RIEMANNIAN S-MANIFOLDS

GR. TSAGAS \& A. LEDGER

1. Let M be an n-dimensional connected Riemannian manifold, and $I(M)$ the group of isometries of M. If there is a map $s: M \rightarrow I(M)$ such that for every $x \in M$ the image $s(x)=s_{x}$ is an isometry of M having x as an isolated fixed point, then the isometry s_{x} is called Riemannian symmetry at x or simply symmetry at x. The Riemannian manifold M with this property is called Riemannian s-manifold. If there is a positive integer k such that $s_{x}^{k}=\mathrm{id}$., $\forall x$ $\in M$, then M is called a Riemannian s-manifold of order k or simply k-symmetric Riemannian space. The usual Riemannian symmetric spaces are Riemannian s-manifolds of order 2.

The aim of the present paper is to prove that every Riemannian s-manifold M can carry another s^{\prime}-structure $\left\{s_{x}^{\prime}: x \in M\right\}$ such that M with $\left\{s_{x}^{\prime}: x \in M\right\}$ becomes a k-symmetric Riemannian space. The decomposition of a simply connected Riemannian s-manifold into simply connected irreducible Riemannian s-manifolds is also studied. Finally, the problem of Riemannian s-manifolds is reduced to the study of special Lie algebras.
2. We do not assume that the map $s: M \rightarrow I(M)$ is continuous. The point $x \in M$ for this symmetry s_{x} is an isolated fixed point if and only if the orthogonal transformation $\left(s_{x}\right)_{*_{x}}$ on the tangent space $T_{x}(M)$ of M at x does not have eigenvalue 1 .

The following Theorem in known [6, p. 451].
Theorem 2.1. The group of all isometries $I(M)$ on a Riemannian s-manifold M acts transitively on it.

From this theorem we conclude that the Riemannian s-manfold M is a homogeneous space, which is $M=I(M) / H$, where H is the isotropy subgroup of $I(M)$ at any arbitrary point of M.

It can be easily proved, applying the same method as in [2], that the subgroup G of $I(M)$ generated by the symmetries of M acts transitively on M. Therefore we can state the theorem.

Theorem 2.2. Let M be a Riemannian s-manifold. Then $M=G / H$, where G is the closed subgroup of all symmetries of M, and H is the isotropy subgroup of G at any point of M.

Let s_{x} be the symmetry at the point $x \in M$. We can consider $\left(d s_{x}\right)_{x}$ as an element of the orthogonal group $O(n)$. Let f be a real-valued function on $O(n)$ defined by

Received July 1, 1975 and, in revised form, June 28, 1976.

$$
f: O(n) \rightarrow \boldsymbol{R}, \quad f:\left(d s_{x}\right)_{x}=A \rightarrow f(A)=|A-I| \in \boldsymbol{R}
$$

where I is the identity matrix. The function f is continuous. Since $\left|\left(d s_{x}\right)_{x-1}\right| \neq$ 0 , we conclude that there exists a neighborhood of $\left(d s_{x}\right)_{x}$ whose all elements do not have eigenvalue 1 and hence a neighborhood of s_{x} containing only symmetries of M.

From the above we have the theorem.
Theorem 2.3. Let $M=G / H$ be a Riemannian s-manifold. If $s \in G$, then there is a neighborhood of s consisting only of symmetries of M.

Now we prove
Theorem 2.4. Let M be a connected Riemannian s-manifold. There exists another s^{\prime}-structure $\left\{s_{x}^{\prime}: x \in M\right\}$ on M such that M with $\left\{s_{x}^{\prime}: x \in M\right\}$ becomes a k-symmetric Riemannian space.

It is known that $M=G / H$, where G is the group of isometries. H is called the origin of M and is denoted by 0 . Let s_{o} be the symmetry of M at 0 . The following relation holds: $\left(d s_{o}\right)_{o}=\mathrm{ad}\left(s_{o}\right)$, where ad is the adjoint representation.

We assume that s_{o} does not have finite order. It is possible to choose another symmetry s_{o}^{\prime} of finite order.

Let H^{0} be the identity component of H. If $s_{o} \in H^{0}$, then there is a maximal torus T in H^{0}, passing through s_{o}. Therefore ad $\left(s_{o}\right)$ can be written as a matrix in the form

$$
\operatorname{ad}\left(s_{o}\right)=\left(\begin{array}{rrrr}
\cos 2 \pi \vartheta_{1}(t) & \sin 2 \pi \vartheta_{1}(t) & & \\
-\sin 2 \pi \vartheta_{1}(t) & \cos 2 \pi \vartheta_{1}(t) & & \\
& & \ddots & \\
& & & \cos 2 \pi \vartheta_{l}(t)
\end{array} \sin 2 \pi \vartheta_{l}(t),\right.
$$

where $\vartheta_{1}, \cdots, \vartheta_{l}$ are homomorphisms of T into $S^{1}=\boldsymbol{R} / Z$ which induce real linear forms $a_{i}: L(T) \rightarrow \boldsymbol{R}$, where $a_{i}, i=1, \cdots, l$, are called the roots of H with respect to the torus T. From the above we obtain the following commutative diagram

where m is the rank of H, and $b_{j_{1} j_{2}} \in Z, 1 \leq j_{1} \leq l, 1 \leq j_{2} \leq m$.

We assume that the symmetry s_{o} has infinite order, which means that at least one of the values $\vartheta_{i}, 1 \leq i \leq l$, is an irrational number. From this we conclude that at least one of $x_{j}, 1 \leq j \leq m$, is irrational. Therefore some, or all of the m-tuple numbers $\left(x_{1}, \cdots, x_{m}\right)$, to which the symmetry s_{o} corresponds, are irrational. We substitute these irrational numbers by rational ones as close to them as we wish. Hence we obtain another symmetry s_{o}^{\prime}, which has finite order.

Now we assume that $s_{o} \notin H^{0}$. Therefore there exists an integer λ such that $s_{o}^{2} \in H^{0}$. Since s_{o} has infinite order, equally so does s_{o}^{2}. Let T_{1} be the maximal torus in H^{0} passing through s_{o}^{2}.

The symmetry s_{o} can be considered as an orthogonal matrix. Therefore another orthogonal matrix β exists such that

$$
\beta s_{o} \beta^{-1}=\left(\begin{array}{rrrrr}
\cos 2 \pi \tau_{1} & \sin 2 \pi \tau_{1} & & & \\
-\sin 2 \pi \tau_{1} & \cos 2 \pi \tau_{1} & & & \\
& & \ddots & & \cos 2 \pi \tau_{m}
\end{array} \sin 2 \pi \tau_{m} .\right.
$$

where at least one of the numbers $\tau_{1}, \cdots, \tau_{m}$ is irrational. From the above we obtain

$$
\beta s_{o}^{2} \beta^{-1}=\left(\begin{array}{rrrrr}
\cos 2 \pi \lambda \tau_{1} & \sin 2 \pi \lambda \tau_{1} & & & \\
-\sin 2 \pi \lambda \tau_{1} & \cos 2 \pi \lambda \tau_{1} & & & \\
& & \ddots & & \cos 2 \pi \lambda \tau_{m}
\end{array} \sin 2 \pi \lambda \tau_{m}\right)
$$

Since $s_{o}^{2} \in T_{1}$, there is another base such that s_{o}^{2} can be written

$$
s_{o}^{2}=\left(\begin{array}{rrrrr}
\cos 2 \pi \lambda \tau_{1}^{\prime} & \sin 2 \pi \lambda \tau_{1}^{\prime} & & & \\
-\sin 2 \pi \lambda \tau_{1}^{\prime} & \operatorname{con} 2 \pi \lambda \tau_{1}^{\prime} & & & \\
& & \ddots & & \cos 2 \pi \lambda \tau_{m}^{\prime}
\end{array} \sin 2 \pi \lambda \tau_{m}^{\prime} .\right.
$$

where at least two of the numbers $\left(1, \lambda \tau_{1}^{\prime}, \cdots, \lambda \tau_{m}^{\prime}\right)$ are linearly independent of the field of rational numbers. Therefore s_{o}^{λ} generates at least one-dimensional torus $T_{1}^{\prime} \subseteq T_{1}$ and closure $\left\{s_{o}^{\lambda m}, m \geq n_{0}\right\}=T_{1}^{\prime}$ and the elements of T_{1}^{\prime} commute with s_{o}.

From the above we conclude that there exists an element $\alpha \in T_{1}$ which can be written

$$
\alpha=\left(\begin{array}{rrrrr}
\cos 2 \pi\left(p_{1}^{\prime}-\tau_{1}^{\prime}\right) & \sin 2 \pi\left(p_{1}^{\prime}-\tau_{1}^{\prime}\right) & & \\
-\sin 2 \pi\left(p_{1}^{\prime}-\tau_{1}^{\prime}\right) & \cos 2 \pi\left(p_{1}^{\prime}-\tau_{1}^{\prime}\right) & & \\
& & \ddots & \\
& & & \begin{array}{r}
\cos 2 \pi\left(p_{m}^{\prime}-\tau_{m}^{\prime}\right) \\
-\sin 2 \pi\left(p_{m}^{\prime}-\tau_{m}^{\prime}\right)
\end{array} & \sin 2 \pi\left(p_{m}^{\prime}-\tau_{m}^{\prime}\right) \\
& & & \cos 2 \pi\left(p_{m}^{\prime}-\tau_{m}^{\prime}\right)
\end{array}\right)
$$

where $p_{1}^{\prime}, \cdots, p_{m}^{\prime}$ are rational numbers close to $\tau_{1}^{\prime}, \cdots, \tau_{m}^{\prime}$, as we wish, respectively, and $p_{i}^{\prime}=\tau_{i}^{\prime}$, if τ_{i}^{\prime} is rational.

The same element α with respect to the old base can be written
$\beta \alpha \beta^{-1}=\left\{\begin{array}{rr}\cos 2 \pi\left(p_{1}-\tau_{1}\right) & \sin 2 \pi\left(p_{1}-\tau_{1}\right) \\ -\sin 2 \pi\left(p_{1}-\tau_{1}\right) & \cos 2 \pi\left(p_{1}-\tau_{1}\right) \\ & \end{array}\right.$

Since α and s_{o} commute, we obtain
$\beta \alpha s_{o} \beta^{-1}=\beta \alpha \beta^{-1} \beta s_{o} \beta^{-1}=\left(\begin{array}{rrrr}\cos 2 \pi p_{1} & \sin 2 \pi p_{1} & & \\ -\sin 2 \pi p_{1} & \cos 2 \pi p_{1} & & \\ & & \ddots & \\ & & & \cos 2 \pi p_{m}\end{array} \begin{array}{l}\sin 2 \pi p_{m} \\ \\ \end{array}\right.$
where $p_{i}, i=1, \cdots, m$, have the same meaning as p_{i}^{\prime}.
Therefore the symmetry αs_{o} belongs to the same component of H as the given symmetry s_{o}, having finite order.

Proposition 2.5. Let $M=G / H$ be a compact Riemannian s-manifold. The symmetry s_{o} belongs to the identity component H^{0} of H if and only if rank G $=\operatorname{rank} H$.

We assume that the symmetry s_{o} belongs to H^{0}. From s_{o} we obtain an automorphism A on G :

$$
A: G \rightarrow G, \quad A: v \rightarrow A(v)=s_{o} v s_{o}^{-1}
$$

and an automorphism α on the Lie algebra g of G :

$$
\alpha: g=h+m \rightarrow g=h+m, \quad \alpha: X \rightarrow \alpha(X) \in h, \quad \forall X \in h .
$$

Let T_{1}, T_{2} be the maximal tori of H and G, respectively, through the element s_{0}. Since $T_{1} \subseteq T_{2}$ and all the elements of T_{2} commute with s_{0}, so do the elements of T_{1}. Since the vectors belonging to the tangent space of T_{2} at the identity element are invariant by α, we conclude that $T_{2} \subseteq H$ and therefore $\operatorname{rank} G=\operatorname{rank} H$.

The inverse is an immediate consequence of the assumption $\operatorname{rank} G=$ rank H; then we have that $s_{O} \in H^{0}$.

Corollary 2.6. Let $M=G / H$ be a Riemannian homogeneous space such that H is the largest isotropy subgroup of G at one point of M. If H is connected and $\operatorname{dim} H$ is odd, then M can never be a Riemannian s-manifold.

If we assume that M is a Riemannian s-manifold, then $s_{o} \in H$ and there is always a maximal torus T in H through s_{o}. However since $\operatorname{dim} M$ is odd we obtain ad $\left(s_{o}\right)$ having an eigenvalue 1 . So we reach to a contradiction because ad (s_{o}) never has an eigenvalue 1. Therefore M can not be a Riemannian s manifold.

Remark 2.7. From the above we conclude that all Riemannian s-manifolds form a proper subset of all Riemannian homogeneous spaces.
3. Let $M=G / H$ be a simply connected homogeneous space. It is known that M is isometric to the direct product $M_{0} \times M_{1} \times \cdots \times M_{r}$ and that the identity component $I^{0}(M)$ of the group of isometries $I(M)$ is naturally isomorphic to the group $I^{0}\left(M_{0}\right) \times I^{0}\left(M_{1}\right) \times \cdots \times I^{0}\left(M_{r}\right)$.

We shall prove that each of the homogeneous spaces $M_{0}, M_{1}, \cdots, M_{r}$ is a Riemannian s-manifold. To this aim we distinguish two cases.
(i) If $s \in I^{0}(M)$, then we have

$$
\begin{aligned}
s: M & =M_{0} \times M_{1} \times \cdots \times M_{r} \rightarrow M=M_{0} \times M_{1} \times \cdots \times M_{r}, \\
s: 0 & =\left(0_{0}, 0_{1}, \cdots, 0_{r}\right) \rightarrow 0=\left(0_{0}, 0_{1}, \cdots, 0_{r}\right), \\
s: x & =\left(x_{0}, x_{1}, \cdots, x_{r}\right) \rightarrow s(x)=\left(y_{0}, y_{1}, \cdots, y_{r}\right),
\end{aligned}
$$

where $y_{i}=s_{i}\left(x_{i}\right)=p_{i}(s(x)), p_{i}$ is the natural projection of M into M_{i}, and s_{i} is an isometry of $M_{i}[4, \mathrm{p} .241]$.

By considering the de Rham decomposition theorem for the tangent space of M at 0 , we have

$$
\begin{equation*}
T_{0}(M)=T_{0}^{(0)}(M) \oplus T_{0}^{(1)}(M) \oplus \cdots \oplus T_{0}^{(r)}(M) \tag{3.1}
\end{equation*}
$$

Since $s \in I^{0}(M)$, we have ad $(s)\left(T_{0}^{(i)}(M)\right)=T_{0}^{(i)}(M)$, where $i=0,1, \cdots, r$ or $\operatorname{ad}\left(s_{i}\right)\left(T_{0}^{(i)}(M)\right)=T_{0}^{(i)}(M)=\operatorname{ad}(s)\left(T_{0}^{i}(M)\right),[4, \mathrm{p} .240]$. We also have s_{i} : $M_{i} \rightarrow M_{i}, s_{i}: 0_{i} \rightarrow 0_{i}$ and hence s_{i} is symmetry at 0_{i} for the manifold M_{i}. Therefore $M_{i}, i=0,1, \cdots, r$, is a Riemannian s-manifold. The order of s is the least common multiple of the integers $\left\{k_{0}, k_{1}, \cdots, k_{r}\right\}$ where $k_{i}, i=0,1$, \cdots, r, is the order of s_{i}.
(ii) If $s \notin I^{0}(M)$, then we obtain an orbit ($M_{i}^{1}, M_{i}^{2}, \cdots, M_{i}^{r}$) of the permutation group defined by s, and consider the product

$$
M_{(i)}=M_{i}^{1} \times M_{i}^{2} \times \cdots \times M_{i}^{r_{i}}
$$

If $r_{1}>1$, then we can order $M_{i}^{1}, M_{i}^{2}, \cdots, M_{i}^{r_{i}}$ such that s maps M_{i}^{2} isometrical-
ly onto $M_{i}^{\lambda+1}$, where $1 \leq \lambda \leq r_{i}-1$, and $M_{i}^{r_{i}}$ isometrically onto M_{i}^{1}. This can always be done after some identifications. Therefore M be written

$$
M=M_{0} \times M_{(1)} \times \cdots \times M_{(\mu)}
$$

where M_{0} is the Euclidean part of M and $M_{(i)}, i=1, \cdots, \mu$, have the above meaning.

With the same technique, as in case (i), we can prove that s can be written $s=\left(\psi_{0}, \psi_{1}, \cdots, \psi_{\mu}\right)$, where $\psi_{i}, i=1, \cdots, \mu$, is a symmetry on the manifold $M_{(i)}$ having also the following properties

$$
\begin{gather*}
\psi_{i}: \boldsymbol{M}_{i}^{1} \times \boldsymbol{M}_{i}^{2} \times \cdots \times \boldsymbol{M}_{i}^{r_{i}} \rightarrow \boldsymbol{M}_{i}^{1} \times \boldsymbol{M}_{i}^{2} \times \cdots \times \boldsymbol{M}_{i}^{r_{i}}, \\
\psi_{i}:\left(0_{1}, 0_{2}, \cdots, 0_{r_{i}}\right) \rightarrow\left(0_{1}, 0_{2}, \cdots, 0_{r_{i}}\right), \tag{3.2}\\
\psi_{i}:\left(\boldsymbol{M}_{i}^{1} \times 0_{2} \times \cdots \times 0_{r_{i}}\right) \rightarrow\left(0_{1} \times \boldsymbol{M}_{i}^{2} \times \cdots \times 0_{r_{i}}\right), \tag{3.3}\\
\cdot \cdots \cdots \tag{3.4}\\
\psi_{i}:\left(0_{1} \times 0_{2} \times \cdots \times 0_{r_{i}-2} \times M^{r_{i}-1} \times 0_{r_{i}}\right) \\
\rightarrow\left(0_{1} \times 0_{2} \times \cdots \times 0_{r_{i-1}} \times M_{i}^{r_{i}}\right), \tag{3.5}\\
\psi_{i}:\left(0_{1} \times 0_{2} \times \cdots \times 0_{r_{i-1}} \times M_{i}^{r_{i}}\right) \rightarrow\left(M_{i}^{1} \times 0_{2} \times \cdots \times 0_{r_{i}}\right) .
\end{gather*}
$$

We can identify the manifold M_{i}^{1} with $M_{i}^{2}, \cdots, M_{i}^{r_{i}}$ by virtue of the following mappings

$$
f_{v}: M_{i}^{1} \rightarrow M_{i}^{v}, \quad v=2, \cdots, r_{i}
$$

where $f_{2}=p_{i}^{(2)} \circ \psi_{i}, f_{3}=f_{2} \circ p_{i}^{(3)} \circ \psi_{i}, \cdots, f_{r_{i}}=f_{r_{i}-1} \circ \cdots \circ f_{2} \circ p_{i}^{\left(r_{i}\right)} \circ \psi_{i}$, and $p_{i}^{(2)}, \cdots, p_{i}^{\left(r_{i)}\right)}$ are the natural projections of $M_{(i)}$ into $M_{i}^{2}, \cdots, M_{i}^{r_{i}}$, respectively.

The mapping, defined by (3.5), can be considered as an isometry of $M_{i}^{r_{i}}$ onto M_{i}^{1} after the following identification

$$
f_{1}: M_{i}^{1} \rightarrow M_{i}^{1}, \quad f_{1}=f_{r_{i}} \circ f_{r_{i}-1} \circ \cdots \circ f_{2} \circ p_{i}^{(1)} \circ \psi_{i},
$$

where $p_{i}^{(1)}$ is the natural projection of $M_{(i)}$ into M_{i}^{1}. From the construction of f_{1}, we conclude that f_{1} has 0_{1} as a fixed point,

Let $T_{0^{\prime}}\left(M_{(i)}\right)$ be the tangent space of $M_{(i)}$ at the point $0^{\prime}=\left(0_{1}, 0_{2}, \cdots, 0_{r_{i}}\right)$. Then we have

$$
T_{0^{\prime}}\left(M_{(i)}\right)=T_{0^{\prime}}^{(1)}\left(M_{(i)}\right) \oplus T_{0^{\prime}}^{(2)}\left(M_{(i)}\right) \oplus \cdots \oplus T_{0^{\prime}}^{\left(\gamma_{i}\right)}\left(M_{(i)}\right),
$$

and ad $\left(\psi_{i}\right)$ has the properties:

$$
\begin{aligned}
& \operatorname{ad}\left(\psi_{i}\right): T_{0^{0^{\prime}}}^{\lambda}\left(M_{(i)}\right) \rightarrow T_{0^{\prime}}^{\lambda+1}\left(M_{(i)}\right), \quad \lambda=1, \cdots, r_{i}-1, \\
& \operatorname{ad}\left(\psi_{i}\right): T_{0^{\prime}}^{r_{i}}\left(M_{(i)}\right) \rightarrow T_{0^{\prime}}^{(1)}\left(M_{(i)}\right),
\end{aligned}
$$

from which we obtain ad $\left(\psi_{i}\right)=A_{1} \times A_{2} \times \cdots \times A_{r_{i}}$, where $A_{j}, j=1, \cdots$, r_{i}, are defined as follows

$$
\begin{aligned}
& A_{\mu}: T_{0^{\prime}}^{\mu}\left(M_{(i)}\right) \rightarrow T_{0^{\prime}}^{\mu+1}\left(M_{(i)}\right), \quad \mu=1, \cdots, r_{i}-1, \\
& A_{r_{i}}: T_{0^{\prime}}^{r_{i}}\left(M_{(i)}\right) \rightarrow T_{0^{\prime}}^{1}\left(M_{(i)}\right)
\end{aligned}
$$

We assume that the mapping f_{1} is not a symmetry for the point 0_{1} of M_{i}^{1}. Therefore there is a vector $u_{1} \in T_{0^{\prime}}^{1}\left(M_{(i)}\right)=T_{0_{1}}\left(M_{(i)}^{1}\right)$ which is invariant under $d\left(f_{1}\right)_{0_{1}}=\operatorname{ad}\left(f_{1}\right)$. From this vector we obtain the following sequence of vectors: $\left.u_{2}=\operatorname{ad}\left(f_{2}\right)\left(u_{1}\right) \in T_{0^{\prime}}^{2}\left(M_{(i)}\right), \cdots, u_{r_{i}-1}=\operatorname{ad}\left(f_{r_{i-1}}\right) u_{r_{i-2}}\right) \in T_{0^{i}}^{r_{i}-1}\left(M_{(i)}\right), u_{r_{i}}=$ $\operatorname{ad}\left(f_{r_{i}}\right)\left(u_{r_{i}-1}\right) \in T^{r_{i}}\left(M_{(i)}\right), \operatorname{ad}\left(f_{1}\right)\left(u_{r_{i}}\right)=u_{1} \in T_{0^{\prime}}^{1}\left(M_{(i)}\right)$. Hence $\operatorname{ad}\left(\psi_{i}\right)$, by the form of a matrix, can be written

$$
B=\left(\begin{array}{ccclcc}
0 & A_{1} & 0 & \cdots & 0 & 0 \\
0 & 0 & A_{2} & \cdots & 0 & 0 \\
. & . & & \cdots & & . \\
0 & 0 & 0 & \cdots & A_{r_{i-2}} & 0 \\
0 & 0 & 0 & \cdots & 0 & A_{r_{i-1}} \\
A_{r_{i}} & 0 & 0 & \cdots & 0 & 0
\end{array}\right)
$$

Let u be the vector of $T_{0^{\prime}}\left(M_{(i)}\right)$ with coordinates $u_{1}, u_{2}, \cdots, u_{r_{i}}$. Then we have
(3.6) $\quad B u=\left(\begin{array}{ccccc}0 & A_{1} & 0 & \cdots & 0 \\ 0 & A_{2} & A_{2} & \cdots & 0 \\ . & . & \cdot & \cdots & . \\ 0 & 0 & 0 & \cdots & A_{r_{i-1}} \\ A_{r_{i}} & 0 & 0 & \cdots & 0\end{array}\right)\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ \\ u_{r_{i}}\end{array}\right)=\left(\begin{array}{c}A_{r_{i}} u_{1} \\ A_{1} u_{2} \\ \vdots \\ \\ A_{r_{i-1}} u_{r_{i}}\end{array}\right)=\left(\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ \\ u_{r_{i}}\end{array}\right)=u$.

From (3.6) we conclude that ad $\left(\psi_{i}\right)$ leaves the vector u fixed, and therefore ψ_{i} is not a symmetry. But this is not true because ψ_{i} is a symmetry. Therefore f_{1} is a symmetry.

The order of the k-symmetric Riemannian space M is the least common multiple of the orders $k_{0}, k_{1}, \cdots, k_{\mu}$ of the manifolds $M_{0}, M_{(1)}, \cdots, M_{(\mu)}$, respectively. Each order $k_{i}, i=0,1, \cdots, \mu$, has the form $r_{i} q$, where q is the least common multiple of $\left(\operatorname{rank}\left(A_{1}\right), \cdots, \operatorname{rank}\left(A_{r_{i}}\right)\right.$). Hence we have

Theorem 3.1. Let M be a simply connected Riemannian s-manifold. This manifold splits into the product manifolds $M_{0} \times M_{1} \times \cdots \times M_{r}$ each of which is a simply connected, irreducible Riemannian s-manifold.
4. Let $M=G / H$ be a k-symmetric Riemannian space, and s_{o} the sym-
metry of M at its origin 0 . From this symmetry s_{o} we obtain an automorphism A on G defined by

$$
A: G \rightarrow G, \quad A: v \rightarrow A(v)=s_{o} v s_{o}^{-1}
$$

Proposition 4.1. Let $M=G / H$ be a k-symmetric Riemannian space. Then the automorphism A on G has order k and preserves the isotropy subgroup H.

From the definition of A we have

$$
\begin{aligned}
& A: G \rightarrow G, \quad A: v \rightarrow A(v)=s_{o} v s_{o}^{-1}, \\
& A: s_{o} v s_{o}^{-1} \rightarrow A\left(s_{o} v s_{o}^{-1}\right)=s_{o} s_{o} v s_{o}^{-1} s_{o}^{-1}=s_{o}^{2} v\left(s_{o}^{-1}\right)^{2}, \\
& A: s_{o}^{k-1} v\left(s_{o}^{-1}\right)^{k-1} \rightarrow A\left(s_{o}^{k-1} v\left(s_{o}^{-1}\right)^{k-1}\right) \rightarrow s_{o}^{k} v\left(s_{o}^{-1}\right)^{k}=v .
\end{aligned}
$$

Thus we conclude that $A^{k}=$ id., that is, A has order k. If $\mu \in H$, then we obtain $A(\mu)=s_{o} \mu S_{o}^{-1}$. It is known that $s_{o}: M \rightarrow M, \mu: M \rightarrow M, s_{o}^{-1}: M \rightarrow M$, $s_{o}: 0 \rightarrow s_{o}(O)=0, \mu: 0 \rightarrow \mu(0)=0, s_{o}^{-1}: O \rightarrow s_{o}^{-1}(O)=0$, from which we obtain $s_{o} \mu s_{o}^{-1} \in H$, that is, A preserves H.

Definition 4.2. The triplet (G, H, A) is called a k-symmetric Lie group, where G is a Lie group, H is a closed subgroup of G, and A is an automorphism on G of order k with the property $A(H) \subseteq H$.

Let $M=G / H$ be a k-symmetric Riemannian space. We consider the Lie algebras g, h of G and H, respectively. Then we have

$$
g=h+m
$$

where m can be identified with the tangent space $T_{0}(M)$ of M at its origin 0 . From s_{o} we can also obtain an automorphism α on g defined as follows:

$$
\alpha: g=h+m \rightarrow g=h+m, \quad \alpha: X \rightarrow \alpha(X)=\operatorname{Ad}\left(s_{o}\right) X
$$

where $\operatorname{Ad}\left(s_{o}\right)=\operatorname{ad}_{*}\left(s_{o}\right)$. The following is also known :

$$
\begin{gather*}
\exp : g \rightarrow G, \quad \exp : X \rightarrow \exp X, \\
\exp \left\{\operatorname{Ad}\left(s_{o}\right) X\right\}=s_{o} \exp X s_{o}^{-1} . \tag{4.1}
\end{gather*}
$$

Proposition 4.3. Let $M=G / H$ be a k-symmetric Riemannian space, α the automorphism on $g=h+m$ obtained by s_{o}. Then h is preserved by α, which has order k.

If $X \in h$, then $\exp X=\lambda \in H$. Since $\lambda \in H$, we have $s_{o} \lambda s_{o}^{-1} \in H$, which implies $s_{o} \exp X s_{o}^{-1} \in H$. From this and (4.1) we obtain

$$
\exp \left\{\operatorname{Ad}\left(s_{o}\right)(X)\right\}=s_{o} \exp X s_{o}^{-1} \in H,
$$

which gives $\operatorname{Ad}\left(s_{o}\right)(X) \in h$. Therefore h is preserved by $\alpha=\operatorname{Ad}\left(s_{o}\right)$.
From the definition of α and formula (4.1) we have

$$
\begin{gathered}
\alpha: g \rightarrow g, \quad \alpha: X \rightarrow \alpha(X)=\alpha(X)=\operatorname{Ad}\left(s_{o}\right)(X), \\
\exp \left\{\operatorname{Ad}\left(s_{o}\right)(X)\right\}=s_{o} \exp X s_{o}^{-1}, \\
\alpha: \operatorname{Ad}\left(s_{o}\right)(X) \rightarrow \operatorname{Ad}\left(s_{o}\right)\left\{\operatorname{Ad}\left(s_{o}\right)(X)\right\}=\operatorname{Ad}^{2}\left(s_{o}\right) X, \\
\exp \left\{\operatorname{Ad}^{2}\left(s_{o}\right)(X)\right\}=s_{o}\left\{\exp \left(\left(\operatorname{Ad}\left(s_{o}\right)\right)(X)\right\} s_{o}^{-1}=s_{o}\left\{s_{o} \exp X s_{o}^{-1}\right\} s_{o}^{-1}\right. \\
=s_{o}^{2} \exp X\left(s_{o}^{-1}\right)^{2},
\end{gathered}
$$

which imply

$$
\exp \left\{\operatorname{Ad}^{k}\left(s_{o}\right)(X)\right\}=s_{o}^{k} \exp X\left(s_{o}^{-1}\right)^{k}
$$

showing that $\alpha=\operatorname{Ad}\left(s_{o}\right)$ has order k.
Definition 4.4. The triplet (g, h, α) is called a k-symmetric Lie algebra, where g is a Lie algebra, h is a Lie subalgebra of g, and α is an automorphism on g of order k with the property $\alpha(h) \subseteq h$.

Let $M=G / H$ be a k-symmetric Riemannian space. If g and h are the Lie algebras of G and H, respectively, then we have

$$
g=h+m, \quad \alpha(h) \subseteq h
$$

where α is the automorphism on g of order k, and $m=g / h$. It is known that the Riemannian metric \bar{g} on M is G-invariant, which gives an $\operatorname{Ad}(H)$-invariant nondegenerate symmetric bilinear form B on $m=g / h$ defined by

$$
B(\bar{X}, \bar{Y})=\bar{g}(X, Y), \quad X, Y \in g,
$$

where \bar{X}, \bar{Y} are the elements of g / h represented by X, Y, respectively.
From the above we conclude that given a k-symmetric Riemannian space we then have a k-symmetric Lie group (G, H, A), a k-symmetric Lie algebra (g, h, α), and an $\operatorname{Ad}(H)$-invariant nondegenerate symmetric bilinear form on $m=g / h$.

Definition 4.5. Let $M=G / H$ be a k-symmetric Riemannian space. If the symmetry s_{O} commutes with all the elements of H, then M is called a regular k-symmetric Riemannian space or regular Riemannian s-manifold of order k.

If a k-symmetric Riemannian manifold $M=G / H$ is regular, then the automorphism A on G preserves the subgroup H as pointwise so that $A(v)=v$, $\forall v \in H$. The same is true of the automorphism α on the Lie algebra g of G which preserves the Lie algebra h of H pointwise so that $\alpha(X)=X, \forall X \in h$.

The triplets (G, H, A) and (g, h, α), which are obtained by a regular k-symmetric Riemannian space, are called a regular k-symmetric Lie group and a regular k-symmetric Lie algebra, respectively.

Theorem 4.6. Let $M=G / H$ be a regular Riemannian s-manifold. Then M is a reductive homogeneous space.

Let g and h be the Lie algebras of G and H respectively. Then we have $g=h+m$, where m can be identified with the tangent space of M at its origin.

If ad $(H) m \subseteq m$, then M is a reductive homogenous space. We assume that there exist $X \in m$ and $\beta \in H$ such that ad $(\beta)(X)=Y \in h$. Since ad $(\beta) \circ \operatorname{ad}\left(s_{o}\right)$ $=\operatorname{ad}\left(s_{o}\right) \circ$ ad (β), we have $\operatorname{ad}(\beta) \circ$ ad $\left(s_{O}\right)(X)=\operatorname{ad}\left(s_{o}\right) \circ \operatorname{ad}(\beta)(X)$, which implies $\operatorname{ad}(\beta)(Z)=Y$, where $Z=\operatorname{ad}\left(s_{o}\right)(X) \in m$. From $\operatorname{ad}^{k}\left(s_{o}\right)(X)=X$ and the fact that ad (β) is an automorphism, we conclude that $Z=X$ and hence $X=\operatorname{ad}\left(s_{o}\right) X$ which is impossible because s_{O} is a symmetry. Hence we have reached a contradiction to our assumption. This implies ad $(\beta)(m) \subseteq m$.

Theorem 4.7. Let (G, H, A) be a regular k-symmetric Lie group. Then there is a Riemannian metric on the homogeneous space $M=G / H$, which makes M a regular k-symmetric Riemannian space.

First, we shall construct for each point P of $M=G / H$ a diffeomorphism s_{P} of order k on M, having P as an isolated fixed point. For the origin 0 of M we have the diffeomorphism s_{o} defined as follows:

$$
s_{o}: M=G / H \rightarrow M=G / H, \quad s_{o}: v H \rightarrow s_{o}(v H)=A(v) H .
$$

Let $v(O)$ be a fixed point of s_{o}, where $v \in G$. Then $A(v) \in v H$. By putting $\mu=v^{-1} A(v) \in H$, since $v \in H$ we have $\mu^{2}=\mu A(\mu)=v^{-1} A(v) A\left(v^{-1}\right) A^{2}(v)$ and therefore $\mu^{2}=v^{-1} A^{2}(v)$. But $\mu^{2} \in H$ implies $A\left(\mu^{2}\right)=\mu^{2}$. Thus $\mu^{2}=$ $A\left(v^{-1}\right) A\left(v^{2}\right)$. Similarly, for $r<k$ we obtain $\mu^{r}=A\left(v^{-1}\right) A^{r+1}(v)$ and finally $\mu^{k}=v^{-1} A(v) A\left(v^{-1}\right) A^{k}(v)=$ id since $A^{k}=$ id. Thus μ^{k} is the identity element of H. Now assume that v is sufficiently close to the identity element so that μ is also near the identity element. Then μ itself must be the identity element and therefore $A(v)=v$. Being invariant by A and near the identity element, v lies in the identity component of G_{A}, where G_{A} is the setwise of G by A and hence in H. Thus $v(O)=0$ proving our assertion that O is an isolated fixed point of s_{o}.

For the point $P=v(0)$ we obtain as a diffeomorphism $s_{P}=v \circ s_{o} \circ v^{-1}$. Then s_{P} has P as an isolated fixed point, and its order is k. This is independent of the choice of v such that $P=v(0)$.

The Lie algebra g of G can be written in the known decomposition

$$
g=h+m
$$

We consider a special ad (H)-invariant nondegenerate symmetric bilinear form B on m. From B we obtain a G-invariant Riemannian metric \bar{g} on $M=$ G / H, which is given by the formula $B(X, Y)=\bar{g}_{0}(X, Y)$ for $X, Y \in m$. It can be easily obtained that s_{P} is a Riemannian symmetry of order k on M at P. Hence $M=G / H$ is a regular k-symmetric Riemannian space.

References

[1] C. Chevalley, Theory of Lie groups, Princeton University Press, Princeton, 1946.
[2] P. Graham \& J. Ledger, s-regular manifolds, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 133-144.
[3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
[4] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
[5] A. Ledger, Espace de Riemann symetriques généralises, C. R. Acad. Sci. Paris 264 (1967) 947-948.
[6] A. Ledger \& M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry 2 (1968) 451-459.
[7] K. Nomizu, Invariant affine connections in homogeneous spaces, Amer. J. Math. 76 (1954) 33-65.
[8] J. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
[9] J. Wolf \& A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, II, J. Differential Geometry 2 (1968) 77-114, 115-159.

University of Patras, Greece
University of Liverpool, England

