EXISTENCE OF GENERALIZED SYMMETRIC RIEMANNIAN SPACES OF ARBITRARY ORDER

OLDŘICH KOWALSKI

A Riemannian symmetric space is a Riemmanian manifold (M, g) with the following properties : for each $x \in M$ there is a (unique) isometry J_{x} on M such that
(a) x is an isolated fixed point of J_{x},
(b) $\left(J_{x}\right)^{2}=$ identity.

It is also easy to show the following property: for every two points $x, y \in M$ we have
(c) $J_{x} \circ J_{y}=J_{z} \circ J_{x}$, where $z=J_{x}(y)$.

The following is a direct generalization of the previous situation.
Definition. A Riemannian k-symmetric space ($k \geq 2$) is a Riemannian manifold (M, g) on which a family $\left\{s_{x}\right\}_{x \in M}$ of isometries exists with the following properties:
(a) Each $x \in M$ is an isolated fixed point of the corresponding s_{x},
(b) $\left(s_{x}\right)^{k}=$ identity for all $x \in M$, and k is the minimum number of this property,
(c) for every $x, y \in M, s_{x} \circ s_{y}=s_{z} \circ s_{x}$, where $z=s_{x}(y)$.

In fact, Ledger and Obata [3] have proved that for every $k>2$ there is a k-symmetric Riemannian space which is not symmetric. The purpose of this paper is to strengthen the previous result in the following sense: for every $k>2$ there is a k-symmetric Riemannian space which is not l-symmetric for $l=2, \cdots, k-1$. (Such a Riemannian space is said to be generalized symmetric of order k; see [2]). In our further considerations we shall make full use of the original construction by Ledger and Obata.

1. Let $M=G / H$ be a homogeneous Riemannian space. As usual, we suppose G acting effectively on the coset space G / H. Thus the Lie group G can be considered as a group of isometries on M. Let $\pi: G \rightarrow M$ denote the canonical prejection.

Proposition 1. Let G admit an automorphism σ such that
(i) $H=G^{\sigma}=$ the fixed point set of σ,
(ii) $\sigma^{k}=$ identity,
(iii) the transformation s of M determined by $\pi \circ \sigma=s \circ \pi$ is an isometry. Then M is a Riemannian k-symmetric space.

Communicated by W. P. A. Klingenberg, May 15, 1975.

Proof. For $x \in M$ define a transformation s_{x} of M by the formula $s_{x}=$ $g \circ S \circ g^{-1}$, where $g \in \pi^{-1}(x)$. Then s_{x} is independent of the choice of g. In fact, for each $h \in H$ we have $L_{h} \circ \sigma \circ L_{n-1}=\sigma$ and $\pi \circ L_{h}=h \circ \pi$. Hence $\left(h \circ S \circ h^{-1}\right) \circ \pi$ $=h \circ(s \circ \pi) \circ L_{n-1}=h \circ(\pi \circ \sigma) \circ L_{n-1}=\pi \circ\left(L_{n} \circ \sigma \circ L_{n-1}\right)=\pi \circ \sigma$, and consequently, $h \circ s \circ h^{-1}=s$. Thus for $g^{\prime}=g h$ we obtain $g^{\prime} \circ s \circ g^{\prime-1}=g \circ s \circ g^{-1}$.

It is clear that $\left(s_{x}\right)^{k}=$ identity for each $x \in M$. We have to prove that x is an isolated fixed point of s_{x}. For, it is sufficient to show that the initial point $o \in M, o=\pi(H)$, is an isolated fixed point of s. Condition (iii) implies that $s_{* 0} \circ \pi_{* e}=\pi_{* e} \circ \sigma_{* e}$ on the tangent space G_{e}. Let $X \in M_{0}$ be such that $s_{* 0}(X)$ $=X$, and let $\tilde{X}_{\tilde{\prime}} \in G_{e}$ be a lift of X. Then $\pi_{* e}\left(\sigma_{* e}(\tilde{X})\right)=\pi_{* e}(\tilde{X})$, and hence $\sigma_{* e}(\tilde{X})=\tilde{X}+\tilde{Z}$, where $\tilde{Z} \in H_{e}$. Now $\sigma_{* e}(\tilde{Z})=\tilde{Z}$, and $\left(\sigma_{* e}\right)^{k}(\tilde{X})=\tilde{X}+k \tilde{Z}$ $=\tilde{X}$ because $\left(\sigma_{* e}\right)^{k}=$ identity. Thus $\tilde{Z}=0$ and \tilde{X} is a fixed vector of $\sigma_{* e}$. We deduce $\tilde{X} \in H_{e}$ and $X=0$. Because $s_{* 0}$ has no nonzero fixed vectors and s is an isometry of M, we conclude that o is an isolated fixed doint of s.

Finally, we have to prove the formula $s_{x} \circ s_{y}=s_{z} \circ s_{x}, z=s_{x}(y)$. For this purpose we shall identify the elements of G with the corresponding transformations of M. Then we deduce $s \circ g \circ s^{-1}=\sigma(g)$. Put $s_{x}=g \circ s \circ g^{-1}, s_{y}$ $=g^{\prime} \circ s \circ\left(g^{\prime}\right)^{-1}$, where $x=g(o)$ and $y=g^{\prime}(o)$. Then $\left(g \circ s \circ g^{-1} \circ g^{\prime} \circ s^{-1}\right)(o)$ $=s_{x}\left(g^{\prime}(o)\right)=s_{x}(y)$. On the other hand, $g \circ s \circ g^{-1} \circ g^{\prime} \circ s^{-1}=g \circ \sigma\left(g^{-1} g^{\prime}\right)$ $=g^{\prime \prime}$ belongs to G. Consequently, $s_{x} \circ s_{y}=g \circ s \circ g^{-1} \circ g^{\prime} \circ s \circ\left(g^{\prime}\right)^{-1}=$ $g^{\prime \prime} \circ S \circ\left(g^{\prime \prime}\right)^{-1} \circ g \circ S \circ g^{-1}=s_{s_{x}}(y) \circ s_{x}$.
2. We shall recall here a class of Riemannian manifolds constructed by Ledger and Obata (see [3]). Let G be a compact connected nonabelian Lie group, G^{k+1} the direct product of G with itself $(k+1)$-times, and ΔG^{k+1} the diagonal of G^{k+1}. Consider the action of G^{k+1} on G^{k} given by

$$
\left(x_{1}, \cdots, x_{k+1}\right)\left(y_{1}, \cdots, y_{k}\right)=\left(x_{1} y_{1} x_{k+1}^{-1}, \cdots, x_{k} y_{k} x_{k+1}^{-1}\right) .
$$

Then G^{k+1} acts on G^{k} transitively and effectively, and ΔG^{k+1} is the isotropy group at the identity $o=(e, \cdots, e)$ of G^{k}. We get a diffeomorphism between G^{k} and the coset space $G^{k+1} / \Delta G^{k+1}$. Each tangent vector at the identity of G^{k} can be written in a unique way in the form $\left(X_{1}, \cdots, X_{k}\right)$, where X_{1}, \cdots, $X_{k} \in G_{e}$.

Now let Φ be an $\operatorname{Ad}(G)$-invariant inner product on G_{e}, and let $\Phi^{[k]}$ be the Ad $\left(\Delta G^{k+1}\right)$-invariant inner product on $\left(G^{k}\right)_{0}$ defined by

$$
\begin{aligned}
& \Phi^{[k]}\left(\left(X_{1}, \cdots, X_{k}\right),\left(X_{1}, \cdots, X_{k}\right)\right) \\
& \quad=\sum_{i=1}^{k} \Phi\left(X_{i}, X_{i}\right)+\sum_{i<j} \Phi\left(X_{i}-X_{j}, X_{i}-X_{j}\right)
\end{aligned}
$$

An alternative definition of $\Phi^{[k]}$ is the following: for $i=1, \cdots, k$ and $X \in G_{e}$ let $X^{(i)}$ denote the vector $\left(X_{1}, \cdots, X_{k}\right) \in\left(G^{k}\right)_{e}$ such that $X_{i}=X$ and $X_{j}=0$ for $j \neq i$. Then $\Phi^{[k]}\left(X^{(i)}, Y^{(i)}\right)=k \Phi(X, Y)$, and $\Phi^{[k]}\left(X^{(i)}, Y^{(j)}\right)=-\Phi(X, Y)$ for $i \neq j$.

The inner product $\Phi^{[k]}$ can be extended, by the left translations of G^{k+1}, to a Riemannian metric on G^{k} denoted also by $\Phi^{[k]}$. Then $G^{k+1} / \Delta G^{k+1}$ becomes a homogeneous Riemannian manifold ($G^{k}, \Phi^{[k]}$).

Let σ be an automorphism of G^{k+1} defined by the rule $\sigma\left(x_{1}, \cdots, x_{k_{+1}}\right)=$ $\left(x_{k_{+1}}, x_{1}, \cdots, x_{k}\right)$. Then σ satisfies all the conditions of Proposition 1, where we write $k+1, G^{k+1}, \Delta G^{k+1}, G^{k}$ instead of k, G, H, M respectively. In particular, condition (iii) can be verified as follows: consider the transformation s of G^{k} determined by $\pi \circ \sigma=s \circ \pi$. Then for any $X \in G_{e}$ we deduce easily $s_{* 0}\left(X^{(i)}\right)$ $=X^{(i+1)}$ for $i=1, \cdots, k-1, s_{* 0}\left(X^{(k)}\right)=-\left(X^{(1)}+\cdots+X^{(k)}\right)$, and $\Phi^{[k]}\left(s_{* 0} X^{(i)}, s_{* 0} Y^{(j)}\right)=\Phi^{[k]}\left(X^{(i)}, Y^{(j)}\right)$ for $i, j=1, \cdots, k$. Thus the Riemannian manifold ($G^{k}, \Phi^{[k]}$) is $(k+1)$-symmetric.
3. In the remainder of this paper we shall specialize the class of manifolds ($G^{k}, \Phi^{[k]}$) in a proper way.

Proposition 2. Consider a homogeneous Riemannian manifold ($G^{k}, \Phi^{[k]}$) such that
(a) G is simple,
(b) G^{k+1} is the component of unity of the full isometry group $I\left(G^{k}, \Phi^{[k]}\right)$.

Then $\left(G^{k}, \Phi^{[k]}\right)$ is not l-symmetric for any $l<k+1$.
Proof. Let r be an isometry of $\left(G^{k}, \Phi^{[k]}\right)$ with the isolated fixed point $o=$ (e, \cdots, e) such that $r^{l}=$ identity. Define an automorphism $\tilde{\rho}$ of the group $I\left(G^{k}, \Phi^{[k]}\right)$ by the formula $\tilde{\rho}(g)=r \circ g \circ r^{-1}$. Then the restriction of $\tilde{\rho}$ to G^{k+1} is an automorphism ρ of G^{k+1}. We can easily see that $\pi \circ \rho=r \circ \pi$.

Now G^{k+1} is a direct product of simple subgroups $G^{*(i)}, i=1, \cdots, k+1$, all of them being canonically isomorphic to the group G. Then the automorphism $\rho: G^{k+1} \rightarrow G^{k+1}$ induces a permutation ν of the indices $1, \cdots, k+1$ such that $\rho\left(G^{* \nu(i)}\right)=G^{*(i)}, i=1, \cdots, k+1$. Denoting by φ_{i} the restriction of ρ to $G^{* \nu(i)}$, we get $\rho\left(g_{1}, \cdots, g_{k+1}\right)=\left(\varphi_{1}\left(g_{\nu(1)}\right), \cdots, \varphi_{k+1}\left(g_{\nu(k+1)}\right)\right)$. In particular, $\rho(g, \cdots, g)=\left(\varphi_{1}(g), \cdots, \varphi_{k+1}(g)\right)$. Because $\rho\left(\Delta G^{k+1}\right) \subset \Delta G^{k+1}$, we obtain $\varphi_{1}=\varphi_{2}=\cdots=\varphi_{k+1}$ under the canonical identification $G^{*(1)}=\cdots=G^{*(k+1)}$ $=G$, and therefore a unique automorphism $\varphi: G \rightarrow G$ such that $\rho\left(g_{1}, \cdots, g_{k+1}\right)$ $=\left(\varphi\left(g_{\nu(1)}\right), \cdots, \varphi\left(g_{\nu(k+1)}\right)\right)$. Denote by $d \rho$ (respectively, $\left.d \varphi\right)$ the induced automorphism of the Lie algebra \mathfrak{g}^{k+1} (respectively, \mathfrak{g}). Then $d \rho\left(X_{1}, \cdots, X_{k+1}\right)=$ $\left(d \varphi\left(X_{\nu(1)}\right), \cdots, d \varphi\left(X_{\nu(k+1)}\right), X_{1}, \cdots, X_{k+1} \in \mathfrak{g}\right.$.

Now let us recall the following result by Borel and Mostow, [1].
Lemma. A semi-simple automorphism A of a nonsolvable Lie algebra \mathfrak{g} leaves fixed an element X such that ad X is not nilpotent.
$d \varphi$ is a semi-simple automorphism of g because $(d \varphi)^{l}=$ identity. Let $X \neq 0$ be a fixed vector of $d \varphi$ and suppose $l<k+1$. Then the permutation ν contains a cycle $\left(i_{1}, \cdots, i_{m}\right)$ of length $m<k+1$. Consider the vector $Z=$ $\left(X_{1}, \cdots, X_{k+1}\right) \in \mathfrak{g}^{k+1}$ such that $X_{i}=X$ for $i=i_{1}, \cdots, i_{m}$ and $X_{i}=-X$ otherwise. Clearly, $\operatorname{d\rho }(Z)=Z$. Now we can identify g^{k+1} with the tangent space $\left(G^{k+1}\right)_{e}$ and $d \rho$ with the tangent map $\rho_{* e}$. We have $\pi_{* e} \circ \rho_{* e}=r_{* 0} \circ \pi_{* e}$, and thus the projection $\pi_{* e}(Z) \in\left(G^{k}\right)_{0}$ is a fixed vector with respect to $r_{* 0}$.

Moreover, $Z \in\left(G^{k+1}\right)_{e}$ is not tangent to the submanifold ΔG^{k+1} and hence $\pi_{* e}(Z) \neq 0$, a contradiction. This completes the proof.

Proposition 3. For $G=S O(3)$ and $\Phi(X, Y)=-\frac{1}{2} \operatorname{tr}(\operatorname{ad} X \circ \operatorname{ad} Y)$ the conditions of Proposition 2 are satisfied.

Proof. In the following, the elements of g (respectively, g^{k}) are considered as left invariant vector fields on G (respectively, G^{k}). First of all, there is a basis $\left\{X_{1}, X_{2}, X_{3}\right\}$ of g such that $\left[X_{1}, X_{2}\right]=X_{3},\left[X_{2}, X_{3}\right]=X_{1},\left[X_{3}, X_{1}\right]=X_{2}$. We have $\Phi\left(X_{\alpha}, X_{\beta}\right)=\delta_{\alpha \beta}$ for $\alpha, \beta=1,2,3$, and the vectors $X_{\alpha}^{(i)}, \alpha=1,2,3$, $i=1, \cdots, k$, form a basis of g^{k}. Now recall formulas (14) of [3] : for $X, Y \in \mathrm{~g}$

$$
\begin{aligned}
& \nabla_{X^{(i)}} Y^{(j)}=\frac{1}{2(k+1)}\left\{[X, Y]^{(j)}-[X, Y]^{(i)}\right\} \quad \text { for } i \neq j, \\
& \nabla_{X^{(i)}} Y^{(i)}=\frac{1}{2}[X, Y]^{(i)}
\end{aligned}
$$

A routine calculation shows the following properties of the curvature tensor R of $\Phi^{[k]}$:

$$
\begin{equation*}
R\left(X_{\alpha}^{(i)}, X_{\beta}^{(j)}\right) X_{\gamma}^{(k)}=0 \text { whenever } \alpha \neq \beta \neq \gamma \text { or } \alpha=\beta=\gamma, \tag{1}
\end{equation*}
$$ $R\left(X_{\alpha}^{(i)}, X_{\beta}^{(j)}\right) X_{\alpha}^{(k)}$ and $R\left(X_{\alpha}^{(i)}, X_{\alpha}^{(j)}\right) X_{\beta}^{(k)}$ belong to the subspace generated by $X_{\beta}^{(i)}, X_{\beta}^{(j)}, X_{\beta}^{(k)}$.

Let H_{0} be the component of the unity of the isotropy group of $I\left(G^{k}, \Phi^{[k]}\right)$ at the origin o, and denote the corresponding Lie algebra by \mathfrak{h}_{0}. Then \mathfrak{H}_{0} has a faithful isotropy representation by endomorphisms of $\mathrm{g}^{k}=\left(G^{k}\right)_{0}$. Clearly, the necessary condition for $A \in \mathfrak{h}_{0}$ is that $A\left(\Phi^{[k]}\right)=A(R)=0$, where A acts as a derivation on the tensor algebra of g^{k}.

Let $A \in \mathfrak{F}_{0}$ and set

$$
\begin{equation*}
A X_{\alpha}^{(i)}=\sum_{\beta=1}^{3} \sum_{j=1}^{k} a_{(j)_{\alpha}}^{(i) X_{\beta}^{(j)}}, \quad i=1, \cdots, k, \alpha=1,2,3 . \tag{2}
\end{equation*}
$$

The relation $\left(A \Phi^{[k]}\right)\left(X_{\alpha}^{(i)}, X_{\beta}^{(j)}\right)=0$ implies

$$
\begin{equation*}
k\left(a_{(i) \alpha}^{(i) \beta}+a_{(j) \beta}^{(j) \alpha}\right)-\sum_{l \neq i} a_{l l)_{\alpha}(i) \beta}^{(i)}-\sum_{l \neq j} a_{(l) \beta}^{(j) \alpha}=0 . \tag{3}
\end{equation*}
$$

Further, we can calculate easily

$$
R\left(X_{\alpha}^{(i)}, X_{\beta}^{(i)}\right) X_{\alpha}^{(i)}=-\frac{1}{4} X_{\beta}^{(i)} \quad \text { for } \alpha \neq \beta
$$

Consider the relation $(A R)\left(X_{\alpha}^{(i)}, X_{\beta}^{(i)}\right) X_{\alpha}^{(i)}=0$, i.e.,

$$
\begin{align*}
-\frac{1}{4} A X_{\beta}^{(i)}= & R\left(A X_{\alpha}^{(i)}, X_{\beta}^{(i)}\right) X_{\alpha}^{(i)}+R\left(X_{\alpha}^{(i)}, A X_{\beta}^{(i)}\right) X_{\alpha}^{(i)} \\
& +R\left(X_{\alpha}^{(i)}, X_{\beta}^{(i)}\right) A X_{\alpha}^{(i)} . \tag{4}
\end{align*}
$$

Let us substitute (2) in (4) and consider a vector $X_{r}^{(j)}$, where $\gamma \neq \alpha, \beta$ and
$j \neq i$. This vector enters into the left-hand side with the coefficient $-\frac{1}{4} a_{(j) \gamma}^{(i) r}$. According to (1), there is only one term on the right-hand side the evaluation of which can involve $X_{T}^{(j)}$, namely, the term $R\left(X_{\alpha}^{(i)}, a_{(j) \gamma_{\beta}}^{(i)} X_{T}^{(j)}\right) X_{\alpha}^{(i)}$. Now

$$
R\left(X_{\alpha}^{(i)}, a_{(j) \beta}^{(i) \gamma_{\gamma}} X_{r}^{(j)}\right) X_{\alpha}^{(i)}=a_{(j) \beta}^{(i))_{\gamma}}\left[(k+2) X_{r}^{(i)}-X_{r}^{(j)}\right] /\left[4(k+1)^{2}\right] .
$$

Comparing the coefficients at $X_{r}^{(j)}$ we finally get $a_{(j) \beta}^{(i) \gamma}=0$. Thus we have proved

$$
\begin{equation*}
a_{(j) \beta}^{(i) \alpha}=0 \quad \text { for } i \neq j, \alpha \neq \beta . \tag{5}
\end{equation*}
$$

Substituting in (3) we get

$$
\begin{equation*}
a_{(i) \alpha}^{(i) \beta}+a_{(j) \beta}^{(j) \alpha}=0 \quad \text { for } \alpha \neq \beta . \tag{6}
\end{equation*}
$$

In particular, for $i=j$ we obtain

$$
\begin{equation*}
a_{(i) \alpha}^{(i) \beta}+a_{(i) \beta}^{(i) \alpha}=0 \tag{7}
\end{equation*}
$$

and hence

$$
a_{(1) \alpha}^{(1) \beta}=a_{(2) \alpha}^{(2) \beta}=\cdots=a_{(k) \alpha}^{(k) \beta} \quad \text { for } \alpha \neq \beta .
$$

Now let us compare the coefficients at $X_{\beta}^{(j)}, j \neq i$, in the relation (4). $X_{\beta}^{(j)}$ enters into the left-hand side with the coefficient $-\frac{1}{4} a_{(j) \beta}^{(i) \beta}$. As for the right-hand side, $X_{\beta}^{(j)}$ can be involved only in the evaluations of the terms $R\left(a_{(j) \alpha}^{(i) \alpha} X_{\alpha}^{(j)}\right.$, $\left.X_{\beta}^{(i)}\right) X_{\alpha}^{(i)}, R\left(X_{\alpha}^{(i)}, a_{(j){ }_{\beta}}^{(i)} X_{\beta}^{(j)}\right) X_{\alpha}^{(i)}, R\left(X_{\alpha}^{(i)}, X_{\beta}^{(i)}\right)\left(a_{(j) \alpha}^{(i) \alpha} X_{\alpha}^{(j)}\right)$. After routine calculations we obtain

$$
\begin{equation*}
(3 k+2) a_{(j) \alpha}^{(i) \alpha}+\left(k^{2}+2 k\right) a_{(j) \beta}^{(i) \beta}=0 . \tag{9}
\end{equation*}
$$

Writing these relations for $(\alpha, \beta)=(1,2),(2,3),(3,1)$ respectively, we obtain finally

$$
\begin{equation*}
a_{(j) \alpha}^{(i) \alpha}=0 \quad \text { for } i \neq j, \alpha=1,2,3 . \tag{10}
\end{equation*}
$$

Having $i=j$ and $\alpha=\beta$ in (3), we deduce from (10)

$$
\begin{equation*}
a_{(i) \alpha}^{(i) \alpha}=0, \quad \alpha=1,2,3, i=1, \cdots, k \tag{11}
\end{equation*}
$$

If we summarize (5), (10) and then (7), (8), (11), we can see that $\mathfrak{K}_{0} \subset U\left([\mathfrak{F o}(3)]^{k}\right)$. On the other hand, the group $G^{k+1}=S O(3)^{k+1}$ is contained in $I\left(G^{k}, \Phi^{[k]}\right)$ so that $\Delta\left(S O(3)^{k+1}\right)$ is contained in H_{0}. Thus $H_{0}=\Delta\left(S O(3)^{k+1}\right)$, and consequently $S O(3)^{k+1}$ is the component of the unity of $I\left(G^{k}, \Phi^{[k]}\right)$ as required. Hence we can conclude our paper with

Theorem. For each integer $k \geq 2$ there exists a compact generalized symmetric Riemannian space (M, g) of order k such that the component of the unity of the full isometry group $I(M, g)$ is semi-simple.

References

[1] A. Borel \& G. D. Mostow, On semi-simple automorphisms of Lie algebras, An. of Math. 61 (1955) 389-405.
[2] O. Kowalski, Riemannian manifolds with general symmetries, Math. Z. 136 (1974) 137-150.
[3] A. J. Ledger \& M. Obata, Affine and Riemannian s-manifolds, J. Differential Geometry 2 (1968) 451-459.
[4] J. A. Wolf \& A. Gray, Homogeneous spaces defined by Lie group automorphisms. I, J. Differential Geometry 2 (1968) 77-114.

Charles University, Prague

