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THE HOMOLOGY OF SUBMANIFOLDS OF
COMPACT KAHLER MANIFOLDS

GERALD LEONARD GORDON

1. Introduction

In this article we study certain topological properties of submanifolds of
compact Kahler manifolds. Specifically, let i = X c Y be the inclusion of a
compact manifold X of complex dimension n into a compact Kahler manifold
of complex dimension n + q. Let / : Hp+2q(Y) -» HP(X) be the map given by
transverse intersection, where the coefficients are in K, a fixed field of charac-
teristic zero. Then we ask when do we have the decomposition HP(X) = Ker /*
0 I(Hp+2q(Y)) such that if p = n, each direct summand is nondegenerate with
respect to the intersection pairing. In cohomology this states that H*(X) ==
ί*Hp(Y) Θ RW+2(l-\Y - X), where R is the Leray-Norguet residue operator.
If n = 1, then a corollary of this result is that if Xx and X2 have this decom-
position in y, ix and i2 are the inclusions, and Ij is the intersections, then the
following diagram

H1+2q(Y) - ^

Hl(X2) ^H.OO

commutes when restricted to coimage lx Π coimage 72, i.e., to the set of
γ 6 Hι+2q(X) such that Ify) φ 0 for / = 1 and 2.

In this article we shall show for n = 1 and 2 that this decomposition exists
for p = n, as well as for submanifolds of complete intersections of CPN.
However, for p > 3 and any n > 2, q > 1 we shall give counterexamples.

This problem arose from questions about the local invariant cycle problem
cf. Griffiths [5, p. 249]. Namely, this decomposition for n = 1 = p is precisely
what one needs to prove the problem when one has 2 surfaces intersecting
in a double curve [5, p. 292]. In Gordon [4], it is shown that this decomposi-
tion for n = 1 = p is essentially what proves the local invariant problem for
Kahler surfaces. Furthermore, these counterexamples to the decomposition
allows us to construct projective varieties which cannot be embedded in a one-

Received February 24, 1975, and, in revised form, July 3, 1975. This work was

partially supported by NSF contract GP 38964A # 1 .



238 GERALD LEONARD GORDON

dimensional analytic deformation whose generic fibre is a nonsingular compact
Kahler manifold cf. [4]. In § 5 we pose the analogous question about schemes,
which should, if true, have applications to studying the monodromy for schemes,
over arbitrary algebraically closed fields. The author would like to thank the
referee for pointing out a mistake in the original proof of Corollary 3.2.

2. Definition of 4P(X, Y)

2.1. In this section Y will always denote a nonsingular connected, com-
pact Kahler manifold and X a nonsingular connected, compact submanifold
of complex dimension n, where the complex codimension of X in Y is q.
i: X (ZY will denote the inclusion map.

The Poincare dual class of 0 φ [X] e H2n(Y) will be denoted by Ωx <= H2q(Y),
where the coefficients are in K, a fixed field of characteristic zero. Then we
have a mapping

2.1.1. Definition. Let AP(X, Y) denote the proposition that

Ker {AΩZ: ff*(Y) -> #*+ 2*(Γ)} = Ker {/* : H*(Y) -> H*(X)}.

Let / : Hp+2q(Y) —> HP(X) denote the map given by transverse intersection
it is the vector space dual of the Thom-Gysin map of the normal bundle of X
in y .

2.2. Proposition.

(2.2.1) AP(X, Y) => ΉP(X) = Ker i# + I(Hp+2q(Y)) .

HP(X) = Ker i# Θ I(Hp+2q(Y)) ,
(2.2.2) AP(X, Y), A2n_p(X, Y)

Proof of (2.2.1). In cohomology, we have the following communative

diagram:

where Dw denotes Poincare duality in W, and /* is dual (as vector space) of
/. Thus applying Horn to the above diagram, where we identify HP(X) ^
(HP(X))* = Hom^ (HP(X),K) via integration, we get
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HJX)

- H2n-*(Y)

Hp+2q(Y)

HJX)
where Π Ωx is cup product. Then AJX, Y) implies that im ix = i m Π Ωx.

Thus, if a € HJX) with i^a Φ 0, then i^a = ΠΩx(β). But by the com-
munative diagram, i^I(β) = /*<*, hence 7(j8) — a e ker /*, i.e., a = γ + I(β)
for some γ € Ker i^,.

Proof of (2.2.2). Suppose we have AJX, Y) andA2n_JX, Y). If γp e #pOT
with γp = I(γp+2q), then by the above diagram /*(Dr(rp+2«)) = £>χ(rP) €
H2n-?(X), and A2n_JX,Y) implies that Λβx(Z> r(rP+2α)) ^ 0. But by the
first communative diagram in the proof of (2.2.1), we have ΛΩx(DY(γp+2q))
Φ0& i*γP Φ 0. Hence HJX) = Ker i* 01(H p + 2 q (Y)). By duality we have
the direct summand decomposition for H2n_JX).

The converse of (2.2.2) is clear.
2.3. Proposition. // X is a positive hypersurface of Y, then AJX, Y) is

true for all p.
This is an immediate consequence of the hard Lefschetz theorem.
2.3.1. The difficulty is that when one wants to work with problems as the

local invariant cycle problem, one wants to apply AJX, Y) when X is a
hypersurface which comes from a monoidal transform, and hence is very
negative.

3. Study of AJX, Y)

3.1. Proposition. Let P^ denote he primitive cohomology of HP(W C)
for any compact Kdhler manifold W. For i: X C Y, if z*P^ C Pq

x for all
q < p < n, then AJX, Y) is true.

Proof. We first prove AJX, Y) for complex coefficients. Consider the fol-
lowing diagram:

XX O <^- H2n~P(Y C)

• \l Homj

H2n^JX\ C)

U Homr •

*r
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where Horn is vector space duality via integration, and *w is the usual real
star operator on forms on a manifold W, which induces an isomorphism on
harmonic forms; *w is complex conjugation followed by *w. The • means
the diagram commutes where Homo Ww — *w for W compact follows from
the definition of *w and the fact that

ί aΛ β= ί a
Jw J Pw(β)

Furthermore Homx is natural in the sense that if 0 Φ ω € H2n~v{X) Π Im /*,
then i^(Άomx)-\ω) Φ 0. To see this, let ω = i*ω' and a = (Hom^-^ω).
Then

f ω' = ί i*(ω') = f ω = (Homx)-
1(ω)(α) = 1 .

Hence i*(oc) Φ 0, as it has nonzero periods.
The converse is also true in the sense that if a e H2n_p(X) with ί^a Φ 0,

then the projection of Homx (a) onto the subspace Im /* is nonzero.
Thus by the commutative diagram to show AP(X, Y) it suffices to show that

if i*ω φ 0, then Ωx(ω) Φ 0. Since /* respects (r, s) type, it suffices to con-
sider forms of pure type.

Suppose i*ω''p-'Φθ, for ωs^~s e HS^P'S(Y C). We must show that
i*DΣi*ωs'v~s Φ 0. By the above remark, this follows if we show that

HomJoDj/*a)S)i'" i € Image /*, i.e., * x /*ω s ' p " s € Image i* .

By the Hodge decomposition theorem, we can write ωs'p~s= Σr Lr

γω
s~r'p~s~r

where the ω

s-^p-s~r

 e Pψ~2r. Then, since p — 2r < p < n, /*ω β - r ι p -'" r €
pj-ar ^ hypothesis. Hence, by a standard identity for compact Kahler mani-
fold (cf. Weil [8, p. 23]),

_ . y (_l)l/2(p-2r)(p-2r +
(Λ - p + r)!

(-i
(n - p + r)!

where we have used the identity Lzi* = /*LF and the fact that Lx and i* are
real operators, and where C is the Weil operator. But complex conjugation
sends Hs~r^-s-r(Y \ C) isomorphically onto Hp-s~r^~r{Y \C) and AY, the
adjoint of L,Y, is a real operator, hence α } p " r ' s " ί ) " r 6 P£~ 2 r .

Furthermore p < n, so that 0 < n — / ? < n + ^ — /? = d i m c Y — p: hence

(-l)*(</=ϊyLτω'-r>p-9-r) φ 0
{n - p + 1)! /
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by the hard Lef schetz theorem and the uniqueness of the Hodge decomposition
cf. Weil [8, p. 75].

But if K is any subίield of C, then H*(X C) = H*(H K) ®κ C, while
the operators /* and AΩX are integral operators, hence are defined on any
subίield of C. Thus Ker ι* |#*(Y C) = Ker ΛΩX\H*(Y C) implies that
Ker (i* I fl*( Y K)) = Ker Λ flx | H*<J X).

3.2. Corollary. For a// Z and Y, ΛP(Z, Y) ω ίrwe /or /? < 2.
Proof. For p = 0, P°F = Px = 0, while for p = 1, P^ = H\X C).
Similarly # 2 0 ( X ; C) Π P2

X = H20(X; C) and the same for H^\X\ C).
Hence to prove the corollary, it suffices to consider P1/.

3.2.1. Lemma, ω1'1 € P1/ => either r V ' 1 € P1/ or i*ω1Λ = aLx(l) for a
e C where 1 is a generator of H°(X C).

Note. This says that the restriction of a primitive 2-form does not split up
into two nontrivial components in the Hodge decomposition of the subspace.

Proof. If it is not so, then we have /*ωM = aLz(l) + ωx where 0 Φ ωx

e P1/ znάOφaeC. Then aLx(l) = i*(αLF(l)), hence 0 Φ /•(ω1*1 - aLγ(ϊ))
€ P1/. But by the uniqueness of the Hodge decomposition, (ωul — aLγ(l))
$ P1/. Thus we have a nonprimitive form on Y whose restriction to X is

primitive, which is impossible, q.e.d. for Lemma 3.2.1.
Suppose we have ω β Hιι{Y C) with ω = ω1'1 + j8Lr(l) for β e C, 1 a gen-

erator of #°(Y C), and ω1'1 e P1^1. Then if /*ω ^ 0, we must show AΩx(ω)
Φ 0; by the diagram in (3.1) and the remarks after the diagram, it suffices
to show *x/*(ω) € Im /*.

If /*α>lfl e P1/, then by Proposition 3.1 we are done. Hence by Lemma 3.2.1
it suffices to assume that i*ωul = aLx(l). But then i*ω = aLx(l) + i*βLγ(ϊ)
= (a + β)Lx(ϊ), and a + β Φ 0 by hypothesis that i*ω Φ 0. Hence *x/*ω =
/*(-(« + β)Lτ(ί)). q.e.d. for Corollary 3.2.

3.3. Corollary. // Y is a complete intersection in CPN, then Ap(X, Y)
is true for p < dimc Y for any submanifold X in Y.

This follows because P\ = 0 for p < dimc Y.
3.4. Proposition. Let n > 2, and let p and q be fixed such that 3 < p

< 2n — 1 and q > 1. Then there exist protective algebraic manifolds X and
Y such that AP(X, Y) is false.

Proof. The first case to consider is p = 3, n = 2 and # = 1. Let Γ c CPZ

be the nonsingular elliptic curve of degree 3, and let Π: Y —> CP3 be the
monoidal transform with center Γ. Let Z = Π~\T) and /: Z c Y be the
inclusion, where Y is projective algebraic.

Then by Seminaire Geometrie Algebrique 5, vii i*: HZ(X) ~ H3(Y) ~
Hλ(T) Θ H3(CP3) = K Θ K and #X(Y) = 0. Then by Poincare duality, H\Y)
= 0. But then /*: H\Y) ~ H\X) and Λ β x : H\Y) -> (H5(Y) = 0) is the
zero map, hence A3(X, Y) is false.

Next consider p = 3, any n, and ̂ r > 1. All we need to do is to take X X
CPn~2 and Y X CPW" 2 X CP*"1. Then by the Kunneth formula, i* is still an
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isomorphism for p = 3, but dim^ (Ker Λ Ωx) = 2 for p = 3.
For p = 4 and n > 3 and any g, we need only consider X x CPn~z X 7

and Y x CPn~3 X Γ X C T ^ 1 . Let 0 ^ ω € #3(Y), 0 ^ r <= /^(Γ). Then
/*(ω, 0, γ, 0) =£ 0, while Λ f l > , 0, f, 0) = 0.

In general, if p = 2Λ + 3, for any w and <?, take X x CP7*"2 and Y X CPn~2

X C P 9 " 1 and consider (ω, γk, 0) for 0 φ ω e #3(Y) and 0 =£ r* ^ H2lc(CPn~2)
to get a counterexample to ^ ( X x CP 7 1" 2, Y X CPn~2 X CPq~ι).

Finally, if p = 2/: + 4, for any w and <?, take X X CP 7 1" 3 X T and y X
C p n - 3 χ τ χ c p < z - i a n d ( ω ? ^fc? ^? 0 ) w i U g i γ e t h e counterexample.

3.4.1. The counterexamples for p > n arise from the fact that one has an

ωP 6 flp(y) w i t h i*ω

p = L5rnωJ-p and * x i*a) p = α ω ^ for 0 ^ a e C. But
there is nothing to guarantee that ω2£~p € Image /*, e.g., one could have
H2n-p(Y C) = 0. The basic reason for this is that i*Λr Φ ΛJ*.

For p < n, the problem arises because we no longer have Proposition 3.1.,
i.e., the restriction of primitive forms need not be primitive for p > 2, e.g.,
in our example for p = 3 = n and q = 1 we have X X CP 1 C Y x CP\
Then ff(y x CP1 C) = 0, so that # 3 (Y X CP 1 C) ^ C Θ C is all con-
tained in the primitive cohomology. But b^X X CP1) = 2, 2>3(X x CP1) = 4
and the map

L z x c ? 1 : ff (Z x CP 1 C) - # 3 ( Z X CP1 C)

C) Θ (ff (Z C) <g> ff (CP1 C))

has LXxCP1(a) = (Lxa, 0, a, 0), LzxCP1(β) = (0, Lx/3,0, 5) for α , 0 generators

of ffCZ C).
Thus, if we take ω2'1 e H2>\Y X CP1 C), then ί V 1 = α L X ' 0 + 572'1

where 0 φ a e C, ^ 2'1 e / ^ U P I and ω1'0 € P^°. Then *x/*ω

2»1 = ^Λ{aLxω
1^

— η2Λ), which is not in the image of /* because of the change of sign before
rfΛ. In homology this states that we have a finite 3-cycle γ1 and a nonfinite
3-cycle γ2 in a subspace which are homologous when injected into the ambient
space.

4. Some consequences of An(X, Y)

4.1. Corollary. Suppose An(X, Y) is true. In particular, if n = I or!or
if Y is a complete intersection, then

Hn(X) = Ker i# 01(H n + 2 q(Y)) , £?»(*) - i*iϊ»(Y) © RHn+2«-\Y - X) ,

Furthermore, the restriction of the intersection pairing to each of the sum-
mands is nondegenerate (equivalently, the restriction of cup product on Hn(X)
is nondegenerate on each of the summands).

Proof. The decomposition for homology follows from Proposition 2.2 and
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Corollary 3.2. The Thom-Gysin sequence in homology for X c Y can be
written

Hn+2q(Y) >Hn(X) >Hc

n+2q_ι(Y — X) >rln+2q_ι(ϊ)

I , 1 I
H\X) < Ep**-\Y - X) < Hn+2q-KY)

where we take vector space duality via integration to get the vertical isomor-
phisms, c denotes compact support, F denotes closed support and R is the
Leray-Norguet-Poincare residue.

The duality via integration between homology with compact support and
forms with closed support was proven for q = 1 by Leray [6]. For q > 1,
this was done by Norguet. For an exposition of the dualities between homo-
logy with compact support and cohomology with closed support, the reader
is referred to Fotiadi, et al. [1, part III].

It can be shown, cf., e.g., Poly [3], that every cohomology class a of
Hn

F

+2q-\Y — X) can be represented by a closed C°° form of the type θ A Kx

+ η where θ and η are C°° forms with singularities on X. Furthermore
R(a) = [Θ\X] where Θ\X is closed. Hence Image/ ~ Kerτ~Image/?, so that
the decomposition in cohomology follows.

The cup product pairing is nondegenerate on each summand because in the
proof of Proposition 3.1, we showed if ω € i*Hn(Y), then HomxoDx(ω) €

i*Hn(Y), but ί ω A HomxoDx(ω) > 0. Also, if D* = HomxoDx, then

(D$)2 = (—l) w Id, where Id is the identity on Hn(X), hence this gives the
nondegeneracy on RHn+2q-ι(Y - X).

4.1.1. For n = 1 = q, the nondegenerate decomposition also can be
proven by the Poincare complete reducibility theorem: the map /* : H\X) —>
H3(Y) is derived from the map of Albanese varieties with the nondegenerate
cup product structure, hence the Poincare complete reducibility theorem states
that the image has a direct summand which respects the nondegenerate struc-
ture.

4.2. Corollary. Let Xjy j = 1, , k, be nonsingular submanifolds of
complex dimension 1 in Y, a compact Kdhler manifold of complex dimension
1 + q. Let i: UXj CY and is: X3 C Y be the inclusions. If γ1+2q e H1+2q(Y)
is such that 0 Φ γι+2q Π Xj = γhj e H^Xj) for j = 1, , k, then (ijl)^γ1Jl

Proof. It suffices to assume k = 2 by looking at the Xό two by two.
Let X = {J2

j==1Xj, which is a sub variety of Y and /: X c Y the inclusion.
In Gordon [1, Chapter 4] it is shown that one has the diagram of exact

rows
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D I D

H\Y) -̂ > /

I
<^- H2+1(Y,X)

where the first row is isomorphic to the second row by either Poincare-Lef schetz
duality or by the duality theorem proven in Gordon [3], where a definition of
Hι(X)J is also given. Basically, Hι(X)Δ are those cycles in X over which one
can construct "tubes" in Y — X. Thus they are the cycles which lie in the non-
singular part of X or intersect transversally the singular locus of X. The
second is isomorphic to the third row by vector space duality. • means the
diagram commutes. H^X) c ©^ H^Xj) © H0(Xί2) by the Maier-Vietoris
sequence for Xλ (J X2, where X12 = Xλ Π X2. By Gordon [1, Corollary 4.13]
H.iX), ~ ©, H^X^j © τX12. Also fl^JSΓ^ C H^Xj) and τX12 is generated
by tubes over classes in Xl2, i.e., if 0 Φ /(jΊ+2β) has a representative which is
homologous to zero in X, then this representative can be chosen so that it is
a tube over a lower dimensional cycle in X12. Furthermore, under the isomor-
phism HX{X) ~ H.iX),, Hλ(X) Π H0(Xί2) ~ τX12.

If I(ϊl+2q) φ 0, then I(γ1+2q) € 0 H^XJj or /(τΊ+2β) € τZ 1 2 . For if not, this
would give nontrivial relations among the H^X^j and τXl2 in H j ^ - i ί X — -30.
But Gordon [2, Corollary 4.19] has shown that if one looks at the Leray
spectral sequence of the inclusion map j : Y — X a Y, then

Eϊ* => (τHr+s_2q+1(Xh C ^ C

r + 5 (Γ

and in particular,

while

£1+2,-1-.,. ^ τ Z i 2 ίoτs>2q- I .

But since we are working over a field, there can be no nontrivial relations
between E1^-1 and EL+2<7"1-S'S for s > 2q - 1. Hence

(Image/) Π φH^Xj) - (cpimagei*) ΓΊ φH^Xj)
j J

by the exactness of the sequences and duality of vector spaces. Moreover, the
isomorphism is given by H o m o D ^ where Dό is Poincare duality on X5. Let
Df = H o m o ^ . Then by Corollary 4.1, if
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7Ί+2ί Γϊ Xj = Tu Φ 0 ,

there is a

rί+2q ε H1+2q(Y)

with

γ'1+2q Π X , = Dfγuj .

Hence

A*Π,i - A*Γi.2 ί Ker τ, i.e., r (D* r i α - D* r i f 2) = 2τD*γlΛ φ 0 .

Thus

(D* o D * ) r u - ( D * oD*) r i i 2ίcoker 3#, i.e., (D*) a

r i f l -(D*) 2

r i > 2 € Image 3* .

But (Df)2 == —Id, where Id is the identity map on Rγ(X^.

5. A question on schemes

5.1. Suppose that Y is an integral algebraic λ-scheme, where k is an ar-
bitrary fixed algebraically closed field of any characteristic. We assume that Y
is a smooth subscheme of projective space PN(k), and dimension of Y is n + q.
Suppose furthur that Xx and X2 are smooth subschemes of Y of dimension q,
and ij: Xj C Y is the inclusions. Consider the following diagram

where the Gt are the Gysin maps, where we are facing the /-adic cohomology,
for I prime to the characteristic of k.

5.1.1. Question. When does the diagram commute with respect to coim if
Π coim /*, i.e., if i*γ, i*γ Φ 0, does Gγifγ = G2i*γ for n = 1?

Over the complex numbers, this is the dual statement in cohomology to
Corollary 4.2. The reason one believes it might be true for n = 1, is that one
needs essentially only the strong Lefschetz theorem to prove Corollary 4.2.,
but the analogue of the strong Lefschetz theorem is true in etale-cohomology.
However, the Kahler identities do not have an immediate analogue.

If the answer to question 5.1.1 is true for n = 1, one could probably prove
the local invarient cycle problem for deformations of smooth schemes of
dimension 2, using the analogues of the geometric constructions in [4].
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Added in Proof. Some of the results in this paper have been generalized;
see the author's paper, On the primitive cohomology of submanifolds, to
appear in Illinois J. Math.
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