2

when P+ contains no real root, the factor corresponding to a0 is, of course,
absent.

4. The length spectrum

As we have said in § 1, our results follow from applying the trace formula
to suitable admissible functions, mainly to the fundamental solution of the
heat equation on G/K.

Let Ω be the Casimir operator of G, and for t > 0 let gt(x) be the funda-
mental solution of the heat equation Ωu = dujdt on G/K, with u assumed
spherical. The properties of gt are discussed in [4]. Let us briefly recall them.
As a function on G, gt is spherical, nonnegative real valued, and gt+s = g*gs,
for t, s > 0. gt is the fundamental solution in the sense that for any / e Cc°°
(K\G/K), for example, the function C/(jc, t) = (gff)(x) is the unique spherical
solution of Ωu = du/dt such that u(x, t) — /(x) —> 0 uniformly on compact sets
as*ί-»0. The function gt is in L1(K\G/K) for each t > 0, and & can be com-
puted. Indeed, gt(X) = exp — «Λ, Λ> + (p, p})t. Since gt is integrable, & is
defined for all λ such that φλ is bounded, thus in the tube Λ + iCp, and the
above formula for gt holds there. It follows, for example by using [21], that
gt € (^7

1(K\G/K). In particular, gt is admissible.
Since gt(X) is known, it is possible to compute the Abel transform Fgt by

using the Fourier inversion formula. We get, remembering άimAp — 1,

(4.1) Fgt(ap) = (4^)" 1 / 2 exp - (t(p, p} + |log apfj{At))
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Of course, a similar formula would hold when the dimension of Ap > 1, but
we would not be using it.

Now applying (3.3) to gt, using (3.5) and (3.6) we find

Σ nΓ(ω, T) exp — «Λω, λω} + <<o, p})t

( 4 ' 2 ) - Σ Trace T(r) Vol (Γr\Gr)Ίr(gt) .

On the right side we get from the term corresponding to γ = 1, the contribu-
tion gt(l) (degree T). Vol (Γ\G). The remaining elements CΓ are all hyperbolic
since Γ is assumed torsion-free. Call the sum of these remaining terms JH(t).

It can be shown (cf. Eaton [3], or [4]) that lim^0/#(*) = 0. This is actual-
ly done in Eaton [3] under the additional hypothesis that T is the trivial rep-
resentation. But the expression for JH(t) when T is nontrivial is clearly domi-
nated in absolute value by a multiple of the correspondiug expression when T
is trivial, since gt > 0. Hence JH(t) —> 0 in our case also. If L(t) denotes the
left side of (4.2), it follows that

lim tn/2L(t) = (lim ίn/2g,(l)Vvol. Γ\G) (degree Γ) .
t-o Wo /

Hererc = dim (G/K).

It is shown in [4] that lim^o tn/2gt{\) exists and equals C'G, a constant which
depends only on G. Thus \imt^ tn/2L(f) = C'G Vol. (Γ\G) degree (Γ). Now
introduce, for r > 0, the function

(4.3) N(r,T)= Σ nΓ(ω,T),

where β ω is the scalar with which the Casimir element acts in any representa-
tion of class ω. When ω is of class one, one can compute Ωω and find that

Ωω = -Qω,λωy - <p,py. Thus we conclude that L(f) = Γ e~trdN(r, T),
Jo

showing that L(t) is the Laplace transform of N(r, T). Of course, the admis-
sibility of gt shows that N(r, T) is finite for each r, and L(t) exists.

Arguing as in [4], we now find by Karamata's theorem that, as r —> oo,

(4.4) r-»/W(r, T) - < ^ ^ ( γ + l ) " 1 Vol. (Γ\G). degree (T) ,

which is analogous to a classical result of H. Weyl [24]. When T is trivial this
result is implied by that of Minakshisundaram and Pleijel [15]. Of course (4.4)
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is just a step away from Eaton's result.2

When T is trivial, N(r, T) is just the Weyl function of the manifold Γ\G/K.
More precisely, if {(λi7 w$)}ίs>i is the spectrum of the Laplacian on Γ\G/K, is
easily seen that N(r91) = Σ{i ,ι̂ ι<r} n% We shall write N(r) for N(r91). Clear-
ly the knowledge of N(r) is equivalent to that of the spectrum of the Laplacian.
In particular, the spectrum of the Laplacian on Γ\G/K determines Vol (Γ\G).
Cf. [4], [15]. This will be needed below.

We now turn to the consideration of the length spectrum of R = Γ\G/K.
For this purpose, we have to compute the terms in (4.2) explicitly, with T =
1 this will be done next, resulting in (4.7) below.

Cearly G/K is the simply connected covering manifold of R, and we can
identify Γ with the fundamental group πx(R). It is well-known that the free
homotopy classes of closed paths on R are in a natural one-to-one correspond-
ence with the set of conjugacy classes of Γ, and hence with the set CΓ. For
any γ e CΓ, the corresponding free homotopy class always contains a periodic
geodesic gr say, which has minimum length among all the paths in that class
[2]. Let l(γ) be the length of gr. Any closed path in this homotopy class can
be lifted to a path of equal length on G/K which joins some point m € G/K
to the point γm. It follows that the length l(γ) of gr is the minimum of the
lengths of paths joining some point m e G/K to its image γm under γ. In fact,
l(γ) = mϊmeG/κd(m,γm) where d(-, •) is the Riemannian distance on G/K.
Now, if m = xK with x e G, we have d(m, γm) = d(xK, γxK) = d(K, x~ιγxK)
= σ(x~ιγx), where σ is the function introduced in § 1. It follows that l(γ) =
πrf^G σ(x~ιγx). Notice that l(γ) depends only on the conjugacy class of γ, as it
should. Moreover, for the computation of l(γ), we can replace γ by any ele-
ment h of G conjugate to γ, even if h does not lie in Γ at all. This remark
enables one to compute l(γ) more explicitly. Recall that γ is conjugate to an
element h = h(γ) e A. Let h = hpht h acts as an isometry on G/K, with no
fixed points. Since G/K is of negative curvature, it follows from [2], [16] that
there is exactly one geodesic of G/K which is stabilized by h. This geodesic
is characterized by the property that a point p e G/K is on the geodesic if and

2 Actually, one does not need to assume that Γ is torsion free. In that case the right
side of (4.2) splits into three terms, namely Jc(t), JE(t), JH(t), coming respectively from
central, elliptic and hyperbolic elements in CV Cf. [4]. One sees that Jc(t) =
• Vol. {Γ\G) Σr€znc Γ Trace T(γ), where Z = center (G), so that

lim t*/*Jc(t) = Cf

G Vol. (Γ\G) Σ Trace T(γ)
ί-o €Zf]C

One can show as in [3] that limt_0 tn^JE(i) = 0, so that one gets r ( f )
C'GΓ(n/2+ I)" 1 Vol. (Γ\G)Σre*nσ Γ Trace Γ(r), which implies that Σ^zncΓ Trace T(γ)
must be nonnegative. If now T is irreducible, then T(γ) is a scalar for γ e Z Π Γ by
Schur's lemma, and T(γ) = χ(γ). Identity, where χ is a character of the finite abelian
group Z Π Γ. If χ is nontrivial character, it follows that Σre^ncr T(γ) = 0, so that
r-nVN(r,T)-*Q if T\zncΓ is a nontrivial irreducible representation. When T is not
irreducible, Σrzzc\Cr x(ϊ) = Σ deg Tίy where Tt runs over those irreducible summands of
T which restrict to the trivial character of Z Π Γ.



414 RAMESH GANGOLLI

only if d(p, hp) = Ίntm€G/κ d(m, hm). Now it is easy to see that the geodesic
Exp Ap (where Exp is the exponential map otG/K from p to G/K) is stabilized
by h, (recall here that dim Ap = 1). Moreover, if p e Exp ap, then d(p, hp) =
σ(h). This shows that infmζG/κ d(m,hm) = σ(h), so that l(γ) = σ(h(γ)). Of
course, σ(h(γ)) = \loghp(γ)\.

Note that l(γ) = Kγ'1), (indeed the geodesies in the homotopy class γ~ι are
just reverse to those in γ), and l(γj) = jl(γ) for any integer / > 1.

Lemma 4.1. Let γ e Γ, γ Φ 1. TTzerc Γ r is ίsomorphic to Z.
Proof, γ is hyperbolic, and by conjugation, we may assume γ e A, γp Φ 1.

Let γ'9 y" € Γr and suppose yr = γ'pγ't9 γ" = γtfv Since Gr c M 4̂̂  as we have
seen above, and γ[ commutes with γ, we have γ[ e MAr Thus γ'(γ")~ι =
TpίΐOΎtίϊt)'1 - It follows that the set of elements {γ'p, γ

f e Γr) is a subgroup of
Ar Clearly this is a discrete subgroup, hence it is isomorphic to Z. Let δp be
a generator for it, and let δ € Γr be such that <5 = δpδt. We claim that δ gen-
erates Γ r freely. In fact let γ' e ΓY. Then γ'p = ^ for some / e Z. We claim
that f = &. Indeed, fd~j = r ^ ' A " ' = A~'. Thus /δ"-^ € Γ Π K, so that
fδ~j = 1 since Γ contains no elliptic elements Φ 1. Hence γ' = δj and our
assertion follows.

Remark. Using the negative curvature of G/K, this result could also have
been deduced from the theorem of Preismann [17], which is more general. In
our special case, the above proof is more direct.

Definition 4.2. An element γ e Γ, γ Φ 1, will be said to be primitive if γ
is a generator of Γr.

Clearly every γ e Γ, γ Φ 1, can be written as δj with / > 1 integral, and δ
primitive. The integer / is unique and will be denoted by j(γ).

We will next compute Vol. (Γr\Gr). We may again assume γ e A. Then
Gγ C MAr In fact G7 = MrAp, where M7 = M Π Gr Let γ = γpγv Each ele-
ment of Mr commutes with both γ and γ9, hence with γv If follows that γt

commutes with Gr, so γt acts trivially on GγjKr Thus the action of γ on Gr/Kr

is the same as the action of γp. Now it is clear that Kγ = K Π Gγ = Mr, and
since Gr = MrAp we conclude that the action of Γ7 on Gr/Kr is the same as
the action of {δJ

p\ j € Z} on Ap, acting by left translation. Here we identify
Ap = Gr/Kr We thus get (recalling that the measures have been so normalized
that Kr carries normalized Haar measure),

(4.5) Vol. (rr\Gr) = Vol. (Γr\Gr/Kr) = Vol. (AJW, j e Z}) .

The last term is clearly equal to |log δp\ = l(δ). Moreover, since γ = δj(r\ we
have l(γ) = j(γ)l(δ). Thus

(4.6) Vol. (Γr\Gr) =

Using all this in the trace formula, (3.3) with Γ = 1
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L(t) = Σ nΓ(ω91) exp - «Λβ, λω> + ζp, p»t
(4.7) - 6 / ( f l f 1)

= *t(i) Vol. (Γ\G) + Σ Kr)KrYιW
r€CΓ-{i}

Moreover, if γ is conjugate to h = h(γ) e A, we also know that

iMt) = h(8t)

(4.8) = (4πtyi/2C(h(γ)) exp - «p, p}t + \ |log A,(r)|2/ί)

= (4^)'1/2C(/z(r)) exp -

because, as we have seen above, /(f) =

It follows that for each t > 0, the series ΣrecΓ-{i} Kγ)KγYι exp - iKγ)2/t
is convergent one sees from this that the numbers {l(γ)9 γ € CΓ — {1}} have no
finite point of accumulation. In particular, one may indeed order them 0 < lλ

< l2 , and the multiplicity m̂  of each lt is finite. (This can also be inferred
on general grounds of course.)

One immediate consequence of (4.7) is that the length spectrum {/*}*>! of R
is determined by the spectrum of the Laplacian, or what is the same, by the
function L(t). For, as we saw before, L(t) determines the volume Vol. (Γ\G),
and hence the first term on the right side of (4.7). Then the smallest of the
numbers {l(γ) γ e CΓ — {1}}, which is of course /15 is seen to be equal to the
supremum of the set

(ε > 0 lim ((4ττO1/2 exp «p, p}t + iε2/t)(L(t) - g,(l) Vol. (Γ\G))) = o) .

This means that /x is determined by L(t). Moreover, it is seen that

lim (4τrO1/2 exp ( ^ p}t + iH/t)(L(t) - ft(l) Vol. (Γ\G))
ί-»0

= Σ Kγ)KγYιC{h{r)) = z, Σ KγYιC{h{r)),
{r\Kr) = li} {r;l(r) = li)

which is positive. Call this number ε^ One can now subtract off the contribu-
tion to L(f) from {γ l(γ) = /J, and putting

L2(0 = L(t) - gt(l) Vol. (Γ\G) - {(4πtyv% exp - «^, p)t

we find Z2 to be the supremum of

fε > 0 lim ((4ττO1/2 exp ((p, p)t + iε2/ί) L2(0) = o) ,

and that lim^o (4ττί)1/2 exp ( ^ p>/ + \ll/t)L2(t) is positive and equals ε2 =
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Proceeding in this way, we see that L{f) determines both the numbers
and {ejtex, where ε, = lt Σ{rzcΓM{r)=ii) KγYιC(b(γ))- Conversely, a knowledge
of these numbers and of Vol. (Γ\G) clearly determines L(t), and hence the
spectrum of the Laplacian indeed

L(t) = g ί ( l ) Vol. (Γ\G) + Σ(4τrO-1/2e<exp - «>, p)t + \l\\i) .

When G = SL(2, R), C(h(γ)) depends on γ only via l(γ). In fact C(h(γ)) =
2cosh(Z(r)/2vΓ2Γ), and so e < = 21, cosh (Z ί/2Λ/T) ΣtreσΓ.ίω-^Kr)" 1- τ h u s

in this case, knowledge of the sequence {(li9 e<)} is equivalent to the knowledge
of the sequence {(Z*,^)}, where ^ = Σ{r^cΓMr)=ii} KγY1- Since {(/<,£<)} char-
acterizes L(t), we see that in this special case {(li9 η,)} characterizes L(f). This
result was originally observed by Hϋber [12]. As we have seen in § 3, the
expression for C(h(γ)) is more complicated in the general case, and does not
depend merely on l(γ).

Returning to the general case, we let Pr Γ be the set of primitive elements
in CΓ — {1}. Then we can write

(4.9) L(t) = gt(l) Vol. (Γ\G) + Σ Σ Kδ)hAgt) ,
δζPTf j>l

where

(4.10) IδJ(gt) = (4πt)~1/2C(h(δj)) exp — ((p, p)t + iJ2Kδ)2/t) .

The set {l(δ) δ e PrΓ} can be ordered in a sequence 0 < rλ < r2 < let
pt be the cardinality of the set {δ 6 Pr Γ l(δ) = rt}. We call the sequence {rt}
the primitive length spectrum, and the sequence {{ru Pi)} the primitive length
spectrum with multiplicity. One can ask to what extent these are determined
by L(t). Obviously, the set {r€} is contained in the set {/J, which is determined
by L(t). So one must try and decide from a knowledge of L(t) whether a given
number lj is in the set {r<} or not, i.e., if it is a primitive length or not. Ob-
viously, if Ij is not a multiple of some smaller lk, it must be a primitive length.
However, if lj is a multiple of some smaller lk, it could happen that lό is also
the length of some other primitive geodesic as well. The author has not been
able to decide this question in general by using the above formula. However,
when G = SL(2, R), one can answer this question. Indeed in this case, L(t)
is characterized by {(li9 η,)} which we can assume known. Now Zx is obviously
equal to r19 and ηx equals p19 since j(γ) = 1 for all γ such that l(γ) = lx. Now
consider 2rx. It must be one of the numbers {/̂ }̂ >2 Suppose 2rλ = lίχ. Then
the numbers {ls s < iλ — 1} must all be primitive lengths. Thus rs = ls and
ηs = ps for all s < iλ — 1. We can now decide whether liχ is a primitive length
or not. For if lh = ril9 then we should have ηtl = \pλ + pil9 and piχ > 0.
Thus, if ηiχ > \px = %ηl9 we can conclude that liχ is a primitive length, liχ = riχ

and piχ = ηiχ — jY]t. On the other hand if ηiχ = \piχ then liχ is not a primitive
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length. Next, let li2 be the smallest member of the set {li}i>il9 which is an in-
tegral multiple of some number lά smaller than it. By the definition of li2, it is
clear that the numbers {ls iλ < s < i2} are primitive lengths, and so ηs = ps

for these. As to lh itself, we can decide whether it is a primitive length by
comparing;ηu with the sum Σ[&,»-,jrk=utj>i} ιlh I f Vu i s strictly larger, then
lia is a primitive length, and the difference between ηu and this sum gives its
multiplicity. Proceeding in this way, we see that L(t) determines both the
primitive length spectrum and its multiplicity. Finally, let St = {k > l,jrk = lt

for some / > 1}. Then we have mi = Σk<=SiPk Hence the length spectrum
with multiplicity is also determined by L(t) in this case. When G is not
SL(2, R), these questions are not settled by the present method, and a close
look at the computations seems to indicate that in general L(t) probably would
not determine the primitive length spectrum or the multiplicities.

To return to our main topic, define for any / > 0,

(4.11) βo(Z) = [{δ e P r Γ l(δ) < /}] , QS) = [{γ ε CΓ - {1}, l(r) < /}] .

[S] stands for the cardinality of S.
We shall now determine the asymptotic behaviour of the functions Q0(l),

Qx{ΐ) as / -> oo. For he A, with hp Φ 1 put

(4.12) CM = exp - \p(loghp)\ Π d + exp - \a(loghp)\yι ,

(4.13) CM = exp - \P(\oghp)\ f i d - exp - l^(

(4.14) Co(/ι)

and define

(4.15) F{t) = (4ττί)-1/2(exp - </o, p)i) Σ Kγ)KγYλC{h(γ)) exp -
recΓ-{i}

and let F+9 F_, Fo be defined analogously by replacing C(h) by C+(Λ), C_(Λ),
CQ(h) in (4.15).

Lemma 4.3. Let H(t) be any of the jour functions F(t), F+(t), F_(t), F0(t),

and let, for r > 0, H(r) = Γ e-rtH{t)dt. Then H(t) -^0ast->0, H(t) -> 1
Jo

as t —• oo, and rH(r) —> 1 as r —• 0 .

Proof. We know that for γ e C Γ - {1}, l(γ) = |log hp(γ)\ is bounded away

from zero. Hence, if β = sup α € P + 5 r 6 ( 7 / 7_ { 1 } exp - \a(loghp(γ))\, we conclude

that β < 1. Let D = ((1 + β)/(ί - /3)) [p+]. Then for each γeCΓ - {1},

(4.16) C+(λ( r)) < C(A(r)) < C.(A( r» < Z).C+(A(r)) ,

where we used the expression (3.12) for C(h). Therefore
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(4.17) F+(t) < F(t) < F_(t) < DF+(t) ,

and similarly

(4.18) F0(t) < FΛO

Now we know, by the remarks immediately following (4.2), that F(t) (call-
ed JH(t) there) approaches zero as t —> 0. From (4.17), (4.18) it follows that
F + (0 , FΛt) and F0(t) all do the same.

We next claim that F(f) —> 1 as t —• oo. In fact by

F(ί) = 1 + 2 nΓ(ω, l) exp — (Qω, λω} + (p, p})t
hi

i Vol. (Γ\G) .

As t —» oo, each term in the sum approaches monotonely to zero, because
(λω, Ό + </o, /o> > 0 so the whole sum approaches zero. Next, we know [41
that

gt(x) = [^(G,^,)]"1 f exp - «;u> + <p,p»t'φλ*)\c(λ)\-2dλ ,
J A

where c{λ) is the Harish-Chandra c-function. It follows that

8t(X) = ίW]-1 ί exp - «;,A> + <p,Py)t\c(X)\-*dλ
J Λ

again by monotone convergence, we conclude that gt(l) —> 0 as t —> oo. Now
(4.19) shows F(t) -^ 1 as t -> oo.

We will now show that F+(t) —• 1 as ί —> oo. The other functions F_, Fo can
be treated similarly. Using (3.12) it is easy to see that C+(h(γ))/C(h(γ)) -> 1
as l(γ) = I log Λ ^ ) ! —> oo. Let ε > 0 be given, and choose and fix N so large
that for l(γ) > N, we have

(4.20) (1 - ε)C(h(γ)) < C+(A(r)) < (1 + e)C(h(γ)) .

Let FN(t), F*(t) be the tails of the series defining F(t), F+(t) beyond l(γ) > N.

Then one sees

(4.21) (1 - e)F»(t) < F»(t) < (1 + e)FN(t) .

For each fixed N, the sum

(4τrO"1/2 exp - (p, p)t Σ Kγ)KγYιC{h{γ)) exp - iKr)
2/t

is a finite sum and approaches zero as t —> oo. Since F(t) —> 1 as ί —> oo, it
follows that FN(t) -> 1 as ί -* oo. Thus from (4.21) we deduce
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(1 - ε) < lim FN

+(t) < ίίm FN

+(t) < 1 + ε .
ί —oo ί-oo

Now by examining the sum F+(t) — Fξ(t) we can similarly conclude that
l i m ^ (F+(t) — Fξ(t)) — 0. This together with the above shows that

(4.23) (1 - ε) < \MF+(f) < ΠmF + (0 < 1 + ε .

Since ε is arbitrary, we conclude F+(t) -> 1 as t -^ oo. The first assertion of
the lemma is proved by proceeding similarly for F_, F o .

Since F(t) is nonnegative and F(t) -> 1 as t —• oo, Karamata's theorem [25]
shows that

rF(r) ^ 1 as r -> 0, where F(r) = f°° e~rtdF(t) .
Jo

Also, the functions F+(t) — F(t), F_(t) — F(t) do not change sign, and ap-
proach 0 as / -> oo. So by the same theorem, we must have r(F+(r) — F(r))
-> 0, r(F_(r) - F(r)) -» 0 as r -> 0. Finally, F0(t) - F_(t) does not change
sign, and approaches 0 as t —> oo. So we get r(F0(r) — F_(r)) —> 0 as r —> 0.
Since r^O) —• 1 as r -> 0, the proof is finished.

Theorem 4.4. Lβί βo(O, δi(0 ^^ ^ functions defined in (4.11). Then we
have

2 \P\ I exp - (2 |p| /)β0(0 -> 1 as / -* oo ,

2 | p | / e x p - ( 2 | ^ | 0 β i ( 0 - > l as I -» oo ,

2 |μ| = 2<p, Py
2 = (p + 2q)(2p + %q)-"\

Proof. We deal first with βo(Z). The result for βx(/) will be deduced from
it. Recall first the notations of § 1.

Let h(γ) be in A, and h(γ) conjugate to γ eCΓ — {1}. loghp(γ) is a multi-
ple of Ho; say it equals urHQ. Then Z(r) = \loghp(r)\ = |«Γ |. l^ol Also

| Then

It can be computed easily that ^(fl^llfifol = i(P + 2Φ(2P + 8^)~1/2 = |/)|.
Hence 2\p\ = (p + 2^)(2p + δ^)"1/2 and |^(logAp( r))| = | ^ | / ( r ) . Since each
γ equals δj(r) with δ primitive, and l(γ) = j(γ)l(δ), we have

(4.26) Fo(/) = (4τrί)-1/2 exp - l^l21 Σ Σ exp - (/1^| /(3) + i / W / O

Thus

Γ
Jo
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( 4 27) = Σ ΣKS)exp-j\p\l(δ)

• J" (iπt)-1'2 exp - (d^l2 + f)t + ^2l{δ)2/t)dί.

Use the formula Γ (4πt)-1/2 exp {~xH - \y*\i)dt = (2*)-1 exp - xy to get
J 0

^βW = y O + l/ol2)"1'8 Σ Σχ'(5) exp - (jl(δX\p\ + Vr + \p\2))

(4.28) i

 I 6 P " ' Λ 1

~ T r ^ asprr 1 - exp - /(aXÎ I + Vr + l^l2) '

Let

(4.29) G.ir) = | ( r + ||θ|V/ 2 Σ '(5) exp - l(δ)(\p\ + Vr + \P\
2) ,

which converges by comparison with F0(r). The ratio of the corresponding
terms in G0(r) and F0(r) approaches 1 as 1(3) —> oo. So an argument similar to
that of Lemma 4.3 shows that rG0(r) and rF0(r) have the same limit as r —> 0.
Since we know rF0(r) —> 1 as r —» 0, we conclude rG0(r) -^1 as r —> 0. Now

rGQ(r) = ir(r + \pf)~^ Σ /(» exp -

/exp - \p\ / exp - WFTTp?-dQ0(l)
Jo

• Γ / exp - 2 1̂1 Z exp - (V^TR ~
Jo

Writing z = V ^ Γ W — |/o|, we see that z -> 0 as r -> 0. Letting r -> 0 in
the above expression we conclude

limz Γexp - z/ /exp - 2 1̂1 l-dQ0(l) = 1 .
3-0 Jo

Now Karamata's theorem gives us the first conclusion of the theorem. (See the
note added in proof.)

As to βi(Z)> we have

βo(O = [{δ;δeFτΓ,l(δ) </}]

<βi(/) = [ { r e c r - { i } ; / ( r ) < / } ]

(4.31) - [{(3, /) 3 e PrΓ, / > 1, //(<?) < /}]

-̂ = Γ -dQ0(y) = Go(O + Γ -^
(^) Jo y Jo y
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Since we know the asymptotic estimate for Q0(l), the estimate for Qx(ϊ) fol-
lows easily from this expression. This finishes the proof of the main result.

One notes that the asymptotic behaviour of Qo and Qλ depends only on the
metric structure of the covering manifold G/K and not on the particular
manifold R (or what is the same, on Γ).

This theorem generalizes a result of H. Hiiber [12] who treated the case
G = SL(2,R). Hϋber's method is slightly different; it was followed by
Berard-Bergery [1] to G = SO0(d, 1), d > 2 Our method generalizes the
method of McKean [14] who works with G = 5L(2, R). These authors use a
metric on G/K which gives it curvature —1 in their cases. Our metric is
somewhat different. This introduces an inessential discrepancy between the
values oί\p\ which they get there and we get here. Hiiber also proved the
remarkable formula [12, p. 26],

2 SΈΓ(s)

\(s - s+(λω)))

(s - l)Γ(s - i)

2s-1

(4.32) Γ(s - J)

t

 Γ ( ί S )

 i Vol. (Γ/G)

+ eΣ{i KrWKcoshKr)-

where s±(λω) are the roots of S2 — S — Δω = 0, and G = SL(2, R). Δω is the
eigenvalue of the Laplacian. One must bear in mind that Hiiber used the
metric which gives curvature — 1 to G/K.

Hiiber's proof of (4.32) utilizes methods involving the Green's function of
the upper half-plane. Hiiber used the above formula together with the theorem
of Ikehara to get the analogue of Theorem 4.4 for G = SL(2, R). A generali-
zation of (4.32) for G = SO0(d, 1) is presented by Berard-Bergery in [1, p. 118],
and is used there similarly to obtain Theorem 4.4 for G = SO0(d, 1).

Both (4.32) and its generalization to SO0(d, 1) in [1] result from the trace-
formula by the choice of a suitable admissible function fs. One must, of course,
compute fs and Ffs. In fact, let x e G, and x = kapk\ k, kf <ε K, ape Ap, be
its polar decomposition. Put \H0\ = c (recall that this equals V2p + 8q). Let
β € Σ be as in § 2, and put t = t(ap) = /3(log ap). Then t can be regarded as a
coordinate on Ap. Consider, for a complex 5, the function fs(x) = (cosh t)~s

where t = t(ap) and x = kapk'. fs is clearly spherical. If Re s > p + 2q, one
can show that /, € <^1(J^\G/K), so that fs is admissible. (4.32) and its gener-
alization result from applying the trace formula to this fs. It is possible to
compute the analogue of (4.32) for all the groups of rank (G/K) = 1 by com-
puting J89 Ffs directly. Since the main application of these formulas was to get
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Theorem 4.4 which we have obtained by other means, it does not seem worth-
while to give details of the derivation. We will content ourselves with quoting
the result, which may amuse the reader:

Σ n (ω
- q + 1))

(4.33) _ ^^

X Σ Kγ)KγYιC{h(γ))(codi /(r))-+<*+'*)/* ,
recΓ-{i}

where s±(λω) are the roots of the equation

s2 - s(p + 2q) + i(p + 2q)2 + λm(HQ)2 = 0 .

Thus

s±(λJ = i(p + 2q) ± ^-λω(H0)
2 = p(HQ) ± iλω(H0) .

The reader will easily check that when p = d — 1, q = 0 (which is ap-
propriate for G = SO0(d, 1)), one gets from this the formula of [1, p. 118].
(4.32) results from p = 1, q = 0. The difference of metrics must be borne in
mind. For the other groups G, the values of p, q are as follows: When G =
SU(d, 1), p = 2(d - 1) and q = 1 When G = Sp(d, 1), p = 4(d - 1) and
q = 3. When G = F 4 (_ 2 0 ), p = 8 and q = 7.

A final application of these methods which may be worth mentioning is the
following. Let x, y e G, and let for any r > 0, Q(x, y, r) be the number of
elements γ <= Γ, such that σ(y~ιγx) < r. Q(x, y, r) is the number of points k on
G/K which lie in a ball of radius r around the point yK.

The computation of fs alluded to above enables us to find the asymptotic
behaviour of Q(x,y, r) as r-+oo (cf. [1]). Briefly, the method is as follows:
Since fs is admissible, ΣreΓ fsixyy'1) converges nicely and can be expanded as

a series Σ-e/<σ,i> Σ<-i fs(Ό ΨlMΨlCy), where ψjω, 1 < / < nΓ(ω, 1), are
eigenfunctions of Ω in L2(Γ\G/K), corresponding to the eigenvalue Ωω. Now
Σirfs(y~ιϊχ) = Σ r ( c o s k α β r Y * ) / c ) - % withe = M'2P + 8# as before, which
can be viewed as a Dirichlet series, convergent if Re s > p + 2q. On the
right side, the computation of fs allows one to conclude that this Dirichletr
series has a single simple pole at s = p + 2q whose residue can be computed.
Applying the theorem of Wiener-Ikehara one gets

9 -(p + q + Ό/2 p2\p\r

(4.34) Q(x,y,r)
Vol. (Γ\G) 2p+2«

as r —» oo .
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We leave the details to the reader.
A result analogous to Theorem 4.4 has been announced by Margulis [13].

See also Sinai [20]. These authors use ergodic theory. Margulis' result is the
stronger one. His context is that of an arbitrary compact manifold of negative
curvature, and he shows that Q0(l) ~ C/"1 exp dl, for some positive d. In our
special situation, we have been able to relate this constant d to the structure
of the manifold. Margulis' proofs have not appeared, as far as the author
knows.

Added in proof. After this paper went to press, D. Hejhal pointed out to
me that the proof of Theorem 4.4, as well as of the analogous theorem in
McKean's paper, is based on an incorrect application of Karamata's theorem.
However, the conclusion of the theorem is correct. There are several ways of
filling the gap. One is to use Hϋber's method as indicated above, exploiting
(4.33). The other is to use the heat kernel in the trace formula, and to study
the behaviour of that formula for complex t in a sector. The third, and the
most satisfactory, method is to study the Dirichlet series Σ KS) exp —sl(g)9

s e C. By using the analytic properties of the Selberg zeta function (See R.
Gangolli, 111. J. Math. 21 (1977) 1-41), one can show that this series is
meromorphic in Re (s) > 2 \p\ — ε for some ε > 0, and has a single simple
pole at s = 2\p\ with residue ?\p\. Now Wiener-Ikehara's theorem yields
Theorem 4.4. (This method is described for noncompact G/Γ in a forthcom-
ing paper of G. Warner and the author.) For yet another method, and a better
result, see D. DeGeorge, Ann. Sci. Ecole Norm. Sup. 10(1977) 133-153.
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