ANTI-INVARIANT SUBMANIFOLDS OF A SASAKIAN MANIFOLD WITH VANISHING CONTACT BOCHNER CURVATURE TENSOR

KENTARO YANO

0. Introduction

In 1949, by using a complex coordinate system Bochner [3] (see also Yano and Bochner [23]) introduced, as an analogue of the Weyl conformal curvature tensor in a Riemannian manifold, what we now call the Bochner curvature tensor in a Kaehlerian manifold. In 1967 Tachibana [13] gave a tensor expression of this curvature tensor in a real coordinate system. Since then the tensor has been studied by Chen [5], Ishihara [25], Liu [14], Matsumoto [10], Sato [17], Tachibana [14], Takagi [15], Watanabe [15], Yamaguchi [17], and the present author [5], [19], [20], [21], [22], [25].

Let $M^{2 m}$ be a real $2 m$-dimensional Kaehlerian manifold with the almost complex structure F, and M^{n} an n-dimensional Riemannian manifold isometrically immersed in $M^{2 m}$. If $T_{x}\left(M^{n}\right) \perp F T_{x}\left(M^{n}\right)$, where $T_{x}\left(M^{n}\right)$ denotes the tangent space to M^{n} at a point x of M^{n} and is identified with its image under the differential of the immersion, then we call M^{n} a totally real or antiinvariant submanifold of $M^{2 m}$. Since the rank of F is $2 m$, we have $n \leq 2 m-n$, that is, $n \leq m$.

The totally real submanifolds of a Kaehlerian manifold have been studied by Chen [4], Houh [6], Kon [7], [26], [27], Ludden [8], [9], Ogiue [4], Okumura [8], [9] and the present author [8], [9], [21], [22], [26], [27].

As a theorem connecting the Weyl conformal curvature tensor and the Bochner curvature tensor, Blair [1] proved

Theorem A. Let $M^{2 n}, n \geq 4$, be a Kaehlerian manifold with vanishing Bochner curvature tensor, and M^{n} a totally geodesic, totally real submanifold of $M^{2 n}$. Then M^{n} is conformally flat.

Generalizing this theorem of Blair, the present author [21] established the following theorems.

Theorem B. Let $M^{n}, n \geq 4$, be a totally umbilical, totally real submanifold of a Kaehlerian manifold $M^{2 m}$ with vanishing Bochner curvature tensor. Then M^{n} is conformally flat.

Theorem C. Let M^{3} be a totally geodesic, totally real submanifold of a

[^0]Kaehlerian manifold $M^{2 m}$ with vanishing Bochner curvature tensor. Then M^{3} is conformally flat.

Theorem D. Let $M^{n}, n \geq 4$, be a totally real submanifold of a Kaehlerian manifold $M^{2 n}$ with vanishing Bochner curvature tensor. If the second fundamental tensors of M^{n} commute, then M^{n} is conformally flat.

The main purpose of the present paper is to obtain theorems, analogous to the above theorems, for anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor. For anti-invariant submanifolds of a Sasakian manifold, see Blair and Ogiue [2], Yamaguchi, Kon and Ikawa [16], Yano and Kon [28], [29], and for the contact Bochner curvature tensor see Matsumoto and Chūman [11].

First of all, in $\S 1$ we recall the definition and the fundamental properties of a Sasakian manifold. In $\S 2$ we define a curvature tensor in a Sasakian manifold which is called the contact Bochner curvature tensor and corresponds to the Bochner curvature tensor in a Kaehlerian manifold.
$\S 3$ is devoted to general discussions on anti-invariant submanifolds of a Sasakian manifold, and $\S 4$ to the study of anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor.

In the last two sections ($\S \S 5$ and 6) we study Sasakian manifolds with vanishing contact Bochner curvature tensor regarded as fibred spaces with invariant Riemannian metric (see Yano and Ishihara [24]).

1. Sasakian manifolds

We first of all recall the definition and the fundamental properties of almost contact manifolds for the later use. Let $M^{2 m+1}$ be a $(2 m+1)$-dimensional differentiable manifold of class C^{∞} covered by a system of coordinate neighborhoods $\left\{U ; x^{x}\right\}$ in which there are given a tensor field $\varphi_{2}{ }^{6}$ of type (1,1), a vector field ξ^{*} and a 1-form η_{λ} satisfying

$$
\begin{equation*}
\varphi_{\lambda}{ }^{\star} \varphi_{\mu}{ }^{2}=-\delta_{\mu}^{\varepsilon}+\eta_{\mu} \xi^{\varepsilon}, \quad \varphi_{2}{ }^{\kappa} \xi^{\lambda}=0, \quad \eta_{\lambda} \varphi_{\mu}{ }^{2}=0, \quad \eta_{k} \xi^{\lambda}=1 \tag{1.1}
\end{equation*}
$$

where and in the sequel the indices $\alpha, \beta, \cdots, \kappa, \lambda, \mu, \cdots$ run over the range $\{1,2, \cdots, 2 m+1\}$. Such a set (φ, ξ, η) consisting of a tensor field φ, a vector field ξ and a 1 -form η is called an almost contact structure, and a manifold with an almost contact structure an almost contact manifold (see Sasaki [12]).

If the Nijenhuis tensor

$$
\begin{equation*}
N_{\mu \lambda}{ }^{\kappa}=\varphi_{\mu}{ }^{\alpha} \partial_{\alpha} \varphi_{\lambda}{ }^{\kappa}-\varphi_{\lambda}{ }^{\alpha} \partial_{\alpha} \varphi_{\mu}{ }^{\kappa}-\left(\partial_{\mu} \varphi_{\lambda}{ }^{\alpha}-\partial_{\lambda} \varphi_{\mu}{ }^{\alpha}\right) \varphi_{\alpha}{ }^{\kappa} \tag{1.2}
\end{equation*}
$$

formed with $\varphi_{2}{ }^{*}$ satisfies

$$
\begin{equation*}
N_{\mu \lambda}{ }^{\varepsilon}+\left(\partial_{\mu} \eta_{\lambda}-\partial_{\lambda} \eta_{\mu}\right) \xi^{k}=0 \tag{1.3}
\end{equation*}
$$

where $\partial_{\mu}=\partial / \partial x^{\mu}$, then the almost contact structure is said to be normal and
the manifold is called a normal almost contact manifold.
Suppose that in an almost contact manifold there is given a Riemannian metric $g_{\mu \lambda}$ such that

$$
\begin{equation*}
g_{\gamma \beta} \varphi_{\mu}{ }^{\top} \varphi_{\lambda}{ }^{\beta}=g_{\mu \lambda}-\eta_{\mu} \eta_{\lambda}, \quad \eta_{\lambda}=g_{\lambda s} \xi^{*}, \tag{1.4}
\end{equation*}
$$

then the almost contact structure is said to be metric, and the manifold is called an almost contact metric manifold. In view of the second equation of (1.4) we shall write ξ_{2} instead of η_{λ} in the sequel. In an almost contact metric manifold, the tensor field $\varphi_{\mu \lambda}=\varphi_{\mu}{ }^{\alpha} g_{\alpha \lambda}$ is skew-symmetric.

If an almost contact metric structure satisfies

$$
\begin{equation*}
\varphi_{\mu \lambda}=\frac{1}{2}\left(\partial_{\mu} \xi_{\lambda}-\partial_{\lambda} \xi_{\mu}\right) \tag{1.5}
\end{equation*}
$$

then the almost contact metric structure is called a contact structure. A manifold with a normal contact structure is called a Sasakian manifold.

It is well known that in a Sasakian manifold we have

$$
\begin{gather*}
\nabla_{\lambda} \xi^{\varepsilon}=\varphi_{2}^{\varepsilon}, \tag{1.6}\\
\nabla_{\mu} \varphi_{2}^{k}=-g_{\mu} \xi^{\varepsilon} \xi^{\varepsilon}+\delta_{\mu}^{\varepsilon} \xi_{2} \tag{1.7}
\end{gather*}
$$

where ∇_{λ} denotes the operator of covariant differentiation with respect to $g_{\mu \lambda}$. (1.6) written as $\nabla_{\lambda} \xi_{s}=\varphi_{2 \varepsilon}$ shows that ξ^{ε} is a Killing vector field.
(1.6), (1.7) and the Ricci identity

$$
\nabla_{\nu} \nabla_{\mu} \xi^{x}-\nabla_{\mu} \nabla_{\nu} \xi^{x}=K_{\nu \mu \lambda}{ }^{\kappa} \xi^{\lambda},
$$

where $K_{\nu \mu k^{6}}{ }^{6}$ is the curvature tensor, give

$$
\begin{equation*}
K_{\nu \mu \lambda}{ }^{\kappa} \xi^{2}=\delta_{\nu}^{\kappa} \xi_{\mu}-\delta_{\mu}^{\star} \xi_{\nu}, \tag{1.8}
\end{equation*}
$$

or

$$
\begin{equation*}
K_{\nu \mu \lambda}{ }^{\tau} \xi_{x}=\xi_{\nu} g_{\mu \lambda}-\xi_{\mu} g_{\nu \lambda} \tag{1.9}
\end{equation*}
$$

From (1.9) by contraction we have

$$
\begin{equation*}
K_{\mu \lambda} \xi^{\lambda}=2 m \xi_{\mu} \tag{1.10}
\end{equation*}
$$

where $K_{\mu \lambda}=K_{\alpha \mu \lambda}{ }^{\alpha}$ is the Ricci tensor.
(1.6), (1.7) and the Ricci identity

$$
\nabla_{\nu} \nabla_{\mu} \varphi_{2}{ }^{k}-\nabla_{\mu} \nabla_{\nu} \varphi_{2}{ }^{k}=K_{\nu \mu \alpha}{ }^{k} \varphi_{2}{ }^{\alpha}-K_{\nu \mu \mu}{ }^{\alpha} \varphi_{\alpha}{ }^{6}
$$

imply

$$
\begin{equation*}
K_{\nu \mu \alpha}{ }^{\kappa} \varphi_{\lambda}{ }^{\alpha}-K_{\nu \mu \lambda}{ }^{\alpha} \varphi_{\alpha}{ }^{\varepsilon}=-\varphi_{\nu}{ }^{\kappa} g_{\mu \lambda}+\varphi_{\mu}{ }^{\kappa} g_{\nu \lambda}-\delta_{\nu}^{\varepsilon} \varphi_{\mu \lambda}+\delta_{\mu}^{\varepsilon} \varphi_{\nu \lambda}, \tag{1.11}
\end{equation*}
$$

from which, by contraction, it follows that

$$
\begin{equation*}
K_{\mu \alpha} \varphi_{\lambda}^{\alpha}+K_{\beta \mu \lambda \alpha} \varphi^{\beta \alpha}=-(2 m-1) \varphi_{\mu \lambda} \tag{1.12}
\end{equation*}
$$

where $\varphi^{\beta \alpha}=g^{\beta \lambda} \varphi_{2}^{\alpha}, g^{\beta \lambda}$ being contravariant components of the metric tensor. Since $K_{\beta \mu \lambda \alpha} \varphi^{\beta \alpha}$ is skew-symmetric in μ and λ, we have from (1.12)

$$
\begin{equation*}
K_{\mu \alpha} \varphi_{\lambda}{ }^{\alpha}+K_{\lambda \alpha} \varphi_{\mu}{ }^{\alpha}=0 . \tag{1.13}
\end{equation*}
$$

From (1.12) we also find

$$
\begin{equation*}
K_{\beta \alpha \mu \lambda} \gamma^{\beta \alpha}=2 K_{\mu \alpha} \varphi_{\lambda}{ }^{\alpha}+2(2 m-1) \varphi_{\mu \lambda} . \tag{1.14}
\end{equation*}
$$

2. Contact Bochner curvature tensor

As an analogue of the Bochner curvature tensor in a Kaehlerian manifold, we define the contact Bochner curvature tensor in a Sasakian manifold by

$$
\begin{align*}
B_{\nu \mu \lambda}{ }^{k}= & K_{\nu \mu \lambda}{ }^{k}+\left(\delta_{\nu}^{k}-\xi_{\nu} \xi^{k}\right) L_{\mu \lambda}-\left(\delta_{\mu}^{k}-\xi_{\mu} \xi^{k}\right) L_{\nu \lambda}+L_{\nu}{ }^{k}\left(g_{\mu \lambda}-\xi_{\mu} \xi_{\nu}\right) \\
& -L_{\mu}{ }^{\kappa}\left(g_{\nu \lambda}-\xi_{\nu} \xi_{\lambda}\right)+\varphi_{\nu}{ }^{k} M_{\mu \lambda}-\varphi_{\mu}{ }^{*} M_{\nu \lambda}+M_{\nu}{ }^{\kappa} \varphi_{\mu \lambda}-M_{\mu}{ }^{\kappa} \varphi_{\nu \lambda} \tag{2.1}\\
& -2\left(\varphi_{\nu \mu} M_{\lambda}{ }^{k}+M_{\nu \mu} \varphi_{\lambda}{ }^{k}\right)+\left(\varphi_{\nu}{ }^{\kappa} \varphi_{\mu \lambda}-\varphi_{\mu}{ }^{\kappa} \varphi_{\nu \lambda}-2 \varphi_{\nu \mu} \varphi_{\lambda}{ }^{k}\right),
\end{align*}
$$

where

$$
\begin{align*}
& L_{\mu \lambda}=\frac{1}{2(m+2)}\left[-K_{\mu \lambda}-(L+3) g_{\mu \lambda}+(L-1) \xi_{\mu} \xi_{\lambda}\right], \tag{2.2}\\
& L_{\mu}{ }^{\varepsilon}=L_{\mu \alpha} g^{\alpha \kappa}
\end{align*}
$$

$$
\begin{gather*}
L=g^{\mu \lambda} L_{\mu \lambda} \tag{2.3}\\
M_{\mu \lambda}=-L_{\mu \alpha} \varphi_{\lambda}^{\alpha}, \quad M_{\nu}{ }^{\kappa}=M_{\nu \alpha} g^{\alpha \lambda} \tag{2.4}
\end{gather*}
$$

From (2.2) and (2.3) it follows that

$$
\begin{equation*}
L=-\frac{K+2(3 m+2)}{4(m+1)} \tag{2.5}
\end{equation*}
$$

where K is the scalar curvature of the manifold.
Using (1.10) we have, from (2.2),

$$
\begin{equation*}
L_{\mu, 2} \xi^{\lambda}=-\xi_{\mu} \tag{2.6}
\end{equation*}
$$

which, together with the first equation of (2.4), yields

$$
\begin{equation*}
M_{\mu a} \varphi_{\lambda}^{\alpha}=L_{\mu \lambda}+\xi_{\mu} \xi_{\lambda} \tag{2.7}
\end{equation*}
$$

We can easily verify that the contact Bochner curvature tensor satisfies the following identities:

$$
\begin{align*}
& B_{\nu \mu \lambda}{ }^{t}=-B_{\mu \nu \lambda}{ }^{k}, \quad B_{\nu \mu \lambda}{ }^{t}+B_{\mu \nu \nu}{ }^{t}+B_{\lambda \nu \mu}{ }^{t}=0, \quad B_{\alpha \mu \lambda}{ }^{\alpha}=0, \tag{2.8}\\
& B_{\nu \mu \lambda \varepsilon}=-B_{\nu \mu \varepsilon \lambda}, \quad B_{\nu \mu \lambda \varepsilon}=B_{\lambda \varepsilon \nu \mu}, \tag{2.9}
\end{align*}
$$

where $B_{\nu \mu \mu \varepsilon}=B_{\nu \mu \lambda}{ }^{\alpha} g_{\alpha \varepsilon}$ and

$$
\begin{equation*}
B_{\nu \mu \alpha}{ }^{\kappa} \xi_{t}=0, \quad B_{\nu \mu \alpha}{ }^{k} \varphi_{\lambda}{ }^{\alpha}=B_{\nu \mu \mu}{ }^{\alpha} \varphi_{\alpha}{ }^{\kappa}, \quad B_{\nu \mu \lambda}{ }^{\kappa} \varphi^{\nu \mu}=0 . \tag{2.10}
\end{equation*}
$$

3. Anti-invariant submanifolds of a Sasakian manifold

We consider an n-dimensional Riemannian manifold $M^{n}, n>1$, covered by a system of coordinate neighborhoods $\left\{V ; y^{h}\right\}$ and isometrically immersed in a Sasakian manifold $M^{2 m+1}$, and denote the immersion by

$$
\begin{equation*}
x^{k}=x^{\kappa}\left(y^{h}\right) \tag{3.1}
\end{equation*}
$$

where and in the sequel the indices h, i, j, \cdots run over the range $\left\{1^{\prime}, 2^{\prime}, \cdots, n^{\prime}\right\}$. We put

$$
\begin{equation*}
B_{i}{ }^{k}=\partial_{i} x^{k} \quad\left(\partial_{i}=\partial / \partial y^{i}\right), \tag{3.2}
\end{equation*}
$$

and denote $2 m+1-n$ mutually orthogonal unit vectors normal to M^{n} by $C_{y}{ }^{\text {}}$, where and in the sequel the indices x, y, z run over the range $\left\{(n+1)^{\prime}\right.$, $\left.\cdots,(2 m+1)^{\prime}\right\}$.
Then the metric tensor $g_{j i}$ of M^{n} and that of the normal bundle are respectively given by

$$
\begin{align*}
& g_{j i}=g_{\mu \lambda} B_{j i}^{\mu \lambda} \tag{3.3}\\
& g_{z y}=g_{\mu \lambda} C_{z y}^{u \lambda} \tag{3.4}
\end{align*}
$$

where $B_{j i}^{\mu \lambda}=B_{j}{ }^{\mu} B_{i}{ }^{2}$ and $C_{z y}^{\mu \lambda}=C_{z}{ }^{\mu} C_{y}{ }^{2}$.
If the transform by $\varphi_{\lambda}{ }^{k}$ of any vector tangent to M^{n} is orthogonal to M^{n}, we say that the submanifold M^{n} is anti-invariant in $M^{2 m+1}$. Since the rank of $\varphi_{2}{ }^{*}$ is $2 m$, we have $n-1 \leq 2 m+1-n$, that is, $n \leq m+1$.

For an anti-invariant submanifold M^{n} in $M^{2 m+1}$, we have equations of the form

$$
\begin{gather*}
\varphi_{2}{ }^{s} B_{i}{ }^{2}=-f_{i}{ }^{x} C_{x}{ }^{k}, \tag{3.5}\\
\varphi_{2}{ }^{E} C_{y}{ }^{k}=f_{y}{ }^{i} B_{i}{ }^{k}+f_{y}{ }^{x} C_{x}{ }^{k}, \tag{3.6}\\
\xi^{\varepsilon}=\xi^{i} B_{i}{ }^{k}+\xi^{x} C_{x}{ }^{k} \tag{3.7}
\end{gather*}
$$

Using $\varphi_{\mu \lambda}=-\varphi_{\lambda \mu}$ we have, from (3.5) and (3.6),

$$
\begin{equation*}
f_{i y}=f_{y t}, \tag{3.8}
\end{equation*}
$$

where $f_{i y}=f_{i}{ }^{z} g_{z y}$ and $f_{y i}=f_{y}{ }^{j} g_{j i}$ and

$$
\begin{equation*}
f_{y x}=-f_{x y} \tag{3.9}
\end{equation*}
$$

where $f_{y x}=f_{y}{ }^{z} g_{z x}$.
Applying φ to (3.5), (3.6) and (3.7) and using (1.1), (3.8), (3.9) we find

$$
\begin{aligned}
& \text { (i) } f_{i}{ }^{y} f_{y}{ }^{h}=\delta_{i}^{h}-\xi_{i} \xi^{h}, \\
& \text { (ii) } f_{i}{ }^{y} f_{y}{ }^{x}=-\xi_{i} \xi^{x}, \\
& \text { (iii) } f_{y} f_{z}{ }^{h}=\xi_{y} \xi^{h}, \\
& \text { (iv) } f_{y}{ }^{z} f_{z}{ }^{x}=-\delta_{y}^{x}+\xi_{y} \xi^{x}+f_{y}{ }^{i} f_{i}{ }^{x}, \\
& \text { (v) } f_{x}{ }^{i} \xi^{x}=0, \\
& \text { (vi) } f_{i} \xi^{i}=f_{y}{ }^{x} \xi^{y}, \\
& \text { (vii) } \xi_{i} \xi^{i}+\xi_{y} \xi^{y}=1,
\end{aligned}
$$

where $\xi_{i}=g_{i n} \xi^{h}$ and $\xi_{y}=g_{y x} \xi^{x}$, (vii) being a consequence of $\xi_{\lambda} \xi^{\lambda}=1$.
Differentiating (3.5), (3.6) and (3.7) covariantly over M^{n} and using (1.6), (1.7), (3.10), equations of Gauss

$$
\begin{equation*}
\nabla_{j} B_{i}{ }^{k}=h_{j i}{ }^{x} C_{x}{ }^{k} \tag{3.11}
\end{equation*}
$$

and those of Weingarten

$$
\begin{equation*}
\nabla_{j} C_{y}{ }^{k}=-h_{j}{ }^{i}{ }_{y} B_{i}{ }^{*} \tag{3.12}
\end{equation*}
$$

where ∇_{j} denotes the operator of covariant differentiation over M^{n}, and $h_{j i}{ }^{x}$ and $h_{f}{ }^{\boldsymbol{t}}{ }_{y}=h_{j t}{ }^{z} g^{t i} g_{z y}$ are the second fundamental tensors of M^{n} with respect to the normals $C_{x}{ }^{\text {t }}$, we find

$$
\begin{align*}
& \text { (i) }-g_{j i} \xi^{h}+\delta_{j}^{h} \xi_{i}=-h_{j i} f_{x}{ }^{h}+h_{j}{ }^{h} f_{i}{ }^{x}, \\
& \text { (ii) } \nabla_{j} f_{i}=g_{j i} \xi^{x}-h_{j i}{ }^{y} f_{y}{ }^{x}, \\
& \text { (iii) } \nabla_{j} f_{y}{ }^{h}=\delta_{j}^{h} \xi_{y}+h_{j}^{h}{ }_{x} f_{y}^{x}, \tag{3.13}\\
& \text { (iv) } \nabla_{j} f_{y}{ }^{x}=-h_{j i} f_{y}{ }^{i}+h_{j}{ }^{i} f_{i}{ }^{x}, \\
& \text { (v) } \nabla_{j} \xi^{h}=h_{j}{ }_{y} \xi^{y}, \\
& \text { (vi) } \nabla_{j} \xi^{x}=-f_{j}{ }^{x}-h_{j i}{ }^{x} \xi^{i} .
\end{align*}
$$

I. The case in which ξ^{x} is tangent to M^{n}. Suppose that $n=m+1$. Then the codimension of M^{n} is $2 m+1-n=n-1$, and consequently $\left[f_{y}{ }^{h}, \xi^{h}\right.$] and $\left[\begin{array}{c}f_{i}{ }^{v} \\ \xi_{i}\end{array}\right]$ are both square matrices and satisfy

$$
\left[f_{y}{ }^{h}, \xi^{h}\right]\left[\begin{array}{c}
f_{i}{ }^{y} \\
\xi_{i}
\end{array}\right]=\text { unit matrix }
$$

because of (3.10) (i). Thus we have

$$
\left[\begin{array}{c}
f_{i}{ }^{x} \\
\xi_{i}
\end{array}\right]\left[f_{y}^{i}, \xi^{i}\right]=\text { unit matrix }
$$

from which it follows that

$$
\begin{equation*}
f_{i}{ }^{x} f_{y}{ }^{i}=\delta_{y}^{x}, \quad f_{i}{ }^{x} \xi^{i}=0, \quad \xi_{i} f_{y}{ }^{i}=0, \quad \xi_{i} \xi^{i}=1 \tag{3.14}
\end{equation*}
$$

By remembering that $\xi_{i} \xi^{i}+\xi_{x} \xi^{x}=1$, we further find $\xi^{x}=0$ and hence ξ^{x} is tangent to M^{n}.

In general suppose that ξ^{x} is tangent to M^{n}, that is, $\xi^{x}=0$. Then (3.10) becomes

$$
\begin{align*}
& \text { (i) } f_{i}^{y} f_{y}^{h}=\delta_{i}^{h}-\xi_{i} \xi^{h}, \\
& \text { (ii) } f_{i}^{y} f_{y}^{x}=0, \\
& \text { (iii) } f_{y}^{z} f_{z}^{h}=0, \tag{3.15}\\
& \text { (iv) } f_{y}^{z} f_{z}^{x}=-\delta_{y}^{x}+f_{y}{ }^{i} f_{i}{ }^{x}, \\
& \text { (v) } f_{i} x \xi^{i}=0, \\
& \text { (vi) } \xi_{i} \xi^{i}=1 .
\end{align*}
$$

From (3.15)(iii) and (iv) we see that $f_{y}{ }^{x}$ defines a so-called f-structure in the normal bundle (see Yano [18]). In this case (3.13) becomes

$$
\begin{align*}
& \text { (i) }-g_{j i} \xi^{h}+\delta_{j}^{h} \xi_{i}=-h_{j i}{ }^{x} f_{x}{ }^{h}+h_{j}{ }^{h} f_{i}{ }_{i}^{x}, \\
& \text { (ii) } \nabla_{j} f_{i} x=-h_{j i}{ }^{y} f_{y}{ }^{x}, \\
& \text { (iii) } \nabla_{j} f_{y}{ }^{h}=h_{j}{ }^{h} f_{x} f_{y}{ }^{x}, \tag{3.16}\\
& \text { (iv) } \nabla_{j} f_{v}{ }^{x}=-h_{j i}{ }^{x} f_{y}{ }^{i}+h_{j}{ }^{i}{ }_{y} f_{i}{ }^{x}, \\
& \text { (v) } \nabla_{j} \xi^{h}=0, \\
& \text { (vi) } h_{j i}{ }^{x} \xi^{i}+f_{j}{ }^{x}=0 .
\end{align*}
$$

(3.16)(v) shows that whenever the vector field ξ^{ε} is tangent to an antiinvariant submanifold of a Sasakian manifold, it is parallel over the submanifold.
(3.16)(i) shows that an anti-invariant submanifold tangent to ξ^{x} cannot be totally umbilical or totally contact umbilical. For, if $h_{j i}^{x}$ is of the form $\left(\alpha g_{j i}+\beta \xi_{j} \xi_{i}\right) h^{x}$, then from (3.16)(i) we have

$$
-g_{j i} \xi^{h}+\delta_{j}^{h} \xi_{i}=-\left(\alpha g_{j i}+\beta \xi_{j} \xi_{i}\right) h^{x} f_{x}^{h}+\left(\alpha \delta_{j}^{h}+\beta \xi_{j} \xi^{h}\right) h_{x} f_{i}^{x}
$$

from which, by contracting with respect to h and j and using (3.15)(v) we obtain

$$
(n-1) \xi_{i}=(n-1) \alpha h_{x} f_{i}^{x}+\beta h_{x} f_{i}^{x},
$$

and consequently transvecting with ξ^{i} and using (3.15)(v) give $(n-1) \xi_{i} \xi^{i}=0$, which is a contradiction for $n>1$.

We now come back to the case $n=m+1$. In this case, from the first equation of (3.14) and (3.15)(iv), we have $f_{y} f_{z}{ }^{x}=0$ or $f_{y x} f^{y x}=0$ because $f_{y x}=f_{y}{ }^{2} g_{z x}$ is skew-symmetric and $f_{y}{ }^{x}=0$. Thus (3.16)(ii) becomes

$$
\begin{equation*}
\nabla_{j} f_{i}^{x}=0, \tag{3.17}
\end{equation*}
$$

from which, using the Ricci identity we obtain

$$
\begin{equation*}
K_{k j i}{ }^{h} f_{h}{ }^{x}-K_{k j y}{ }^{x} f_{i}{ }^{y}=0, \tag{3.18}
\end{equation*}
$$

where $K_{k j i}{ }^{h}$ (respectively, $K_{k j y}{ }^{x}$) is the curvature tensor of M^{n} (respectively, the normal bundle of M^{n}).

From (3.18) we have, taking account of the first equation of (3.14) and (3.15)(i),

$$
\begin{align*}
& K_{k j y}{ }^{x} f_{i}{ }^{y} f_{x}{ }^{n}=K_{k j i}{ }^{h}, \tag{3.19}\\
& K_{k j i}{ }^{h} f_{y}{ }^{i} f_{h}{ }^{x}=K_{k j y}{ }^{x}, \tag{3.20}
\end{align*}
$$

because of $K_{k j i}{ }^{h} \xi^{i}=0$ derived from (3.16)(v). (3.19) and (3.20) show that $K_{k j i}{ }^{h}=0$ and $K_{k j y}{ }^{x}=0$ are equivalent.
II. The case in which ξ^{x} is normal to M^{n}. Now suppose that ξ^{x} is normal to M^{n}, that is, $\xi^{h}=0$. Then (3.10) becomes

$$
\begin{align*}
& \text { (i) } f_{i}{ }^{y} f_{y}{ }^{h}=\delta_{i}^{h}, \\
& \text { (ii) } f_{i}{ }^{y} f_{y}{ }^{x}=0, \\
& \text { (iii) } f_{y} f_{z}{ }^{h}=0, \\
& \text { (iv) } f_{y}{ }^{z} f_{z} x=-\delta_{y}^{x}+\xi_{y} \xi^{x}+f_{y}{ }^{i} f_{i}{ }^{x}, \tag{3.21}\\
& \text { (v) } f_{x} \xi^{i}=0, \\
& \text { (vi) } \\
& f_{y}{ }^{x} \xi^{y}=0, \\
& \text { (vii) } \\
& \xi_{y} \xi^{y}=1
\end{align*}
$$

(3.21) (iiii), (iv) and (vi) show that f_{y}^{x} defines an f-structure in the normal bundle. In this case, (3.13) becomes
(i) $\quad-h_{j i}{ }^{x} f_{x}{ }^{h}+h_{j}{ }^{h}{ }_{x} f_{i}{ }^{x}=0$,
(ii) $\quad \nabla_{j} f_{i}^{x}=g_{j i} \xi^{x}-h_{j i}{ }^{y} f_{y}^{x}$,
(iii) $\nabla_{j} f_{y}{ }^{h}=\delta_{j}^{h} \xi_{y}+h_{j}{ }^{h}{ }_{x} f_{y}{ }^{x}$,
(iv) $\quad \nabla_{j} f_{y}{ }^{x}=-h_{j i}{ }^{x} f_{y}{ }^{i}+h_{j}{ }^{i}{ }_{y} f_{i}{ }^{x}$,

$$
\begin{array}{ll}
\text { (v) } & h_{j}{ }^{h} y \xi^{y}=0 \\
\text { (vi) } & \nabla_{j} \xi^{x}=-f_{j}^{x}
\end{array}
$$

From (3.21)(i) it follows that $f_{i y} f^{f i}=n$, and consequently by (3.21)(iv) and (vii) we find

$$
-f_{z y} f^{z y}=-(2 m+1-n)+1+n=-2(m-n) .
$$

Thus, if $n=m$, then we have $f_{y}{ }^{x}=0$, and (3.21) and (3.22) become respectively

$$
\begin{align*}
& \text { (i) } f_{i}{ }^{y} f_{y}{ }^{h}=\delta_{i}^{h}, \\
& \text { (ii) } f_{i}{ }^{x} f_{y}{ }^{i}=\delta_{y}^{x}-\xi_{y} \xi^{x}, \\
& \text { (iii) } f_{x}{ }^{h} \xi^{x}=0, \tag{3.23}\\
& \text { (iv) } \xi_{x} \xi^{x}=1 ; \\
& \text { (i) }-h_{j i}{ }^{x} f_{x}{ }^{h}+h_{j}{ }^{h}{ }_{x} f_{i}^{x}=0, \\
& \text { (ii) } \nabla_{j} f_{i}^{x}=g_{j i} \xi^{x}, \\
& \text { (iii) } \nabla_{j} f_{y}{ }^{h}=\delta_{j}^{h} \xi_{y}, \\
& \text { (iv) }-h_{j i}{ }^{x} f_{y}{ }^{i}+h_{j}{ }^{i}{ }_{y} f_{i}{ }^{x}=0, \\
& \text { (v) } h_{j}{ }^{h} \xi^{y} \xi^{y}=0, \\
& \text { (vi) } \nabla_{i} \xi^{x}=-f_{i}{ }^{x} .
\end{align*}
$$

Suppose that M^{n} is totally umbilical, and put $h_{j i}{ }^{x}=g_{j i} h^{x}$. Then from (3.24)(i) we have

$$
-g_{j i} h^{x} f_{x}^{h}+\delta_{j}^{h} h_{x} f_{i}^{x}=0,
$$

which implies $h^{x} f_{x}{ }^{h}=0$ for $n>1$. From (3.24)(iv) it follows that

$$
-h^{x} f_{y j}+h_{y} f_{j}^{x}=0
$$

from which, by transvecting with h^{y} and using $f_{y j} h^{y}=0$ we have $h_{y} h^{y} f_{j} x=0$, and consequently $h_{y} h^{y}=0$ and hence $h_{y}=0$. Thus M^{n} must be totally geodesic.

By (3.24)(ii) and (vi), we find

$$
\nabla_{j} \nabla_{i} \xi^{x}=-g_{j i} \xi^{x}
$$

from which, using the Ricci identity we obtain

$$
K_{k j y}{ }^{x} \xi^{y}=0 .
$$

On the other hand, from (3.24)(ii) and (vi), we have, using the Ricci identity,

$$
-K_{k j i}{ }^{h} f_{h}{ }^{x}+K_{k j y}{ }^{x} f_{i}{ }^{y}=-f_{k}^{x} g_{j i}+f_{j}{ }^{x} g_{k i},
$$

which, together with (3.23)(i), implies that

$$
\begin{equation*}
K_{k j i}^{h}=K_{k j y}{ }^{x} f_{i}{ }^{y} f_{x}{ }^{h}+\delta_{k}^{h} g_{j i}-\delta_{j}^{h} g_{k i} \tag{3.25}
\end{equation*}
$$

and that, in consequence of $K_{k j y}{ }^{x} \xi^{y}=0$ and (3.23)(ii),

$$
\begin{equation*}
K_{k j y}{ }^{x}=K_{k j i}{ }^{h} f_{y}{ }^{i} f_{h}{ }^{x}+f_{y k} f_{j}{ }^{x}-f_{y j} f_{k}{ }^{x} . \tag{3.26}
\end{equation*}
$$

(3.25) and (3.26) show that M^{n} is of constant curvature 1 if and only if the connection induced in the normal bundle is of zero curvature.

4. Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor

We first of all remember that the equations of Gauss, Codazzi and Ricci are respectively

$$
\begin{gather*}
K_{k j i \hbar}=K_{\nu \mu \lambda k} B_{k j i \hbar h}^{\nu \mu \lambda k}+h_{k h x} h_{j i}{ }^{x}-h_{j h x} h_{k i}{ }^{x}, \tag{4.1}\\
0=K_{\nu \mu \lambda k} B_{k j i}^{\nu \mu \lambda} C_{y}{ }^{s}-\left(\nabla_{k} h_{j i y}-\nabla_{j} h_{k t y}\right), \tag{4.2}\\
K_{k j y x}=K_{\nu \mu \lambda s} B_{k j}^{\nu \mu} C_{y x}^{2 k}-\left(h_{k}{ }^{t} h_{j t x}-h_{j}{ }^{t} h_{k t x}\right), \tag{4.3}
\end{gather*}
$$

where $K_{\nu \mu k s}, K_{k j i h}$ and $K_{k j y x}$ are the covariant components of the curvature tensors of $M^{2 m+1}, M^{n}$ and the normal bundle respectively, $B_{k j i n}^{\nu \mu \lambda k}=B_{k}{ }^{\nu} B_{j}{ }^{4} B_{i}{ }^{2} B_{h}{ }^{\text {a }}$ and $B_{k j i}^{\nu \mu \lambda}=B_{k}{ }^{\nu} B_{j}{ }^{\mu} B_{i}{ }^{2}$.

We assume that the contact Bochner curvature tensor of $M^{2 m+1}$ vanishes identically. Then from (2.1) we have

$$
\begin{align*}
K_{\nu \mu \lambda k} & +\left(g_{\nu \varepsilon}-\xi_{\nu} \xi_{\mathrm{s}}\right) L_{\mu \lambda}-\left(g_{\mu \Sigma}-\xi_{\mu} \xi_{k}\right) L_{\nu \lambda}+L_{\nu k}\left(g_{\mu \lambda}-\xi_{\mu} \xi_{\lambda}\right) \\
& -L_{\mu \kappa}\left(g_{\nu \lambda}-\xi_{\nu} \xi_{\lambda}\right)+\varphi_{\nu k} M_{\mu \lambda}-\varphi_{\mu s} M_{\nu \lambda}+M_{\nu \Sigma} \varphi_{\mu \lambda}-M_{\mu \kappa} \varphi_{\nu \lambda} \tag{4.4}\\
& -2\left(\varphi_{\nu \mu} M_{\lambda k}+M_{\nu \mu} \varphi_{\nu k}\right)+\left(\varphi_{\nu \kappa} \varphi_{\mu \lambda}-\varphi_{\mu \kappa} \varphi_{\nu \lambda}-2 \varphi_{\nu \mu} \varphi_{\nu \varepsilon}\right)=0,
\end{align*}
$$

from which, by using $g_{\mu \lambda} B_{j i}^{\mu \lambda}=g_{j i}, \varphi_{\mu \lambda} B_{j i}^{\mu \lambda}=0, \varphi_{\mu \lambda} B_{j}{ }^{\mu} C_{y}{ }^{2}=-f_{j y}, \varphi_{\mu \lambda} C_{y x}^{\mu \lambda}=$ $f_{y x}, \xi_{v} B_{k}{ }^{\nu}=\xi_{k}$ and $\xi_{\nu} C_{y}{ }^{\nu}=\xi_{y}$, we find

$$
\begin{align*}
& K_{\nu y k k} B_{k j i h}^{\nu \mu k i}+\left(g_{k h}-\xi_{k} \xi_{h}\right) L_{j i}-\left(g_{j h}-\xi_{j} \xi_{h}\right) L_{k i} \tag{4.5}\\
& \quad+L_{k h}\left(g_{j i}-\xi_{j} \xi_{i}\right)-L_{j h}\left(g_{k i}-\xi_{k} \xi_{i}\right)=0, \\
& K_{\nu y k k} B_{k j i}^{\nu \lambda \lambda} C_{y}{ }^{s}-\xi_{k} \xi_{y} L_{j i}+\xi_{j} \xi_{y} L_{k i}+L_{k y}\left(g_{j i}-\xi_{j} \xi_{i}\right) \tag{4.6}\\
& \quad-L_{j y}\left(g_{k i}-\xi_{k} \xi_{i}\right)-f_{k y} M_{j i}+f_{j y} M_{k i}+2 M_{k j} f_{i y}=0, \\
& K_{\nu \mu \lambda k} B_{k j}^{\nu \mu} C_{y x}^{\lambda s}-\xi_{k} \xi_{x} L_{j y}+\xi_{j} \xi_{x} L_{k y}-L_{k x} \xi_{j} \xi_{y}+L_{j x} \xi_{k} \xi_{y}-f_{k x} M_{j y} \tag{4.7}\\
& \quad+f_{j x} M_{k y}-M_{k x} f_{j y}+M_{j x} f_{k y}-2 M_{k j} f_{y x}+\left(f_{k x} f_{j y}-f_{j x} f_{k y}\right)=0,
\end{align*}
$$

where

$$
\begin{align*}
L_{j i} & =L_{\mu \lambda} B_{j i}^{\mu \lambda}, & L_{k y} & =L_{\mu \lambda} B_{k}{ }^{\mu} C_{y}{ }^{2}, \tag{4.8}\\
M_{j i} & =M_{\mu \lambda} B_{j i}^{\mu \lambda}, & M_{k y} & =M_{\mu \lambda} B_{k}{ }^{\mu} C_{y}{ }^{2} .
\end{align*}
$$

Since $M_{\mu \lambda}=-L_{\mu \alpha} \varphi_{2}^{\alpha}$, we have

$$
M_{j i}=-L_{\mu \alpha} \varphi_{2}{ }^{\alpha} B_{j i}^{\mu 2}=L_{\mu \alpha} B_{j}{ }^{\mu} f_{i}{ }^{x} C_{x}{ }^{\alpha},
$$

that is,

$$
\begin{equation*}
M_{j i}=L_{j x} f_{i}^{x} \tag{4.9}
\end{equation*}
$$

and also

$$
M_{k y}=-L_{\mu \alpha} \varphi_{2}^{\alpha} B_{k}{ }^{\mu} C_{y}{ }^{2}=-L_{\mu \alpha} B_{k}{ }^{\mu}\left(f_{y}{ }^{i} B_{i}{ }^{\alpha}+f_{y}{ }^{x} C_{x}{ }^{\alpha}\right),
$$

that is,

$$
\begin{equation*}
M_{k y}=-L_{k i} f_{y}{ }^{i}-L_{k x} f_{y}{ }^{x} . \tag{4.10}
\end{equation*}
$$

Thus (4.1), (4.2) and (4.3) can be written respectively as

$$
\begin{align*}
& K_{k j i n}+\left(g_{k h}-\xi_{k} \xi_{h}\right) L_{j i}-\left(g_{j h}-\xi_{j} \xi_{h}\right) L_{k i}+L_{k h}\left(g_{j i}-\xi_{j} \xi_{i}\right) \tag{4.11}\\
& \quad-L_{j h}\left(g_{k i}-\xi_{k} \xi_{i}\right)-\left(h_{k h x} h_{j i}^{x}-h_{j h x} h_{k i}{ }^{x}\right)=0, \\
& \left(\xi_{k} L_{j i}-\xi_{j} L_{k i}\right) \xi_{y}-L_{k y}\left(g_{j i}-\xi_{j} \xi_{i}\right)+L_{j y}\left(g_{k i}-\xi_{k} \xi_{i}\right) \\
& \quad+f_{k y} M_{j i}-f_{j y} M_{k i}-2 M_{k j} f_{i y}-\left(\nabla_{k} h_{j i y}-\nabla_{j} h_{k i y}\right)=0, \\
& \quad K_{k j y x}-\left(\xi_{k} L_{j y}-\xi_{j} L_{k y}\right) \xi_{x}-\left(L_{k x} \xi_{j}-L_{j x} \xi_{k}\right) \xi_{y} \\
& \quad+M_{k y} f_{j x}-M_{j y} f_{k x}+f_{k y} M_{j x}-f_{j y} M_{k x}-2 M_{k j} f_{y x} \\
& \quad+\left(f_{k x} f_{j y}-f_{j x} f_{k y}\right)+\left(h_{k}{ }_{y} h_{j t x}-h_{j}{ }_{j}^{t} h_{k t x}\right)=0 .
\end{align*}
$$

I. The case in which the vector field ξ^{x} is tangent to M^{n}. We now assume that $n=m+1$. Then the vector field ξ^{ε} is tangent to M^{n} and $f_{y}^{x}=0$. Thus (4.13) becomes

$$
\begin{aligned}
K_{k j y x} & -f_{k x} M_{j y}+f_{j x} M_{k y}-M_{k x} f_{j y}+M_{j x} f_{k y} \\
& \quad+\left(f_{k x} f_{j y}-f_{j x} f_{k y}\right)+\left(h_{k}{ }^{t} h_{j t x}-h_{j}^{t}{ }_{y} h_{k t x}\right)=0,
\end{aligned}
$$

from which, by transvecting with $f_{i}{ }^{v} f_{h}{ }^{x}$ and using $f_{j x} f_{i}{ }^{x}=g_{j i}-\xi_{j} \xi_{i}$ derived from (3.15)(i), we find

$$
\begin{align*}
& K_{k j y x} f_{i}{ }_{i}^{y} f_{h}^{x}-\left(g_{k h}-\xi_{k} \xi_{h}\right) M_{j v} f_{i}^{y}+\left(g_{j h}-\xi_{j} \xi_{h}\right) M_{k y} f_{i}^{y} \\
& \quad-M_{k x} f_{h}^{x}\left(g_{j i}-\xi_{j} \xi_{i}\right)+M_{j x} f_{h}^{x}\left(g_{k i}-\xi_{k} \xi_{i}\right) \tag{4.14}\\
& \quad+\left(g_{k h}-\xi_{k} \xi_{h}\right)\left(g_{j i}-\xi_{j} \xi_{i}\right)-\left(g_{j h}-\xi_{j} \xi_{h}\right)\left(g_{k i}-\xi_{k} \xi_{i}\right) \\
& \quad+\left(h_{k}{ }^{t} h_{y t x}-h_{j}{ }_{j}{ }_{v} h_{k t x}\right) f_{i} f_{h}{ }^{x}=0 .
\end{align*}
$$

We now assume that the second fundamental tensors are commutative. Then from (3.19) and (4.14) we have

$$
\begin{align*}
K_{k j i h} & +\left(g_{k h}-\xi_{k} \xi_{h}\right) N_{j i}-\left(g_{j h}-\xi_{j} \xi_{h}\right) N_{k i} \\
& +N_{k h}\left(g_{j i}-\xi_{j} \xi_{i}\right)-N_{j h}\left(g_{k i}-\xi_{k} \xi_{i}\right) \tag{4.15}\\
& +\left(g_{k h}-\xi_{k} \xi_{h}\right)\left(g_{j i}-\xi_{j} \xi_{i}\right)-\left(g_{j h}-\xi_{j} \xi_{h}\right)\left(g_{k i}-\xi_{k} \xi_{i}\right)=0,
\end{align*}
$$

where $N_{j i}=-M_{j y} f_{i}{ }^{y}$.
Now since the vector ffeld ξ^{h} is parallel, the Riemannian manifold M^{n} is locally a product of M^{n-1} and M^{1} generated by ξ^{h}, and M^{n-1} is totally geodesic in M^{n}. We represent M^{n-1} in M^{n} by parametric equations $y^{h}=y^{h}\left(z^{a}\right)(a, b$, $\left.c, d, \cdots=1^{\prime \prime}, 2^{\prime \prime}, \cdots,(n-1)^{\prime \prime}\right)$, and put $B_{b}{ }^{h}=\partial y^{h} / \partial z^{b}$. Then we have $\xi_{i} B_{b}{ }^{i}=0$, and the curvature tensor $K_{d c b a}$ of M^{n-1} is given by

$$
\begin{equation*}
K_{d c b a}=K_{k j i h} B_{d c b a}^{k j i n h}, \tag{4.16}
\end{equation*}
$$

where $B_{d c b a}^{k j i h}=B_{d}{ }^{k} B_{c}{ }^{j} B_{b}{ }^{i} B_{a}{ }^{h}$. Thus transvecting (4.15) with $B_{d c b a}^{k j i h}$, we obtain

$$
\begin{equation*}
K_{d c b a}+g_{d a} C_{c b}-g_{c a} C_{d b}+C_{d a} g_{c b}-C_{c a} g_{d b}=0 \tag{4.17}
\end{equation*}
$$

where $g_{c b}=g_{j i} B_{c}{ }^{j} B_{b}{ }^{i}$ is the metric tensor of M^{n-1} and

$$
C_{c b}=N_{j i} B_{c}{ }^{j} B_{b}{ }^{i}+\frac{1}{2} g_{c b} .
$$

(4.17) shows that the Weyl conformal curvature tensor of M^{n-1} vanishes, and M^{n-1} is conformally flat if $n-1 \geq 4$. Thus we have

Theorem 4.1. Let $M^{n}, n \geq 5$, be an anti-invariant submanifold of a Sasakian manifold $M^{2 n-1}$ with vanishing contact Bochner curvature tensor. If the second fundamental tensors of M^{n} commute, then M^{n} is locally a product of a conformally flat Riemannian space and a 1-dimensional space.
II. The case in which the vector field ξ^{x} is normal to M^{n}. We now consider the case in which the vector field ξ^{x} is normal to the anti-invariant submanifold M^{n}, so that $\xi^{h}=0$. Then from (4.11) we obtain

$$
\begin{align*}
K_{k j i h} & +g_{k h} L_{j i}-g_{j h} L_{k i}+L_{k h} g_{j i}-L_{j h} g_{k i} \tag{4.18}\\
& -\left(h_{k h x} h_{j i}^{x}-h_{j h x} h_{k i}{ }^{x}\right)=0 .
\end{align*}
$$

If M^{n} is umbilical, that is, if $h_{j i x}=g_{j i} h_{x}$, then we can write (4.18) in the form

$$
\begin{align*}
K_{k j i h} & +g_{k h}\left(L_{j i}-\frac{1}{2} h_{x} h^{x} g_{j i}\right)-g_{j h}\left(L_{k i}-\frac{1}{2} h_{x} h^{x} g_{k i}\right) \tag{4.19}\\
& +\left(L_{k h}-\frac{1}{2} h_{x} h^{x} g_{k h}\right) g_{j i}-\left(L_{j h}-\frac{1}{2} h_{x} h^{x} g_{j h}\right) g_{k i}=0,
\end{align*}
$$

which shows that the Weyl conformal curvature tensor of M^{n} vanishes. Thus we have

Theorem 4.2. Let $M^{n}, n \geq 4$, be a totally umbilical anti-invariant submanifold normal to the structure vector field ξ^{ε} of a Sasakian manifold $M^{2 m+1}$ with vanishing contact Bochner curvature tensor. Then M^{n} is conformally flat.

Next from (4.13) we obtain

$$
\begin{align*}
K_{k j y x} & +M_{k y} f_{j x}-M_{j y} f_{k x}+f_{k y} M_{j x}-f_{j y} M_{k x}+2 M_{k j} f_{y x} \tag{4.20}\\
& +\left(f_{k x} f_{j y}-f_{j x} f_{k y}\right)+\left(h_{k}{ }^{t}{ }_{y} h_{j t x}-h_{j}{ }^{t}{ }_{y} h_{k t x}\right)=0 .
\end{align*}
$$

If $n=m$, which implies that $f_{y}{ }^{x}=0$, and the second fundamental tensors of M^{n} commute, then from (4.20) we have

$$
\begin{align*}
K_{k j y x} & -f_{k x} M_{j y}+f_{j x} M_{k y}-M_{k x} f_{j y}+M_{j x} f_{k y} \tag{4.21}\\
& +\left(f_{k x} f_{j y}-f_{j x} f_{k y}\right)=0,
\end{align*}
$$

from which, by transvecting with $f_{i}{ }^{\prime} f_{h}{ }^{x}$ and using (3.23)(i), we find

$$
\begin{align*}
K_{k j y x} f_{i} f_{h}{ }^{x} & -g_{k h} M_{j y} f_{i}{ }^{y}+g_{j h} M_{k y} f_{i}{ }^{y}-M_{k y} f_{h}{ }^{y} g_{j i}+M_{j y} f_{h}{ }^{y} g_{k i} \\
& +\left(g_{k h} g_{j i}-g_{j h} g_{k i}\right)=0 . \tag{4.22}
\end{align*}
$$

Substituting (4.22) in (3.25) yields

$$
\begin{equation*}
K_{k j i h}-g_{k h} M_{j y} f_{i}^{y}+g_{j h} M_{k y} f_{i}^{y}-M_{k y} f_{h}^{y} g_{j i}+M_{j y} f_{h}^{y} g_{k i}=0, \tag{4.23}
\end{equation*}
$$

which shows that the Weyl conformal curvature tensor of M^{n} vanishes. Thus we have

Theorem 4.3. Let $M^{n}, n \geq 4$, be an anti-invariant submanifold normal to the structure vector field ξ^{κ} of a Sasakian manifold $M^{2 n+1}$ with vanishing contact Bochner curvature tensor. If the second fundamental tensors commute, then M^{n} is conformally flat.

5. Sasakian manifolds as fibred spaces with invariant Riemannian metric

It is well known that in a Sasakian manifold we have

$$
\begin{equation*}
\mathscr{L} g_{\mu \lambda}=0, \quad \mathscr{L} \varphi_{2}{ }^{\kappa}=0, \quad \mathscr{L} \xi_{\lambda}=0 \tag{5.1}
\end{equation*}
$$

where \mathscr{L} denotes the operator of Lie derivation with respect to the structure vector field ξ^{x}. Thus, assuming that ξ^{x} is regular, we can regard a Sasakian manifold $M^{2 m+1}$ as a fibred space with invariant Riemannian metric (see Yano and Ishihara [24]). Denoting $2 m$ functionally independent solutions of

$$
\xi^{2} \partial_{\lambda} u=0
$$

by $u^{h}(x)$, we see that u^{h} are local coordinates of the base space $M^{2 m}$. We put

$$
\begin{equation*}
E_{\lambda}^{h}=\partial_{\lambda} u^{h}, \quad E_{\lambda}=\xi_{\lambda}, \quad E^{k}=\xi^{k} \tag{5.2}
\end{equation*}
$$

where and in the sequel the indices h, i, j, \ldots run over the range $\left\{1^{\prime}, 2^{\prime}, \ldots\right.$, $\left.(2 m)^{\prime}\right\}$. Then we have

$$
E^{\lambda} E_{\lambda}{ }^{h}=0, \quad E^{\lambda} E_{\lambda}=1
$$

Since $E_{\lambda}{ }^{h}$ and E_{λ} are linearly independent, we put

$$
\left[\begin{array}{l}
E_{\lambda}^{h} \\
E_{\lambda}
\end{array}\right]^{-1}=\left[E_{i}^{\lambda}, E^{\lambda}\right]
$$

Then we have

$$
\begin{gather*}
E_{\lambda}{ }^{h} E_{i}^{\lambda}=\delta_{i}^{h}, \quad E_{\lambda}{ }^{h} E^{\lambda}=0, \quad E_{\lambda} E_{i}^{\lambda}=0, \quad E_{\lambda} E^{\lambda}=1, \tag{5.3}\\
E_{\lambda}{ }^{i} E_{i}^{k}+E_{\lambda} E^{k}=\delta_{\lambda}^{\kappa} \tag{5.4}
\end{gather*}
$$

For the Lie derivatives of E 's we have

$$
\begin{equation*}
\mathscr{L} E_{\lambda}{ }^{h}=0, \quad \mathscr{L} E_{\lambda}=0, \quad \mathscr{L} E_{i}^{k}=0, \quad \mathscr{L} E^{k}=0 . \tag{5.5}
\end{equation*}
$$

Thus using $\mathscr{L} g_{\mu \lambda}=0$ and (5.5) we see that

$$
\begin{equation*}
g_{j i}=g_{\mu \lambda} E^{\mu}{ }_{j} E_{i} \tag{5.6}
\end{equation*}
$$

is the metric tensor of the base space $M^{2 m}$. From (5.6) we have

$$
\begin{equation*}
g_{\mu \lambda}=g_{j i} E_{\mu}^{j} E_{\lambda}^{i}+E_{\mu} E_{\lambda} \tag{5.7}
\end{equation*}
$$

It will be easily verified that

$$
\begin{equation*}
E_{\imath}^{k}=E_{\lambda}^{j} g^{k} g_{j i}, \quad E^{k}=E_{\lambda} g^{k s}, \quad E_{\lambda}^{h}=E^{\mu}{ }_{i} g_{\mu \lambda} g^{i h}, \quad E_{\lambda}=E^{\mu} g_{\mu \lambda}, \tag{5.8}
\end{equation*}
$$

where $g^{i n}$ are contravariant components of the metric tensor $g_{j i}$ of the base space $M^{2 m}$. Also using $\mathscr{L} \varphi_{\lambda}{ }^{\text {k }}=0$ and (5.5) we see that

$$
\begin{equation*}
F_{i}{ }^{h}=\varphi_{\lambda}{ }^{k} E_{i}^{\lambda} E_{k}{ }^{h} \tag{5.9}
\end{equation*}
$$

is a tensor field of type $(1,1)$ of the base space $M^{2 m}$ and defines an almost complex structure of $M^{2 m}$. From (5.6) and (5.9) we easily find

$$
\begin{equation*}
g_{t s} F_{j}{ }^{t} F_{i}^{s}=g_{j i} \tag{5.10}
\end{equation*}
$$

which shows that $g_{j i}$ is a Hermitian metric with respect to this almost complex structure. Thus the base space $M^{2 m}$ is an almost Hermitian manifold.

From (5.9) it follows that

For a function $f(u(x))$ on the base manifold $M^{2 m}$ we have

$$
\begin{equation*}
\partial_{\lambda} f=E_{\lambda}^{i} \partial_{i} f, \quad \partial_{i} f=E_{2}^{2} \partial_{2} f, \tag{5.12}
\end{equation*}
$$

where $\partial_{i}=\partial / \partial u^{i}$.
Now using (5.7) we compute the Christoffel symbols $\left\{{ }_{\mu}{ }^{\boldsymbol{c}}{ }_{\lambda}\right\}$ formed with $g_{\mu \lambda}$ and find

$$
\begin{align*}
\left.\left\{{ }_{\mu}{ }^{k}\right\}\right\}= & \left\{_{j}{ }^{h}\right\} E_{\mu}{ }^{j} E_{\lambda}{ }^{i} E^{\mathrm{k}}{ }_{h}+\left(\partial_{\mu} E_{\lambda}{ }^{h}\right) E^{\mathrm{c}}{ }_{h}+\frac{1}{2}\left(\partial_{\mu} E_{\lambda}+\partial_{\lambda} E_{\mu}\right) E^{\boldsymbol{k}} \tag{5.13}\\
& +E_{\mu} \varphi_{\lambda}{ }^{k}+E_{\lambda} \varphi_{\mu}{ }^{k},
\end{align*}
$$

where $\left\{{ }_{j}{ }^{h}{ }_{i}\right\}$ are Christoffel symbols formed with $g_{j i}$. From (5.13) we have, in consequence of (5.11),

$$
\begin{equation*}
\partial_{\mu} E_{\lambda}{ }^{h}-\left\{{ }_{\mu}{ }^{\kappa} \lambda\right\} E_{\varepsilon}{ }^{h}+\left\{{ }_{j}{ }^{n}\right\} E_{\mu}{ }^{j} E_{\lambda}{ }^{i}=-\left(E_{\mu} E_{\lambda}{ }^{i}+E_{\lambda} E_{\mu}{ }^{i}\right) F_{i}{ }^{h} . \tag{5.14}
\end{equation*}
$$

Putting

$$
\begin{equation*}
\nabla_{\mu} E_{\lambda}{ }^{h}=\partial_{\mu} E_{\lambda}{ }^{h}-\left\{{ }_{\mu}{ }^{\kappa}{ }_{\lambda}\right\} E_{\boldsymbol{s}}{ }^{h}+\left\{{ }_{j}{ }_{i}{ }^{\}}\right\} E_{\mu}{ }^{j} E_{\lambda}{ }^{i}, \tag{5.15}
\end{equation*}
$$

we have, from (5.14),

$$
\begin{equation*}
\nabla_{\mu} E_{\lambda}{ }^{h}=-\left(E_{\mu} E_{\lambda}^{i}+E_{\lambda} E_{\mu}{ }^{i}\right) F_{i}{ }^{h} \tag{5.16}
\end{equation*}
$$

Thus putting $\nabla_{j}=E^{\mu}{ }_{j} \nabla_{\mu}$ we find

$$
\begin{equation*}
\nabla_{j} E_{\lambda}{ }^{h}=-F_{j}{ }^{h} E_{\lambda}, \tag{5.17}
\end{equation*}
$$

from which it follows that

$$
\begin{equation*}
\nabla_{j} E_{i}^{\kappa}=-F_{j i} E^{\kappa} \tag{5.18}
\end{equation*}
$$

where $F_{j i}=F_{j}{ }^{t} g_{t i}$. Thus by (5.9), (5.17) and (5.18) we obtain

$$
\begin{equation*}
\nabla_{j} F_{i}{ }^{h}=0 \tag{5.19}
\end{equation*}
$$

which shows that the base manifold $M^{2 m}$ is Kaehlerian.
From (5.16) and the Ricci identity

$$
\nabla_{\nu} \nabla_{\mu} E_{\lambda}{ }^{h}-\nabla_{\mu} \nabla_{\nu} E_{\lambda}{ }^{h}=-K_{\nu \mu \lambda}{ }^{\kappa} E_{\kappa}{ }^{h}+K_{k j i}{ }^{h} E_{\nu}{ }^{k} E_{\mu}{ }^{j} E_{\lambda}{ }^{i},
$$

we find

$$
\begin{align*}
K_{k j i}{ }^{h} E_{\nu}{ }^{k} E_{\mu}{ }^{j} E_{\lambda}{ }^{i}= & K_{\nu \mu \lambda}{ }^{\epsilon} E_{\kappa}{ }^{h}-\left(E_{\nu} E_{\mu}{ }^{h}-E_{\mu} E_{\nu}{ }^{h}\right) E_{\lambda} \tag{5.20}\\
& +\left(E_{\nu}{ }^{i} \varphi_{\mu \lambda}-E_{\mu}{ }^{i} \varphi_{\nu \lambda}-2 \varphi_{\nu \mu} E_{\lambda}{ }^{i}\right) F_{i}{ }^{h},
\end{align*}
$$

which implies that

$$
\begin{equation*}
K_{k j i h}=K_{\nu \mu k k} E_{k j i h}^{\nu \mu k i}+\left(F_{k h} F_{j i}-F_{j h} F_{k i}-2 F_{k j} F_{i k}\right), \tag{5.21}
\end{equation*}
$$

where $E_{k j i \hbar}^{\nu \mu k}=E^{\nu}{ }_{k} E^{\mu}{ }_{j} E_{i}{ }_{i} E^{\kappa}{ }_{h}$.

6. Sasakian manifolds with vanishing contact Bochner curvature tensor as a fibred space with invariant Riemannian metric

We now assume that the contact Bochner curvature tensor of the Sasakian manifold $M^{2 m+1}$ vanishes identically. Then transvecting (4.4) with $E_{k j i h}^{\nu \mu \mu \pi}$ we find

$$
\begin{align*}
& K_{\nu \mu k k} E_{k j i \hbar}^{\nu \mu k i}+g_{k h} L_{j i}-g_{j h} L_{k i}+L_{k h} g_{j i}-L_{j h} g_{k i} \\
& \quad+F_{k h} M_{j i}-F_{j h} M_{k i}+M_{k h} F_{j i}-M_{j h} F_{k i} \tag{6.1}\\
& \quad-2\left(F_{k j} M_{i h}+M_{k j} F_{i h}\right)+\left(F_{k h} F_{j i}-F_{j h} F_{k i}-2 F_{k j} F_{i h}\right)=0,
\end{align*}
$$

where

$$
L_{j 2}=L_{\mu \lambda} E^{\mu}{ }_{j} E_{i}^{\lambda}, \quad M_{j i}=M_{\mu \lambda} E^{\mu}{ }_{j} E^{2}{ }_{i} .
$$

Thus we have

$$
M_{j i}=-L_{\mu \alpha} \varphi_{2}{ }^{\alpha} E^{\mu}{ }_{j} E_{i}^{\lambda}=-L_{\mu \alpha} E^{\mu}{ }_{j} F_{i}{ }^{t} E^{\alpha}{ }_{t},
$$

that is,

$$
\begin{equation*}
M_{j i}=-L_{j t} F_{i}{ }^{t}, \tag{6.2}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
L_{j i}=M_{j t} F_{i}{ }^{t} . \tag{6.3}
\end{equation*}
$$

Substituting (6.1) in (5.21) we find

$$
\begin{align*}
& K_{k j i h}+g_{k h} L_{j i}-g_{j h} L_{k i}+L_{k h} g_{j i}-L_{j h} g_{k i}+F_{k h} M_{j i}-F_{j h} M_{k i} \tag{6.4}\\
& \quad+M_{k h} F_{j i}-M_{j h} F_{k i}-2\left(F_{k j} M_{i h}+M_{k j} F_{i h}\right)=0,
\end{align*}
$$

from which, by transvecting with $g^{k h}$ and using (6.2), we find

$$
\begin{equation*}
K_{j i}=-2(m+2) L_{j i}-L g_{j i}, \tag{6.5}
\end{equation*}
$$

where $L=g^{j i} L_{j \imath}$, from which transvecting with $g^{j i}$ gives

$$
\begin{equation*}
K=-4(m+1) L \quad \text { or } \quad L=-\frac{1}{4(m+1)} K \tag{6.6}
\end{equation*}
$$

Substituting (6.6) in (6.5) we find

$$
\begin{equation*}
L_{j i}=-\frac{1}{2(m+2)} K_{j i}+\frac{1}{8(m+1)(m+2)} K g_{j i} \tag{6.7}
\end{equation*}
$$

Thus (6.4) shows that the Bochner curvature tensor of the base space $M^{2 m}$ vanishes. Hence we have

Theorem 6.1. Let $M^{2 m+1}$ be a Sasakian manifold with vanishing contact Bochner curvature tensor regarded as a fibred space with invariant Riemannian metric. Then the Bochner curvature tensor of the Kaehlerian base space vanishes.

Bibliography

[1] D. E. Blair, On the geometric meaning of the Bochner tensor, Geometriae Dedicata, 4 (1975) 33-38.
[2] D. E. Blair \& K. Ogiue, Geometry of integral submanifolds of a contact distribution, Illinois J. Math. 19 (1975) 269-276.
[3] S. Bochner, Curvature and Betti numbers. II, Ann. of Math. 50 (1949) 77-93.
[4] B. Y. Chen \& K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974) 257-266.
[5] B. Y. Chen \& K. Yano, Manifolds with vanishing Weyl or Bochner curvature tensor, J. Math. Soc. Japan 27 (1975) 106-112.
[6] C. S. Houh, Some totally real minimal surfaces in CP^{2}, Proc. Amer. Math. Soc. 40 (1973) 240-244.
[7] M. Kon, Totally real submanifolds in a Kaehlerian manifold, J. Differential Geometry 11 (1976) 251-257.
[8] G. D. Ludden, M. Okumura \& K. Yano, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur. 58 (1975) 346-353.
[9] --, A totally real surface in CP^{2} that is not totally geodesic, Proc. Amer. Math. Soc. 53 (1975) 186-190.
[10] M. Matsumoto, On Kaehlerian spaces with parallel or vanishing Bochner curvature tensor, Tensor, N. S. 20 (1969) 25-28.
[11] M. Matsumoto \& G. Chūman, On the C-Bochner curvature tensor, TRU. Math. 5 (1969) 21-30.
[12] S. Sasaki, Almost contact manifolds, Lecture notes. I, 1965, Tôhoku University.
[13] S. Tachibana, On the Bochner curvature tensor, Natural Sci. Rep., Ochanomizu Univ. 18 (1967) 15-19.
[14] S. Tachibana \& R. C. Liu, Notes on Kaehlerian metrics with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep. 22 (1970) 313-321.
[15] H. Takagi \& Y. Watanabe, On the holonomy groups of Kaehlerian manifold with vanishing Bochner curvature tensor, Tôhoku Math. J. 25 (1973) 177-184.
[16] S. Yamaguchi, M. Kon \& T. Ikawa, C-totally real submanifolds, J. Differential Geometry 11 (1976) 59-64.
[17] S. Yamaguchi \& S. Sato, On complex hypersurfaces with vanishing Bochner curvature tensor in Kaehlerian manifolds, Tensor, N. S. 22 (1971) 77-81.
[18] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying $\mathrm{f}^{3}+\mathrm{f}=0$, Tensor, N. S. 14 (1963) 99-109.
[19] -, Manifolds and submanifolds with vanishing Weyl or Bochner curvature tensor, Proc. Symposia in Pure Math. 27 (1975) 253-262.
[20] - On complex conformal connections, Kōdai Math. Sem. Rep. 26 (1975) 137-151.
[21] ——, Totally real submanifolds of a Kaehlerian manifold, J. Differential Geometry 11 (1976) 351-359.
[22] ——, Differential geometry of totally real submanifolds, Topics in differential geometry, Academic Press, New York, 1976, 173-184.
[23] K. Yano \& S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, No. 32, Princeton University Press, Princeton, 1953.
[24] K. Yano \& S. Ishihara, Fibred spaces with invariant Riemannian metric, Kōdai Math. Sem. Rep. 19 (1967) 317-360.
[25] -, Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes, Hokkaido Math, J. 3 (1974) 297-304.
[26] K. Yano \& M. Kon, Totally real submanifolds of complex space forms. I, Tôhoku Math. J. 28 (1976) 215-225.
[27] ——, Totally real submanifolds of complex space forms. II, Kōdai Math. Sem. Rep. 27 (1976) 385-399.
[28] - Anti-invariant submanifolds of Sasakian space forms. I, Tôhoku Math. J. 29 (1977) 9-23.
[29] -, Anti-invariant submanifolds of Sasakian space forms. II, J. Korean Math. Soc. 13 (1976) 1-14.

[^0]: Communicated April 30, 1975.

