CLOSED 2-FORMS AND AN EMBEDDING THEOREM FOR SYMPLECTIC MANIFOLDS

DAVID TISCHLER

The existence of universal connections was shown by Narasimhan and Ramanan [5], and Kostant [3] showed that any integral closed 2-form is the curvature form of a connection on some circle bundle. These results can be combined to show the existence of a universal closed 2 -form with integral periods. In this paper we will use the symplectic structure of a complex projective space to give an elementary proof of this result; the precise statement is given in Theorem A. The result of Kostant is in fact a corollary of the existence of a universal closed 2 -form, as is indicated below. Another immediate corollary of Theorem \mathbf{A} is the result of Gromov [3] that closed symplectic manifolds can be symplectically immersed in $C P^{n}$, for large enough n; see Theorem B.

First we indicate why the proof which we are going to give here is a simple and natural generalization of an elementary fact about exact 2 -forms. Consider the standard symplectic form $\Omega=\sum_{i=1}^{n} d x_{i} d y_{i}$ on $R^{2 n}$. Any exact 2 -form on a manifold M can be induced from Ω by a mapping to $R^{2 n}$ for some n, since any exact 2 -form on M can be written in the form $\sum_{i=1}^{k} d f_{i} \wedge d g_{i}$, where f_{i}, g_{i} are real valued functions on $M . C P^{n}$ has a symplectic structure Ω_{0} which is locally given by $\Omega_{0}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$. Furthermore, $C P^{n}$ is the $2 n$-skeleton of an Eilenberg-MacLane space of type $K(Z, 2)$. It is thus natural to expect that any closed 2 -form with integral periods can be induced from Ω_{0} by a map to $C P^{n}$, because there is some map to $C P^{n}$, for large n, which pulls back Ω_{0} to within an exact 2 -form of the given closed 2 -form. The only complication that is met in $C P^{n}$ to adjusting the map to account for the exact 2-form is that, unlike in $R^{2 n}$, the symplectic charts on $C P^{n}$ have finite radius, so the f_{i}, g_{i} 's utilized would have to be bounded. The proof we give of Theorem A depends only on estimating the bounds on f_{i}, g_{i} as n becomes large.

A closed k-form on a manifold M will be said to be integral if its de Rham cohomology class is in the image of the canonical coefficient map $H^{k}(M ; Z)$ $\rightarrow H^{k}(M ; R)$.

Complex projective space $C P^{n}$ has a Kählerian structure, and we will denote its Kähler form by Ω_{0}^{n}. The 2 -form Ω_{0}^{n} can be chosen to represent a generator in the image of $H^{2}\left(C P^{n} ; Z\right) \rightarrow H^{2}\left(C P^{n} ; R\right)$, and we can assume that $i^{*}\left(\Omega_{0}^{n+k}\right)=\Omega_{0}^{n}$ where i is the standard inclusion of $C P^{n}$ in $C P^{n+k}$.

[^0]Theorem A. Let M be a closed manifold, and Ω an integral closed 2-form on M. Then there exists a map $f: M \rightarrow C P^{n}$, for n sufficiently large, such that $f^{*}\left(\Omega_{0}^{n}\right)=\Omega$.

Since Ω_{0}^{n} is the curvature form of a connection on the canonical S^{1} bundle over $C P^{n}$, a map to $C P^{n}$ which induces a closed 2-form also induces an S^{1} bundle. Hence we obtain

Theorem (Kostant [3]). Every integral closed 2-form is the curvature form of a connection on an S^{1} bundle.

Definition. Let $\left(M, \Omega^{\prime}\right)$ and (N, Ω) denote two manifolds M, N with symplectic forms Ω^{\prime}, Ω respectively. A map $f: M \rightarrow N$ will be called a symplectic map from $\left(M, \Omega^{\prime}\right)$ to (N, Ω) if $f^{*}(\Omega)=\Omega^{\prime}$.

Definition. Given a manifold M and a symplectic structure (N, Ω), a map $f: M \rightarrow N$ such that $f^{*}(\Omega)$ is a symplectic form on M will be said to be transverse to the symplectic form Ω.

Any submanifold M of $C P^{n}$ such that the inclusion $i: M \rightarrow C P^{n}$ is transverse to Ω_{0}^{n} will support a symplectic structure, namely $i^{*}\left(\Omega_{0}^{n}\right)$, which is an integral closed 2 -form. The converse is also true and resembles Kodaira's embedding theorem, but with Kählerian weakened to symplectic.

Suppose (M, Ω) is a symplectic structure. If Ω is an integral closed 2-form, then by Theorem A there is a map $f: M \rightarrow C P^{n}$ such that $f^{*}\left(\Omega_{0}^{n}\right)=\Omega$. Since Ω is a nondegenerate 2 -forms f is automatically an immersion. This yields the result:

Theorem B (Gromov [2]). If Ω is a symplectic structure on M, and Ω is an integral closed 2-form, then there exists a symplectic immersion of M into $C P^{n}$ for sufficiently large n.

Remark. This result can be improved to yield symplectic embeddings in the following way. Assume n is large enough so that the immersions can be approximated arbitrarily closely by embeddings. Choose an embedding $g: M$ $\rightarrow C P^{n}$ so that $g^{*}\left(\Omega_{0}^{n}\right)$ is close to Ω. By Moser's theorem on the stability of symplectic forms [4], we conclude that there is a diffeomorphism F of M to itself such that $F^{*}\left(g^{*}\left(\Omega_{0}^{n}\right)\right)=\Omega$. Hence $g \circ F: M \rightarrow C P^{n}$ is the required symplectic embedding.

Corollary. Given a symplectic structure (M, Ω), there is, for large enough n, an embedding $f ; M \rightarrow C P^{n}$ transverse to Ω_{0}^{n}, such that $f^{*}\left(\Omega_{0}^{n}\right)$ can be made arbitrarily close to Ω in the following sense: given a norm $\|\|$ on closed 2forms and an $\varepsilon>0$, there are a real number k and an embedding f such that $\left\|k \cdot f^{*}\left(\Omega_{0}^{n}\right)-\Omega\right\|<\varepsilon$.

Proof. Choose a collection of integral closed 2 -forms $\alpha_{i}, 1 \leq i \leq d$, which define a basis for $H^{2}(M ; R)$. Any symplectic form Ω can be written as $\Omega=$ $\sum_{i=1}^{d} r_{i} \alpha_{i}+d \omega$ for some 1 -form ω and real numbers r_{i}. Choose rational numbers q_{i} such that $\Omega^{\prime}=\sum_{i=1}^{d} q_{i} \alpha_{i}+d \omega$ satisfies $\left\|\Omega-\Omega^{\prime}\right\|<\varepsilon$. There is an integer D such that $D \Omega^{\prime}$ is an integral 2-form. By Theorem B, $D \Omega^{\prime}=f^{*}\left(\Omega_{0}^{n}\right)$ for some embedding $f: M \rightarrow C P^{n}$. The corollary follows by setting $k=1 / D$.

Before beginning the proof of Theorem A, we need to establish several notations. C^{n} will denote n-dimensional complex space, \langle,$\rangle the usual Hermitian$ inner product on C^{n}, and $|\mid$ the corresponding norm.

We will consider $C P^{n}$ as the complex lines in C^{n+1} passing through the origin, and also as the quotient space of the unit sphere $S^{2 n+1}$ in C^{n+1} by the action of the complex numbers of norm equal to 1 .

Given two points p_{1}, p_{2} in $C P^{n}$ we denote by $\alpha\left(p_{1}, p_{2}\right)$ the angle between them viewed as real two-dimensional planes in $C^{n+1},\left(\cos \alpha=\left|\left\langle p_{1}, p_{2}\right\rangle\right| /\left(\left|p_{1}\right| \cdot\left|p_{2}\right|\right)\right.$ where we are now considering p_{1}, p_{2} as points in C^{n+1}).

For each p in $C P^{n}$, we make a choice of x in $S^{2 n+1}$ which represents p. Where it creates no confusion we will speak of x in $C P^{n}$, and where necessary we will denote the class of x in $C P^{n}$ by $[x]$.

For each p in $C P^{n}$ the above choice of x allows us to choose a complex hyperplane T_{x} in C^{n+1} which passes through x and is orthogonal to x with respect to the Hermitian metric. T_{x} can be identified with the tangent space to $C P^{n}$ at $[x]$. Let D_{x} be the subset of $C P^{n}$ consisting of those complex lines in C^{n+1} which intersect T_{x}. The mapping from D_{x} to T_{x} given by sending a point in D_{x} to its point of intersection with T_{x} will be denoted by $S(x)$. For $\varepsilon>0$, $T_{x}(\varepsilon)$ will denote all points y in T_{x} such that $|y-x|<\varepsilon$, and $S^{-1}(x)\left(T_{x}(\varepsilon)\right)$ will be denoted by $V(x, \varepsilon)$.

Let $z=\left(z_{0}, \cdots, z_{n}\right)$ be complex coordinates on C^{n+1}. We can think of C^{n} as all points z in C^{n+1} with $z_{0}=1$. Let $B^{n}(r)$ denote all points $\left(z_{1}, \cdots, z_{n}\right)$ in C^{n} such that $\sum_{i=1}^{n} z_{i} \bar{z}_{i}<r^{2}$.

One can identify T_{x} with C^{n} by choosing some unitary transformation of C^{n+1} which sends x to ($1,0, \cdots, 0$) in C^{n+1}. Composing this map with the mapping $\left(z_{1}, \cdots, z_{n}\right) \rightarrow\left(1+\sum_{i=1}^{n} z_{i} \bar{z}_{i}\right)^{-1 / 2} \cdot\left(z_{1}, \cdots, z_{n}\right)$ yields a diffeomorphism $H: T_{x} \rightarrow B^{n}(1)$. Consider the closed 2-form $\sum_{i=1}^{n} d x_{i} \wedge d y_{i}$ on $B^{n}(1)$ where $z_{i}=x_{i}+\sqrt{-1} y_{i}$. One can show that the Kähler form Ω_{0}^{n} on D_{x} satisfies Ω_{0}^{n} $=S^{*}(x) \circ H^{*}(x)\left(\pi^{-1} \sum_{i=1}^{n} d x_{i} \wedge d y_{i}\right)$, by using the fact that $\Omega_{0}^{n}=(i / 2 \pi) \partial \bar{\partial} \log$ ($1+\sum_{i=1}^{n} z_{i} \bar{z}_{i}$) on the hyperplane $z_{0}=1$ viewed as a holomorphic cross-section of the canonical line bundle over $C P^{n}$; see Chern [1] for details of the Kähler structures of $C P^{n}$. One can think of $H(x) \circ S(x): D_{x} \rightarrow B^{n}(1)$ as a symplectic chart for $C P^{n}$.

There is a natural inclusion $\bar{i}: C P^{n} \rightarrow C P^{n+1}$ given by the inclusion $i: C^{n+1}$ $\rightarrow C^{n+2}$ defined by identifying C^{n+1} as the first $n+1$ coordinates of C^{n+2}. The choices made above can be made compatible with the inclusion of $C P^{n}$ in $C P^{n+1}$ in the following sense. For a point $[x]$ in $C P^{n}$ we can choose T_{x}, D_{x}, $S(x), H(x)$ as above. We can also let $i(x) \in C^{n+2}$ represent $\bar{i}[x]$, and we have $T_{x}=T_{i(x)} \cap C^{n+1}$, and $S(i(x)) \circ \bar{i}=i \circ S(x): D_{x} \rightarrow T_{i(x)}$. One can also choose $H(i(x))$ so that $H(i(x)) \circ i=i \circ H(x): T_{x} \rightarrow B^{n+1}(1)$. With these choices,

$$
\frac{1}{\pi} \sum_{i=1}^{n+1} d x_{i} \wedge d y_{i}=\left((H(i(x)) \circ S(i(x)))^{-1}\right)^{*}\left(\Omega_{0}^{n+1}\right)
$$

on B^{n+1}, and also

$$
\frac{1}{\pi} \sum_{i=1}^{n} d x_{i} \wedge d y_{i}=\pi_{1}^{*}\left((H(x) \circ S(x))^{-1}\right)^{*}\left(\Omega_{0}^{n}\right)
$$

where π_{1} is the projection of $B^{n+1}(1)$ onto $B^{n}(1)$ defined by the projection of C^{n+1} onto the first n coordinates.

Proof of Theorem A. The function f will be constructed in stages; the j th stage will be denoted f_{j}, where $0 \leq j \leq p$ for some p to be chosen later. Choose $f_{0}: M \rightarrow C P^{n}$ for n sufficiently large, so that $f_{0}^{*}\left(\Omega_{0}^{n}\right)$ and Ω are cohomologous. This can be done since $C P^{n}$ can be taken to be the $2 n$-skeleton of an Eilenberg-MacLane space of type $K(Z, 2)$. Hence $\Omega=f_{0}^{*}\left(\Omega_{0}^{n}\right)+d \omega$ for some 1-form ω on M.

We need a couple of lemmas before we can construct the f_{j} 's.
Lemma 1. Given $R>\varepsilon>0$, there exists a $\delta>0$ such that

$$
V(x, \varepsilon, \delta)=\left\{y \in C P^{n} \mid \alpha\left(y, x^{\prime}\right)<\delta \text { for some } x^{\prime} \in V(x, \varepsilon)\right\} \subset S^{-1}(x)\left(T_{x}(R)\right)
$$

Furthermore, δ can be chosen independently of n.
Proof of Lemma 1. The lemma follows easily from the facts that $T_{x}(\varepsilon) \subset$ $T_{x}(R)$ and that, for $0 \leq \theta \leq \frac{1}{2} \pi$,

$$
\left\{y \in D_{x} \mid \alpha(x, y)<\theta\right\}=S^{-1}\left\{z \in T_{x}\left|\cos \theta<|z|^{-1}\right\} .\right.
$$

From now on we fix a choice of ε, R, δ satisfying Lemma 1 . We also choose a $\rho>0$ such that $1-\rho>\cos ^{2} \delta$.

Lemma 2. Given a 1 -form ω on a closed manifold M, a finite open cover $\left\{W_{i}\right\}$ of M, an $R>0$, and a ρ such that $1>\rho>0$, there exist real valued functions $h_{k}, t_{k}, 1 \leq k \leq p$ such that
(1) $\sum_{k=1}^{p} d h_{k} \wedge d t_{k}=d \omega$,
(2) each pair $\left(h_{k}, t_{k}\right)$ has support contained in some element of the cover $\left\{W_{i}\right\}$,
(3) $\prod_{k=1}^{p}\left(1+K^{2}\left(h_{k}{ }^{2}+t_{k}^{2}\right)\right)<1 /(1-\rho)$, where $K^{2}=1+R^{2}$,
(4) $h_{k}{ }^{2}+t_{k}{ }^{2}+R^{2} /\left(1+R^{2}\right)<1$.

Proof of Lemma 2. There exists some choice of functions $\bar{h}_{k}, \bar{t}_{k}, 1 \leq k \leq$ \bar{p}, such that $\sum_{k=1}^{p} d \bar{h}_{k} \wedge d \bar{t}_{k}=d \omega$. This can be seen by choosing a partition of unity $\left\{\varphi_{k}\right\}$ subordinate to some finite coordinate cover $\left\{U_{i}\right\}$ of M. Then $d \omega$ $=d\left(\sum \varphi_{k} \omega\right)$, and $d\left(\varphi_{k} \omega\right)=\sum_{i=1}^{m} d \bar{h}_{k}^{i} \wedge d \bar{t}_{k}^{i}$ for each k and some choice of \bar{h}_{k}^{i}, \bar{t}_{k}^{i} with support in U_{i}, where $m=$ dimension of M. Hence (1) can be satisfied. Now choose a partition of unity $\left\{\Psi_{i}\right\}, 0 \leq i \leq c$, subordinate to $\left\{W_{i}\right\}$. Then

$$
\sum_{k=1}^{p} d \bar{h}_{k} \wedge d \bar{t}_{k}=\sum_{k=1}^{\tilde{p}} \sum_{j=1}^{c} \sum_{i=1}^{c} d\left(\Psi_{i} h_{k}\right) \wedge d\left(\Psi_{j} t_{k}\right)
$$

and (2) can also be satisfied by taking the $\Psi_{i} \bar{h}_{k}$ as the h_{k} 's and the $\Psi_{j} \bar{t}_{k}$ as the
t_{k} 's. By replacing h_{k} and t_{k} by N copies of h_{k} / N and t_{k} / N respectively, and using the fact that $\lim _{n \rightarrow \infty}\left(1+n^{-2}\right)^{n}=1$, we see that we can choose the h_{k} 's and t_{k} 's to satisfy condition (3). By a similar argument, the h_{k} 's and t_{k} 's can be chosen small enough so that condition (4) is satisfied as well, and the proof of the lemma is complete.
M has an open cover given by $\left\{f_{0}{ }^{-1}(V(x, \varepsilon))\right\},[x] \in C P^{n}$. Fix a finite sub$\operatorname{cover}\left\{W_{i}\right\}$ of this cover. Fix a choice of $\left\{h_{k}, t_{k}\right\}, 1 \leq k \leq p$, satisfying Lemma 2 applied to our fixed choices of $\varepsilon, R, \delta, \rho,\left\{W_{i}\right\}$, and such that

$$
\frac{1}{\pi} \sum_{i=1}^{p}\left(d h_{k} \wedge d t_{k}\right)=d \omega \quad \text { where } d \omega=\Omega-f_{0}^{*}\left(\Omega_{0}^{n}\right)
$$

For each $k, 1 \leq k \leq p$, we choose a W_{k} in the cover $\left\{W_{i}\right\}$, such that the support of h_{k} and t_{k} are contained in W_{k}. Recall that $W_{k}=f_{0}^{-1}\left(V\left(x_{k}, \varepsilon\right)\right)$ for some $x_{k} \in C^{n+1}$.

For each $j, 1 \leq j \leq p$, let us assume the two induction hypotheses:
(i) There is a map $f_{j-1}: M \rightarrow C P^{n+j-1}$ such that

$$
f_{j-1}^{*}\left(\Omega_{0}^{n+j-1}\right)=f_{0}^{*}\left(\Omega_{0}^{n}\right)+\frac{1}{\pi} \sum_{k=1}^{j-1}\left(d h_{k}\right) \wedge\left(d t_{k}\right) .
$$

(ii) $f_{i}\left(W_{j}\right) \subset V\left(x_{j}, R\right)$, for all $i \leq j-1$.

If we show that (i) is true for f_{p}, we will be done since

$$
f_{p}^{*}\left(\Omega_{0}^{n+p}\right)=f_{0}^{*}\left(\Omega_{0}^{n}\right)+\frac{1}{\pi} \sum_{i=1}^{p}\left(d h_{k}\right) \wedge\left(d t_{k}\right)=f_{0}^{*}\left(\Omega_{0}^{n}\right)+d \omega=\Omega .
$$

We already have (i) and (ii) satisfied for $j=1$; (i) is true vacuously and (ii) follows from the fact that $V\left(x_{j}, \varepsilon\right) \subset V\left(x_{j}, R\right)$. Hence it suffices to show that given f_{j-1} satisfying (i) and (ii) there is an f_{j} satisfying (i) and (ii). Define f_{j} as follows:
(a) On $M-W_{j}$, set $f_{j}=\bar{i} \circ f_{j-1}$ where $\bar{i}: C P^{n+j-1} \rightarrow C P^{n+j}$ is the inclusion.
(b) On W_{j}, we define first a map $g_{j}: W_{j} \rightarrow B^{n+j}(1)$ given by $\pi_{1} g_{j}=$ $H\left(x_{j}\right) \circ S\left(x_{j}\right) \circ f_{j-1}$ with values in $B^{n+j-1}(1)$, and by $\pi_{2} g_{j}=h_{j}+\sqrt{-1} t_{j}$ with values in $B^{1}(1)$, where π_{1}, π_{2} are the projections of $B^{n+j}(1)$ onto $B^{n+j-1}(1)$ and $B^{1}(1)$ respectively, induced by the projections of C^{n+j} onto its first $n+j-1$ coordinates and last coordinate respectively.

We can now define $f_{j}=S^{-1}\left(i\left(x_{j}\right)\right) \circ H^{-1}\left(i\left(x_{j}\right)\right) \circ g_{j}$, (we are taking the choices of $H(x), H(i(x))$, to be compatible in the sense described just before the beginning of the proof of Theorem A).

By property (4) of Lemma 2 we have that $\left|\left(\pi_{2} g_{j}\right)\right|^{2}<\left(1-R^{2} /\left(1+R^{2}\right)\right)$ in $B^{1}(1)$. By induction hypothesis (ii) applied to f_{j-1} and by the fact that $H\left(x_{j}\right)\left(T_{x_{j}}(R)\right) \subset B^{n+j-1} R\left(1+R^{2}\right)^{-1 / 2}$ we have that $\left|\pi_{1}\left(g_{j}\right)\right|^{2}<R^{2} /\left(1+R^{2}\right)$ in $B^{n+j-1}(1)$. Hence we can conclude that $g_{j}: W_{j} \rightarrow B^{n+j}(1)$ is well defined,
and consequently that f_{j} is well defined on W_{j}. By Lemma 2, part (2), we can conclude that f_{j} is well defined on all of M. On W_{j}

$$
\begin{aligned}
f_{j}^{*}\left(\Omega_{0}^{n+j}\right) & =g_{j}^{*}\left(\left(H(i(x) \circ S(I(x)))^{-1}\right)^{*}\left(\Omega_{0}^{n+1}\right)=g_{j}^{*}\left(\frac{1}{\pi} \sum_{i=1}^{n+j} d x_{i} \wedge d y_{i}\right)\right. \\
& =\left(\pi_{1} g_{j}\right) *\left(\frac{1}{\pi} \sum_{i=1}^{n+j} d x_{i} \wedge d y_{i}\right)+\left(\pi_{2} g_{j}\right)^{*}\left(\frac{1}{\pi} \sum_{i=1}^{n+j} d x_{i} \wedge d y_{i}\right) \\
& =\left(H\left(x_{j}\right) \circ S\left(x_{j}\right) \circ f_{j-1}\right) *\left(\frac{1}{\pi} \sum_{i=1}^{n+j-1} d x_{i} \wedge d y_{i}\right)+\frac{1}{\pi}\left(d h_{j} \wedge d t_{j}\right) \\
& =\mathrm{f}_{j-1}^{*}\left(S^{*}\left(x_{j}\right) \circ H^{*}\left(x_{j}\right)\left(\frac{1}{\pi} \sum_{i=1}^{n+j-1} d x_{i} \wedge d y_{i}\right)\right)+\frac{1}{\pi}\left(d h_{j} \wedge d t_{j}\right) \\
& =f_{j-1}^{*}\left(\Omega_{0}^{n+j-1}\right)+\frac{1}{\pi}\left(d h_{j} \wedge d t_{j}\right)
\end{aligned}
$$

This equality follows from the compatibility conditions on $H\left(x_{j}\right)$ and $H\left(i\left(x_{j}\right)\right)$ discussed just before the beginning of the proof of Theorem A. Hence we have shown that induction hypothesis (i) is satisfied for f_{j}. Therefore we will be done if we can show that $f_{j}\left(W_{k}\right) \subset V\left(x_{k}, R\right)$ for all $k>j$. For any $x \in W_{k}$ and $0 \leq i \leq j$, set $A_{i}=S\left(x_{i+1}\right)\left(f_{i}(x)\right)$ and $B_{i}=S\left(x_{i+1}\right)\left(f_{i+1}(x)\right)$. We consider the A_{i}, B_{i} as all contained in C^{n+j}, (note that A_{i} is a scalar multiple of B_{i-1}). We now add another induction hypothesis for each $j, 1 \leq j \leq p$,
(iii) $\left\langle B_{i}-A_{i}, A_{i^{\prime}}\right\rangle=0$ for all $i^{\prime} \leq i \leq j-1$.

If hypothesis (iii) is true for $j-1$, it is seen to hold for j, since $B_{j}-A_{j}$ is perpendicular to C^{n+j} in C^{n+j+1}, using the construction of f_{j} as above, and by the compatibility conditions given before the proof of Theorem A. (Hypothesis (iii) is vacuously satisfied for f_{0}.)

Given A_{i}, B_{i} as above and our fixed ρ, we will show that $\cos ^{2} \alpha_{j-1}>1-\rho$, where $\alpha_{i}=\alpha\left(\left[A_{0}\right],\left[B_{i}\right]\right)$. We have

$$
\cos ^{2} \alpha_{i}=\left(\frac{\left|\left\langle A_{0}, B_{i}\right\rangle\right|}{\left|A_{0}\right| \cdot\left|B_{i}\right|}\right)^{2}=\left(\frac{\left|\left\langle A_{0}, A_{i}\right\rangle\right|}{\left|A_{0}\right| \cdot\left|B_{i}\right|}\right)^{2}
$$

by induction hypothesis (iii), and this expression is equal to $\left(\cos ^{2} \alpha_{i-1}\right)\left|A_{i}\right|^{2} /\left|\boldsymbol{B}_{i}\right|^{2}$. Since $\left|B_{i}\right|^{2}=\left|A_{i}\right|^{2}+\left|B_{i}-A_{i}\right|^{2}$ and $\left|A_{i}\right| \geq 1$, we have that $\left|A_{i}\right|^{2} /\left|B_{i}\right|^{2} \geq$ $1 /\left(1+\left|B_{i}-A_{i}\right|^{2}\right)$. However $\left|B_{i}-A_{i}\right|^{2} \leq K^{2}\left(h_{k}{ }^{2}+t_{k}{ }^{2}\right)$ with $K^{2}=1+R^{2}$, by the construction of f_{i+1}, the definition of the map $H\left(x_{i+1}\right)$, and the fact that B_{i} and A_{i} are in $T_{x_{i+1}}(R)$. Hence we have $\cos ^{2} \alpha_{i} \geq \cos ^{2} \alpha_{i-1} \cdot\left(1+K^{2}\left(h_{k}{ }^{2}+t_{k}^{2}\right)\right)^{-1}$, and so

$$
\cos ^{2} \alpha_{j-1} \geq \prod_{k=1}^{j-1}\left(1+K^{2}\left(h_{k}^{2}+t_{k}^{2}\right)^{-1}\right)
$$

which is greater than $1-\rho$ by part (3) of Lemma 2 . Since we chose ρ such
that $1-\rho>\cos ^{2} \delta$, we have $\alpha_{i}<\delta$. Since A_{0} is contained in $V\left(x_{k}, \varepsilon\right)$, we get that B_{j-1} is contained in $V\left(x_{k}, \varepsilon, \delta\right)$ which is contained in $V\left(x_{k}, R\right)$ by Lemma 1. Hence $f_{j}(x)$ is contained in $V\left(x_{k}, R\right)$ for all x in W_{k}. This shows that f_{j} satisfies induction hypothesis (ii), and the proof of Theorem A is complete.

References

[1] S. S. Chern, Complex manifolds without potential theory, Van Nostrand, Princeton, New Jersey, 1967.
[2] M. L. Gromov, A topological technique for the construction of solutions of differential equations and inequalities, Actes Congrès Intern. Math. (Nice, 1970), Gauthier-Villars, Paris, No. 2, 1971, 221-225.
[3] B. Kostant, Quantization and unitary representations, Lectures in Modern Analysis and Appl. III, Lecture Notes in Math. Vol. 170, Springer, Berlin, 1970, 87-207.
[4] J. Moser, On the volume elements on a manifold, Trans. Amer. Math. Soc. 120 (1965) 286-294.
[5] M. S. Narasimhan \& S. Ramanan, Existence of universal connections, Amer. J. Math. 83 (1961) 563-572.

Queens College, City University of New York

[^0]: Communicated by R. Bott, May 24, 1975.

