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ANTI-INVARIANT SUBMANIFOLDS OF A SASAKIAN
MANIFOLD WITH VANISHING CONTACT

BOCHNER CURVATURE TENSOR

KENTARO YANO

0. Introduction

In 1949, by using a complex coordinate system Bochner [3] (see also Yano
and Bochner [23]) introduced, as an analogue of the Weyl conformal curva-
ture tensor in a Riemannian manifold, what we now call the Bochner curva-
ture tensor in a Kaehlerian manifold. In 1967 Tachibana [13] gave a tensor
expression of this curvature tensor in a real coordinate system. Since then the
tensor has been studied by Chen [5], Ishihara [25], Liu [14], Matsumoto [10],
Sato [17], Tachibana [14], Takagi [15], Watanabe [15], Yamaguchi [17], and
the present author [5], [19], [20], [21], [22], [25].

Let M2m be a real 2m-dimensional Kaehlerian manifold with the almost
complex structure F, and Mn an n-dimensional Riemannian manifold isome-
trically immersed in M2m. If Tx(M

n) J_ FTx(M
n), where Tx(M

n) denotes the
tangent space to Mn at a point x of Mn and is identified with its image under
the differential of the immersion, then we call Mn a totally real or anti-
invariant submanifold of M2m. Since the rank of F is 2m, we have n < 2m — n,
that is, n < m.

The totally real submanifolds of a Kaehlerian manifold have been studied
by Chen [4], Houh [6], Kon [7], [26], [27], Ludden [8], [9], Ogiue [4],
Okumura [8], [9] and the present author [8], [9], [21], [22], [26], [27].

As a theorem connecting the Weyl conformal curvature tensor and the
Bochner curvature tensor, Blair [1] proved

Theorem A Let M2n, n > 4, be a Kaehlerian manifold with vanishing
Bochner curvature tensor, and Mn a totally geodesic, totally real submanifold
of M2n. Then Mn is conformally flat.

Generalizing this theorem of Blair, the present author [21] established the
following theorems.

Theorem B. Let Mn, n > 4, be a totally umbilical, totally real submanifold
of a Kaehlerian manifold M2m with vanishing Bochner curvature tensor. Then
Mn is conformally flat.

Theorem C. Let M3 be a totally geodesic, totally real submanifold of a
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Kaehlerian manifold M2m with vanishing Bσchner curvature tensor. Then M3

is conformally flat.
Theorem D. Let Mn, n > 4, be a totally real submanijold of a Kaehlerian

manifold M2n with vanishing Bochner curvature tensor. If the second funda-
mental tensors of Mn commute, then Mn is conformally flat.

The main purpose of the present paper is to obtain theorems, analogous to
the above theorems, for anti-invariant submanifolds of a Sasakian manifold with
vanishing contact Bochner curvature tensor. For anti-invariant submanifolds
of a Sasakian manifold, see Blair and Ogiue [2], Yamaguchi, Kon and Ikawa
[16], Yano and Kon [28], [29], and for the contact Bochner curvature tensor
see Matsumoto and Chΰman [11].

First of all, in § 1 we recall the definition and the fundamental properties
of a Sasakian manifold. In § 2 we define a curvature tensor in a Sasakian
manifold which is called the contact Bochner curvature tensor and corresponds
to the Bochner curvature tensor in a Kaehlerian manifold.

§ 3 is devoted to general discussions on anti-invariant submanifolds of a
Sasakian manifold, and § 4 to the study of anti-invariant submanifolds of a
Sasakian manifold with vanishing contact Bochner curvature tensor.

In the last two sections (§§5 and 6) we study Sasakian manifolds with
vanishing contact Bochner curvature tensor regarded as fibred spaces with in-
variant Riemannian metric (see Yano and Ishihara [24]).

l Sasakian manifolds

We first of all recall the definition and the fundamental properties of almost
contact manifolds for the later use. Let M 2 m + 1 be a (2m + l)-dimensional dif-
ferentiable manifold of class C°° covered by a system of coordinate neighbor-
hoods {U JC'} in which there are given a tensor field φλ

κ of type (1,1), a vector
field ξκ and a 1-form ηλ satisfying

(1.1) φλ'φ/ = -δμ + ηj? , φtf = 0 , ηλφμ

λ = 0 , ηλξ
λ = 1 ,

where and in the sequel the indices a,β, - ,κ,λ,μ9 run over the range
{1,2, . , 2ra + 1}. Such a set (φ, ξ, η) consisting of a tensor field φ, Ά vector
field ξ and a 1-form η is called an almost contact structure, and a manifold
with an almost contact structure an almost contact manifold (see Sasaki [12]).

If the Nijenhuis tensor

(1.2) Nμλ' = φμ'djpλ - φλ°daφμ< - (dμφλ

a - dλφμ

a)φa<

formed with φ{ satisfies

(1.3) Nμλ' + (dμVλ-dλVμ)ξ< = 0,

where dμ = d/dxμ, then the almost contact structure is said to be normal and
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the manifold is called a normal almost contact manifold.
Suppose that in an almost contact manifold there is given a Riemannian

metric gμλ such that

(1.4) Srβ<P/<Pχβ = gμx - VΛx > Vx = 8 J J ' >

then the almost contact structure is said to be metric, and the manifold is
called an almost contact metric manifold. In view of the second equation of
(1.4) we shall write ξλ instead of ηλ in the sequel. In an almost contact metric
manifold, the tensor field φμλ = ψμ

agaλ is skew-symmetric.
If an almost contact metric structure satisfies

(1.5) φμχ = i(dμξλ-dλξμ),

then the almost contact metric structure is called a contact structure. A mani-
fold with a normal contact structure is called a Sasakian manifold.

It is well known that in a Sasakian manifold we have

(1.6) P£' = φλ*,

(1.7) Frf>/= -gj' + δ<μξλ,

where Fλ denotes the operator of covariant differentiation with respect to gμi.
(1.6) written as Vλξκ = φλκ shows that ξ' is a Killing vector field.

(1.6), (1.7) and the Ricci identity

vyp - r/jp = κvμλ<ξ>,

where Kvμλ

κ is the curvature tensor, give

α.8) * . ,/£'= *£„-«;£,,

or

d 9) Kvμλ% = ξvgμλ-ξμgvλ.

From (1.9) by contraction we have

where Kμλ = Kaμλ

a is the Ricci tensor.

(1.6), (1.7) and the Ricci identity

imply

(1.11) Kvμa'φλ° - Kvμλ°φa< = -φ;gμλ + φμ'gvλ - δ'vφμλ + δμφvλ
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from which, by contraction, it follows that

(1.12) Kμa9i° + Kβμλy« = -(2m- \)Ψμλ ,

where ψβa = gβλφ°, gβλ being contravariant components of the metric tensor.
Since Kβμiaφ

βa is skew-symmetric in μ and λ, we have from (1.12)

(1.13) Kμaφλ° + Kλaψμ" = 0 .

From (1.12) we also find

(1.14) KβaμXφ
β° = 2Kμaψi" + 2(2m - \)Ψμλ .

2. Contact Bochner curvature tensor

As an analogue of the Bochner curvature tensor in a Kaehlerian manifold,
we define the contact Bochner curvature tensor in a Sasakian manifold by

BvμX' = Kvμλ< + (δl - ξvξ')Lμλ - (δ'μ - ξ£<)Lvλ + L}(gμλ - ξμξλ)

(2.1) - L;(gvλ - ξvξλ) + Ψ;Mμλ - φ;Mvλ + M;Ψμλ - M;ψvλ

- 2{φvμMλ

κ + Mvμφλ

κ) + (φv*φμλ - φμ'φyλ - 2φvμφλ*) ,

where

(2.2) I - - ϊ ^ V ^ - ^ " tt+ »«- + " - W Λ
W = Lμag"< ,

(2.3) L = g"ιLμλ ,

(2.4) Mμί = -Lμaψι" , M; =

From (2.2) and (2.3) it follows that

K + 2(3m + 2)
(2.5) L = -

4(m + 1)

where K is the scalar curvature of the manifold.
Using (1.10) we have, from (2.2),

(2.6) Lμiξ> = -ξμ ,

which, together with the first equation of (2.4), yields

(2.7) Mμaψi" = Lμl + ξμξx .
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We can easily verify that the contact Bochner curvature tensor satisfies the
following identities:

(2.8) B9μl* = -Bμvλ' , Bvμl' + BμXv< + Bλvμ< = 0 , Baμλ

a = 0 ,

(2.9) Bvμλκ = —Bvμκλ , BvμXκ = Bλκvμ ,

w h e r e BvμXκ = Bvμλ

agaκ a n d

(2.10) Bvμλ'ξ£ = 0, Bvμa'φλ

a = Bvμλ

aφa< , Bvμλy = 0 .

3. Anti-invariant submanifolds of a Sasakian manifold

We consider an ^-dimensional Riemannian manifold Mn, n > 1, covered
by a system of coordinate neighborhoods {V yh) and isometrically immersed
in a Sasakian manifold M 2 m + 1 , and denote the immersion by

(3.1) x' = x'(yh)

w h e r e a n d i n t h e s e q u e l t h e indices A, ί,/, ••• r u n o v e r t h e r a n g e
{1 ' , 2 ' , . . . , n ' } . W e p u t

( 3 . 2 ) Bt' = dtx< & = d/dy*) ,

and denote 2m + 1 — n mutually orthogonal unit vectors normal to Mn by
Cy% where and in the sequel the indices x, y, z run over the range {{n + 1)',
•• , ( 2 m + 1)'}.

Then the metric tensor gόί of Mn and that of the normal bundle are respec-
tively given by

(3.3) 8ji = 8ββfi ,

(3.4) gzy = gμλC»zi ,

where Bft == B/B/ and CjJ = C/Cy\
If the transform by φλ* of any vector tangent to Mn is orthogonal to Mn, we

say that the submanifold Mn is anti-invariant in M 2 m + 1 . Since the rank of <pλ

κ

is 2m, we have n — 1 < 2m + 1 — π, that is, AI < m + 1.
For an anti-invariant submanifold Mn in M 2 m + 1 , we have equations of the

form

(3.5) φ Bt = -h*Cx<,

(3.6) p / C / = fJBf + fy*Cx< ,

(3.7) ξ' = ξ'B,' + ξ'Cx' .

Using φμl = — φλμ we have, from (3.5) and (3.6),
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(3.8) fiy = fyl ,

where j l v = Ugιy and fyi - fv^gJt and

(3.9) fyx = -fxy ,

where /„,. = fυ'gtx.

Applying ψ to (3.5), (3.6) and (3.7) and using (1.1), (3.8), (3.9) we find

( i ) /«V = δi - ξtξ* ,

(ϋ) fi%x = ~ξi$x ,

(iii) ///,» = ξyξ» ,

(3.10) (iv) ///,- = -δ* + ξvξ* + f,*ff ,

(v) /,«f = 0,

(vi) hψ = f,'ξ> ,

(vii) ξtξ* + ξvξ
v = 1 ,

where ξt = glhξ
h and ξv = gyxξ

x, (vii) being a consequence of ξg* = 1.
Differentiating (3.5), (3.6) and (3.7) covariantly over Mn and using (1.6),

(1.7), (3.10), equations of Gauss

(3.11) FjBt' = hjt'C,'

and those of Weingarten

(3.12) FjCy' = -h^BC ,

where Vs denotes the operator of covariant differentiation over Mn, and h}i

x

and h/t = hJt

zgHgιy are the second fundamental tensors of M" with respect
to the normals Cx, we find

( i ) -8jtξ
h + ajfi = -hjt

xfx

h + hfjf ,
( i i ) V,U'

(3 13) ( i U ) W = ^ + Λ Λ
(iv) Γjfw» = - V V +
( v ) Pjξ

h = hί

h

9ξ»,

I. The case in which ξ' is tangent to Mn. Suppose that n = m + 1. Then
the codimension of Mn is 2m + 1 — n = n — 1, and consequently [/„*, £ft]

and 1^ I are both square matrices and satisfy
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Vy\ξh]\f?] =

because of (3.10) (i). Thus we have

* ξ*] = unit matrix ,

from which it follows that

(3.14) fi%
i = δζ, UΨ = 0, ξiίv

i = 0,

By remembering that ξtξ
ι + ξxξ

x = 1, we further find ξx = 0 and hence ζ' is
tangent to Mn.

In general suppose that ξ" is tangent to Mn, that is, f* = 0. Then (3.10)
becomes

( i )

( ϋ )

(ϋi)

(iv)

( v )

(vi)

•f y-f h Sh
Ji Jy — υ i

fiVfyX = 0 ,
f zj h _ Γ)
Jy Jz — w >

///,* = -δ*

hΨ = o,
ζ if * = 1

From (3.15)(iii) and (iv) we see that fy

x defines a so-called f-structure in
the normal bundle (see Yano [18]). In this case (3.13) becomes

( i ) -gJtξ
h + δhjξ{ = -hit'fS + hfjf ,

(ii) Γί/i*=-VV»

(3 16)

(iv) V,W = - V V + W«' .
( v ) Fif

ft = O,

(vi) Vf* + // = ° •
(3.16)(v) shows that whenever the vector field ξ* is tangent to an anti-

invariant submanifold of a Sasakian manifold, it is parallel over the submanifold.
(3.16)(i) shows that an anti-invariant submanifold tangent to ξ" cannot be

totally umbilical or totally contact umbilical. For, if hH

x is of the form
ifxgjt + βξ}ξt)hx, then from (3.16)(i) we have

-gjiξh + %ξ< = -(ccgjt + βξjξi)hxfx

h + (ad1} + βξ'jξ^hJt' ,

from which, by contracting with respect to h and / and using (3.15)(v) we
obtain
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(n - 1)£, = (n - DahJi* + βhjf ,

and consequently transvecting with ξι and using (3.15)(v) give (n — 1)?*?* = 0,
which is a contradiction for n > 1.

We now come back to the case n = m + 1. In this case, from the first
equation of (3.14) and (3.15)(iv), we have fy

zfz

x = 0 o r jyj
vx = 0 because

/yjp = //#,.,. is skew-symmetric and / / = 0. Thus (3.16)(ii) becomes

(3.17) Γ ^ = 0 ,

from which, using the Ricci identity we obtain

(3.18) K*i*Λ/Λ* - W / i * = 0 ,

where Kkji

h (respectively, Kkjy

x) is the curvature tensor of Mn (respectively,
the normal bundle of Mn).

From (3.18) we have, taking account of the first equation of (3.14) and

(3.19) Kkjy%yfx* = KkJi*

(3.20) Kkjί%%* = K
kjy*

because of Kkjiψ = 0 derived from (3.16)(v). (3.19) and (3.20) show that
Kkji

h = 0 and Kkjy

x = 0 are equivalent.
II The case in which ξ* is normal to Mn. Now suppose that ξ' is normal

to Mn, that is, ξh = 0. Then (3.10) becomes

(3.21)

( i )

(ϋ)

(iϋ)

(iv)

( v )

(vi)

(vii)

f.!/f ft _
Π ly —

fiVfyX =

fyZfzh =
f zf x _
Jy Jz —

i*ξx =

ίv

xξy =
ξ ξv =•

3? ,

0 ,

0 ,

- ί

0 ,

0 ,

1 .

(3.21) (iiii), (iv) and (vi) show that / / defines an /-structure in the normal
bundle. In this case, (3.13) becomes

(ii) ViU'

(3.22) ( i i i ) F Λ * = *5 f* + Λ '**^* '

(iv) v,w = - V V + ΛΛ/«X'
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( v ) hj\ξy = 0,

(vi) Fjξ* = - / / .

From (3.21)(i) it follows that fiyf
yί = n, and consequently by (3.21)(iv)

and (vii) we find

-fayfy = -(2m + 1 - ή) + 1 + n = -2(m - π) .

Thus, if n = m, then we have fy

x = 0, and (3.21) and (3.22) become respec-
tively

(3.23)

( i )

(ϋ)

(iii)

(iv)

( i )

(ϋ)

(iϋ)

(iv)

(v)

(vi)

//// = 3? ,
fffS = δ*~ ξv£

ίxhξx = 0 ,

fχζx = i

U x-t h i U h ί
— "SI Jx + rlj xJ

PjU" = sJtξ
x,

Fjfy

h = δ)ξυ ,

-fii'V + hίvίi
hjhyξV = θ ,

X

tx = 0,

' = 0,
(3.24)

Suppose that Mn is totally umbilical, and put hjt

x = gjth
x. Then from

(3.24)(i) we have

-8,th*Uh + δ)hxU* = 0 ,

which implies /z*// = 0 for n > 1. From (3.24)(iv) it follows that

-h%j + hyfj* = 0 ,

from which, by transvecting with hv and using fyjh
y = 0we have hvh

yfjx = 0,
and consequently A ^ = 0 and hence /^ = 0. Thus Mn must be totally
geodesic.

By (3.24)(ii) and (vi), we find

from which, using the Ricci identity we obtain

K*jy

xξv = 0 .

On the other hand, from (3.24)(ii) and (vi), we have, using the Ricci
identity,
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-κkjί

hfh* + κkjvηy = -h*gjί + ff8ki,

which, together with (3.23)(i), implies that

(3.25) Kkji

h = Kkjy%yfx

h + δh

kgji - δ)gki

and that, in consequence of Kkjy

xξv = 0 and (3.23)(ii),

(3.26) Kk$y» = Kkji%%* + fykf/ - fvJfk» .

(3.25) and (3.26) show that Mn is of constant curvature 1 if and only if the
connection induced in the normal bundle is of zero curvature.

4. Anti-invariant submanifolds of a Sasakian manifold with

vanishing contact Bochner curvature tensor

We first of all remember that the equations of Gauss, Codazzi and Ricci
are respectively

(4.1) Kkjih = KvμXβl% + hkhxh^ - hjhxhki* ,

(4.2) 0 = K^&CJ - (FkhJiv - Fjhkίy) ,

(4.3) Kkjyx = Kvμlβγp*x - (hk\hjtx - h/yhktx) ,

where Kvμλκ, Kkjίh and Kkjyx are the covariant components of the curvature
tensors of M2m+\ Mn and the normal bundle respectively, Bv

k% = Bk

vBj

μBί

λBh

κ

and B% = B^B/B/.
We assume that the contact Bochner curvature tensor of M 2 m + 1 vanishes

identically. Then from (2.1) we have

- (gμκ - ξμξκ)Lvλ + Lvκ(gμλ - ξμξλ)

(4.4) - Lμκ(gvλ - ξvξλ) + ψvκMμx - φμMvχ + MvκψμX - Mμκφvλ

— 2{φvμMλκ + Mvμφλκ) + (<pvκφμλ — φμκφυλ — 2φvμφJ = 0 ,

from which, by using gββft = gJί9 φ^Bβ = 0, φμλB/Cy

λ = -fjy, ψμλσyx =
fyx, ξβk» = ξk and ξvCy

v = ξv, we find

Kvμλβ
v

k% + (gkh - ξkξh)L3i - (gjh - ξjξJLki

+ Lkh{gji - ξjξj - Ljh{gki - ξkξd = 0 ,

Kvμλβl%Cy< - ξ.ξ.Lji + ξjξ.Lu + Lky(gji - ξfr)

- Ljy(gki - ξkξj - fkvMjt + fjyMki + 2Mkjfiy = 0 ,

Kvμλβ%Cλ

y'x - ξkξxLjy + ξjξxLky - Lkxξ5ξy + Ljxξkξy - fkxMjy

+ fjχMky — Mkxfjy + Mjxfky — 2Mkjfyx + (fkjjy — fjxfuy) = 0 ,

where
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ji = LμlBfi , Lky = LμλBk

μCy

λ ,

Mky =

Since Mμl = —Lμaφλ

a, we have

Msi = -LrffBft = LμaB/f^Cx

a ,

that is,

(4.9) MJt = LJaft* ,

and also

Mkv = -Lμaφλ°Bk»Cy

λ = -L^BAf/Bf + fy*Cx") ,

that is,

(4.10) M*v = -LkJS - LMJV* .

Thus (4.1), (4.2) and (4.3) can be written respectively as

(4 11)
- Ljh(gki - f4f4) - ( A ^ ^ * - hjhxhkiη = 0 ,

(4 12) ( f f c L < /* ^L*«^ fy ~~ L * v ^ < " f^fi) + ^» fe« ~ f*fi)
+ /4yAfi€ - fjyMki - 2Mkjfίy - (Fkhjiy - Fjhkiy) = 0 ,

Kjcjyx — (%kLjy — ζjLky)ξx — (Lkxξj — Ljxξk)ξy

(4.13) + Mkyfjx - Mjyfkx + fkyMJX - fJyMkx - 2MkJfyx

+ (hJjy - fjxhy) + (hk\hjtx - h/yhktx) = 0 .

I. The case in which the vector field ξκ is tangent to Mn. We now assume
that n = m + 1. Then the vector field ξ' is tangent to Mn and / / = 0. Thus
(4.13) becomes

Kkjyx — UtMjy + fjχMky — Mkxfjy + Mjxfky

+ (fkxfjy - fjxfky) + {hh'Jljtx - h/yhktx) = 0 ,

from which, by transvecting with ft

vfh

x and using fjxft

x = gμ — ξjξi derived
from (3.15)(i), we find

κkjvxmh

x - (gkh - ξkξh)MjvU
y + (gJh - 5

(4.14)
+ (gkh — ξkξh)(gjt - ?j£ι) - igjh -

- h/JiuJWh' = 0 .
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We now assume that the second fundamental tensors are commutative. Then
from (3.19) and (4.14) we have

Kkjίh + (Skh - ξkξh)Nji - igjh - ξjξh)Nki

(4.15) + Nkh(gji - ξfr) - Njh{gkί - £ t£ t)

where Njt = -MjvU
v.

Now since the vector field ξh is parallel, the Riemannian manifold Mn is
locally a product of Mn~ι and M1 generated by ξh, and Mn~ι is totally geodesic
in Mn. We represent Mn~ι in Mn by parametric equations yh = yh(za) (a, b,
c9d,- = I", 2", , (n - l) / ;), and put Bb

h = 3yΛ/3zδ. Then we have
ξβj = 0, and the curvature tensor Kdcba of Mn~ι is given by

(4.16) Kdcba =

where Bj$£ = Bd

kBe'Bh

iBa

h. Thus transvecting (4.15) with β * ^ , we obtain

(4.17) X ώ c δ α + g ώ α C c δ — gcaCdb + Cdagcb — Ccagdb = 0 ,

where gcb = g^BJBj is the metric tensor of M n - 1 and

C c δ = NjtBJBJ + %gcb .

(4.17) shows that the Weyl conformal curvature tensor of Mn~ι vanishes,
and Mn~ι is conformally flat if n — 1 > 4. Thus we have

Theorem 4.1. Let Mn, n > 5, be an anti-invariant submanίfold of a
Sasakian manifold M2n~ι with vanishing contact Bochner curvature tensor. If
the second fundamental tensors of Mn commute, then Mn is locally a product
of a conformally flat Riemannian space and a 1-dimensional space.

II. The case in which the vector field ξ* is normal to Mn. We now con-
sider the case in which the vector field ξκ is normal to the anti-invariant sub-
manifold Mn, so that ξh = 0. Then from (4.11) we obtain

,. 1 R v Kkjίh + SkhLji gjhLjci + Lkhgμ — Ljhgki

( A Λ β ~ hjhxhkt*) = 0 .

If Mn is umbilical, that is, if hjix = gjthx, then we can write (4.18) in the
form

(4.19)
+ (Lkh - \hxh

xgkh)gji - (Ljh - \hxh*gjh)gki = 0 ,

which shows that the Weyl conformal curvature tensor of Mn vanishes. Thus

we have
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Theorem 4.2. Let Mn, n > 4, be a totally umbilical anti-invariant sub-
manifold normal to the structure vector field ξ' of a Sasakian manifold M2m+1

with vanishing contact Bochner curvature tensor. Then Mn is conformally flat.
Next from (4.13) we obtain

Kkjyx + Mkyfjx - Mjyfkx + fkyMjx - fjyMkx + 2Mkjfyx
(4.20)

+ (fuJjy - fM + ihk\hjtx - h/yhktx) = 0 .

If n = m, which implies that fy

x = 0, and the second fundamental tensors of
Mn commute, then from (4.20) we have

( . Kkjyx — fkχMjy + fjxMky — Mkxfjy + Mjxfky

+ (hJjy - fM = o ,

from which, by transvecting with fivfh

x and using (3.23)(i), we find

fiv - Mkyfhygji + Mjyfhygki(4 22) Kkj*Jifh

+ ( - gjhSki) = 0

Substituting (4.22) in (3.25) yields

(4.23) κkJίh - gkhM3yuy + gjhMkyuy - Mkyfhygjί + Mjyfhygki = o ,

which shows that the Weyl conformal curvature tensor of Mn vanishes. Thus
we have

Theorem 4.3. Let Mn, n > 4, be an anti-invariant submanifold normal
to the structure vector field ξκ of a Sasakian manifold M2n+1 with vanishing

contact Bochner curvature tensor. If the second fundamental tensors commute,
then Mn is conformally fiat.

5. Sasakian manifolds as fibred spaces with invariant Riemannian metric

It is well known that in a Sasakian manifold we have

(5.1)

where J£? denotes the operator of Lie derivation with respect to the structure
vector field ξκ. Thus, assuming that ξκ is regular, we can regard a Sasakian
manifold M2m+1 as a fibred space with invariant Riemannian metric (see Yano
and Ishihara [24]). Denoting 2m functionally independent solutions of

ξ%u = 0

by uh(x), we see that uh are local coordinates of the base space M2 m. We put

(5.2) Eλ

h = d,u\ E, = ξλ, £ - = f ,
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where and in the sequel the indices h, i, /, run over the range {I7, 2', . ,
(2m)7}. Then we have

EλEλ

h = 0 , EλEλ = 1 .

Since Eλ

h and Eλ are linearly independent, we put

Then we have

(5.3) Eλ

hE\ = δϊ , Eλ

hEλ = 0 , EλE\ = 0 , EλE
λ = 1 ,

(5.4) E<E't + EλE* = 3- .

For the Lie derivatives of E's we have

(5.5) SeEλ

h = 0 , &Eλ = 0 , jδfE% = 0 , 3>E* = 0 .

Thus using ^gμί = 0 and (5.5) we see that

(5.6) gJt - g^'jE't

is the metric tensor of the base space M2m. From (5.6) we have

(5.7) gμλ = g ,^/ ΐ/ + EμEλ .

It will be easily verified that

(5.8) E't =

where gίh are contravariant components of the metric tensor gjt of the base
space M 2 m . Also using «S?y>/ = 0 and (5.5) we see that

(5.9) f/ - φf&tE*

is a tensor field of type (1,1) of the base space M 2 m and defines an almost
complex structure of M 2 m . From (5.6) and (5.9) we easily find

(5.10) gtfj'Ft'= gjt ,

which shows that gjt is a Hermitian metric with respect to this almost complex
structure. Thus the base space M2m is an almost Hermitian manifold.

From (5.9) it follows that

(5.11) φ;E\ = F^E'h9 φi'ES = Fi

hE*, φλ< = Ft

hE*E'h .

For a function f(u(x)) on the base manifold M 2 m we have
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(5.12) dJ = E*dJ, dJ = E\dλf,

where dt = d\duι.
Now using (5.7) we compute the Christofϊel symbols {μ

κ

λ} formed with gμλ

and find

(5 13) { Λ } = ^ B ' i £ a

+ £^/

where {/<} are Christofϊel symbols formed with gsi. From (5.13) we have, in

consequence of (5.11),

(5.14)

Putting

(5.15) fi

we have, from (5.14),

(5.16) VμEλ

h = -(£„£/ + EfiflFf .

Thus putting Vs = EμjFμ we find

(5.17) FjEλ

h = -FjhEλ ,

from which it follows that

(5.18) FjEU = -FjiE* ,

where FJt = F/gti. Thus by (5.9), (5.17) and (5.18) we obtain

(5.19) W = 0,

which shows that the base manifold M2m is Kaehlerian.
From (5.16) and the Ricci identity

U U E h — V V E h — —K KF h 4- K hτr kτr jj7 i

we find

(5 20) X-uWEJEf = K.JE.

+ {EJ-φμl - E/Ψvi - fyfifiFf ,

which implies that

(5.21) Kkm = Kvμlβl% + {FkhFμ - F}hFki - 2Fk]Fth) ,

where E'k% = E\E"SE\E\.
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6. Sasakian manifolds with vanishing contact Bochner curvature tensor

as a fibred space with invariant Riemannian metric

We now assume that the contact Bochner curvature tensor of the Sasakian
manifold M 2 m + 1 vanishes identically. Then transvecting (4.4) with Ek

μ£h we find

— gjhLki + Lkhg5i — Ljhgki

(6.1) + FkhMμ - FjhMki + M^Fjt - MjhFki

- 2(FkjMih + MkjFih) + φkhF3i - FjhFki - 2FkjFih) = 0 ,

where

LJ% = LμJE'sE\

Thus we have

that is,

(6.2) Mjt = -LjtFS ,

which implies that

(6.3) L,« = MjtF{ .

Substituting (6.1) in (5.21) we find

Kkjih + gkhLji — gjhLkt + Lkhgμ — Ljhgki + FkhMόi — FjhMki

+ MkhFjt - MjhFki - 2(FkjMίh + MkjFih) = 0 ,

from which, by transvecting with gkh and using (6.2), we find

(6.5) Kji = - 2 ( m + 2)Lsi - Lgjί ,

where L = gJiLJt, from which transvecting with gji gives

(6.6) K = -Aim + 1)L or L = 1 K .
4(ra + 1)

Substituting (6.6) in (6.5) we find

Thus (6.4) shows that the Bochner curvature tensor of the base space M2

vanishes. Hence we have
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Theorem 6.1. Let M2m+1 be a Sasakian manifold with vanishing contact
Bochner curvature tensor regarded as a fibred space with invariant Riemannian
metric. Then the Bochner curvature tensor of the Kaehlerian base space
vanishes.
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