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A GEOMETRIC CHARACTERIZATION OF POINTS OF
TYPE m ON REAL SUBMANIFOLDS OF Cn

THOMAS BLOOM & IAN GRAHAM

1. Introduction

Let D be a domain in Cn with smooth boundary bD. bD is said to be
pseudoconvex (respectively strongly pseudoconvex) if the Levi form is non-
negative (respectively positive definite) on the complex tangent space at all
points of bD.

Pseudoconvexity of bD is a necessary and sufficient condition for D to be a
domain of holomorphy [4]. However, if one makes the assumption of strong
pseudoconvexity, more precise results are possible than mere existence state-
ments, e.g., solutions of d within the class of bounded functions, boundary reg-
ularity of solutions of 3 (see [1] and the references there). The existence of
holomorphic support functions and peak functions plays an important role in
analysis on strongly pseudoconvex domains.

Pseudoconvexity alone is not a sufficient condition for local regularity of 3
at the boundary (for global regularity see [6]). A counterexample appears in
[8] in which bD contains a complex submanifold. Nor does pseudoconvexity
guarantee the existence of peak functions (see [9] for an interesting counter-
example). Thus conditions between pseudoconvexity and strong pseudocon-
vexity are of interest [5], [7].

In [5], J. J. Kohn introduced the notion of points of type m (m is a positive
integer or + oo) on the boundary of a domain D in C2. A point at which the
Levi form does not vanish is of type 1. If bD contains a complex submanifold,
then all points on this submanifold are of infinite type [5]. Pseudoconvexity
together with finite type yields a subelliptic estimate for (0,1) forms which
implies local regularity at the boundary for the canonical solution of 3, [5].
P. Greiner [3] showed that these assumptions are necessary for this estimate.
Kohn also introduced the notion of strict type m which is sufficient to guarantee
the existence of local peak functions [5].

Kohn's definition of points of type m is in terms of properties of commu-
tators of tangential holomorphic vector fields. In [11] Naruki studies real sub-
manifolds of Cn of arbitrary codimension. A similar condition involving
commutators of tangential holomorphic vector fields appears. Using this con-
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dition together with total indeίiniteness of the Levi form, Naruki obtains a
subelliptic estimate for db on functions.

Our main result is a geometric characterization of points of type m on a
hypersurface M in Cn ('type' is defined in § 2):

Theorem 2.4. A point P € M is of type m < oo // and only if there is a
complex submanifold of codimension one tangent to M at P to order m but no
codimension one complex submanifold tangent to a higher order. A point
P € M is of infinite type if and only if there are complex submanifolds of co-
dimension one tangent to M at P to arbitrarily high order. {There may or may
not be a complex submanifold tangent to infinite order.)

The proof of this theorem is contained in § 2. It would be of interest to relate
a 'type' condition to the maximum degree of tangency of a complex submani-
fold of dimension one. This is the idea behind § 3, but our results are incom-
plete. However, some interesting examples are given. In §4 we generalize
Theorem 2.4 to the case of generic submanifolds of arbitrary codimension.
However the commutator condition is not the same as Naruki's [11].

We are indebted to Peter Greiner for numerous helpful discussions concern-
ing this work.

1. Basic definitions

1.1. Let M be a real C°° submanifold of an open subset U in Cn, and let
P be a point of M. The complexified tangent space to Cn at P, denoted by
CT(Cn, P) splits naturally into a direct sum of two subspaces Γ'XC*, P) Θ
T0Λ(Cn, P) the holomorphic and anti-holomorphic parts. The injection of M
into Cn induces an injection of the complexified tangent space to M at
P,CT(M,P) into CT(Cn,P) and we consider CT(M,P) as a subset of
CT(Cn,P).

1.2. Definition. The holomorphic tangent space to M at P is defined to
be the intersection CΓ(M, P) Π T^°(Cn, P) and is denoted by T^°(M, P).

Suppose that M = {z 6 U\ rλ = r2 = = rk = 0}, where the r< are real-
valued C°° functions such that drx Λ Λ drk Φ 0 at all points of M. Then
we may identify Γ M (M, P) with all w € Cn satisfying

(1.2.1) Σ— w, = 0 f o r / = 1, . . . , * .
.7=1 dZj

We note that dim c T*\M, P) satisfies [12] the inequalities

max (0, n - k) < dim c r °(Λf, P) < n -

If M is a real hypersurface then dim c Γ
M (M, P) = n — 1.

1,3, Definition, A holomorphic vector field on U is a C°° vector field F
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whose value at each point q e U satisfies

Such a vector field may be written in the form J^l=i at{dIdZi) with at a
complex-valued C°° function on U.

1.4. Definition. A vector field F is tangential to M if F(<?) € CΓ(M, q) for
all # € M.

1.5. Definition. A holomorphic vector field tangential to M is a vector
field F such that F(q) e Tλ*(M, q) for all q € M and F((?) € Γ^CC1, q) for all

4
If F is written in the form Σ?-i a^d/dZi) + Σ?-i bitf/dzt), then it is tan-

gential if and only if

Σ **— + Σ ^ - 0 on M

for J = 1, , Λ. That is, F(rs) = 0 on M for ^ = 1, . ., k.
1.6. Definition. For F a vector field we define its conjugate F via the

equation

F(μ) = F(u) for aU

If F = Σ fliO/toi) + Σ 6i(3/3Zi), then

Note that F is tangential if and only if F is.
1.7. Definition. For each integer / / > 0 w e define J*?̂  to be the module,

over C°°(U), of vector fields generated by the holomorphic tangential vector
fields, their conjugates and commutators of order < μ of such vector fields.

Thus «£?„ is the module of vector fields spanned by the tangential holomorphic
vector fields and their conjugates. S£μ is spanned by elements of the form [F, G]
with F € ££μ_λ and G e J2?o.

j£?μ is closed under conjugation and consists solely of tangential vector fields.
Note that &μ c &μ+1, and setting jδf = (J?=o-#V we note that jgf is a Lie
algebra [5, p. 526].

2. The geometric characterization for hypersurfaces

Let M be a real C°° hypersurface in an open subset U C Cn. Let M =
{z 6 J71 r(z) = 0} where r is a real-valued C°° function such that dr Φ 0 on M.

2.1. Definition [5, p. 525]. A point P € M is of type m if <dr(P), F(P)}
= 0 for all F € J S ^ while <dr(P), F(P)> ^ 0 for some F € J2?TO. Here < , >
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denotes contraction between a cotangent vector and a tangent vector.
Note that m is an integer > 1 or + oo. We will use the notation t(P) = m.
2.2. Remarks. 1. The function t(P) is upper-semicontinuous on M.
2. If the Levi form is nonzero at P then t{P) = 1, [5].

Let X be an (n — l)-dimensional complex submanifold of a neighborhood
of P which is tangent to M at P.

2.3. Definition. X is tangent to M at P to order s1 if the restriction r\z

of r to X vanishes to order s + 1 at P.
For s an integer > 1 we will use the notation a(P) = s if there exists a

complex (n — l)-dimensional submanifold tangent to M at P to order s but
none tangent to order s + 1. We will write a{P) = + oo if either

1. there is a complex (n — l)-dimensional submanifold tangent to M at P
to order + oo, or

2. for every integer N no matter how large, there is a complex (n — 1)-
dimensional submanifold of some neighborhood of P tangent to M at P to
order N (see § 2.14). Thus a(P) is an integer > 1 or + oo.

2.4. Theorem, ί(^) = a(P).
For M C C2 this result is implicit in the article of Kohn [5]. In fact our

proof is quite similar to his proof.
The proof of Theorem 2.4 will be carried out in Lemmas 2.6 to 2.12. We

will show t(P) > a(P) (Lemma 2.11) and t(P) < a(P) (Lemma 2.12). Lemma
2.11 depends only on Lemma 2.9 and the preceding lemmas. Lemma 2.10
is needed for Lemma 2.12.

2.5. First we suppose that we have local coordinates zi9 , zn-i> w cen-
tered at P so that r has the form

(2.5.1) r = 2Re(w) + φ ,

where φ vanishes to order > 2 at P.
Thus

(2.5.2) rw{P) = rw(P) = 1 ,

while

(2.5.3) rZi(P) = r2i{P) = 0 for i = 1, , n - 1 .

If F is a vector field written in the form

then <3r(P), F(F)> = c(P). Thus t(P) = m precisely when c(P) =£ 0 for some
F € J$?m but c(P) = 0 for all F e <£m_λ. Also note that if F is tangential, then
c(P) + d(P) = 0. The vector fields
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(2.5.4) Lt = rw^- -rβtJ- for i = 1, . -, n - 1
dli dw

are tangential.
2.6. Lemma. <Pμ is generated modulo vector fields vanishing on M as a

C°° module by the commutators of order <μ of the In — 2 vector fields
Li, j Ln_ι, -L1? , Lιn_χ.

Proof. Let F be a holomorphic tangential vector field:

Then Σi=ϊ airzi + crw = 0 on M while r ^ O o n a neighborhood of P (as-
sumed to be [/). Thus

is a vector field which vanishes on M. That is, j£?0 is spanned by Ll9 , Ln_1?

Z1 ? , Ln_ί and vector fields of the form rH where H is any vector field. It
follows by induction on μ that 3?μ is spanned by the commutators of Lx, ,
Ln_19 L l 5 , LTO_j of order < μ and vector fields of the form rH, [5, p. 526].

2.7. Lemma. Lei F be a vector field written in the form

F = Σ <*i— + Σ hi-— + c— + d—
ί=i fei <«i σZi ow ow

Then the coefficient of d/dw in [Lα, F] is

(2.7.1) r™ - rZaψ- + Σ ^rZiZa + Σ V . Λ + crZaW + drZaW .
dza dw i-i i-i

coefficient of d/dZj in [La9 F] is

Tin Tin Γn—l n-1 "i
(2.7.2) rwψl - rzaψi - δJ Σ ^rWZi + 2 btrWi + crww + drwm\ .

dza dw b=i i=i J

Of course there are similar formulas for the coefficients of d/dw and d/dϊj
and for the coefficients in [Lα, F],

Proof. Direct computation.
We will use the notation z = (zl9 , zn_i).

2.8. Lemma. Suppose F € S£μ — S£μ_x is formed by commutators of
Ll9 - , LTO_l5 Ll9 , Ln_x. ΓΛen ί/ie coefficients ai9 bi9 c, d are sums of terms
of the form ±Dι(r) - . Dμ+λ(r), where each Dι is differentiation to order di9

and the integers dt satisfy



m> THOMAS BLOOM & IAN GRAHAM

1. dλ + + dμ+1 = 2μ + 1,

In addition each such term in aό or bό involves differentiation a total of μ times
with respect to z and μ + 1 times with respect to w. Each term in c, d involves
differentiation a total of μ + 1 times with respect to z and μ times with respect
to w.

Proof. The proof is by induction on μ and an examination of formulas
(2.7.1) and (2.7.2). The statement about the a3 and b3 coefficients is needed
only for the inductive proof of the statement about the c and d coefficients.

2.9. Lemma. Suppose F € &μ — Seμ_x is formed by commutators of
L19 , Ln_x and Ll9 , Ln_x. Then each term in the c and d coefficients
contains a factor of the form D(r) where D is differentiation in z, z only (i.e.,
no w) of order <μ + 1.

Proof. By Lemma 2.8 each term contains μ + 1 factors, and the total
order of differentiation in w is just μ.

2.10. Lemma. Let D = (d/dz)σ(d/dz)τ where σ, τ are multi-indices and
\o\ > 1, | r | > 1 and \σ\ + \τ\ = μ + 1 (thus μ > 1). Then there exists F e ifμ

whose c coefficient has the following properties:
1. There is one term r^~xr^D(r).
2, All other terms D\r) . . Dμ+1(r) have the property that some Dι is a

differentiation in z, z (i.e., no w) of order <μ.
Proof. The proof is by induction on μ. When μ = 1 we have D = d2ldZidZj-

The c coefficient of \Lt, Lj] is rwrZiZj — rgjrZiW which satisfies (1) and (2).
For the inductive step we have either \σ\ > 1 or | τ | > 1 say |σ| > 1. We

write D = (d/dza)(d/dzY(d/dz)τ where \'</\ = \σ\ — 1. By the induction hypothe-
sis we can find F <= Seμ_t with properties (1) and (2) for (d/dzYXd/dz)τ. An
examination of formula (2.7.1) shows that [La,F] satisfies (1) and (2) for D.
In fact, the form rJ '-Vj ΊKr) comes from rw(dc/dza).

2.11. Lemma. t(P) > a(P).
Proof. Let X be an (n — l)-dimensional complex manifold tangent to M

at P to order . y ( l < ^ < + o o ) . We may assume the coordinate w (of formula
(2.5.1)) chosen so that X = {(z, w) € U\w = 0}.

Now, r(z, 0) vanishes at P to order s + 1. Consequently, D(r) vanishes at
P if D involves differentiation of order <s with respect to z, z (i.e., no w dif-
ferentiation). Thus Lemma 2.9 shows that the c coefficient of any F € ̂ ?

s_1

vanishes at P and hence t(P) > s. Thus t(P) > a(P).
2.12. Lemma. t(P) < a(P).
Proof. Suppose that t(P) > m where m is an integer > 1. We may assume

that the coordinate w (of formula (2.5.1)) is chosen so that D(r)(P) = 0 where
D is any pure differentiation with respect to z or z (i.e., no mixture of deriva-
tives with respect to z and z) of order <m + 1. We will show that w — 0 is
tangent to M at P to order >m.

The c coefficient of any F <= j£?m_χ vanishes at P. By Lemma 2.10 we may
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conclude that (d/dz)σ(d/dz)τr(P) = 0 for σ, τ any multi-indices satisfying \σ\
> 1, \τ\ > 1, \σ\ + \τ\ < m. (We proceed by induction on \σ\ + \τ\ using the
fact that rw(P) = rm(P) = 1. Both statements in Lemma 2.10 are needed.)
That is, r(z, 0) vanishes at P to order >m + 1. q.e.d.

Lemmas 2.11 and 2.12 complete the proof of Theorem 2.4.
2.13. Corollary. Let M be real analytic and P € M a point of type + oo.

Then M contains a complex (n — l)-dimensional submanijold of a neighbor-
hood of P.

Proof. Using the assumption that r is real analytic we may assume the
coordinate w chosen so that D(r)(P) = 0 where D is pure differentiation with
respect to z or z of any order. Then the reasoning in the proof of Lemma
2.12 shows that {(z, w) \ w = 0} is contained in M.

2.14. Counterexamples. The conclusion of Corollary 2.13 need not hold
if M is only C°°. We give two examples:

1. Considers = 2Reπ> + e x p ( - ( | z | 2 + (Imw)2)"1) andM = {z,wε C2\r
= 0}. Then (0, 0) is a point of type oo. However, M is strongly pseudoconvex
(type 1) in a deleted neighborhood of (0, 0) and cannot contain a complex
submanifold.

2. Consider the formal power series

Re (w - Σ n! zn\ .
\ n=2 I

By a theorem of E. Borel [10, p. 28] there exists a C°° function r in C 2 having
this series as its formal Taylor series at (0, 0). Let M = {z,w <= C2\ r(z, w) = 0}.
The complex submanifold w = ΣJΓ=2

 n zn ^s tangent to M to order m at (0, 0).
However, there is no complex submanifold tangent to M at (0,0) to infinite
order.

3. The case of a single vector field

As before, M is a real C°° hypersurface in an open subset of Cn, and P
denotes a point of M.

Let L be a tangential holomorphic vector field to M. We let J£μ(L) denote
the C°° module of vector fields spanned by L, L and their commutators of
order <μ.

3.1. Definition. We say L is of type m at P if there exists F e Sfm(L)
such that <3r(P), F(P)> φ 0 while for all F € Jδf TO_χ(L) we have

(dr(P),F(P)) = 0.

We shall use the notation t(L, P) = m. If (dr(P), F(P)> = 0 for all F e
£?μ{L) and all integers μ > 1 we will write ί(L, P) = + oo.

3.2. Proposition. Suppose there is a l-dimensional complex submanifold
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X of a neighborhood of P, tangent to M at P to order s. Then there exists a
tangential holomorphic vector field L such that L(P) is tangent to X at P and
t(L,P)>s.

Proof. Choose coordinates zu , zn-i> w centered at P so that

2. r = 2 Re (w) + φ where φ vanishes to order > 2 at P.

Consider the tangential holomorphic vector field Ln_x — rw—-— — rZn_x-?—.
dzn_λ

 n dw

We shall show that Ln_x is of type >s at p.
Now r\x has a zero of order s + 1 at P. Thus the description of the com-

mutators of Ln_1 and Ln_ί contained in Lemmas 2.8 and 2.9 is sufficient to
prove the proposition.

3.3. Remarks. 1. If in these coordinates we have D(r)(0, 0)Φθ for some
impure differentiation D in zn_i,zn-i of order s + 1, then Ln^ has type
precisely s at P.

2. We do not know if there is a converse to Proposition 3.2. The condi-
tion that all nonzero holomorphic vector fields be of finite type is conjectured
by Kohn [7] to be necessary and sufficient for the d-Neumann problem to be
subelliptic at a boundary point of a pseudoconvex domain.

3.4. The type of a vector field is not determined solely by its value at P.
Consider M C C3 defined as the zero set of

r = 2 Re (w) + \Zl\
2 - |z2|

4 , P = (0, 0, 0) .

Here Lx is of type 1, and L2 is of type 3. (Lx and L2 are defined by (2.5.4).)
Note however that M contains the complex submanifold

X = {(w, zu z2) I w — 0 and zι = zl} .

Now L = 2z2Lλ + L2 is a tangential holomorphic vector field which restricts

to a holomorphic vector field on X. Thus it is of type + oo. Of course L(P)

= L2(P).
3.5. It is possible to have a point P e M such that all nonzero holomorphic

tangential vector fields are of finite type at P but there are points arbitrarily
close to P where these are nonzero holomorphic tangential vector fields not of
finite type. We will give one such example with M pseudoconvex.

Let M be given as the zero set of r = 2 Re (w) + \z\ — zl\2 and P =
(0,0, 0). Since r is plurisubharmonic M is pseudoconvex (when considered as
the boundary of r < 0).

We will first show that every tangential holomorphic vector field L such
that L(P) Φ 0 is of finite type at P (in fact of type <5) .

Note that Lλ is of type 3 at P, and L2 is of type 5 at P. Any tangential
holomorphic vector field L can be written L = φxLλ + 02L2 where φι and φ2

are C°° functions. If φλ(P) Φ 0, it is easily seen that t(L, P) = t(L19 P) = 3. If
φx(P) z=z 0, and L(P) Φ 0, then 02(P) φ 0. Therefore we may assume that
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L = φLλ + L2 with 0(0) = 0 .

Expressing the commutator [[[[[L, L],L],L],L], Z] as a linear combination of
commutators of Ll9 Ll9 L2 and Z2, each commutator S has the property that it
occurs with a coefficient having a factor φ or else <βr(P), S(P)} = 0 except for
the commutator [[[[[L2, Z2], L2], Z2], La], Z 2]. Thus /(L, P) < 5 (in fact /(L, P)
= 5).

Now M contains the complex analytic set

X = {w, Zi, Z21 W = 0, z\ = Zl} .

X has a singular point at P, but at all other points it is nonsingular. Thus for
any point qεX — P there is a nonzero tangential holomorphic vector field
which is not of finite type.

4. Generic submanifolds of higher codimension

Let M be a real C°° submanifold of dimension 2n — k (k < ή) of an open
subset U of Cn. Let r1? -,rk be real-valued C°° functions such that M =
{ze U\r1= = rfc = 0} and drλ Λ Λ drfc ^ 0 on M.

4.1. Definition [12]. M is generic if 3rx Λ Λ drk Φ 0 on M.
This condition is equivalent to dim c Th\M, q) = n — k for all q e M.

(Hence it is independent of the functions r19 -,rk.) This is, of course, the
minimum possible dimension for the holomorphic tangent space.

4.2. Definition. A point P € M is of type m (m an integer > 1 or + oo)
if there exists F € &m such that F(P) $ T\M, P) 0 T^\M, P) while jS?m_x

contains no such F.
We use the notation t(P) = m.
The requirement that F(P) <£ Ϊ^'^M, P) Θ T°>\M, P) is equivalent to the

following: if rl9 , rfc are defining functions for M, then <3r f(P),F(P)> ^ 0
for some /.

4.3. Remark. This is not the most interesting type condition. Naruki's
estimate [11] depends on there being an integer m such that {F(P)\F € j£?m}
= CT(M, P). The point P is then termed (m + l)-regular by Naruki.

Let X be an (n — /:)-dimensional complex submanifold of a neighborhood
U of P which is tangent to M at P.

4.4. Definition. X is tangent to M at P to order s (s an integer > 1 or
+ oo) if s = inf {ί I there exists a real valued C°° function r o n [/ such that
r\M = 0, dr Φ 0 on M and r\x vanishes at P to order >t + 1}.

Thus s is the least order of tangency of X with a hypersurf ace containing M.
Note that the roles of X and M cannot be interchanged in this definition,

for dimΛ X < dimΛ M. Also whenever rl9 , rk are functions such that M =
{z I Γx = = rk = 0} and ^ Λ Λ drA =£ 0 on M, there is an index i
for which τi \x vanishes at P to order s + 1.
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We set a(P) = sup {s | there exists an (n — Λ;)-dimensional complex submani-
fold tangent to M at P to order s). Thus a(P) is an integer > 1 or + oo.

4.5. Theorem. a(P) = t(P).

Proof. The proof is analogous to that of Theorem 2.4. Since M is generic,
given defining functions r19 , rk for M we can choose local coordinates
Zi9 - , zn_k, wl9 - , wk at P such that

(4.5.1) r< = 2 R e ( W < ) + ^ , i = 1, — , ifc ,

where φ€ vanishes to order > 2 at P. Thus

(4.5.2) = « / , / = 1,

(4.5.3) = 0 , >,n — k .

Consider the vector fields

(4.5.4)
OWj

i = 1, , R — k ,

where E, E[, , £{. are the cofactors of the elements in the first row of the
(k + 1) x (k + 1) matrix

(4.5.5)

Note that Lt(rs) = 0 for i = 1, , n — k, s = 1, , k since E(dra/dzt) +
Σ%ι Efldrjdwj) is equal to the expansion of the determinant of (4.5.5) when
e = drs/dZi and eό = drjdwj. Of course, in that case the matrix has two
identical rows.

Now the relations (4.5.2) and (4.5.3) imply thatE(P) = 1 while E)(P) = 0
for i — 1, , n — k, and / = 1, , k.

The following lemmas are proved in a manner similar to the corresponding
lemmas in § 2. Details are omitted for the most part.

4.6. Lemma. S£μ is generated modulo vector fields vanishing on M as a
C°° module by the commutators of order <μ of the 2n — 2k vector fields
Li, '' ', Ln_k, L19 , Ln_k.

Any vector field F can be written in the form
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+ Σb^+Σ

If F is tangential, then by our choice of coordinates c/0) + dj(O) = 0.
4.7. Lemma. Suppose F e 3? μ — Jδf/β_1 and is formed from commutators

of L19 , Ln_k, Ll9 , Ln_k. Then the coefficients au bt, cj9 dj of F are sums
of terms of the form

±D\r) D^\r) ,

where each Dι(r), I = 1, -,μ + 1 is the determinant of a k X k matrix
whose entries are partial derivatives of rλ rk with respect to zi9 , zn_fc,
wu - , wk with the following properties:

1. The ith row contains derivatives only of rt.
2. The differentiation operator is the same for all entries in a given column.

3. The order d of the differentiation in a given column satisfies 1 < d <

μ+l.
4. The total order of differentiation in each term is (μ + l)k + μ.
5. Each term in c5 or dό involves μ + 1 derivatives with respect to z,z

and (μ + ί)k — 1 derivatives with respect to w, w.
4.8. Lemma. Suppose F € S£μ — £Pμ_λ and is formed from commutators

of L19 , Ln_k, Ll9 , Ln_k. Then among the columns of the determinants
in each term +D 1 (r) Dμ+1(r) of the Cj and d3 coefficients, there is one in
which the differentiation is in z9 z only (and of order < + 1).

Proof. According to Lemma 4.7 there are (μ + \)k columns altogether,
and the order of differentiation in w is (μ + \)k — 1.

4.9. Lemma. Let D = (d/dz)σ(d/dz)τ where a and τ are multi-indices and
M > 1> | r | > 1. Let μ + 1 = \σ\ + \τ\. Let T be the k X k determinant

T = det

Drx
dw1

dwλ

drk

dwj_ι

dwj+1

dWi

dwk

drk

dwk

(Note that T(0) = ±Drό(0).) Then there exists F e ifμ whose cό coefficient
has the following properties:

1. There is one term E^^E^T.
2. For each of the remaining terms, one determinant contains a column

in which the differentiation is in z, z only and of order <μ.
Proof. By induction using the analog of formula (2.7.1). (Cf. Lemma 2.10.)

4.10. Lemma. t(P) > a(P).
Proof. Let X be an (n — A;)-dimensional complex submanifold tangent to
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M at P to order s (1 < s < oo). We may choose coordinates at P so that
X = {(z, w) I w = 0}. Then r^z, 0) vanishes to order > s + 1, / = 1, , k.
Lemma 4.8 shows that the Cj and ds coefficients of any F z £?s_x vanish at P
for / = 1, , k. Hence ί(P) > s.

4.11. Lemma. r(P) < a(P).
Proof. Suppose that t(P) > m where m is an integer > 1. We may assume

that the coordinate Wj is chosen so that D(rj)(P) = 0, j = 1, , k where D
is any pure differentiation with respect to z or z of order <m + \. Lemma
4.9 shows that for any impure differentiation D in z, I of order <ra, Dr/0)
== 0, / = 1, , k. That is, w = 0 is tangent to r̂  = 0 to order >ra, / =
1, ,k. We conclude that w = 0 is tangent to M to order >ra. Thus a(P)
>m.

Lemmas 4.10 and 4.11 complete the proof of Theorem 4.5.
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