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RIEMANNIAN S-MANIFOLDS

GR. TSAGAS & A. LEDGER

1. Let M be an rc-dimensional connected Riemannian manifold, and /(M)
the group of isometries of M. If there is a map s: M —> /(M) such that for
every x e M the image s(x) — sx is an isometry of M having x as an isolated
fixed point, then the isometry sx is called Riemannian symmetry at x or simply
symmetry at x. The Riemannian manifold M with this property is called
Riemannian s-manifold. If there is a positive integer k such that sk

x = id., yx
€ M, then M is called a Riemannian s-manifold of order k or simply k-sym-

metric Riemannian space. The usual Riemannian symmetric spaces are
Riemannian s-manifolds of order 2.

The aim of the present paper is to prove that every Riemannian s-manifold
M can carry another /-structure {sf

x: x e M] such that M with {s'x: x e M) be-
comes a ^-symmetric Riemannian space. The decomposition of a simply con-
nected Riemannian ^-manifold into simply connected irreducible Riemannian
s-manifolds is also studied. Finally, the problem of Riemannian ^-manifolds is
reduced to the study of special Lie algebras.

2. We do not assume that the map s : M —> /(M) is continuous. The point
x € M for this symmetry s x is an isolated fixed point if and only if the ortho-
gonal transformation (sx)*x on the tangent space TX(M) of M at x does not
have eigenvalue 1.

The following Theorem in known [6, p. 451].
Theorem 2.1. The group of all isometries I(M) on a Riemannian s-mani-

fold M acts transitively on it.
From this theorem we conclude that the Riemannian s-manfold M is a

homogeneous space, which is M = I(M)/H, where H is the isotropy subgroup
of /(M) at any arbitrary point of M.

It can be easily proved, applying the same method as in [2], that the sub-
group G of I(M) generated by the symmetries of M acts transitively on M.
Therefore we can state the theorem.

Theorem 2.2. LetM be a Riemannian s-manifold. Then M = G/H, where
G is the closed subgroup of all symmetries of M, and H is the isotropy sub-
group of G at any point of M.

Let sx be the symmetry at the point x e M. We can consider {dsx)x as an
element of the orthogonal group O(n). Let / be a real-valued function on O(n)
defined by
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/: O(n) - + R , f: ( d s x ) x = A-+ f(A) = \ A - I \ z R ,

where / is the identity matrix. The function / is continuous. Since \(dsx)x-1\ Φ
0, we conclude that there exists a neighborhood of (dsx)x whose all elements
do not have eigenvalue 1 and hence a neighborhood of sx containing only sym-
metries of M.

From the above we have the theorem.

Theorem 2.3. Let M = G/H be a Riemannian s-manifold. If s e G, then
there is a neighborhood of s consisting only of symmetries of M.

Now we prove

Theorem 2.4. Let M be a connected Riemannian s-manifold. There exists
another s!-structure {sx:xe M) on M such that M with {sx: xe M) becomes a
k-symmetric Riemannian space.

It is known that M = G/H, where G is the group of isometries. H is called
the origin of M and is denoted by 0. Let s0 be the symmetry of M at 0. The
following relation holds: (dso)o = ad (s0), where ad is the adjoint representa-
tion.

We assume that s0 does not have finite order. It is possible to choose another
symmetry s'o of finite order.

Let H° be the identity component of H. If s0 e H\ then there is a maximal
torus T in H\ passing through s0. Therefore ad (s0) can be written as a matrix
in the form

cos 2π$λ(i) sin 2π-9λ(t)

-sin 27^(0 cos

ad (s0) =

cos 2ττ#j(0 sin 2π&t(t)

- sin iπS^t) cos 2π-9t(t).

where 919 , 9t are homomorphisms of T into S1 = R/Z which induce real
linear forms at: L(T) -> R, where at, i = 1, , /, are called the roots of H
with respect to the torus T. From the above we obtain the following commuta-
tive diagram

L(Γ) • R

(Xi, --, Xm) at(x19 , xj = bixxλ + + bimxm

->Sι = R/T

(x19 - ,xj, modZ m 9i(xl9 , xm), modZ m

= biλxx + + bίmxm, modZ

where m is the rank of H, and bhh e Z, 1 < /Ί < /, 1 < /2 < m.
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We assume that the symmetry s0 has infinite order, which means that at
least one of the values 9U 1 < / < /, is an irrational number. From this we
conclude that at least one of xj9 1 < / < ra, is irrational. Therefore some, or
all of the ra-tuple numbers (x19 , xm), to which the symmetry s0 corresponds,
are irrational. We substitute these irrational numbers by rational ones as close
to them as we wish. Hence we obtain another symmetry s'O9 which has finite
order.

Now we assume that s0 $ H°. Therefore there exists an integer λ such that
SQ € H°. Since s0 has infinite order, equally so does s0. Let T1 be the maximal
torus in H° passing through sλ

0.
The symmetry s0 can be considered as an orthogonal matrix. Therefore

another orthogonal matrix β exists such that

COS Z7Γ'

sin 2πτ
r1 sin zπτλ

•j cos 2πτι

cos 2πz

— sin 2τrτ

• m s in 2TΓΓ

„ cos 2τrτ

where at least one of the numbers τ19

obtain

cos 2πλτι sin 2πλτ1

cos 2πλτί

, r 7
is irrational. From the above we

cos 2πλτ7)

— sin 2πλτm

sin 2πλτ7)

Since sλ

oeT19 there is another base such that sλ

0 can be written

cos 2πλτΊ sin 2πλτ[

— sin 2πλτ[ con 2πλτ[

So —

cos 2TΓ^Γ' sin 2πλτ'

where at least two of the numbers (1, λτ'l9 -,λτ'J are linearly independent
of the field of rational numbers. Therefore s0 generates at least one-dimensional
torus Tί c Tλ and closure {so

m, m>nQ} = T[ and the elements of T[ commute
with s0.

From the above we conclude that there exists an element a^T1 which can
be written



cos 2τr(/?m - r w ) sin 2π(pm - τ m )

- s i n 2?r(^m - r J cos 2π(pm - r m )J
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cos 2π(p[ — τΐ) sin 2π{p[ — τ[)

— sin 2π(pi — τ[) cos 2π(p[ — τ[)

cos 2π(p'm - τ'J sin 2π(p'm - τ'J

— sin 2π(p'm — τ'J cos 2π(p'm — τ j .

where pi, . ., p'n are rational numbers close to τί, , τ'm, as we wish, respec-
tively, and pi = τ , if τ is rational.

The same element a with respect to the old base can be written

cos 2π(px — ΓJ sin 2π(p1 — Tι)

- s i n 2π{px - τλ) cos 2π(px - Γ l )

Since a and j 0 commute, we obtain

cos 2πpλ sin

— sin 2πp1 cos

cos 2πpm sin 2πp

— sin 2πpm cos 2πpm.

where pί9 i = 1, , m, have the same meaning as p[.
Therefore the symmetry as0 belongs to the same component of H as the

given symmetry s0, having finite order.
Proposition 2 5. Let M = G/H be a compact Riemannian s-manifold. The

symmetry s0 belongs to the identity component H° of H if and only if rank G
= rank H.

We assume that the symmetry s0 belongs to H°. From s0 we obtain an auto-
morphism A on G:

A: G —> G , A : v -* A(v) = SOVSQ1 ,

and an automorphism a on the Lie algebra g of G :

oc\ g — h -\- m —> g — h -\- m , oc\ X —>• oc(X) € A , yX € A .

Let TΊ, T2 be the maximal tori of # and G, respectively, through the ele-
ment s0. Since Tλ c : T2 and all the elements of T2 commute with s0, so do the
elements of 7\. Since the vectors belonging to the tangent space of T2 at the
identity element are invariant by a, we conclude that T2ςzH and therefore
rank G = rank H.
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The inverse is an immediate consequence of the assumption rank G =
rank H then we have that s0 e H°.

Corollary 2.6. Let M = G/H be a Rίemannian homogeneous space such
that H is the largest ίsotropy subgroup of G at one point of M. If H is con-
nected and dim H is odd, then M can never be a Riemannian s-manifold.

If we assume that M is a Riemannian s-manifold, then s0 e H and there is
always a maximal torus T in H through s0. However since dimM is odd we
obtain ad (s0) having an eigenvalue 1. So we reach to a contradiction because
ad (s0) never has an eigenvalue 1. Therefore M can not be a Riemannian s-
manifold.

Remark 2.7. From the above we conclude that all Riemannian s-manifolds
form a proper subset of all Riemannian homogeneous spaces.

3. Let M = G/H be a simply connected homogeneous space. It is known
that M is isometric to the direct product Mo X Mx X X Mr and that the
identity component /°(M) of the group of isometries 7(M) is naturally isomor-
phic to the group 7°(M0) x 7°(Mi) X X P(Mr).

We shall prove that each of the homogeneous spaces Mo, M1 ? , Mr is a
Riemannian s-manifold. To this aim we distinguish two cases.

(i) If s € 7°(M), then we have

s: M = Mo X Mi X X Mr -> M = Mo x M1 X X Mr,

s:0 = (00?01? . . , 0 r ) — 0 = (00?01? .- ,0 r) ,

s: x = Oo, * ! , - • - , xr) -> ^W = Cyo> 3Ί> > Jr) ?

where y< = stix^ = Pi(s(x)), pt is the natural projection of M into Mt, and j t

is an isometry of Mi [4, p. 241].
By considering the de Rham decomposition theorem for the tangent space of

M at 0, we have

(3.1) TIM) = n°KM) ® T£\M) Θ ® Tr}(M) .

Since s e 7°(M), we have ad (j)(Γ^(Aί)) = Γ^(Af), where i = 0,1, . , r
or ad (st)m*KM)) = T$\M) - ad (j)(ro(Λf)), [4, p. 240]. We also have ^ :
Mi -> M ί ? ^ : 0̂  —> 0̂  and hence ^ is symmetry at 0̂  for the manifold M 4.
Therefore Mu i = 0, 1, , r, is a Riemannian s-manifold. The order of s is
the least common multiple of the integers {k0, ku , kr) where kί9 / = 0,1,
• , r, is the order of st.

(ii) If s $ 7°(M), then we obtain an orbit (MJ, MJ, , M[) of the permuta-
tion group defined by s, and consider the product

M{i) = MJ x AfJ x . . . X Ml* .

If rx > 1, then we can order M], M\, , M[ i such that s maps M isometrical-
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ly onto M\+1, where 1 < λ < rt — 1, and Ml* isometrically onto M\. This can
always be done after some identifications. Therefore M be written

M = M o x M ( 1 ) x . . . x M (μ) 9

where Mo is the Euclidean part of M and Λf(ί), / = 1, , μ, have the above
meaning.

With the same technique, as in case (i), we can prove that s can be written
s = (Ψo> Ψi> * J ΨΛ where ψ t , / = 1, , μ, is a symmetry on the manifold
M{ί) having also the following properties

ψ*: M\ x Af| X . . . x Afί* -• Af J x AfJ x X Af J* ,

(3.2) ψ, : (01? 02, , 0 r i) -* (01? 02, , 0r<) ,

(3.3) ψ f : (Af} X 02 X . . . x 0r<) - (0, X MJ x . . . x 0r<) ,

Ψi: (Ox X 02 x x 0 r i_2 x M^" 1 x 0 r i)

-^ (0x X 02 x . . . x 0,^ ! x Ml*) ,

(3.5) ψί:(0ιχ02χ . . . x 0 ^ X Mγ) -> (ikR x 02 x . . . x 0r<) .

We can identify the manifold M\ with M*i9 , Ml* by virtue of the follow-
ing mappings

/„: M] -> Ml , v = 2, , r4 ,

where /2 = p<2> o ψ ί ? /3 = /2 o p™ o ψi9 . . ., /r< = / r < - 1 o . . . o /2 o pf ̂  o ψ i ? and

PΪ\ '"9 Pίri) are the natural projections of M ω into M\9 , M[% respective-

ly.
The mapping, defined by (3.5), can be considered as an isometry of Ml* onto

M\ after the following identification

fx: M]->M], U = ίu°1u-i° * * * °/2°Pί1)oΨi ?

where p ^ is the natural projection of Λf(ί) into Af}. From the construction of
f19 we conclude that fλ has 0i as a fixed point,

Let Γ0/(Af(<)) be the tangent space of Mw at the point 0' = (01? 02, - , 0 r ΐ).
Then we have

) Θ Γ^(M(i)) Θ Θ n

and ad (ψ J has the properties:
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ad (ψ 4 ): Tr

Qί(M{i)) -> T$\M{i)) ,

from which we obtain ad (ψ4) = Λ X ^ X X ^r*, where Aj9 j = 1, ,

r i ? are defined as follows

Aμ: μ = 1, ,r4 — 1 ,

0
0

0

0

Au

A1

0

0

0

0

0 ••
A2 ••

0 ••

0 ••

0 ••

• 0
• 0

• Au_2

• 6
• 0

0
0

0

Au

0

We assume that the mapping fx is not a symmetry for the point 0λ of M}.
Therefore there is a vector wx e TJ,(M(i)) = ΓOl(M^) which is invariant under
d(f1)Ol = ad (/i). From this vector we obtain the following sequence of vectors :
u2 = adC/gXwx) € T0

2 '(^ω)? •••» «rt-i = ad (/,._>,._2) e T j r W u )), «r< =
a d ί g ^ . ^ Γ K M ^ ) , ad(/1)(iιr<) = « 1 6^(Af ( 4 ) ). Hence adίψ,), by the
form of a matrix, can be written

B =

Let u be the vector of Γ0,(M(ί)) with coordinates ul9 u2, , ur.. Then we
have

= u

From (3.6) we conclude that ad (ψ^) leaves the vector u fixed, and there-
fore ψ; is not a symmetry. But this is not true because ψ ί is a symmetry.
Therefore fλ is a symmetry.

The order of the ^-symmetric Riemannian space M is the least common
multiple of the orders k09k19 - ,kμ of the manifolds Mo,M ( 1 ), ,M(jU),
respectively. Each order k^ i = 0, 1, , μ, has the form rtq, where q is the
least common multiple of (rank 04 x), , rank (Art)). Hence we have

Theorem 3.1. Let M be a simply connected Riemannian s-manifold. This
manifold splits into the product manifolds Mo X Mι X X Mr each of which
is a simply connected, irreducible Riemannian s-manifold.

4. Let M = G/H be a ^-symmetric Riemannian space, and s0 the sym-

(3 .6) Bu =

r 0
0

0

A,
A2

0

0

o .

.
0

0

.. o

.. o

A

• • 0

U2

=

A..U,

Axu2

=

u2
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metry of M at its origin 0. From this symmetry s0 we obtain an automorphism
A on G defined by

A: G —> G , A : v —•> ^4(v) = s o ^ o x .

Proposition 4.1. Lei M = G/H be a k-symmetric Riemannian space.
Then the automorphism A on G has order k and preserves the ίsotropy sub-
group H.

From the definition of A we have

A: G -* G , A : v

Thus we conclude that Ak = id., that is, A has order A:. If μ e //, then we
obtain Λl(μ) = SoμSo1. It is known that s0: M-> M, μ: M-+M, SQ1: M-*M,
so:0^ s0(O) = 0, μ: 0 -> μ(0) = 0, ^ : O -^ j^'ίO) = 0, from which we
obtain soμszx € H, that is, A preserves H.

Definition 4.2. The triplet (G, H, A) is called a ^-symmetric Lie group,
where G is a Lie group, / / is a closed subgroup of G, and 4̂ is an automor-
phism on G of order k with the property A(H) c # .

Let M = G/H be a λ -symmetric Riemannian space. We consider the Lie
algebras g, h of G and # , respectively. Then we have

g = h + m ,

where m can be identified with the tangent space T0(M) of M at its origin 0.
From s0 we can also obtain an automorphism a on g defined as follows:

a : g = z h + m^g = h + m, a: X -> α(Z) = Ad (so)X ,

where Ad (s0) = ad* 0 0 ) . The following is also known:

exp : g -^G , exp: X —> exp X ,

(4.1) exp {Ad (so)X) = ^0 exp Z^^ 1

Proposition 4.3. Z>ί M = G/H be a k-symmetric Riemannian space, a
the automorphism on g = h + m obtained by s0. Then h is preserved by a,
which has order k.

If X e λ, then exp X = Λ 6 # . Since λ<zH,we have ^ ^ 1 € # , which im-
plies 5Ό exp XSQ1 € # . From this and (4.1) we obtain

exp {Ad (so)(X)} = s0 exp XSQ1 e H ,
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which gives Ad (so)(X) ε h. Therefore h is preserved by a = Ad (s0).
From the definition of a and formula (4.1) we have

a:g->g , α: Z -* ^(Z) - a(X) = Ad (so)(X) ,

exp {Ad (so)(X)} = s0 exp XSΌ1 ,

α: Ad (so)(X) - Ad (so){Ad ( J O ) W } = Ad2 (jo)Z ,

exp {Ad2 (so)(X)} = $o{eχP ((Ad (ΛI

O))(-X')}5O1 = ^oί̂ o e χ P Xsoλ}s

341

= 4
which imply

exp {Ad* (so)(X)} = s% exp Z^o1)^ ,

showing that a = Ad (j0) has order /:.
Definition 4.4. The triplet (g, h, a) is called a ^-symmetric Lie algebra,

where g is a Lie algebra, /z is a Lie subalgebra of g, and a is an automorphism
on g of order A; with the property a(h) C /z.

Let M = G/// be a Λ -symmetric Riemannian space. If g and /z are the Lie
algebras of G and H, respectively, then we have

g — h + m , α:(/ι) C /z ,

where a is the automorphism on g of order A:, and m = g/Λ. It is known that
the Riemannian metric g on M is G-invariant, which gives an Ad (/^-invari-
ant nondegenerate symmetric bilinear form B on m = g/h defined by

B(X, 7) = g(Z, Y) , Z J e g ,

where X, F are the elements of g/h represented by X, Y, respectively.
From the above we conclude that given a A -symmetric Riemannian space

we then have a λ -symmetric Lie group (G, H, A), a λ -symmetric Lie algebra
(g, h, α), and an Ad (#)-invariant nondegenerate symmetric bilinear form on
m = g/h.

Definition 4.5. Let M = G/H be a λ -symmetric Riemannian space. If the
symmetry s0 commutes with all the elements of H, then M is called a regular
λ -symmetric Riemannian space or regular Riemannian ^-manifold of order k.

If a ^-symmetric Riemannian manifold M = G/H is regular, then the auto-
morphism A onG preserves the subgroup H as pointwise so that A(v) = v,
yv e H. The same is true of the automorphism α on the Lie algebra g of G
which preserves the Lie algebra h of H pointwise so that α(X) — X, yX e h.

The triplets (G, H, A) and (g, h, α), which are obtained by a regular λ -sym-
metric Riemannian space, are called a regular λ -symmetric Lie group and a
regular λ -symmetric Lie algebra, respectively.
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Theorem 4.6. Let M = G/H be a regular Riemannίan s-manifold. Then
M is a reductive homogeneous space.

Let g and h be the Lie algebras of G and H respectively. Then we have
g = h + ra, where m can be identified with the tangent space of M at its ori-
gin.

If ad (H)m c; m, then M is a reductive homogenous space. We assume that
there exist X em and β e H such that ad (β)(X) = Y eh. Since ad (β) o ad (s0)
= ad Oo) o ad (/3), we have ad (β) o ad 00)(X) = ad 0 0) ° ad (β)(X), which im-
plies ad (β)(Z) = Y, where Z = ad (so)(X) e m. From ad* (so)(X) = X and
the fact that ad (β) is an automorphism, we conclude that Z = X and hence
X = ad CSΌ)^ which is impossible because ŝ  is a symmetry. Hence we have
reached a contradiction to our assumption. This implies ad (β)(m) CI m.

Theorem 4.7. Let (G,H,A) be a regular k-symmetric Lie group. Then
there is a Riemannίan metric on the homogeneous space M = G/H, which
makes M a regular k-symmetric Riemannian space.

First, we shall construct for each point P of M = G/H a diίϊeomorphism
sP of order k on M, having P as an isolated fixed point. For the origin 0 of
M we have the difϊeomorphism s0 defined as follows:

s0 : M = G/H -> M = G/H , so:vH-+ so{vH) = A(y)H .

Let τ (O) be a fixed point of sθ9 where v e G. Then v4O) evH. By putting
μ = v~ιA(v) e H, since u e H we have μ2 = /M(μ) = v " 1 ^ ^ ) ^ ^ " 1 ) ^ 2 ^ ) and
therefore μ2 = v~ιA\v). But μ2 e H implies A{μ2) = μ2. Thus μ2 =
^C^" 1 )^^ 2 ). Similarly, ίoτ r < k we obtain μr = A(v'1)Ar+1(v) and finally
μfc = v~1A(v)A(v~ι)Ak(v) = id since ^4fc = id. Thus μk is the identity ele-
ment of H. Now assume that v is sufficiently close to the identity element so
that μ is also near the identity element. Then μ itself must be the identity ele-
ment and therefore A(v) = v. Being invariant by A and near the identity ele-
ment, v lies in the identity component of GA, where GA is the setwise of G by
A and hence in H. Thus v(O) = 0 proving our assertion that O is an isolated
fixed point of s0.

For the point P = v(0) we obtain as a difϊeomorphism sP — vosoov~K
Then sP has P as an isolated fixed point, and its order is k. This is independ-
ent of the choice of v such that P = v(0).

The Lie algebra g of G can be written in the known decomposition

g = h + m .

We consider a special ad (^-invariant nondegenerate symmetric bilinear
form B on m. From B we obtain a G-invariant Riemannian metric g on M =
G/#, which is given by the formula B(X, Y) = go(X, Y) for X, Y e m. It can
be easily obtained that sP is a Riemannian symmetry of order k on M at P.
Hence M = G/H is a. regular ^-symmetric Riemannian space.
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