CLOSED 2-FORMS AND AN EMBEDDING THEOREM FOR SYMPLECTIC MANIFOLDS

DAVID TISCHLER

The existence of universal connections was shown by Narasimhan and Ramanan [5], and Kostant [3] showed that any integral closed 2-form is the curvature form of a connection on some circle bundle. These results can be combined to show the existence of a universal closed 2-form with integral periods. In this paper we will use the symplectic structure of a complex projective space to give an elementary proof of this result; the precise statement is given in Theorem A. The result of Kostant is in fact a corollary of the existence of a universal closed 2-form, as is indicated below. Another immediate corollary of Theorem A is the result of Gromov [3] that closed symplectic manifolds can be symplectically immersed in $\mathbb{C}P^n$, for large enough n; see Theorem B.

First we indicate why the proof which we are going to give here is a simple and natural generalization of an elementary fact about exact 2-forms. Consider the standard symplectic form $\Omega = \sum_{i=1}^n dx_i dy_i$ on R^{2n} . Any exact 2-form on a manifold M can be induced from Ω by a mapping to R^{2n} for some n, since any exact 2-form on M can be written in the form $\sum_{i=1}^k df_i \wedge dg_i$, where f_i , g_i are real valued functions on M. CP^n has a symplectic structure Ω_0 which is locally given by $\Omega_0 = \sum_{i=1}^n dx_i \wedge dy_i$. Furthermore, CP^n is the 2n-skeleton of an Eilenberg-MacLane space of type K(Z,2). It is thus natural to expect that any closed 2-form with integral periods can be induced from Ω_0 by a map to CP^n , because there is some map to CP^n , for large n, which pulls back Ω_0 to within an exact 2-form of the given closed 2-form. The only complication that is met in CP^n to adjusting the map to account for the exact 2-form is that, unlike in R^{2n} , the symplectic charts on CP^n have finite radius, so the f_i , g_i 's utilized would have to be bounded. The proof we give of Theorem A depends only on estimating the bounds on f_i , g_i as n becomes large.

A closed k-form on a manifold M will be said to be integral if its de Rham cohomology class is in the image of the canonical coefficient map $H^k(M; Z) \to H^k(M; R)$.

Complex projective space CP^n has a Kählerian structure, and we will denote its Kähler form by Ω_0^n . The 2-form Ω_0^n can be chosen to represent a generator in the image of $H^2(CP^n; Z) \to H^2(CP^n; R)$, and we can assume that $i^*(\Omega_0^{n+k}) = \Omega_0^n$ where i is the standard inclusion of CP^n in CP^{n+k} .

Communicated by R. Bott, May 24, 1975,

Theorem A. Let M be a closed manifold, and Ω an integral closed 2-form on M. Then there exists a map $f: M \to \mathbb{C}P^n$, for n sufficiently large, such that $f^*(\Omega_0^n) = \Omega$.

Since Ω_0^n is the curvature form of a connection on the canonical S^1 bundle over $\mathbb{C}P^n$, a map to $\mathbb{C}P^n$ which induces a closed 2-form also induces an S^1 bundle. Hence we obtain

Theorem (Kostant [3]). Every integral closed 2-form is the curvature form of a connection on an S^1 bundle.

Definition. Let (M, Ω') and (N, Ω) denote two manifolds M, N with symplectic forms Ω' , Ω respectively. A map $f: M \to N$ will be called a symplectic map from (M, Ω') to (N, Ω) if $f^*(\Omega) = \Omega'$.

Definition. Given a manifold M and a symplectic structure (N, Ω) , a map $f: M \to N$ such that $f^*(\Omega)$ is a symplectic form on M will be said to be transverse to the symplectic form Ω .

Any submanifold M of $\mathbb{C}P^n$ such that the inclusion $i: M \to \mathbb{C}P^n$ is transverse to Ω_0^n will support a symplectic structure, namely $i^*(\Omega_0^n)$, which is an integral closed 2-form. The converse is also true and resembles Kodaira's embedding theorem, but with Kählerian weakened to symplectic.

Suppose (M, Ω) is a symplectic structure. If Ω is an integral closed 2-form, then by Theorem A there is a map $f: M \to CP^n$ such that $f^*(\Omega_0^n) = \Omega$. Since Ω is a nondegenerate 2-forms f is automatically an immersion. This yields the result:

Theorem B (Gromov [2]). If Ω is a symplectic structure on M, and Ω is an integral closed 2-form, then there exists a symplectic immersion of M into $\mathbb{C}P^n$ for sufficiently large n.

Remark. This result can be improved to yield symplectic embeddings in the following way. Assume n is large enough so that the immersions can be approximated arbitrarily closely by embeddings. Choose an embedding $g: M \to CP^n$ so that $g^*(\Omega_0^n)$ is close to Ω . By Moser's theorem on the stability of symplectic forms [4], we conclude that there is a diffeomorphism F of M to itself such that $F^*(g^*(\Omega_0^n)) = \Omega$. Hence $g \circ F: M \to CP^n$ is the required symplectic embedding.

Corollary. Given a symplectic structure (M, Ω) , there is, for large enough n, an embedding f; $M \to \mathbb{C}P^n$ transverse to Ω_0^n , such that $f^*(\Omega_0^n)$ can be made arbitrarily close to Ω in the following sense: given a norm $\| \ \|$ on closed 2-forms and an $\varepsilon > 0$, there are a real number k and an embedding f such that $\|k \cdot f^*(\Omega_0^n) - \Omega\| < \varepsilon$.

Proof. Choose a collection of integral closed 2-forms α_i , $1 \le i \le d$, which define a basis for $H^2(M; R)$. Any symplectic form Ω can be written as $\Omega = \sum_{i=1}^d r_i \alpha_i + d\omega$ for some 1-form ω and real numbers r_i . Choose rational numbers q_i such that $\Omega' = \sum_{i=1}^d q_i \alpha_i + d\omega$ satisfies $\|\Omega - \Omega'\| < \varepsilon$. There is an integer D such that $D\Omega'$ is an integral 2-form. By Theorem B, $D\Omega' = f^*(\Omega_0^0)$ for some embedding $f: M \to CP^n$. The corollary follows by setting k = 1/D.

Before beginning the proof of Theorem A, we need to establish several notations. C^n will denote *n*-dimensional complex space, \langle , \rangle the usual Hermitian inner product on C^n , and | | the corresponding norm.

We will consider $\mathbb{C}P^n$ as the complex lines in \mathbb{C}^{n+1} passing through the origin, and also as the quotient space of the unit sphere \mathbb{S}^{2n+1} in \mathbb{C}^{n+1} by the action of the complex numbers of norm equal to 1.

Given two points p_1 , p_2 in $\mathbb{C}P^n$ we denote by $\alpha(p_1, p_2)$ the angle between them viewed as real two-dimensional planes in \mathbb{C}^{n+1} , $(\cos \alpha = |\langle p_1, p_2 \rangle|/(|p_1| \cdot |p_2|)$ where we are now considering p_1 , p_2 as points in \mathbb{C}^{n+1}).

For each p in $\mathbb{C}P^n$, we make a choice of x in S^{2n+1} which represents p. Where it creates no confusion we will speak of x in $\mathbb{C}P^n$, and where necessary we will denote the class of x in $\mathbb{C}P^n$ by [x].

For each p in $\mathbb{C}P^n$ the above choice of x allows us to choose a complex hyperplane T_x in \mathbb{C}^{n+1} which passes through x and is orthogonal to x with respect to the Hermitian metric. T_x can be identified with the tangent space to $\mathbb{C}P^n$ at [x]. Let D_x be the subset of $\mathbb{C}P^n$ consisting of those complex lines in \mathbb{C}^{n+1} which intersect T_x . The mapping from D_x to T_x given by sending a point in T_x to its point of intersection with T_x will be denoted by S(x). For x > 0, $T_x(x)$ will denote all points $x = T_x$ such that $|x| = T_x$ and T_x and T_x will be denoted by T_x .

Let $z=(z_0, \dots, z_n)$ be complex coordinates on C^{n+1} . We can think of C^n as all points z in C^{n+1} with $z_0=1$. Let $B^n(r)$ denote all points (z_1, \dots, z_n) in C^n such that $\sum_{i=1}^n z_i \bar{z}_i < r^2$.

One can identify T_x with C^n by choosing some unitary transformation of C^{n+1} which sends x to $(1,0,\cdots,0)$ in C^{n+1} . Composing this map with the mapping $(z_1,\cdots,z_n) \to (1+\sum_{i=1}^n z_i \bar{z}_i)^{-1/2} \cdot (z_1,\cdots,z_n)$ yields a diffeomorphism $H\colon T_x \to B^n(1)$. Consider the closed 2-form $\sum_{i=1}^n dx_i \wedge dy_i$ on $B^n(1)$ where $z_i = x_i + \sqrt{-1}y_i$. One can show that the Kähler form Ω^n_0 on D_x satisfies $\Omega^n_0 = S^*(x) \circ H^*(x)(\pi^{-1}\sum_{i=1}^n dx_i \wedge dy_i)$, by using the fact that $\Omega^n_0 = (i/2\pi)\partial\bar{\partial}\log(1+\sum_{i=1}^n z_i\bar{z}_i)$ on the hyperplane $z_0=1$ viewed as a holomorphic cross-section of the canonical line bundle over CP^n ; see Chern [1] for details of the Kähler structures of CP^n . One can think of $H(x) \circ S(x): D_x \to B^n(1)$ as a symplectic chart for CP^n .

There is a natural inclusion $\bar{i}: CP^n \to CP^{n+1}$ given by the inclusion $i: C^{n+1} \to C^{n+2}$ defined by identifying C^{n+1} as the first n+1 coordinates of C^{n+2} . The choices made above can be made compatible with the inclusion of CP^n in CP^{n+1} in the following sense. For a point [x] in CP^n we can choose T_x, D_x , S(x), H(x) as above. We can also let $i(x) \in C^{n+2}$ represent $\bar{i}[x]$, and we have $T_x = T_{i(x)} \cap C^{n+1}$, and $S(i(x)) \circ \bar{i} = i \circ S(x) : D_x \to T_{i(x)}$. One can also choose H(i(x)) so that $H(i(x)) \circ i = i \circ H(x) : T_x \to B^{n+1}(1)$. With these choices,

$$\frac{1}{\pi} \sum_{i=1}^{n+1} dx_i \wedge dy_i = ((H(i(x)) \circ S(i(x)))^{-1})^* (\Omega_0^{n+1})$$

on B^{n+1} , and also

$$\frac{1}{\pi} \sum_{i=1}^{n} dx_{i} \wedge dy_{i} = \pi_{1}^{*}((H(x) \circ S(x))^{-1})^{*}(\Omega_{0}^{n}),$$

where π_1 is the projection of $B^{n+1}(1)$ onto $B^n(1)$ defined by the projection of C^{n+1} onto the first n coordinates.

Proof of Theorem A. The function f will be constructed in stages; the jth stage will be denoted f_j , where $0 \le j \le p$ for some p to be chosen later. Choose $f_0: M \to CP^n$ for n sufficiently large, so that $f_0^*(\Omega_0^n)$ and Ω are cohomologous. This can be done since CP^n can be taken to be the 2n-skeleton of an Eilenberg-MacLane space of type K(Z, 2). Hence $\Omega = f_0^*(\Omega_0^n) + d\omega$ for some 1-form ω on M.

We need a couple of lemmas before we can construct the f_j 's.

Lemma 1. Given $R > \varepsilon > 0$, there exists a $\delta > 0$ such that

$$V(x, \varepsilon, \delta) = \{ y \in CP^n | \alpha(y, x') \le \delta \text{ for some } x' \in V(x, \varepsilon) \} \subset S^{-1}(x)(T_x(R)) .$$

Furthermore, δ can be chosen independently of n.

Proof of Lemma 1. The lemma follows easily from the facts that $T_x(\varepsilon) \subset T_x(R)$ and that, for $0 \le \theta \le \frac{1}{2}\pi$,

$$\{y \in D_x | \alpha(x, y) \le \theta\} = S^{-1}\{z \in T_x | \cos \theta \le |z|^{-1}\}\$$
.

From now on we fix a choice of ε , R, δ satisfying Lemma 1. We also choose a $\rho > 0$ such that $1 - \rho > \cos^2 \delta$.

Lemma 2. Given a 1-form ω on a closed manifold M, a finite open cover $\{W_i\}$ of M, an R > 0, and a ρ such that $1 > \rho > 0$, there exist real valued functions h_k , t_k , $1 \le k \le p$ such that

- $(1) \quad \sum_{k=1}^{p} dh_{k} \wedge dt_{k} = d\omega,$
- (2) each pair (h_k, t_k) has support contained in some element of the cover $\{W_i\}$,
 - (3) $\prod_{k=1}^{p} (1 + K^2(h_k^2 + t_k^2)) < 1/(1 \rho)$, where $K^2 = 1 + R^2$,
 - (4) $h_k^2 + t_k^2 + R^2/(1 + R^2) < 1$.

Proof of Lemma 2. There exists some choice of functions h_k , \bar{t}_k , $1 \le k \le \bar{p}$, such that $\sum_{k=1}^p d\bar{h}_k \wedge d\bar{t}_k = d\omega$. This can be seen by choosing a partition of unity $\{\varphi_k\}$ subordinate to some finite coordinate cover $\{U_i\}$ of M. Then $d\omega = d(\sum \varphi_k \omega)$, and $d(\varphi_k \omega) = \sum_{i=1}^m d\bar{h}_k^i \wedge d\bar{t}_k^i$ for each k and some choice of \bar{h}_k^i , \bar{t}_k^i with support in U_i , where m = dimension of M. Hence (1) can be satisfied. Now choose a partition of unity $\{\Psi_i\}$, $0 \le i \le c$, subordinate to $\{W_i\}$. Then

$$\sum_{k=1}^{p} d\bar{h}_k \wedge d\bar{t}_k = \sum_{k=1}^{p} \sum_{j=1}^{c} \sum_{i=1}^{c} d(\Psi_i h_k) \wedge d(\Psi_j t_k) ,$$

and (2) can also be satisfied by taking the $\Psi_i \bar{h}_k$ as the h_k 's and the $\Psi_j \bar{t}_k$ as the

 t_k 's. By replacing h_k and t_k by N copies of h_k/N and t_k/N respectively, and using the fact that $\lim_{n\to\infty} (1+n^{-2})^n=1$, we see that we can choose the h_k 's and t_k 's to satisfy condition (3). By a similar argument, the h_k 's and t_k 's can be chosen small enough so that condition (4) is satisfied as well, and the proof of the lemma is complete.

M has an open cover given by $\{f_0^{-1}(V(x,\varepsilon))\}$, $[x] \in CP^n$. Fix a finite subcover $\{W_i\}$ of this cover. Fix a choice of $\{h_k, t_k\}$, $1 \le k \le p$, satisfying Lemma 2 applied to our fixed choices of ε , R, δ , ρ , $\{W_i\}$, and such that

$$\frac{1}{\pi} \sum_{i=1}^{p} (dh_k \wedge dt_k) = d\omega \quad \text{where } d\omega = \Omega - f_0^*(\Omega_0^n) .$$

For each k, $1 \le k \le p$, we choose a W_k in the cover $\{W_i\}$, such that the support of h_k and t_k are contained in W_k . Recall that $W_k = f_0^{-1}(V(x_k, \varepsilon))$ for some $x_k \in C^{n+1}$.

For each j, $1 \le j \le p$, let us assume the two induction hypotheses:

(i) There is a map $f_{j-1}: M \to \mathbb{C}P^{n+j-1}$ such that

$$f_{j-1}^*(\Omega_0^{n+j-1}) = f_0^*(\Omega_0^n) + \frac{1}{\pi} \sum_{k=1}^{j-1} (dh_k) \wedge (dt_k)$$
.

(ii) $f_i(W_j) \subset V(x_j, R)$, for all $i \leq j - 1$. If we show that (i) is true for f_p , we will be done since

$$f_p^*(\Omega_0^{n+p}) = f_0^*(\Omega_0^n) + \frac{1}{\pi} \sum_{i=1}^p (dh_k) \wedge (dt_k) = f_0^*(\Omega_0^n) + d\omega = \Omega.$$

We already have (i) and (ii) satisfied for j=1; (i) is true vacuously and (ii) follows from the fact that $V(x_j, \varepsilon) \subset V(x_j, R)$. Hence it suffices to show that given f_{j-1} satisfying (i) and (ii) there is an f_j satisfying (i) and (ii). Define f_j as follows:

- (a) On $M W_j$, set $f_j = \overline{i} \circ f_{j-1}$ where $\overline{i} : CP^{n+j-1} \to CP^{n+j}$ is the inclusion.
- (b) On W_j , we define first a map $g_j: W_j \to B^{n+j}(1)$ given by $\pi_1 g_j = H(x_j) \circ S(x_j) \circ f_{j-1}$ with values in $B^{n+j-1}(1)$, and by $\pi_2 g_j = h_j + \sqrt{-1}t_j$ with values in $B^1(1)$, where π_1, π_2 are the projections of $B^{n+j}(1)$ onto $B^{n+j-1}(1)$ and $B^1(1)$ respectively, induced by the projections of C^{n+j} onto its first n+j-1 coordinates and last coordinate respectively.

We can now define $f_j = S^{-1}(i(x_j)) \circ H^{-1}(i(x_j)) \circ g_j$, (we are taking the choices of H(x), H(i(x)), to be compatible in the sense described just before the beginning of the proof of Theorem A).

By property (4) of Lemma 2 we have that $|(\pi_2 g_j)|^2 < (1 - R^2/(1 + R^2))$ in $B^1(1)$. By induction hypothesis (ii) applied to f_{j-1} and by the fact that $H(x_j)(T_{x_j}(R)) \subset B^{n+j-1}R(1+R^2)^{-1/2}$ we have that $|\pi_1(g_j)|^2 < R^2/(1+R^2)$ in $B^{n+j-1}(1)$. Hence we can conclude that $g_j: W_j \to B^{n+j}(1)$ is well defined,

and consequently that f_j is well defined on W_j . By Lemma 2, part (2), we can conclude that f_j is well defined on all of M. On W_j

$$f_{j}^{*}(\Omega_{0}^{n+j}) = g_{j}^{*}((H(i(x) \circ S(I(x)))^{-1})^{*}(\Omega_{0}^{n+1}) = g_{j}^{*}\left(\frac{1}{\pi} \sum_{i=1}^{n+j} dx_{i} \wedge dy_{i}\right)$$

$$= (\pi_{1}g_{j})^{*}\left(\frac{1}{\pi} \sum_{i=1}^{n+j} dx_{i} \wedge dy_{i}\right) + (\pi_{2}g_{j})^{*}\left(\frac{1}{\pi} \sum_{i=1}^{n+j} dx_{i} \wedge dy_{i}\right)$$

$$= (H(x_{j}) \circ S(x_{j}) \circ f_{j-1})^{*}\left(\frac{1}{\pi} \sum_{i=1}^{n+j-1} dx_{i} \wedge dy_{i}\right) + \frac{1}{\pi}(dh_{j} \wedge dt_{j})$$

$$= f_{j-1}^{*}\left(S^{*}(x_{j}) \circ H^{*}(x_{j})\left(\frac{1}{\pi} \sum_{i=1}^{n+j-1} dx_{i} \wedge dy_{i}\right)\right) + \frac{1}{\pi}(dh_{j} \wedge dt_{j})$$

$$= f_{j-1}^{*}(\Omega_{0}^{n+j-1}) + \frac{1}{\pi}(dh_{j} \wedge dt_{j}).$$

This equality follows from the compatibility conditions on $H(x_j)$ and $H(i(x_j))$ discussed just before the beginning of the proof of Theorem A. Hence we have shown that induction hypothesis (i) is satisfied for f_j . Therefore we will be done if we can show that $f_j(W_k) \subset V(x_k, R)$ for all k > j. For any $x \in W_k$ and $0 \le i \le j$, set $A_i = S(x_{i+1})(f_i(x))$ and $B_i = S(x_{i+1})(f_{i+1}(x))$. We consider the A_i , B_i as all contained in C^{n+j} , (note that A_i is a scalar multiple of B_{i-1}). We now add another induction hypothesis for each j, $1 \le j \le p$,

(iii) $\langle B_i - A_i, A_{i'} \rangle = 0$ for all $i' \le i \le j - 1$.

If hypothesis (iii) is true for j-1, it is seen to hold for j, since B_j-A_j is perpendicular to C^{n+j} in C^{n+j+1} , using the construction of f_j as above, and by the compatibility conditions given before the proof of Theorem A. (Hypothesis (iii) is vacuously satisfied for f_0 .)

Given A_i , B_i as above and our fixed ρ , we will show that $\cos^2 \alpha_{j-1} > 1 - \rho$, where $\alpha_i = \alpha([A_0], [B_i])$. We have

$$\cos^2 lpha_i = \left(rac{|\langle A_0, B_i
angle|}{|A_0| \cdot |B_i|}
ight)^2 = \left(rac{|\langle A_0, A_i
angle|}{|A_0| \cdot |B_i|}
ight)^2$$

by induction hypothesis (iii), and this expression is equal to $(\cos^2\alpha_{i-1})|A_i|^2/|B_i|^2$. Since $|B_i|^2=|A_i|^2+|B_i-A_i|^2$ and $|A_i|\geq 1$, we have that $|A_i|^2/|B_i|^2\geq 1/(1+|B_i-A_i|^2)$. However $|B_i-A_i|^2\leq K^2(h_k^2+t_k^2)$ with $K^2=1+R^2$, by the construction of f_{i+1} , the definition of the map $H(x_{i+1})$, and the fact that B_i and A_i are in $T_{x_{i+1}}(R)$. Hence we have $\cos^2\alpha_i\geq\cos^2\alpha_{i-1}\cdot(1+K^2(h_k^2+t_k^2))^{-1}$, and so

$$\cos^2 \alpha_{j-1} \geq \prod_{k=1}^{j-1} (1 + K^2(h_k^2 + t_k^2)^{-1}) ,$$

which is greater than $1 - \rho$ by part (3) of Lemma 2. Since we chose ρ such

that $1 - \rho > \cos^2 \delta$, we have $\alpha_i < \delta$. Since A_0 is contained in $V(x_k, \varepsilon)$, we get that B_{j-1} is contained in $V(x_k, \varepsilon, \delta)$ which is contained in $V(x_k, R)$ by Lemma 1. Hence $f_j(x)$ is contained in $V(x_k, R)$ for all x in W_k . This shows that f_j satisfies induction hypothesis (ii), and the proof of Theorem A is complete.

References

- S. S. Chern, Complex manifolds without potential theory, Van Nostrand, Princeton, New Jersey, 1967.
- [2] M. L. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes Congrès Intern. Math. (Nice, 1970), Gauthier-Villars, Paris, No. 2, 1971, 221-225.
- [3] B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Appl. III, Lecture Notes in Math. Vol. 170, Springer, Berlin, 1970, 87-207.
- [4] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286-294.
- [5] M. S. Narasimhan & S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961) 563-572.

QUEENS COLLEGE, CITY UNIVERSITY OF NEW YORK

