A GEOMETRIC CHARACTERIZATION OF POINTS OF TYPE m ON REAL SUBMANIFOLDS OF \boldsymbol{C}^{n}

THOMAS BLOOM \& IAN GRAHAM

1. Introduction

Let D be a domain in C^{n} with smooth boundary $b D . b D$ is said to be pseudoconvex (respectively strongly pseudoconvex) if the Levi form is nonnegative (respectively positive definite) on the complex tangent space at all points of $b D$.

Pseudoconvexity of $b D$ is a necessary and sufficient condition for D to be a domain of holomorphy [4]. However, if one makes the assumption of strong pseudoconvexity, more precise results are possible than mere existence statements, e.g., solutions of $\bar{\partial}$ within the class of bounded functions, boundary regularity of solutions of $\bar{\partial}$ (see [1] and the references there). The existence of holomorphic support functions and peak functions plays an important role in analysis on strongly pseudoconvex domains.

Pseudoconvexity alone is not a sufficient condition for local regularity of $\bar{\partial}$ at the boundary (for global regularity see [6]). A counterexample appears in [8] in which $b D$ contains a complex submanifold. Nor does pseudoconvexity guarantee the existence of peak functions (see [9] for an interesting counterexample). Thus conditions between pseudoconvexity and strong pseudoconvexity are of interest [5], [7].

In [5], J. J. Kohn introduced the notion of points of type m (m is a positive integer or $+\infty$) on the boundary of a domain D in C^{2}. A point at which the Levi form does not vanish is of type 1 . If $b D$ contains a complex submanifold, then all points on this submanifold are of infinite type [5]. Pseudoconvexity together with finite type yields a subelliptic estimate for $(0,1)$ forms which implies local regularity at the boundary for the canonical solution of $\bar{\partial}$, [5]. P. Greiner [3] showed that these assumptions are necessary for this estimate. Kohn also introduced the notion of strict type m which is sufficient to guarantee the existence of local peak functions [5].

Kohn's definition of points of type m is in terms of properties of commutators of tangential holomorphic vector fields. In [11] Naruki studies real submanifolds of C^{n} of arbitrary codimension. A similar condition involving commutators of tangential holomorphic vector fields appears. Using this con-

[^0]dition together with total indefiniteness of the Levi form, Naruki obtains a subelliptic estimate for $\bar{\partial}_{b}$ on functions.

Our main result is a geometric characterization of points of type m on a hypersurface M in C^{n} ('type' is defined in $\S 2$):

Theorem 2.4. A point $P \in M$ is of type $m<\infty$ if and only if there is a complex submanifold of codimension one tangent to M at P to order m but no codimension one complex submanifold tangent to a higher order. A point $P \in M$ is of infinite type if and only if there are complex submanifolds of codimension one tangent to M at P to arbitrarily high order. (There may or may not be a complex submanifold tangent to infinite order.)

The proof of this theorem is contained in $\S 2$. It would be of interest to relate a 'type' condition to the maximum degree of tangency of a complex submanifold of dimension one. This is the idea behind $\S 3$, but our results are incomplete. However, some interesting examples are given. In § 4 we generalize Theorem 2.4 to the case of generic submanifolds of arbitrary codimension. However the commutator condition is not the same as Naruki's [11].

We are indebted to Peter Greiner for numerous helpful discussions concerning this work.

1. Basic definitions

1.1. Let M be a real C^{∞} submanifold of an open subset U in C^{n}, and let P be a point of M. The complexified tangent space to C^{n} at P, denoted by $\boldsymbol{C T}\left(\boldsymbol{C}^{n}, P\right)$ splits naturally into a direct sum of two subspaces $T^{1,0}\left(C^{n}, P\right) \oplus$ $T^{0,1}\left(C^{n}, P\right)$ the holomorphic and anti-holomorphic parts. The injection of M into C^{n} induces an injection of the complexified tangent space to M at $P, C T(M, P)$ into $\boldsymbol{C T}\left(C^{n}, P\right)$ and we consider $\boldsymbol{C T}(M, P)$ as a subset of $C T\left(C^{n}, P\right)$.
1.2. Definition. The holomorphic tangent space to M at P is defined to be the intersection $\boldsymbol{C T}(M, P) \cap T^{1,0}\left(C^{n}, P\right)$ and is denoted by $T^{1,0}(M, P)$.

Suppose that $M=\left\{z \in U \mid r_{1}=r_{2}=\cdots=r_{k}=0\right\}$, where the r_{i} are realvalued C^{∞} functions such that $d r_{1} \wedge \cdots \wedge d r_{k} \neq 0$ at all points of M. Then we may identify $T^{1,0}(M, P)$ with all $w \in C^{n}$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{n} \frac{\partial r_{i}}{\partial z_{j}} w_{j}=0 \quad \text { for } i=1, \cdots, k \tag{1.2.1}
\end{equation*}
$$

We note that $\operatorname{dim}_{C} T^{1,0}(M, P)$ satisfies [12] the inequalities

$$
\max (0, n-k) \leq \operatorname{dim}_{c} T^{1,0}(M, P) \leq n-\left[\frac{k+1}{2}\right]
$$

If M is a real hypersurface then $\operatorname{dim}_{C} T^{1,0}(M, P)=n-1$.
1.3. Definition. A holomorphic vector field on U is a C^{∞} vector field F
whose value at each point $q \in U$ satisfies

$$
F(q) \in T^{1,0}\left(C^{n}, q\right)
$$

Such a vector field may be written in the form $\sum_{i=1}^{n} a_{i}\left(\partial / \partial z_{i}\right)$ with a_{i} a complex-valued C^{∞} function on U.
1.4. Definition. A vector field F is tangential to M if $F(q) \in C T(M, q)$ for all $q \in M$.
1.5. Definition. A holomorphic vector field tangential to M is a vector field F such that $F(q) \in T^{1,0}(M, q)$ for all $q \in M$ and $F(q) \in T^{1,0}\left(C^{n}, q\right)$ for all $q \in U$.

If F is written in the form $\sum_{i=1}^{n} a_{i}\left(\partial / \partial z_{i}\right)+\sum_{i=1}^{n} b_{i}\left(\partial / \partial \bar{z}_{i}\right)$, then it is tangential if and only if

$$
\sum_{i=1}^{n} a_{i} \frac{\partial r_{s}}{\partial z_{i}}+\sum_{i=1}^{n} b_{i} \frac{\partial r_{s}}{\partial \bar{z}_{i}}=0 \quad \text { on } M
$$

for $s=1, \cdots, k$. That is, $F\left(r_{s}\right)=0$ on M for $s=1, \cdots, k$.
1.6. Definition. For F a vector field we define its conjugate \bar{F} via the equation

$$
\bar{F}(u)=\overline{F(\bar{u})} \quad \text { for all } u \in C^{\infty}(U)
$$

If $\boldsymbol{F}=\sum a_{i}\left(\partial / \partial z_{i}\right)+\sum b_{i}\left(\partial / \partial \bar{z}_{i}\right)$, then

$$
\bar{F}=\sum \bar{a}_{i} \frac{\partial}{\partial \bar{z}_{i}}+\sum \bar{b}_{i} \frac{\partial}{\partial z_{i}}
$$

Note that F is tangential if and only if \bar{F} is.
1.7. Definition. For each integer $\mu \geq 0$ we define \mathscr{L}_{μ} to be the module, over $C^{\infty}(U)$, of vector fields generated by the holomorphic tangential vector fields, their conjugates and commutators of order $\leq \mu$ of such vector fields.

Thus \mathscr{L}_{0} is the module of vector fields spanned by the tangential holomorphic vector fields and their conjugates. \mathscr{L}_{μ} is spanned by elements of the form $[F, G]$ with $F \in \mathscr{L}_{\mu-1}$ and $G \in \mathscr{L}_{0}$.
\mathscr{L}_{μ} is closed under conjugation and consists solely of tangential vector fields. Note that $\mathscr{L}_{\mu} \subset \mathscr{L}_{\mu+1}$, and setting $\mathscr{L}=\bigcup_{\mu=0}^{\infty} \mathscr{L}_{\mu}$ we note that \mathscr{L} is a Lie algebra [5, p. 526].

2. The geometric characterization for hypersurfaces

Let M be a real C^{∞} hypersurface in an open subset $U \subset C^{n}$. Let $M=$ $\{z \in U \mid r(z)=0\}$ where r is a real-valued C^{∞} function such that $d r \neq 0$ on M.
2.1. Definition [5, p. 525]. A point $P \in M$ is of type m if $\langle\partial r(P), F(P)\rangle$ $=0$ for all $F \in \mathscr{L}_{m-1}$ while $\langle\partial r(P), F(P)\rangle \neq 0$ for some $F \in \mathscr{L}_{m}$. Here \langle,
denotes contraction between a cotangent vector and a tangent vector.
Note that m is an integer ≥ 1 or $+\infty$. We will use the notation $t(P)=m$.
2.2. Remarks. 1. The function $t(P)$ is upper-semicontinuous on M.
2. If the Levi form is nonzero at P then $t(P)=1$, [5].

Let X be an $(n-1)$-dimensional complex submanifold of a neighborhood of P which is tangent to M at P.
2.3. Definition. X is tangent to M at P to order s if the restriction $\left.r\right|_{X}$ of r to X vanishes to order $s+1$ at P.

For s an integer ≥ 1 we will use the notation $a(P)=s$ if there exists a complex ($n-1$)-dimensional submanifold tangent to M at P to order s but none tangent to order $s+1$. We will write $a(P)=+\infty$ if either

1. there is a complex $(n-1)$-dimensional submanifold tangent to M at P to order $+\infty$, or
2. for every integer N no matter how large, there is a complex ($n-1$)dimensional submanifold of some neighborhood of P tangent to M at P to order N (see § 2.14). Thus $a(P)$ is an integer ≥ 1 or $+\infty$.
2.4. Theorem. $t(P)=a(P)$.

For $M \subset C^{2}$ this result is implicit in the article of Kohn [5]. In fact our proof is quite similar to his proof.

The proof of Theorem 2.4 will be carried out in Lemmas 2.6 to 2.12 . We will show $t(P) \geq a(P)$ (Lemma 2.11) and $t(P) \leq a(P)$ (Lemma 2.12). Lemma 2.11 depends only on Lemma 2.9 and the preceding lemmas. Lemma 2.10 is needed for Lemma 2.12.
2.5. First we suppose that we have local coordinates $z_{1}, \cdots, z_{n-1}, w$ centered at P so that r has the form

$$
\begin{equation*}
r=2 \operatorname{Re}(w)+\phi \tag{2.5.1}
\end{equation*}
$$

where ϕ vanishes to order ≥ 2 at P.
Thus

$$
\begin{equation*}
r_{w}(P)=r_{w}(P)=1 \tag{2.5.2}
\end{equation*}
$$

while

$$
\begin{equation*}
r_{z_{i}}(P)=r_{z_{i}}(P)=0 \quad \text { for } i=1, \cdots, n-1 \tag{2.5.3}
\end{equation*}
$$

If F is a vector field written in the form

$$
F=\sum_{i=1}^{n-1} a_{i} \frac{\partial}{\partial z_{i}}+\sum_{i=1}^{n-1} b_{i} \frac{\partial}{\partial \bar{z}_{i}}+c \frac{\partial}{\partial w}+d \frac{\partial}{\partial \bar{w}},
$$

then $\langle\partial r(P), F(P)\rangle=c(P)$. Thus $t(P)=m$ precisely when $c(P) \neq 0$ for some $F \in \mathscr{L}_{m}$ but $c(P)=0$ for all $F \in \mathscr{L}_{m-1}$. Also note that if F is tangential, then $c(P)+d(P)=0$. The vector fields

$$
\begin{equation*}
L_{i}=r_{w} \frac{\partial}{\partial z_{i}}-r_{z_{i}} \frac{\partial}{\partial w} \quad \text { for } i=1, \cdots, n-1 \tag{2.5.4}
\end{equation*}
$$

are tangential.
2.6. Lemma. \mathscr{L}_{μ} is generated modulo vector fields vanishing on M as a C^{∞} module by the commutators of order $\leq \mu$ of the $2 n-2$ vector fields $L_{1}, \cdots, L_{n-1}, \bar{L}_{1}, \cdots, \bar{L}_{n-1}$.

Proof. Let F be a holomorphic tangential vector field:

$$
F=\sum_{i=1}^{n-1} a_{i} \frac{\partial}{\partial z_{i}}+c \frac{\partial}{\partial w} .
$$

Then $\sum_{i=1}^{n-1} a_{i} r_{z_{i}}+c r_{w}=0$ on M while $r_{w} \neq 0$ on a neighborhood of P (assumed to be U). Thus

$$
F-\sum_{i=1}^{n-1} \frac{a_{i}}{r_{w}} L_{i}
$$

is a vector field which vanishes on M. That is, \mathscr{L}_{0} is spanned by L_{1}, \cdots, L_{n-1}, $\bar{L}_{1}, \cdots, \bar{L}_{n-1}$ and vector fields of the form $r H$ where H is any vector field. It follows by induction on μ that \mathscr{L}_{μ} is spanned by the commutators of L_{1}, \cdots, $L_{n-1}, \bar{L}_{1}, \cdots, \bar{L}_{n-1}$ of order $\leq \mu$ and vector fields of the form $r H,[5$, p. 526].
2.7. Lemma. Let F be a vector field written in the form

$$
F=\sum_{i=1}^{n-1} a_{i} \frac{\partial}{\partial z_{i}}+\sum_{i=1}^{n-1} b_{i} \frac{\partial}{\partial \bar{z}_{i}}+c \frac{\partial}{\partial w}+d \frac{\partial}{\partial \bar{w}} .
$$

Then the coefficient of $\partial / \partial w$ in $\left[L_{\alpha}, F\right]$ is

$$
\begin{equation*}
r_{w} \frac{\partial c}{\partial z_{\alpha}}-r_{z_{\alpha}} \frac{\partial c}{\partial w}+\sum_{i=1}^{n-1} a_{i} r_{z i z_{\alpha}}+\sum_{i=1}^{n-1} b_{i} r_{z_{\alpha} z_{i}}+c r_{z_{\alpha} w}+d r_{z_{\alpha} w} \tag{2.7.1}
\end{equation*}
$$

The coefficient of $\partial / \partial z_{j}$ in $\left[L_{\alpha}, F\right]$ is

$$
\begin{equation*}
r_{w} \frac{\partial a_{j}}{\partial z_{\alpha}}-r_{z \alpha} \frac{\partial a_{j}}{\partial w}-\delta_{j_{\alpha}}\left[\sum_{i=1}^{n-1} a_{i} r_{w z_{i}}+\sum_{i=1}^{n-1} b_{i} r_{w z_{i}}+c r_{w w}+d r_{w w}\right] . \tag{2.7.2}
\end{equation*}
$$

Of course there are similar formulas for the coefficients of $\partial / \partial \bar{w}$ and $\partial / \partial \bar{z}_{j}$ and for the coefficients in $\left[\bar{L}_{\alpha}, F\right]$.

Proof. Direct computation.
We will use the notation $z=\left(z_{1}, \cdots, z_{n-1}\right)$.
2.8. Lemma. Suppose $F \in \mathscr{L}_{\mu}-\mathscr{L}_{\mu-1}$ is formed by commutators of $L_{1}, \cdots, L_{n-1}, \bar{L}_{1}, \cdots, \bar{L}_{n-1}$. Then the coefficients a_{i}, b_{i}, c, d are sums of terms of the form $\pm D^{1}(r) \cdots D^{\mu+1}(r)$, where each D^{i} is differentiation to order d_{i}, and the integers d_{i} satisfy

1. $d_{1}+\cdots+d_{\mu+1}=2 \mu+1$,
2. $1 \leq d_{i} \leq \mu+1$.

In addition each such term in a_{j} or b_{j} involves differentiation a total of μ times with respect to z and $\mu+1$ times with respect to w. Each term in c, d involves differentiation a total of $\mu+1$ times with respect to z and μ times with respect to w.

Proof. The proof is by induction on μ and an examination of formulas (2.7.1) and (2.7.2). The statement about the a_{j} and b_{j} coefficients is needed only for the inductive proof of the statement about the c and d coefficients.
2.9. Lemma. Suppose $F \in \mathscr{L}_{\mu}-\mathscr{L}_{\mu-1}$ is formed by commutators of L_{1}, \cdots, L_{n-1} and $\bar{L}_{1}, \cdots, \bar{L}_{n-1}$. Then each term in the c and d coefficients contains a factor of the form $D(r)$ where D is differentiation in z, \bar{z} only (i.e., no $w)$ of order $\leq \mu+1$.

Proof. By Lemma 2.8 each term contains $\mu+1$ factors, and the total order of differentiation in w is just μ.
2.10. Lemma. Let $D=(\partial / \partial z)^{\sigma}(\partial / \partial \bar{z})^{\tau}$ where σ, τ are multi-indices and $|\sigma| \geq 1,|\tau| \geq 1$ and $|\sigma|+|\tau|=\mu+1($ thus $\mu \geq 1)$. Then there exists $F \in \mathscr{L}_{\mu}$ whose c coefficient has the following properties:

1. There is one term $r_{w}^{|\sigma|-1} r_{\infty}^{|\tau|} D(r)$.
2. All other terms $D^{1}(r) \cdots D^{\mu+1}(r)$ have the property that some D^{i} is a differentiation in z, \bar{z} (i.e., no w) of order $\leq \mu$.

Proof. The proof is by induction on μ. When $\mu=1$ we have $D=\partial^{2} / \partial z_{i} \partial \bar{z}_{j}$. The c coefficient of [L_{i}, \bar{L}_{j}] is $r_{w^{2}} r_{z_{i} z_{j}}-r_{z_{j}} r_{z_{i} \omega}$ which satisfies (1) and (2).

For the inductive step we have either $|\sigma|>1$ or $|\tau|>1$ say $|\sigma|>1$. We write $D=\left(\partial / \partial z_{\alpha}\right)(\partial / \partial z)^{\sigma^{\prime}}(\partial / \partial \bar{z})^{\tau}$ where $\left|\sigma^{\prime}\right|=|\sigma|-1$. By the induction hypothesis we can find $F \in \mathscr{L}_{\mu-1}$ with properties (1) and (2) for $(\partial / \partial z)^{\sigma^{\prime}}\left(\partial / \partial \overline{)^{\tau}}\right)^{\tau}$. An examination of formula (2.7.1) shows that $\left[L_{\alpha}, F\right]$ satisfies (1) and (2) for D. In fact, the form $r_{w}^{|\sigma|-1} r_{w}^{|\tau|} D(r)$ comes from $r_{w}\left(\partial c / \partial z_{\alpha}\right)$.
2.11. Lemma. $t(P) \geq a(P)$.

Proof. Let X be an $(n-1)$-dimensional complex manifold tangent to M at P to order $s(1 \leq s<+\infty)$. We may assume the coordinate w (of formula (2.5.1)) chosen so that $X=\{(z, w) \in U \mid w=0\}$.

Now, $r(z, 0)$ vanishes at P to order $s+1$. Consequently, $D(r)$ vanishes at P if D involves differentiation of order $\leq s$ with respect to z, \bar{z} (i.e., no w differentiation). Thus Lemma 2.9 shows that the c coefficient of any $F \in \mathscr{L}_{s-1}$ vanishes at P and hence $t(P) \geq s$. Thus $t(P) \geq a(P)$.
2.12. Lemma. $t(P) \leq a(P)$.

Proof. Suppose that $t(P) \geq m$ where m is an integer ≥ 1. We may assume that the coordinate w (of formula (2.5.1)) is chosen so that $D(r)(P)=0$ where D is any pure differentiation with respect to z or \bar{z} (i.e., no mixture of derivatives with respect to z and \bar{z}) of order $\leq m+1$. We will show that $w=0$ is tangent to M at P to order $\geq m$.

The c coefficient of any $F \in \mathscr{L}_{m-1}$ vanishes at P. By Lemma 2.10 we may
conclude that $(\partial / \partial z)^{\sigma}(\partial / \partial \bar{z})^{\tau} r(P)=0$ for σ, τ any multi-indices satisfying $|\sigma|$ $\geq 1,|\tau| \geq 1,|\sigma|+|\tau| \leq m$. (We proceed by induction on $|\sigma|+|\tau|$ using the fact that $r_{w}(P)=r_{w}(P)=1$. Both statements in Lemma 2.10 are needed.) That is, $r(z, 0)$ vanishes at P to order $\geq m+1$. q.e.d.

Lemmas 2.11 and 2.12 complete the proof of Theorem 2.4.
2.13. Corollary. Let M be real analytic and $P \in M$ a point of type $+\infty$. Then M contains a complex ($n-1$)-dimensional submanifold of a neighborhood of P.

Proof. Using the assumption that r is real analytic we may assume the coordinate w chosen so that $D(r)(P)=0$ where D is pure differentiation with respect to z or \bar{z} of any order. Then the reasoning in the proof of Lemma 2.12 shows that $\{(z, w) \mid w=0\}$ is contained in M.
2.14. Counterexamples. The conclusion of Corollary 2.13 need not hold if M is only C^{∞}. We give two examples:

1. Consider $r=2 \operatorname{Re} w+\exp \left(-\left(|z|^{2}+(\operatorname{Im} w)^{2}\right)^{-1}\right)$ and $M=\left\{z, w \in C^{2} \mid r\right.$ $=0\}$. Then $(0,0)$ is a point of type ∞. However, M is strongly pseudoconvex (type 1) in a deleted neighborhood of (0,0) and cannot contain a complex submanifold.
2. Consider the formal power series

$$
\operatorname{Re}\left(w-\sum_{n=2}^{\infty} n!z^{n}\right)
$$

By a theorem of E. Borel [10, p. 28] there exists a C^{∞} function r in C^{2} having this series as its formal Taylor series at $(0,0)$. Let $M=\left\{z, w \in C^{2} \mid r(z, w)=0\right\}$. The complex submanifold $w=\sum_{n=2}^{m} n!z^{n}$ is tangent to M to order m at $(0,0)$. However, there is no complex submanifold tangent to M at $(0,0)$ to infinite order.

3. The case of a single vector field

As before, M is a real C^{∞} hypersurface in an open subset of C^{n}, and P denotes a point of M.

Let L be a tangential holomorphic vector field to M. We let $\mathscr{L}_{\mu}(L)$ denote the C^{∞} module of vector fields spanned by L, \bar{L} and their commutators of order $\leq \mu$.
3.1. Definition. We say L is of type m at P if there exists $F \in \mathscr{L}_{m}(L)$ such that $\langle\partial r(P), F(P)\rangle \neq 0$ while for all $F \in \mathscr{L}_{m-1}(L)$ we have

$$
\langle\partial r(P), F(P)\rangle=0 .
$$

We shall use the notation $t(L, P)=m$. If $\langle\partial r(P), F(P)\rangle=0$ for all $F \in$ $\mathscr{L}_{\mu}(L)$ and all integers $\mu \geq 1$ we will write $t(L, P)=+\infty$.
3.2. Proposition. Suppose there is a 1-dimensional complex submanifold
X of a neighborhood of P, tangent to M at P to order s. Then there exists a tangential holomorphic vector field L such that $L(P)$ is tangent to X at P and $t(L, P) \geq s$.

Proof. Choose coordinates $z_{1}, \cdots, z_{n-1}, w$ centered at P so that

1. $X=\left\{(z, w) \mid w=z_{1}=\cdots=z_{n-2}=0\right\}$,
2. $r=2 \operatorname{Re}(w)+\phi$ where ϕ vanishes to order ≥ 2 at P.

Consider the tangential holomorphic vector field $L_{n-1}=r_{w} \frac{\partial}{\partial z_{n-1}}-r_{z_{n-1}} \frac{\partial}{\partial w}$.
We shall show that L_{n-1} is of type $\geq s$ at p .
Now $\left.r\right|_{X}$ has a zero of order $s+1$ at P. Thus the description of the commutators of L_{n-1} and \bar{L}_{n-1} contained in Lemmas 2.8 and 2.9 is sufficient to prove the proposition.
3.3. Remarks. 1. If in these coordinates we have $D(r)(0,0) \neq 0$ for some impure differentiation D in z_{n-1}, \bar{z}_{n-1} of order $s+1$, then L_{n-1} has type precisely s at P.
2. We do not know if there is a converse to Proposition 3.2. The condition that all nonzero holomorphic vector fields be of finite type is conjectured by Kohn [7] to be necessary and sufficient for the $\bar{\partial}$-Neumann problem to be subelliptic at a boundary point of a pseudoconvex domain.
3.4. The type of a vector field is not determined solely by its value at P.

Consider $M \subset C^{3}$ defined as the zero set of

$$
r=2 \operatorname{Re}(w)+\left|z_{1}\right|^{2}-\left|z_{2}\right|^{4}, \quad P=(0,0,0)
$$

Here L_{1} is of type 1, and L_{2} is of type 3. (L_{1} and L_{2} are defined by (2.5.4).)
Note however that M contains the complex submanifold

$$
X=\left\{\left(w, z_{1}, z_{2}\right) \mid w=0 \text { and } z_{1}=z_{2}^{2}\right\}
$$

Now $L=2 z_{2} L_{1}+L_{2}$ is a tangential holomorphic vector field which restricts to a holomorphic vector field on X. Thus it is of type $+\infty$. Of course $L(P)$ $=L_{2}(P)$.
3.5. It is possible to have a point $P \in M$ such that all nonzero holomorphic tangential vector fields are of finite type at P but there are points arbitrarily close to P where these are nonzero holomorphic tangential vector fields not of finite type. We will give one such example with M pseudoconvex.

Let M be given as the zero set of $r=2 \operatorname{Re}(w)+\left|z_{1}^{2}-z_{2}^{3}\right|^{2}$ and $P=$ ($0,0,0$). Since r is plurisubharmonic M is pseudoconvex (when considered as the boundary of $r<0$).

We will first show that every tangential holomorphic vector field L such that $L(P) \neq 0$ is of finite type at P (in fact of type ≤ 5).

Note that L_{1} is of type 3 at P, and L_{2} is of type 5 at P. Any tangential holomorphic vector field L can be written $L=\phi_{1} L_{1}+\phi_{2} L_{2}$ where ϕ_{1} and ϕ_{2} are C^{∞} functions. If $\phi_{1}(P) \neq 0$, it is easily seen that $t(L, P)=t\left(L_{1}, P\right)=3$. If $\phi_{1}(P)=0$, and $L(P) \neq 0$, then $\phi_{2}(P) \neq 0$. Therefore we may assume that

$$
L=\phi L_{1}+L_{2} \quad \text { with } \quad \phi(0)=0
$$

Expressing the commutator [[[[[$L, \bar{L}], L], \bar{L}], L], \bar{L}]$ as a linear combination of commutators of $L_{1}, \bar{L}_{1}, L_{2}$ and \bar{L}_{2}, each commutator S has the property that it occurs with a coefficient having a factor ϕ or else $\langle\partial r(P), S(P)\rangle=0$ except for the commutator $\left[\left[\left[\left[\left[L_{2}, \bar{L}_{2}\right], L_{2}\right], \bar{L}_{2}\right], L_{2}\right], \bar{L}_{2}\right]$. Thus $t(L, P) \leq 5$ (in fact $t(L, P)$ $=5$).

Now M contains the complex analytic set

$$
X=\left\{w, z_{1}, z_{2} \mid w=0, z_{1}^{2}=z_{2}^{3}\right\}
$$

X has a singular point at P, but at all other points it is nonsingular. Thus for any point $q \in X-P$ there is a nonzero tangential holomorphic vector field which is not of finite type.

4. Generic submanifolds of higher codimension

Let M be a real C^{∞} submanifold of dimension $2 n-k(k<n)$ of an open subset U of C^{n}. Let r_{1}, \cdots, r_{k} be real-valued C^{∞} functions such that $M=$ $\left\{z \in U \mid r_{1}=\cdots=r_{k}=0\right\}$ and $d r_{1} \wedge \cdots \wedge d r_{k} \neq 0$ on M.
4.1. Definition [12]. M is generic if $\partial r_{1} \wedge \cdots \wedge \partial r_{k} \neq 0$ on M.

This condition is equivalent to $\operatorname{dim}_{c} T^{1,0}(M, q)=n-k$ for all $q \in M$. (Hence it is independent of the functions r_{1}, \cdots, r_{k}.) This is, of course, the minimum possible dimension for the holomorphic tangent space.
4.2. Definition. A point $P \in M$ is of type m (m an integer ≥ 1 or $+\infty$) if there exists $F \in \mathscr{L}_{m}$ such that $F(P) \notin T^{1,0}(M, P) \oplus T^{0,1}(M, P)$ while \mathscr{L}_{m-1} contains no such F.

We use the notation $t(P)=m$.
The requirement that $F(P) \notin T^{1,0}(M, P) \oplus T^{0,1}(M, P)$ is equivalent to the following: if r_{1}, \cdots, r_{k} are defining functions for M, then $\left\langle\partial r_{i}(P), F(P)\right\rangle \neq 0$ for some i.
4.3. Remark. This is not the most interesting type condition. Naruki's estimate [11] depends on there being an integer m such that $\left\{F(P) \mid F \in \mathscr{L}_{m}\right\}$ $=C T(M, P)$. The point P is then termed $(m+1)$-regular by Naruki.
Let X be an $(n-k)$-dimensional complex submanifold of a neighborhood U of P which is tangent to M at P.
4.4. Definition. $\quad X$ is tangent to M at P to order $s(s$ an integer ≥ 1 or $+\infty)$ if $s=\inf \left\{t \mid\right.$ there exists a real valued C^{∞} function r on U such that $\left.r\right|_{M}=0, d r \neq 0$ on M and $\left.r\right|_{X}$ vanishes at P to order $\left.\geq t+1\right\}$.

Thus s is the least order of tangency of X with a hypersurface containing M.
Note that the roles of X and M cannot be interchanged in this definition, for $\operatorname{dim}_{R} X<\operatorname{dim}_{R} M$. Also whenever r_{1}, \cdots, r_{k} are functions such that $M=$ $\left\{z \mid r_{1}=\cdots=r_{k}=0\right\}$ and $d r_{1} \wedge \cdots \wedge d r_{k} \neq 0$ on M, there is an index i for which $\left.r_{i}\right|_{X}$ vanishes at P to order $s+1$.

We set $a(P)=\sup \{s \mid$ there exists an $(n-k)$-dimensional complex submanifold tangent to M at P to order $s\}$. Thus $a(P)$ is an integer ≥ 1 or $+\infty$.
4.5. Theorem. $a(P)=t(P)$.

Proof. The proof is analogous to that of Theorem 2.4. Since M is generic, given defining functions r_{1}, \cdots, r_{k} for M we can choose local coordinates $z_{1}, \cdots, z_{n-k}, w_{1}, \cdots, w_{k}$ at P such that

$$
\begin{equation*}
r_{i}=2 \operatorname{Re}\left(w_{i}\right)+\phi_{i}, \quad i=1, \cdots, k \tag{4.5.1}
\end{equation*}
$$

where ϕ_{i} vanishes to order ≥ 2 at P. Thus

$$
\begin{gather*}
\frac{\partial r_{i}}{\partial w_{j}}(P)=\frac{\partial r_{i}}{\partial \bar{w}_{j}}(P)=\delta_{i j}, \quad i, j=1, \cdots, k \tag{4.5.2}\\
\frac{\partial r_{i}}{\partial z_{j}}(P)=\frac{\partial r_{i}}{\partial \bar{z}_{j}}(P)=0, \quad i=1, \cdots, k, j=1, \cdots, n-k \tag{4.5.3}
\end{gather*}
$$

Consider the vector fields

$$
\begin{equation*}
L_{i}=E \frac{\partial}{\partial z_{i}}+\sum_{j=1}^{k} E_{j}^{i} \frac{\partial}{\partial w_{j}}, \quad i=1, \cdots, n-k \tag{4.5.4}
\end{equation*}
$$

where $E, E_{1}^{i}, \cdots, E_{k}^{i}$ are the cofactors of the elements in the first row of the $(k+1) \times(k+1)$ matrix

$$
\left(\begin{array}{cccc}
e & e_{1} & \cdots & e_{k} \tag{4.5.5}\\
\frac{\partial r_{1}}{\partial z_{i}} & \frac{\partial r_{1}}{\partial w_{1}} & \cdots & \frac{\partial r_{1}}{\partial w_{k}} \\
\vdots & \vdots & & \vdots \\
\frac{\partial r_{k}}{\partial z_{i}} & \frac{\partial r_{k}}{\partial w_{1}} & \cdots & \frac{\partial r_{k}}{\partial w_{k}}
\end{array}\right)
$$

Note that $L_{i}\left(r_{s}\right)=0$ for $i=1, \cdots, n-k, s=1, \cdots, k$ since $E\left(\partial r_{s} / \partial z_{i}\right)+$ $\sum_{j=1}^{k} E_{j}^{i}\left(\partial r_{s} / \partial w_{j}\right)$ is equal to the expansion of the determinant of (4.5.5) when $e=\partial r_{s} / \partial z_{i}$ and $e_{j}=\partial r_{s} / \partial w_{j}$. Of course, in that case the matrix has two identical rows.

Now the relations (4.5.2) and (4.5.3) imply that $E(P)=1$ while $E_{j}^{i}(P)=0$ for $i=1, \cdots, n-k$, and $j=1, \cdots, k$.

The following lemmas are proved in a manner similar to the corresponding lemmas in $\S 2$. Details are omitted for the most part.
4.6. Lemma. \mathscr{L}_{μ} is generated modulo vector fields vanishing on M as a C^{∞} module by the commutators of order $\leq \mu$ of the $2 n-2 k$ vector fields $L_{1}, \cdots, L_{n-k}, \bar{L}_{1}, \cdots, \bar{L}_{n-k}$.

Any vector field F can be written in the form

$$
F=\sum_{i=1}^{n-k} a_{i} \frac{\partial}{\partial z_{i}}+\sum_{i=1}^{n-k} b_{i} \frac{\partial}{\partial \bar{z}_{i}}+\sum_{j=1}^{k} c_{j} \frac{\partial}{\partial w_{j}}+\sum_{j=1}^{k} d_{j} \frac{\partial}{\partial \bar{w}_{j}}
$$

If F is tangential, then by our choice of coordinates $c_{j}(0)+d_{j}(0)=0$.
4.7. Lemma. Suppose $F \in \mathscr{L}_{\mu}-\mathscr{L}_{\mu-1}$ and is formed from commutators of $L_{1}, \cdots, L_{n-k}, \bar{L}_{1}, \cdots, \bar{L}_{n-k}$. Then the coefficients $a_{i}, b_{i}, c_{j}, d_{j}$ of F are sums of terms of the form

$$
\pm D^{1}(r) \cdots D^{\mu+1}(r)
$$

where each $D^{l}(r), l=1, \cdots, \mu+1$ is the determinant of a $k \times k$ matrix whose entries are partial derivatives of $r_{1} \cdots r_{k}$ with respect to z_{1}, \cdots, z_{n-k}, w_{1}, \cdots, w_{k} with the following properties:

1. The ith row contains derivatives only of r_{i}.
2. The differentiation operator is the same for all entries in a given column.
3. The order d of the differentiation in a given column satisfies $1 \leq d \leq$ $\mu+1$.
4. The total order of differentiation in each term is $(\mu+1) k+\mu$.
5. Each term in c_{j} or d_{j} involves $\mu+1$ derivatives with respect to z, \bar{z} and $(\mu+1) k-1$ derivatives with respect to w, \bar{w}.
4.8. Lemma. Suppose $F \in \mathscr{L}_{\mu}-\mathscr{L}_{\mu-1}$ and is formed from commutators of $L_{1}, \cdots, L_{n-k}, \bar{L}_{1}, \cdots, \bar{L}_{n-k}$. Then among the columns of the determinants in each term $\pm D^{1}(r) \cdots D^{\mu+1}(r)$ of the c_{j} and d_{j} coefficients, there is one in which the differentiation is in z, \bar{z} only (and of order $\leq+1$).

Proof. According to Lemma 4.7 there are $(\mu+1) k$ columns altogether, and the order of differentiation in w is $(\mu+1) k-1$.
4.9. Lemma. Let $D=(\partial / \partial z)^{\sigma}(\partial / \partial \bar{z})^{\tau}$ where σ and τ are multi-indices and $|\sigma| \geq 1,|\tau| \geq 1$. Let $\mu+1=|\sigma|+|\tau|$. Let T be the $k \times k$ determinant

$$
T=\operatorname{det}\left(\begin{array}{ccccc}
D r_{1} & \frac{\partial r_{1}}{\partial w_{1}} \cdots \frac{\partial r_{1}}{\partial w_{j-1}} & \frac{\partial r_{1}}{\partial w_{j+1}} \cdots & \frac{\partial r_{1}}{\partial w_{k}} \\
\vdots & & & & \\
D r_{k} & \frac{\partial r_{k}}{\partial w_{1}} \cdots \frac{\partial r_{k}}{\partial w_{j-1}} & \frac{\partial r_{k}}{\partial w_{j+1}} \cdots & \frac{\partial r_{k}}{\partial w_{k}}
\end{array}\right)
$$

(Note that $T(0)= \pm D r_{j}(0)$.) Then there exists $F \in \mathscr{L}_{\mu}$ whose c_{j} coefficient has the following properties:

1. There is one term $E^{|\sigma|-1} \bar{E}^{|\tau|} T$.
2. For each of the remaining terms, one determinant contains a column in which the differentiation is in z, \bar{z} only and of order $\leq \mu$.

Proof. By induction using the analog of formula (2.7.1). (Cf. Lemma 2.10.)
4.10. Lemma. $t(P) \geq a(P)$.

Proof. Let X be an $(n-k)$-dimensional complex submanifold tangent to
M at P to order $s(1 \leq s<\infty)$. We may choose coordinates at P so that $X=\{(z, w) \mid w=0\}$. Then $r_{i}(z, 0)$ vanishes to order $\geq s+1, i=1, \cdots, k$. Lemma 4.8 shows that the c_{j} and d_{j} coefficients of any $F \in \mathscr{L}_{s-1}$ vanish at P for $j=1, \cdots, k$. Hence $t(P) \geq s$.
4.11. Lemma. $t(P) \leq a(P)$.

Proof. Suppose that $t(P) \geq m$ where m is an integer ≥ 1. We may assume that the coordinate w_{j} is chosen so that $D\left(r_{j}\right)(P)=0, j=1, \cdots, k$ where D is any pure differentiation with respect to z or \bar{z} of order $\leq m+1$. Lemma 4.9 shows that for any impure differentiation D in z, \bar{z} of order $\leq m, D r_{j}(0)$ $=0, j=1, \cdots, k$. That is, $w=0$ is tangent to $r_{j}=0$ to order $\geq m, j=$ $1, \cdots, k$. We conclude that $w=0$ is tangent to M to order $\geq m$. Thus $a(P)$ $\geq m$.

Lemmas 4.10 and 4.11 complete the proof of Theorem 4.5.

References

[1] G. B. Folland \& J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Studies, No. 75, Princeton University Press, Princeton, 1972.
[2] S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola. Norm. Sup. Pisa 22 (1968) 275-314.
[3] P. Greiner, Subelliptic estimates for the $\bar{\partial}-$ Neumann problem in \mathbf{C}^{2}, J. Differential Geometry 9 (1974) 239-250.
[4] L. Hormander, An introduction to complex analysis in several variables, Van Nostrand, Princeton, 1966.
[5] J. J. Kohn, Boundary behaviour of $\bar{\partial}$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972) 523-542.
[6] -, Global regularity for $\bar{\partial}$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973) 273-292.
[7] - Subellipticity on pseudo-convex domains with isolated degeneracies, Proc. Nat. Acad. Sci. U.S.A.
[8] ——, Propagation of singularities for the Cauchy-Riemann equations, C.I.M.E., Lecture Notes, Ed. Cremonese, Rome, 1971.
[9] J. J. Kohn \& L. Nirenberg, A pseudo-convex domain not admitting a holomorphic support function, Math. Ann. 201 (1973) 265-268.
[10] R. Narasimhan, Analysis on real and complex manifolds, North Holland, Amsterdam, 1968.
[11] I. Naruki, An analytic study of a pseudo-complex structure, Proc. Internat. Conf. of Functional Analysis and Related Topics, University of Tokyo Press, Tokyo, 1970, 72-82.
[12] R. O. Wells Jr., Function theory on differentiable submanifolds, Rice University preprint.

[^0]: Communicated by J. J. Kohn, May 1, 1975. The authors were partially supported by grants A7535 and A9221 of the National Research Council of Canada.

