RIEMANNIAN S-MANIFOLDS

GR. TSAGAS & A. LEDGER

1. Let *M* be an *n*-dimensional connected Riemannian manifold, and I(M) the group of isometries of *M*. If there is a map $s: M \to I(M)$ such that for every $x \in M$ the image $s(x) = s_x$ is an isometry of *M* having *x* as an isolated fixed point, then the isometry s_x is called Riemannian symmetry at *x* or simply symmetry at *x*. The Riemannian manifold *M* with this property is called Riemannian *s*-manifold. If there is a positive integer *k* such that $s_x^k = \text{id.}, \forall x \in M$, then *M* is called a Riemannian *s*-manifold of order *k* or simply *k*-symmetric Riemannian space. The usual Riemannian symmetric spaces are Riemannian *s*-manifolds of order 2.

The aim of the present paper is to prove that every Riemannian s-manifold M can carry another s'-structure $\{s'_x : x \in M\}$ such that M with $\{s'_x : x \in M\}$ becomes a k-symmetric Riemannian space. The decomposition of a simply connected Riemannian s-manifold into simply connected irreducible Riemannian s-manifolds is also studied. Finally, the problem of Riemannian s-manifolds is reduced to the study of special Lie algebras.

2. We do not assume that the map $s: M \to I(M)$ is continuous. The point $x \in M$ for this symmetry s_x is an isolated fixed point if and only if the orthogonal transformation $(s_x)_{*x}$ on the tangent space $T_x(M)$ of M at x does not have eigenvalue 1.

The following Theorem in known [6, p. 451].

Theorem 2.1. The group of all isometries I(M) on a Riemannian s-manifold M acts transitively on it.

From this theorem we conclude that the Riemannian s-manfold M is a homogeneous space, which is M = I(M)/H, where H is the isotropy subgroup of I(M) at any arbitrary point of M.

It can be easily proved, applying the same method as in [2], that the subgroup G of I(M) generated by the symmetries of M acts transitively on M. Therefore we can state the theorem.

Theorem 2.2. Let M be a Riemannian s-manifold. Then M = G/H, where G is the closed subgroup of all symmetries of M, and H is the isotropy subgroup of G at any point of M.

Let s_x be the symmetry at the point $x \in M$. We can consider $(ds_x)_x$ as an element of the orthogonal group O(n). Let f be a real-valued function on O(n) defined by

. .

Received July 1, 1975 and, in revised form, June 28, 1976.

 $f: O(n) \to \mathbf{R}$, $f: (ds_x)_x = A \to f(A) = |A - I| \in \mathbf{R}$,

where *I* is the identity matrix. The function *f* is continuous. Since $|(ds_x)_{x-1}| \neq 0$, we conclude that there exists a neighborhood of $(ds_x)_x$ whose all elements do not have eigenvalue 1 and hence a neighborhood of s_x containing only symmetries of *M*.

From the above we have the theorem.

Theorem 2.3. Let M = G/H be a Riemannian s-manifold. If $s \in G$, then there is a neighborhood of s consisting only of symmetries of M.

Now we prove

Theorem 2.4. Let M be a connected Riemannian s-manifold. There exists another s'-structure $\{s'_x : x \in M\}$ on M such that M with $\{s'_x : x \in M\}$ becomes a k-symmetric Riemannian space.

It is known that M = G/H, where G is the group of isometries. H is called the origin of M and is denoted by 0. Let s_0 be the symmetry of M at 0. The following relation holds: $(ds_0)_0 = ad(s_0)$, where ad is the adjoint representation.

We assume that s_o does not have finite order. It is possible to choose another symmetry s'_o of finite order.

Let H^0 be the identity component of H. If $s_o \in H^0$, then there is a maximal torus T in H^0 , passing through s_o . Therefore ad (s_o) can be written as a matrix in the form

$$\operatorname{ad}(s_0) = \begin{pmatrix} \cos 2\pi\vartheta_1(t) & \sin 2\pi\vartheta_1(t) \\ -\sin 2\pi\vartheta_1(t) & \cos 2\pi\vartheta_1(t) \\ & \ddots \\ & & \ddots \\ & & \cos 2\pi\vartheta_1(t) & \sin 2\pi\vartheta_1(t) \\ & & -\sin 2\pi\vartheta_1(t) & \cos 2\pi\vartheta_1(t) \end{pmatrix},$$

where $\vartheta_1, \dots, \vartheta_l$ are homomorphisms of T into $S^1 = \mathbf{R}/\mathbf{Z}$ which induce real linear forms $a_i: L(T) \to \mathbf{R}$, where $a_i, i = 1, \dots, l$, are called the roots of H with respect to the torus T. From the above we obtain the following commutative diagram

where m is the rank of H, and $b_{j_1j_2} \in \mathbb{Z}$, $1 \leq j_1 \leq l, 1 \leq j_2 \leq m$.

We assume that the symmetry s_0 has infinite order, which means that at least one of the values ϑ_i , $1 \le i \le l$, is an irrational number. From this we conclude that at least one of x_j , $1 \le j \le m$, is irrational. Therefore some, or all of the *m*-tuple numbers (x_1, \dots, x_m) , to which the symmetry s_0 corresponds, are irrational. We substitute these irrational numbers by rational ones as close to them as we wish. Hence we obtain another symmetry s'_0 , which has finite order.

Now we assume that $s_0 \notin H^0$. Therefore there exists an integer λ such that $s_0^{\lambda} \in H^0$. Since s_0 has infinite order, equally so does s_0^{λ} . Let T_1 be the maximal torus in H^0 passing through s_0^{λ} .

The symmetry s_0 can be considered as an orthogonal matrix. Therefore another orthogonal matrix β exists such that

 $\beta s_{o} \beta^{-1} = \begin{pmatrix} \cos 2\pi \tau_{1} & \sin 2\pi \tau_{1} \\ -\sin 2\pi \tau_{1} & \cos 2\pi \tau_{1} \\ & & \ddots \\ & & & \cos 2\pi \tau_{m} & \sin 2\pi \tau_{m} \\ & & & -\sin 2\pi \tau_{m} & \cos 2\pi \tau_{m} \end{pmatrix},$

where at least one of the numbers τ_1, \dots, τ_m is irrational. From the above we obtain

$$\beta s_{o}^{\lambda} \beta^{-1} = \begin{pmatrix} \cos 2\pi \lambda \tau_{1} & \sin 2\pi \lambda \tau_{1} \\ -\sin 2\pi \lambda \tau_{1} & \cos 2\pi \lambda \tau_{1} \\ & & \ddots \\ & & & \cos 2\pi \lambda \tau_{m} & \sin 2\pi \lambda \tau_{m} \\ & & & -\sin 2\pi \lambda \tau_{m} & \cos 2\pi \lambda \tau_{m} \end{pmatrix}$$

Since $s_0^{\lambda} \in T_1$, there is another base such that s_0^{λ} can be written

$$s_{O}^{\lambda} = \begin{cases} \cos 2\pi\lambda \tau_{1}^{\prime} & \sin 2\pi\lambda \tau_{1}^{\prime} \\ -\sin 2\pi\lambda \tau_{1}^{\prime} & \cos 2\pi\lambda \tau_{1}^{\prime} \\ & & \ddots \\ & & & \cos 2\pi\lambda \tau_{m}^{\prime} & \sin 2\pi\lambda \tau_{m}^{\prime} \\ & & & -\sin 2\pi\lambda \tau_{m}^{\prime} & \cos 2\pi\lambda \tau_{m}^{\prime} \end{cases}$$

where at least two of the numbers $(1, \lambda \tau'_1, \dots, \lambda \tau'_m)$ are linearly independent of the field of rational numbers. Therefore s_0^λ generates at least one-dimensional torus $T'_1 \subseteq T_1$ and closure $\{s_0^{\lambda m}, m \ge n_0\} = T'_1$ and the elements of T'_1 commute with s_0 .

From the above we conclude that there exists an element $\alpha \in T_1$ which can be written

,

$$\alpha = \begin{bmatrix} \cos 2\pi (p'_1 - \tau'_1) & \sin 2\pi (p'_1 - \tau'_1) \\ -\sin 2\pi (p'_1 - \tau'_1) & \cos 2\pi (p'_1 - \tau'_1) \\ & & \ddots \\ & & & \ddots \\ & & & \cos 2\pi (p'_m - \tau'_m) & \sin 2\pi (p'_m - \tau'_m) \\ -\sin 2\pi (p'_m - \tau'_m) & \cos 2\pi (p'_m - \tau'_m) \end{bmatrix},$$

where p'_1, \dots, p'_m are rational numbers close to τ'_1, \dots, τ'_m , as we wish, respectively, and $p'_i = \tau'_i$, if τ'_i is rational.

The same element α with respect to the old base can be written

$$\beta \alpha \beta^{-1} = \begin{pmatrix} \cos 2\pi (p_1 - \tau_1) & \sin 2\pi (p_1 - \tau_1) \\ -\sin 2\pi (p_1 - \tau_1) & \cos 2\pi (p_1 - \tau_1) \\ & \ddots \\ & & \ddots \\ & & & \cos 2\pi (p_m - \tau_m) & \sin 2\pi (p_m - \tau_m) \\ -\sin 2\pi (p_m - \tau_m) & \cos 2\pi (p_m - \tau_m) \end{pmatrix}$$

Since α and s_0 commute, we obtain

$$\beta \alpha s_0 \beta^{-1} = \beta \alpha \beta^{-1} \beta s_0 \beta^{-1} = \begin{bmatrix} \cos 2\pi p_1 & \sin 2\pi p_1 \\ -\sin 2\pi p_1 & \cos 2\pi p_1 \\ & & \ddots \\ & & & \cos 2\pi p_m & \sin 2\pi p_m \\ & & & -\sin 2\pi p_m & \cos 2\pi p_m \end{bmatrix},$$

where p_i , $i = 1, \dots, m$, have the same meaning as p'_i .

Therefore the symmetry αs_o belongs to the same component of H as the given symmetry s_o , having finite order.

Proposition 2.5. Let M = G/H be a compact Riemannian s-manifold. The symmetry s_0 belongs to the identity component H^0 of H if and only if rank G = rank H.

We assume that the symmetry s_o belongs to H^0 . From s_o we obtain an automorphism A on G:

$$A: G \to G$$
, $A: v \to A(v) = s_0 v s_0^{-1}$,

and an automorphism α on the Lie algebra g of G:

$$\alpha \colon g = h + m \to g = h + m , \quad \alpha \colon X \to \alpha(X) \in h , \qquad \forall X \in h .$$

Let T_1, T_2 be the maximal tori of H and G, respectively, through the element s_0 . Since $T_1 \subseteq T_2$ and all the elements of T_2 commute with s_0 , so do the elements of T_1 . Since the vectors belonging to the tangent space of T_2 at the identity element are invariant by α , we conclude that $T_2 \subseteq H$ and therefore rank $G = \operatorname{rank} H$.

The inverse is an immediate consequence of the assumption rank $G = \operatorname{rank} H$; then we have that $s_0 \in H^0$.

Corollary 2.6. Let M = G/H be a Riemannian homogeneous space such that H is the largest isotropy subgroup of G at one point of M. If H is connected and dim H is odd, then M can never be a Riemannian s-manifold.

If we assume that M is a Riemannian s-manifold, then $s_o \in H$ and there is always a maximal torus T in H through s_o . However since dim M is odd we obtain ad (s_o) having an eigenvalue 1. So we reach to a contradiction because ad (s_o) never has an eigenvalue 1. Therefore M can not be a Riemannian smanifold.

Remark 2.7. From the above we conclude that all Riemannian *s*-manifolds form a proper subset of all Riemannian homogeneous spaces.

3. Let M = G/H be a simply connected homogeneous space. It is known that M is isometric to the direct product $M_0 \times M_1 \times \cdots \times M_r$ and that the identity component $I^0(M)$ of the group of isometries I(M) is naturally isomorphic to the group $I^0(M_0) \times I^0(M_1) \times \cdots \times I^0(M_r)$.

We shall prove that each of the homogeneous spaces M_0, M_1, \dots, M_r is a Riemannian s-manifold. To this aim we distinguish two cases.

(i) If $s \in I^0(M)$, then we have

$$s: M = M_0 \times M_1 \times \cdots \times M_r \to M = M_0 \times M_1 \times \cdots \times M_r,$$

$$s: 0 = (0_0, 0_1, \dots, 0_r) \to 0 = (0_0, 0_1, \dots, 0_r),$$

$$s: x = (x_0, x_1, \dots, x_r) \to s(x) = (y_0, y_1, \dots, y_r),$$

where $y_i = s_i(x_i) = p_i(s(x))$, p_i is the natural projection of M into M_i , and s_i is an isometry of M_i [4, p. 241].

By considering the de Rham decomposition theorem for the tangent space of M at 0, we have

$$(3.1) T_0(M) = T_0^{(0)}(M) \oplus T_0^{(1)}(M) \oplus \cdots \oplus T_0^{(r)}(M)$$

Since $s \in I^0(M)$, we have ad $(s)(T_0^{(i)}(M)) = T_0^{(i)}(M)$, where $i = 0, 1, \dots, r$ or ad $(s_i)(T_0^{(i)}(M)) = T_0^{(i)}(M) = ad(s)(T_0^{i}(M))$, [4, p. 240]. We also have s_i : $M_i \to M_i, s_i : 0_i \to 0_i$ and hence s_i is symmetry at 0_i for the manifold M_i . Therefore $M_i, i = 0, 1, \dots, r$, is a Riemannian s-manifold. The order of s is the least common multiple of the integers $\{k_0, k_1, \dots, k_r\}$ where $k_i, i = 0, 1, \dots, r$, is the order of s_i .

(ii) If $s \notin I^0(M)$, then we obtain an orbit $(M_i^1, M_i^2, \dots, M_i^r)$ of the permutation group defined by s, and consider the product

$$M_{(i)} = M_i^1 imes M_i^2 imes \cdots imes M_i^{r_i}$$
.

If $r_1 > 1$, then we can order $M_i^1, M_i^2, \dots, M_i^{r_i}$ such that s maps M_i^2 isometrical-

ly onto $M_i^{\lambda+1}$, where $1 \le \lambda \le r_i - 1$, and $M_i^{r_i}$ isometrically onto M_i^{λ} . This can always be done after some identifications. Therefore M be written

$$M = M_0 \times M_{\scriptscriptstyle (1)} \times \cdots \times M_{\scriptscriptstyle (\mu)}$$
,

where M_0 is the Euclidean part of M and $M_{(i)}$, $i = 1, \dots, \mu$, have the above meaning.

With the same technique, as in case (i), we can prove that s can be written $s = (\psi_0, \psi_1, \dots, \psi_{\mu})$, where $\psi_i, i = 1, \dots, \mu$, is a symmetry on the manifold $M_{(i)}$ having also the following properties

$$\psi_i: M_i^1 \times M_i^2 \times \cdots \times M_i^{r_i} \to M_i^1 \times M_i^2 \times \cdots \times M_i^{r_i}$$
,

(3.2)
$$\psi_i: (0_1, 0_2, \cdots, 0_{r_i}) \to (0_1, 0_2, \cdots, 0_{r_i}),$$

(3.3)
$$\psi_i: (M_i^1 \times 0_2 \times \cdots \times 0_{r_i}) \to (0_1 \times M_i^2 \times \cdots \times 0_{r_i}) ,$$

(3.4)
$$\psi_i: (0_1 \times 0_2 \times \cdots \times 0_{r_i-2} \times M^{r_i-1} \times 0_{r_i}) \\ \rightarrow (0_1 \times 0_2 \times \cdots \times 0_{r_i-1} \times M_i^{r_i}),$$

$$(3.5) \quad \psi_i: (\mathbf{0}_1 \times \mathbf{0}_2 \times \cdots \times \mathbf{0}_{r_{i-1}} \times M_i^{r_i}) \to (M_i^1 \times \mathbf{0}_2 \times \cdots \times \mathbf{0}_{r_i}) \ .$$

We can identify the manifold M_i^1 with $M_i^2, \dots, M_i^{r_i}$ by virtue of the following mappings

$$f_v: M^1_i \rightarrow M^v_i$$
, $v = 2, \cdots, r_i$,

where $f_2 = p_i^{(2)} \circ \psi_i$, $f_3 = f_2 \circ p_i^{(3)} \circ \psi_i$, \cdots , $f_{r_i} = f_{r_i-1} \circ \cdots \circ f_2 \circ p_i^{(r_i)} \circ \psi_i$, and $p_i^{(2)}$, \cdots , $p_i^{(r_i)}$ are the natural projections of $M_{(i)}$ into M_i^2 , \cdots , $M_i^{r_i}$, respectively.

The mapping, defined by (3.5), can be considered as an isometry of $M_i^{r_i}$ onto M_i^1 after the following identification

$$f_1: M_i^1 \to M_i^1$$
, $f_1 = f_{r_i} \circ f_{r_i-1} \circ \cdots \circ f_2 \circ p_i^{(1)} \circ \psi_i$,

where $p_i^{(1)}$ is the natural projection of $M_{(i)}$ into M_i^1 . From the construction of f_1 , we conclude that f_1 has 0_1 as a fixed point,

Let $T_{0'}(M_{(i)})$ be the tangent space of $M_{(i)}$ at the point $0' = (0_1, 0_2, \dots, 0_{r_i})$. Then we have

$$T_{0'}(M_{(i)}) = T_{0'}^{(1)}(M_{(i)}) \oplus T_{0'}^{(2)}(M_{(i)}) \oplus \cdots \oplus T_{0'}^{(r_i)}(M_{(i)}) ,$$

and ad (ψ_i) has the properties:

ad
$$(\psi_i): T_{0'}^{\iota}(M_{(i)}) \to T_{0'}^{\iota+1}(M_{(i)}), \qquad \lambda = 1, \dots, r_i - 1,$$

ad $(\psi_i): T_{0'}^{r_i}(M_{(i)}) \to T_{0'}^{(1)}(M_{(i)}),$

from which we obtain ad $(\psi_i) = A_1 \times A_2 \times \cdots \times A_{r_i}$, where $A_j, j = 1, \cdots, r_i$, are defined as follows

$$\begin{aligned} A_{\mu} \colon T_{0'}^{\mu}(M_{(i)}) &\to T_{0'}^{\mu+1}(M_{(i)}) , \qquad \mu = 1, \cdots, r_{i} - 1 , \\ A_{r_{i}} \colon T_{0'}^{r_{i}}(M_{(i)}) &\to T_{0'}^{1}(M_{(i)}) . \end{aligned}$$

We assume that the mapping f_1 is not a symmetry for the point 0_1 of M_i^1 . Therefore there is a vector $u_1 \in T_{0'}^1(M_{(i)}) = T_{0_1}(M_{(i)}^1)$ which is invariant under $d(f_1)_{0_1} = \operatorname{ad}(f_1)$. From this vector we obtain the following sequence of vectors: $u_2 = \operatorname{ad}(f_2)(u_1) \in T_{0'}^2(M_{(i)}), \dots, u_{r_{i-1}} = \operatorname{ad}(f_{r_{i-1}})u_{r_{i-2}}) \in T_{0'}^{r_i-1}(M_{(i)}), u_{r_i} = \operatorname{ad}(f_{r_i})(u_{r_{i-1}}) \in T^{r_i}(M_{(i)}), \text{ ad}(f_1)(u_{r_i}) = u_1 \in T_{0'}^1(M_{(i)})$. Hence $\operatorname{ad}(\psi_i)$, by the form of a matrix, can be written

$$B = \begin{pmatrix} 0 & A_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & A_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & A_{r_i-2} & 0 \\ 0 & 0 & 0 & \cdots & 0 & A_{r_i-1} \\ A_{r_i} & 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

Let u be the vector of $T_{0'}(M_{(i)})$ with coordinates u_1, u_2, \dots, u_{r_i} . Then we have

$$(3.6) \quad Bu = \begin{pmatrix} 0 & A_1 & 0 & \cdots & 0 \\ 0 & A_2 & A_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots \\ 0 & 0 & 0 & \cdots & A_{r_i-1} \\ A_{r_i} & 0 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{r_i} \end{pmatrix} = \begin{pmatrix} A_{r_i}u_1 \\ A_1u_2 \\ \vdots \\ A_{r_i-1}u_{r_i} \end{pmatrix} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_{r_i} \end{pmatrix} = u .$$

From (3.6) we conclude that ad (ψ_i) leaves the vector u fixed, and therefore ψ_i is not a symmetry. But this is not true because ψ_i is a symmetry. Therefore f_1 is a symmetry.

The order of the k-symmetric Riemannian space M is the least common multiple of the orders k_0, k_1, \dots, k_{μ} of the manifolds $M_0, M_{(1)}, \dots, M_{(\mu)}$, respectively. Each order $k_i, i = 0, 1, \dots, \mu$, has the form $r_i q$, where q is the least common multiple of (rank $(A_1), \dots, \operatorname{rank}(A_{r_i})$). Hence we have

Theorem 3.1. Let M be a simply connected Riemannian s-manifold. This manifold splits into the product manifolds $M_0 \times M_1 \times \cdots \times M_r$ each of which is a simply connected, irreducible Riemannian s-manifold.

4. Let M = G/H be a k-symmetric Riemannian space, and s_0 the sym-

metry of M at its origin 0. From this symmetry s_0 we obtain an automorphism A on G defined by

$$A: G \to G$$
, $A: v \to A(v) = s_0 v s_0^{-1}$.

Proposition 4.1. Let M = G/H be a k-symmetric Riemannian space. Then the automorphism A on G has order k and preserves the isotropy subgroup H.

From the definition of A we have

$$\begin{aligned} A: G \to G , \qquad A: v \to A(v) &= s_0 v s_0^{-1} , \\ A: s_0 v s_0^{-1} \to A(s_0 v s_0^{-1}) &= s_0 s_0 v s_0^{-1} s_0^{-1} = s_0^2 v (s_0^{-1})^2 , \\ A: s_0^{k-1} v (s_0^{-1})^{k-1} \to A(s_0^{k-1} v (s_0^{-1})^{k-1}) \to s_0^k v (s_0^{-1})^k = v . \end{aligned}$$

Thus we conclude that $A^k = \text{id.}$, that is, A has order k. If $\mu \in H$, then we obtain $A(\mu) = s_0 \mu s_0^{-1}$. It is known that $s_0 : M \to M$, $\mu : M \to M$, $s_0^{-1} : M \to M$, $s_0 : 0 \to s_0(O) = 0$, $\mu : 0 \to \mu(0) = 0$, $s_0^{-1} : O \to s_0^{-1}(O) = 0$, from which we obtain $s_0 \mu s_0^{-1} \in H$, that is, A preserves H.

Definition 4.2. The triplet (G, H, A) is called a k-symmetric Lie group, where G is a Lie group, H is a closed subgroup of G, and A is an automorphism on G of order k with the property $A(H) \subseteq H$.

Let M = G/H be a k-symmetric Riemannian space. We consider the Lie algebras g, h of G and H, respectively. Then we have

$$g=h+m$$
,

where *m* can be identified with the tangent space $T_0(M)$ of *M* at its origin 0. From s_0 we can also obtain an automorphism α on *g* defined as follows:

$$\alpha: g = h + m \to g = h + m$$
, $\alpha: X \to \alpha(X) = \operatorname{Ad}(s_0)X$,

where Ad $(s_0) = ad_*(s_0)$. The following is also known:

(4.1)
$$\exp : g \to G , \qquad \exp : X \to \exp X ,$$
$$\exp \{\operatorname{Ad}(s_0)X\} = s_0 \exp X s_0^{-1} .$$

Proposition 4.3. Let M = G/H be a k-symmetric Riemannian space, α the automorphism on g = h + m obtained by s_0 . Then h is preserved by α , which has order k.

If $X \in h$, then $\exp X = \lambda \in H$. Since $\lambda \in H$, we have $s_0 \lambda s_0^{-1} \in H$, which implies $s_0 \exp X s_0^{-1} \in H$. From this and (4.1) we obtain

$$\exp \left\{ \operatorname{Ad} \left(s_0 \right)(X) \right\} = s_0 \exp X s_0^{-1} \in H ,$$

340

which gives Ad $(s_0)(X) \in h$. Therefore h is preserved by $\alpha = \text{Ad}(s_0)$. From the definition of α and formula (4.1) we have

$$\begin{aligned} \alpha : g \to g , \quad \alpha : X \to \alpha(X) &= \alpha(X) = \operatorname{Ad}(s_0)(X) ,\\ \exp \left\{ \operatorname{Ad}(s_0)(X) \right\} &= s_0 \exp X s_0^{-1} ,\\ \alpha : \operatorname{Ad}(s_0)(X) \to \operatorname{Ad}(s_0) \left\{ \operatorname{Ad}(s_0)(X) \right\} &= \operatorname{Ad}^2(s_0)X ,\\ \exp \left\{ \operatorname{Ad}^2(s_0)(X) \right\} &= s_0 \left\{ \exp \left((\operatorname{Ad}(s_0))(X) \right\} s_0^{-1} \\ &= s_0^2 \exp X(s_0^{-1})^2 , \end{aligned}$$

which imply

$$\exp \{ \mathrm{Ad}^{k} (s_{0})(X) \} = s_{0}^{k} \exp X(s_{0}^{-1})^{k} ,$$

showing that $\alpha = \operatorname{Ad}(s_0)$ has order k.

Definition 4.4. The triplet (g, h, α) is called a k-symmetric Lie algebra, where g is a Lie algebra, h is a Lie subalgebra of g, and α is an automorphism on g of order k with the property $\alpha(h) \subseteq h$.

Let M = G/H be a k-symmetric Riemannian space. If g and h are the Lie algebras of G and H, respectively, then we have

$$g = h + m$$
, $\alpha(h) \subseteq h$,

where α is the automorphism on g of order k, and m = g/h. It is known that the Riemannian metric \overline{g} on M is G-invariant, which gives an Ad (H)-invariant nondegenerate symmetric bilinear form B on m = g/h defined by

$$B(X, Y) = \overline{g}(X, Y) , \qquad X, Y \in g ,$$

where \overline{X} , \overline{Y} are the elements of g/h represented by X, Y, respectively.

From the above we conclude that given a k-symmetric Riemannian space we then have a k-symmetric Lie group (G, H, A), a k-symmetric Lie algebra (g, h, α) , and an Ad (H)-invariant nondegenerate symmetric bilinear form on m = g/h.

Definition 4.5. Let M = G/H be a k-symmetric Riemannian space. If the symmetry s_0 commutes with all the elements of H, then M is called a regular k-symmetric Riemannian space or regular Riemannian s-manifold of order k.

If a k-symmetric Riemannian manifold M = G/H is regular, then the automorphism A on G preserves the subgroup H as pointwise so that A(v) = v, $\forall v \in H$. The same is true of the automorphism α on the Lie algebra g of G which preserves the Lie algebra h of H pointwise so that $\alpha(X) = X$, $\forall X \in h$.

The triplets (G, H, A) and (g, h, α) , which are obtained by a regular k-symmetric Riemannian space, are called a regular k-symmetric Lie group and a regular k-symmetric Lie algebra, respectively.

Theorem 4.6. Let M = G/H be a regular Riemannian s-manifold. Then M is a reductive homogeneous space.

Let g and h be the Lie algebras of G and H respectively. Then we have g = h + m, where m can be identified with the tangent space of M at its origin.

If ad $(H)m \subseteq m$, then M is a reductive homogenous space. We assume that there exist $X \in m$ and $\beta \in H$ such that ad $(\beta)(X) = Y \in h$. Since ad $(\beta) \circ$ ad (s_0) = ad $(s_0) \circ$ ad (β) , we have ad $(\beta) \circ$ ad $(s_0)(X) =$ ad $(s_0) \circ$ ad $(\beta)(X)$, which implies ad $(\beta)(Z) = Y$, where Z = ad $(s_0)(X) \in m$. From ad^k $(s_0)(X) = X$ and the fact that ad (β) is an automorphism, we conclude that Z = X and hence X = ad $(s_0)X$ which is impossible because s_0 is a symmetry. Hence we have reached a contradiction to our assumption. This implies ad $(\beta)(m) \subseteq m$.

Theorem 4.7. Let (G, H, A) be a regular k-symmetric Lie group. Then there is a Riemannian metric on the homogeneous space M = G/H, which makes M a regular k-symmetric Riemannian space.

First, we shall construct for each point P of M = G/H a diffeomorphism s_P of order k on M, having P as an isolated fixed point. For the origin 0 of M we have the diffeomorphism s_0 defined as follows:

$$s_0: M = G/H \rightarrow M = G/H$$
, $s_0: vH \rightarrow s_0(vH) = A(v)H$.

Let v(O) be a fixed point of s_0 , where $v \in G$. Then $A(v) \in vH$. By putting $\mu = v^{-1}A(v) \in H$, since $v \in H$ we have $\mu^2 = \mu A(\mu) = v^{-1}A(v)A(v^{-1})A^2(v)$ and therefore $\mu^2 = v^{-1}A^2(v)$. But $\mu^2 \in H$ implies $A(\mu^2) = \mu^2$. Thus $\mu^2 = A(v^{-1})A(v^2)$. Similarly, for r < k we obtain $\mu^r = A(v^{-1})A^{r+1}(v)$ and finally $\mu^k = v^{-1}A(v)A(v^{-1})A^k(v) = \text{id}$ since $A^k = \text{id}$. Thus μ^k is the identity element of H. Now assume that v is sufficiently close to the identity element so that μ is also near the identity element. Then μ itself must be the identity element, v lies in the identity component of G_A , where G_A is the setwise of G by A and hence in H. Thus v(O) = 0 proving our assertion that O is an isolated fixed point of s_0 .

For the point P = v(0) we obtain as a diffeomorphism $s_P = v \circ s_0 \circ v^{-1}$. Then s_P has P as an isolated fixed point, and its order is k. This is independent of the choice of v such that P = v(0).

The Lie algebra g of G can be written in the known decomposition

$$g = h + m$$
.

We consider a special ad (H)-invariant nondegenerate symmetric bilinear form B on m. From B we obtain a G-invariant Riemannian metric \overline{g} on M = G/H, which is given by the formula $B(X, Y) = \overline{g}_0(X, Y)$ for $X, Y \in m$. It can be easily obtained that s_P is a Riemannian symmetry of order k on M at P. Hence M = G/H is a regular k-symmetric Riemannian space.

342

References

- [1] C. Chevalley, Theory of Lie groups, Princeton University Press, Princeton, 1946.
- P. Graham & J. Ledger, s-regular manifolds, Differential Geometry, in honor of K. Yano, Kinokuniya, Tokyo, 1972, 133-144. [2]
- [3] S. Helgason, Differential geometry and symmetric spaces, Academic Press, New York, 1962.
- [4] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
- [5] A. Ledger, Espace de Riemann symetriques généralises, C. R. Acad. Sci. Paris **264** (1967) 947–948.
- [6] A. Ledger & M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry 2 (1968) 451-459. [7] K. Nomizu, Invariant affine connections in homogeneous spaces, Amer. J. Math.
- 76 (1954) 33-65.
- [8] J. Wolf, Spaces of constant curvature, McGraw-Hill, New York, 1967.
- [9] J. Wolf & A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, II, J. Differential Geometry 2 (1968) 77-114, 115-159.

UNIVERSITY OF PATRAS, GREECE UNIVERSITY OF LIVERPOOL, ENGLAND