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ANTI-INVARIANT SUBMANIFOLDS OF A SASAKIAN
MANIFOLD WITH VANISHING CONTACT
BOCHNER CURVATURE TENSOR

KENTARO YANO

0. Introduction

In 1949, by using a complex coordinate system Bochner [3] (see also Yano
and Bochner [23]) introduced, as an analogue of the Weyl conformal curva-
ture tensor in a Riemannian manifold, what we now call the Bochner curva-
ture tensor in a Kaehlerian manifold. In 1967 Tachibana [13] gave a tensor
expression of this curvature tensor in a real coordinate system. Since then the
tensor has been studied by Chen [5], Ishihara [25], Liu [14], Matsumoto [10],
Sato [17], Tachibana [14], Takagi [15], Watanabe [15], Yamaguchi [17], and
the present author [5], [19], [20], [21], [22], [25].

Let M?™ be a real 2m-dimensional Kaehlerian manifold with the almost
complex structure F, and M" an n-dimensional Riemannian manifold isome-
trically immersed in M*™. If T, (M"™) | FT,(M™), where T ,(M") denotes the
tangent space to M™ at a point x of M™ and is identified with its image under
the differential of the immersion, then we call M"™ a totally real or anti-
invariant submanifold of M?™. Since the rank of F is 2m, we have n < 2m — n,
that is, n < m.

The totally real submanifolds of a Kaehlerian manifold have been studied
by Chen [4], Houh [6], Kon [7], [26], [27], Ludden [8], [9], Ogiue [4],
Okumura [8], [9] and the present author [8], [9], [21], [22], [26], [27].

As a theorem connecting the Weyl conformal curvature tensor and the
Bochner curvature tensor, Blair [1] proved

Theorem A. Let M*", n > 4, be a Kaehlerian manifold with vanishing
Bochner curvature tensor, and M™ a totally geodesic, totally real submanifold
of M**. Then M™ is conformally flat.

Generalizing this theorem of Blair, the present author [21] established the
following theorems.

Theorem B. Let M™, n > 4, be a totally umbilical, totally real submanifold
of a Kaehlerian manifold M*™ with vanishing Bochner curvature tensor. Then
M™ is conformally flat.

Theorem C. Let M3 be a totally geodesic, totally real submanifold of a
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Kaehlerian manifold M*™ with vanishing Bochner curvature tensor. Then M?
is conformally flat.

Theorem D. Let M", n > 4, be a totally real submanifold of a Kaehlerian
manifold M** with vanishing Bochner curvature tensor. If the second funda-
mental tensors of M™ commute, then M™ is conformally flat.

The main purpose of the present paper is to obtain theorems, analogous to
the above theorems, for anti-invariant submanifolds of a Sasakian manifold with
vanishing contact Bochner curvature tensor. For anti-invariant submanifolds
of a Sasakian manifold, see Blair and Ogiue [2], Yamaguchi, Kon and Ikawa
[16], Yano and Kon [28], [29], and for the contact Bochner curvature tensor
see Matsumoto and Chuaman [11].

First of all, in § 1 we recall the definition and the fundamental properties
of a Sasakian manifold. In §2 we define a curvature tensor in a Sasakian
manifold which is called the contact Bochner curvature tensor and corresponds
to the Bochner curvature tensor in a Kaehlerian manifold.

§ 3 is devoted to general discussions on anti-invariant submanifolds of a
Sasakian manifold, and §4 to the study of anti-invariant submanifolds of a
Sasakianh manifold with vanishing contact Bochner curvature tensor.

In the last two sections (§§5 and 6) we study Sasakian manifolds with
vanishing contact Bochner curvature tensor regarded as fibred spaces with in-
variant Riemannian metric (see Yano and Ishihara [24]).

1. Sasakian manifolds

We first of all recall the definition and the fundamental properties of almost
contact manifolds for the later use. Let M?>™*! be a 2m + 1)-dimensional dif-
ferentiable manifold of class C~ covered by a system of coordinate neighbor-
hoods {U ; x} in which there are given a tensor field ¢, of type (1,1), a vector
field & and a 1-form 7, satisfying

1.1) @fol=—0+98, =0, ne,=0, p§=1,

where and in the sequel the indices «, 8, - -+, &, 4, g, - - - TUn over the range

{1,2, ---,2m + 1}. Such a set (¢, &, 7) consisting of a tensor field ¢, a vector

field £ and a 1-form 75 is called an almost contact structure, and a manifold

with an almost contact structure an almost contact manifold (see Sasaki [12]).
If the Nijenhuis tensor

(1'2) N IM‘ = %“aa%' - go{'aagol,' - (a#¢2a - aﬂoﬂa)foa‘
formed with ¢,* satisfies
(13) N,a‘ + (apvz - aﬂh)&‘ =0,

where 9, = 9/dx*, then the almost contact structure is said to be normal and
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the manifold is called a normal almost contact manifold.
Suppose that in an almost contact manifold there is given a Riemannian
metric g,, such that

1.4) g,,aSD,f%'s = 8u2a — N2 » =85

then the almost contact structure is said to be metric, and the manifold is
called an almost contact metric manifold. In view of the second equation of
(1.4) we shall write &, instead of 7, in the sequel. In an almost contact metric
manifold, the tensor field ¢,, = ¢,°g.; is skew-symmetric.

If an almost contact metric structure satisfies

(15) Dur = %(ap& - alEy) 5

then the almost contact metric structure is called a contact structure. A mani-
fold with a normal contact structure is called a Sasakian manifold.
It is well known that in a Sasakian manifold we have

(1.6) ViE =of,
a.7 V,Aoz' = _g,u&‘ + 5;&1 s

where I/, denotes the operator of covariant differentiation with respect to g,,.
(1.6) written as V., = ¢, shows that &* is a Killing vector field.
(1.6), (1.7) and the Ricci identity

VVV/IG‘ - V,quét = KUHI‘GI ’

where K,,* is the curvature tensor, give

(1'8) Kvyl‘gl = 5:&;4 - 5;&;: s
or
(1'9) Ky[ul‘&: = &vg[ll - Epgul .

From (1.9) by contraction we have
(1.10) K& =2mé&,

where K,, = K,,.* is the Ricci tensor.
(1.6), (1.7) and the Ricci identity

VvaSDl‘ - V,,V,,sD; = K»pa‘%a - KypzaSDa‘
imply

(1.11) Kupa‘¢1u - Kppz“SDa‘ = —¢,8u + 0,8 — 5:%41 + 5;50,,1 ’
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from which, by contraction, it follows that
(1.12) K" + Kpuop® = —2m — Do, ,

where ¢f* = gfp,*, g#* being contravariant components of the metric tensor.
Since K,,,,0" is skew-symmetric in y and 2, we have from (1.12)

(1.13) K0 + Ki0,°=0.
From (1.12) we also find

(1.14) K, = 2K,.00 + 22m — 1), .

2. Contact Bochner curvature tensor

As an analogue of the Bochner curvature tensor in a Kaehlerian manifold,
we define the contact Bochner curvature tensor in a Sasakian manifold by

Bvﬂl‘ = Kﬂ[ll‘ + (5: - Evé‘)L/t& - (5:4 - Ey&‘)LM + Lv;(glul - EpEI)
(2'1) - Lp‘(gwl - &.y&l) + SDV‘M,MX - So,u‘Mwl + Mvrso,ul - MA‘SDVI
— 2(p, M + M,,05) + (0,50, — 0,500 — 20,,05) >

where
1
L,=—— _[-K,, — (L +3)g.+ L —DEE1,
(2‘2) n2 2(m + 2) [ 1’23 ( g 2 a
Lu‘ = Lpaga‘ ’
2.3) L =g“L,,
(2'4) M/ll = _Lpasola > Mv‘ = Muag'" .

From (2.2) and (2.3) it follows that

_K+26m+2)

2.5) L = 4m + 1)

b

where K is the scalar curvature of the manifold.
Using (1.10) we have, from (2.2),

(2.6) Lﬂjgl = —5,1 )
which, together with the first equation of (2.4), yields

(2‘7) M,uasola = Lyl + E#Sl .
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We can easily verify that the contact Bochner curvature tensor satisfies the
following identities :

(2“8) Bv/ll‘ = _B,uuA‘r ’ Bv,ul‘ + B;&Jv‘ + Bhy‘ = 0 ’ Bapla = O ’

(2‘9) Bv,ulx = —Bwul ’ Bupis = Blw;l ’
where B,,,, = B,,,"8., and
(210) BDAI'S: = 0 ’ Buya‘sola = Bv,ulagoa‘ > Bv[d'so”‘ = O .

3. Anti-invariant submanifolds of a Sasakian manifold

We consider an n-dimensional Riemannian manifold M”, n > 1, covered
by a system of coordinate neighborhoods {V ; y*} and isometrically immersed
in a Sasakian manifold M*™*!, and denote the immersion by

3.1 x = xO")

where and in the sequel the indices h,i,j, --- run over the range
{r,2,.--,n'}. We put

(3.2) B = d;x* (@; = a/ayH) ,

and denote 2m + 1 — n mutually orthogonal unit vectors normal to M" by
C,5, where and in the sequel the indices x, y, z run over the range {(n + 1),
<o, (2m 4 1)

Then the metric tensor g;; of M™ and that of the normal bundle are respec-
tively given by
3.3) 85 = 8.BY

Jji o
(3-4) gzy = g“C;‘; ’

where B4 = B;*B;* and Ci; = C,*C,’.

If the transform by ¢,” of any vector tangent to M™ is orthogonal to M", we
say that the submanifold M" is anti-invariant in M*™*!. Since the rank of ¢
is2m,wehaven — 1 <2m + 1 — n, thatis, n < m + 1.

For an anti-invariant submanifold M™ in M*™*!, we have equations of the
form

3.5) @B = —1°C,°,
(36) GDA‘Cy) = f‘yiBi‘ + .fyzcz‘ b
3.7 & =§&Bf + §°C,* .

Using ¢,, = —¢,, we have, from (3.5) and (3.6),
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(3'8) .fiy = fyt ’
Whel'e f‘ty = .fizgzy and fy't = fngjt and
(39) fy:t: = _f:w s

where f,, = f,°8.s.
Applying ¢ to (3.5), (3.6) and (3.7) and using (1.1), (3.8), (3.9) we find

(i ) ft”fyh = 59 - Etfh ’
(i) £, = —&48°,
(i)  f,f = &8,
(3.10) (iv) " = =0 + §,8° + f,/f°,
(v) f,¢*=0,
(vi)  f7¢ =f,°¢",
(vi) &+ §8V =1,
where &, = g;,6" and &, = g,,£%, (vii) being a consequence of £,&' = 1.

Differentiating (3.5), (3.6) and (3.7) covariantly over M* and using (1.6),
(1.7), (3.10), equations of Gauss

(3.11) VjBi‘ = hﬂ""CI‘
and those of Weingarten
(3.12) VJCV‘ = _hjiﬂBi‘ Py

where V,; denotes the operator of covariant differentiation over M™*, and h;"
and h,t, = h,’g'’g,, are the second fundamental tensors of M" with respect
to the normals C,*, we find

(1) —8uf" + 8% = —hy™fs" + hofi
(ii) ijtz = 858 — hjtyfyz s

(i)  Vuf* = %8, + haf," s

(V) Py = —hyfy + byt

(v) 715" = hjhysv s

(vi) V;&"' = —sz - hjz“”éi .

(3.13)

I. The case in which £ is tangent to M™. Suppose thatn = m + 1. Then
the codimension of M" is 2m + 1 — n = n — 1, and consequently [f,*, &*]

and [fgy] are both square matrices and satisfy
i



ANTI-INVARIANT SUBMANIFOLDS 159
[f,*, &1 [f ‘y] = unit matrix
&
because of (3.10) (i). Thus we have
[fiz] [fyt, et] = unit matrix 5

&

from which it follows that
(3.14) fft =0y, 78 =0, &f'=0, &&=1.

By remembering that £, + £,6° = 1, we further find £&* = 0 and hence & is
tangent to M".
In general suppose that &* is tangent to M", that is, & = 0. Then (3.10)
becomes
(i)  fMf, =0t — &&",
(i) =0,
(i) =0,
(iv) " = =6 + 7,
(v) fi#6 =0,
(vi) g5 =1.
From (3.15)(iii) and (iv) we see that f,* defines a so-called f-structure in
the normal bundle (see Yano [18]). In this case (3.13) becomes
(i) _gjish + 5’}51 = _hjtxfzh + hjh.‘z:ftz s
(i) Vi = —hu'f,*,
(iil) V= hfo
(iv) Vi = —hy®f,t + bt f®
(v) V;g"=0,
(vi)  hy”¢ +f7=0.

(3.15)

(3.16)

(3.16)(v) shows that whenever the vector field & is tangent to an anti-
invariant submanifold of a Sasakian manifold, it is parallel over the submanifold.

(3.16)(i) shows that an anti-invariant submanifold tangent to & cannot be
totally umbilical or totally contact umbilical. For, if h;” is of the form
(agj; + B&;6)h*, then from (3.16)(i) we have

—8;&" + 048, = —(agyi + PE£EINTL + (ady + BEEMAS”

from which, by contracting with respect to 4 and j and using (3.15)(v) we
obtain
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n—1D&=0m— l)ahsz + .thfiz P

and consequently transvecting with £¢ and using (3.15)(v) give (n — 1)§;6* =0,
which is a contradiction for n > 1.

We now come back to the case n = m + 1. In this case, from the first
equation of (3.14) and (3.15)(iv), we have f,*f,* = 0 or f,,f** = O because
fyz = f,°8., is skew-symmetric and f,® = 0. Thus (3.16)(ii) becomes

3.17) Vif* =0,
from which, using the Ricci identity we obtain
(3.18) Kkjihfhx - Kkjyzfiy =0,

where K, ;" (respectively, K, ;,”) is the curvature tensor of M" (respectively,
the normal bundle of M?7).
From (3.18) we have, taking account of the first equation of (3.14) and

(3.15)@),
(3.19) Ky j*f¥f" = Ky
(3.20) K1y fn® = Kijy®

because of K, ;;"&* = 0 derived from (3.16)(v). (3.19) and (3.20) show that
K" = 0 and K,;,* = O are equivalent.

II. The case in which & is normal to M™. Now suppose that &* is normal
to M”*, that is, &* = 0. Then (3.10) becomes

(1)  ffr =0t
(i) =0,
(i) £ =0,
(3.21) (iv)  ff" = =0 + && + 1,7,
(v) =0,
(vi) 76" =0,
i) &Er=1.

(3.21) (iiii), (iv) and (vi) show that f,® defines an f-structure in the normal
bundle. In this case, (3.13) becomes

( i ) _hjizfzh + hjhzfiz =0 5
(ii) Vi = 8u6° — hy'f)” s
(3.22) (iii) P f," = 8%, + hluf" s

(iv) P = —hu*f,t + bW fS
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(V) hjhyéy = 0 ’
(vi) Pt = —ff.

From (3.21)(i) it follows that f,,f** = n, and consequently by (3.21)(iv)
and (vii) we find

—ff'=—-Cm+1—n+14+n=—-2(m—n).

Thus, if n = m, then we have f,” = 0, and (3.21) and (3.22) become respec-
tively

(i) fflr=at,
(il) fizfyi = 5: - 51{&1 ’

G239 (i)  f,** =0,
(iv) &8 =1;
( i ) _'hjtxfzh + hjhzfiz =0 >
(ii) ijiz = 8557,

(3.24) G Pfy® = 038y

(iv) —hjtzfyi + hjiyfix =0,
(v) htE =0,
(vi) Vg = —f*.

Suppose that M" is totally umbilical, and put h;* = g;h*. Then from
(3.24)(i) we have

'—gjihzfzh + 5rjbhxfim =0,
which implies A%f,* = 0 for n > 1. From (3.24)(iv) it follows that
—hfyy + bt =0,

from which, by transvecting with 4¥ and using f, ;¥ = 0 we have A h¥f;* = 0,
and consequently h,h* = 0 and hence h, = 0. Thus M™ must be totally
geodesic.

By (3.24)(ii) and (vi), we find

VV&° = —8;é°,
from which, using the Ricci identity we obtain
Kkj”xsy = 0 .

On the other hand, from (3.24)(ii) and (vi), we have, using the Ricci
identity,
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—Kiyi"h® + Kiyy™fi? = —1"850 + f578xe »
which, together with (3.23)(i), implies that
(3.25) Ky = Ky ™fi¥f:" + 048s — 03804
and that, in consequence of K,;,”&¥ = 0 and (3.23)(i),
(3.26) Kiy® = Kiyi" 1 0™ + fued i — Fufi®
(3.25) and (3.26) show that M™ is of constant curvature 1 if and only if the

connection induced in the normal bundle is of zero curvature.

4. Anti-invariant submanifolds of a Sasakian manifold with
vanishing contact Bochner curvature tensor

We first of all remember that the equations of Gauss, Codazzi and Ricci
are respectively

4.D Kijin = KBt + Benchyi® — Rynched s
4.2) 0=K,,.BC, — Vihyiy — Vihisy)
(43) Kkjya: = By };’;C:;z: - (hktyhjt:: - hjtllhkt.‘v) ’

where K, .., Ky, and K,;,, are the covariant components of the curvature
tensors of M*™*!, M" and the normal bundle respectively, By%%, = B;’B,*B,'B,*
and B}, = B,’B;B/.

We assume that the contact Bochner curvature tensor of M?™*! vanishes
identically. Then from (2.1) we have

Kvpl: + (g»t - Sv&:)L;d - (g;m - ép‘E:)Lvl + Lv:(gpl - Eygl)
(4'4) - L[u(gul - Evél) + SDVEM;UI - %«:Muz + Mvsgopl - Myrgovl
- 2(¢upM1t + Mwl(ph) + (Sav#’px - Soprsowl - ZSON‘[JSOZE) = 0 ’

from which, by using g,.B%} = 8,1, 9.B% =0, ¢,.By#C,} = —f4, ¢0.Ch =
fya:, &ka” = $k and $ucy” = Sw we find

Kpp)rBll;’}Z;h + (8un — skSh)th — (gjh - §j§h)Lki

4.5)

+ Lkh(gji — 5151) - Ljh(gki —&&)=0,
(4.6) KvyltBll;’}éiCU‘ - SkSyLﬂ + éjgyLki + ka(gji - 51"31)

— Ljy(gki — &) — fkyMj't + ijMu + 2Mkjfty =0,
(47) KVFZ'BI:{;C:I;‘ - SkSJ-‘LJ?/ + 515111“ - Lkz&j&y + Lj.zElcSv - flczij

+ fj:chy - Mszju + sz.fky _2Mkjfy.1: + (szij —fj.tfky) = 0 ’

where
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Lji = L“BI;: ’ ka = I’,u/IBlc”C'z,llI s

4.9
M; = M, B4, M, = M,B/C}.
Since M,, = —L,p,°, we have
M, = —L,p; "B = L,.B/f°C,* ,
that is,
4.9 M, = L;.f" ,
and also
M;, = —L,¢B;*C)* = —L,.By*(f,'B,* + f,°C%) ,
that is,
(4.10) My, = —Lyufy — Liof,®

Thus (4.1), (4.2) and (4.3) can be written respectively as

Kkjth. + (gxn — Skgh)Lji - (gjh — &6 + Lkh(gjt - 5151)
- Ljn(gkt — &€ — (hkh.rhjiz - hjh:nhktx) =0,

(&xLys — &;L)&y — Lyy(850 — &;60) + Lyy(8rs — &80
+ feuM s — My — 2M g 4f sy — Pihysy — Vshysy) =0,

Kkjyx - (Eijy - Eijy)s:c - (Lszj - ijSk)Ew
(413) + Mkvfj.'c - ijfk:v + fkyMja: - .ijMkz - 2Mkjfy:c
+ (szij - szfky) + (hktyhjtz - hjtyhktz) =0.
I. The case in which the vector field ¢* is tangent to M". We now assume

that n = m 4 1. Then the vector field & is tangent to M™ and f,® = 0. Thus
(4.13) becomes

4.11)

(4.12)

Kkjyx - szij + fj.z'Mky - Mka:ij + szfky
+ (fk:t:ij - fj:cfky) + (hktz/hjt.z - hjtwhkt:c) = 0 ’

from which, by transvecting with f,*f,* and using f;.f,;* = g; — &,;§; derived
from (3.15)(i), we find

Kkjyzftyfhz — (8kn — §k$n)ijf¢y + (gjh - 515n)Mkyft1'
— M, f2%(85 — 580 + Myofn"(8xs — &i6d)
+ (8en — Sksh)(gjt — EjEi) — (gjh, — fjfh)(gkt — &80
+ (hfyhyee — hytyhie)f V" =0 .

4.14)
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We now assume that the second fundamental tensors are commutative. Then
from (3.19) and (4.14) we have

Kkjih + (8 — 5k§h)sz — (gjh. - ijh)Nki
(4.15) + Nkh.(gji - $j$i) — Njn(gm' — &80
+ (8xn — Sk&h)(gji — &80 — (80 — £,6)(@s — &x8) =0,

where N;; = —M, f,".

Now since the vector field £* is parallel, the Riemannian manifold M™ is
locally a product of M™~! and M' generated by &, and M™~! is totally geodesic
in M". We represent M*~! in M™ by parametric equations y* = y*(z%) (a, b,
cd,--- =17,2",...,(n — 1)”), and put B,* = gy"/6z>. Then we have
&.B," = 0, and the curvature tensor K,,,, of M™! is given by

(4.16) Ko = KijinBilia »
where Bt — B *B,B,!B,". Thus transvecting (4.15) with Bt/ we obtain
(4.17) Kacoa + 84aCev — 8caCas + CaaBes — Cealar =0 ,
where g, = g;,B.’B,* is the metric tensor of M™~! and
Ce = NuBJB,' + 38,

(4.17) shows that the Weyl conformal curvature tensor of M™~! vanishes,
and M"~! is conformally flat if » — 1 > 4. Thus we have

Theorem 4.1. Let M", n > 5, be an anti-invariant submanifold of a
Sasakian manifold M**~! with vanishing contact Bochner curvature tensor. If
the second fundamental tensors of M™ commute, then M" is locally a product
of a conformally flat Riemannian space and a 1-dimensional space.

II. The case in which the vector field & is normal to M”. We now con-
sider the case in which the vector field & is normal to the anti-invariant sub-
manifold M?”, so that £* = 0. Then from (4.11) we obtain

Kkjih + gkthi - gjh.Lki + Lkhgji — Ljhgki

(4.18)
- (hkhzhjiz - hjhzhkix) =0.

If M™ is umbilical, that is, if 4;;, = g,:h,, then we can write (4.18) in the
form
Kijin + 8en(Lye — $h,h*g;) — 85n(Lii — $h:h"gis)

“4.19)
+ (Lyn — %hxhxgkh)gji - (Ljh - %hxhxgjn)gm =0,

which shows that the Weyl conformal curvature tensor of M™ vanishes. Thus
we have
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Theorem 4.2. Let M", n > 4, be a totally umbilical anti-invariant sub-
manifold normal to the structure vector field & of a Sasakian manifold M*™*!
with vanishing contact Bochner curvature tensor. Then M™ is conformally flat.

Next from (4.13) we obtain

Kkjyx + Mkyfj.z - ijsz + fkyMj.t - ijMkz + 2Mkjfy.t
+ (szij - fja;fky) + (hktyhjtz - hjtzlhlctx) =0.

If n = m, which implies that f,* = 0, and the second fundamental tensors of
M?™ commute, then from (4.20) we have

(4.20)

Kkjw; - fk:chy 'I' szMky - Mszjy + szfky
+ (fka:fj'y - szfky) =0 5

from which, by transvecting with f;%f,® and using (3.23)(i), we find

4.21)

Kkj'yzftyfhz - gkhijfiy + gthkyfiy - Mkvfhygji + ijfhygkt
+ (8xn8yt — &jn8x)) =0 .

Substituting (4.22) in (3.25) yields

4.22)

(4.23) Kiyjin — gkh,ijfty + giaMyf¥ — Mkyfhygjt + ijfhyglci =0,

which shows that the Weyl conformal curvature tensor of M" vanishes. Thus
we have

Theorem 4.3. Let M™, n > 4, be an anti-invariant submanifold normal
to the structure vector field & of a Sasakian manifold M**' with vanishing
contact Bochner curvature tensor. If the second fundamental tensors commute,
then M™ is conformally flat.

5. Sasakian manifolds as fibred spaces with invariant Riemannian metric
It is well known that in a Sasakian manifold we have

(5'1) gg;d:os 3901‘:05 «5?5;——-0,

where % denotes the operator of Lie derivation with respect to the structure
vector field &°. Thus, assuming that & is regular, we can regard a Sasakian
manifold M*™*! as a fibred space with invariant Riemannian metric (see Yano
and Ishihara [24]). Denoting 2m functionally independent solutions of

Eou=0
by u"(x), we see that u" are local coordinates of the base space M?™, We put

(5‘2) Elh = aluh ’ El = sl ’ E‘ = 5‘ ’
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where and in the sequel the indices 4, i, j, - - - run over the range {1’,2/, ---
(2m)’}. Then we have

EE»=0, EE =1.

Since E;* and E, are linearly independent, we put

E}h]—l
= [E', E] .
[Ex (B, ')

Then we have
(5.3) EME' =0, EME*=0, EE4Y =0, EF =1,
(5.4) EE:, + E,Ef = §% .
For the Lie derivatives of E’s we have
(5.5) YPE"=0, ¥YE, =0, ZYE,=0, LE =0.
Thus using #g,, = 0 and (5.5) we see that
(5.6) 85 = &.E*;E,
is the metric tensor of the base space M*™. From (5.6) we have
5.7 8. = 8;E’E} + E,E, .
It will be easily verified that
(5.8) Ef,=E/jg*g;,, E*=Eg*, E=E"g,g", E, = E*‘g,,l ,

where g** are contravariant components of the metric tensor g;, of the base
space M*™. Also using Lo, = 0 and (5.5) we see that

5.9 F* = SDA‘EltEsh

is a tensor field of type (1,1) of the base space M*™ and defines an almost
complex structure of M*™. From (5.6) and (5.9) we easily find

(5.10) 8:F ' F =gy,

which shows that g,; is a Hermitian metric with respect to this almost complex
structure. Thus the base space M*™ is an almost Hermitian manifold.
From (5.9) it follows that

(5.11) SDx‘Eli = F'LhE‘h ) ¢1‘Exn = FthEzi s SDA‘ = FihEziE‘h .

For a function f(u(x)) on the base manifold M*™ we have
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(512) alf = Eziatf ) aif = E)zaxf )

where 9, = 9/du’.
Now using (5.7) we compute the Christoffel symbols {,5;} formed with g,,
and find

s} = {,"}EJEE", + (0,EME*, + $0,.E, + 0,E,)E*

(5.13)
+ E,‘%t‘ + E2¢p‘ »

where {,*;} are Christoffel symbols formed with g,;. From (5.13) we have, in

consequence of (5.11),

(5.14) 0,E* — {fJE! + {MIEJE! = —(EE! + EEDF" .
Putting

(5.15) V,E!r =0d,E" — {S}ES + {/MEJES,

we have, from (5.14),

(5.16) V.E*= —(EE!+ EEYF".

Thus putting V', = E#;/, we find

5.17 V,E* = —F;*E, ,

from which it follows that

(5.18) V,Efy = —FyE*,

where F,;, = F,‘g,,. Thus by (5.9), (5.17) and (5.18) we obtain

(5.19) V,F» =0,

which shows that the base manifold M?*™ is Kaehlerian.
From (5.16) and the Ricci identity

vv.eE—~VvVE"=—K,;E"+ K,;;"EEJE} ,
we find
KkjihEvkEijli = Kv/ul‘Eth - (EvE,uh - EpEph)El

(5.20)
+ (Euisopl - Eﬂisovl - Zsov,uEli)Fih >

which implies that
(5'21) Klmh = Kv/d:Ell;,}?h + (Fkh,Fji - th,Fki - 2ijFth) B
where Ep¥ = E* E* EXE,.
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6. Sasakian manifolds with vanishing contact Bochner curvature tensor
as a fibred space with invariant Riemannian metric

We now assume that the contact Bochner curvature tensor of the Sasakian
manifold M*™*! vanishes identically. Then transvecting (4.4) with E}%%, we find

Kypz:EZ’}lt‘h + 8inLlys — 8inLyi + Lin8s — Ljn8is
6.1 + FesMyy — FyuMyy + My, Fyy — M, F
— 2(F My + MyF ) + (FiunFyo — FypFry — 2FF) =0,

where
L;, = L,E*;F*; , M, = M E"E*, .
Thus we have
M, = —L,p°E"E", = —L,E*;F'E", ,
that is,
(6.2) M;, = —L;F,
which implies that
6.3) L, =M,F;.
Substituting (6.1) in (5.21) we find

(6.4) Kiyin + gkthi — 8jnLs + Lin8js — Ljn8ri + FynMj — F ;M

‘ + MkhFji - Mthki - 2(ijM1:h + MkjFih) =0,
from which, by transvecting with g** and using (6.2), we find
(6.5) Kji - —'2(m + 2)Lji - ngi Py

where L = g/*L,,, from which transvecting with g/* gives

1

6.6 K= —4 1)L L=—_ " K
(6.6) (m + 1)L or dom £ D)
Substituting (6.6) in (6.5) we find

1 1
— K
mt T

(6.7) Lji = ngi .

8(m + D(im + 2)

Thus (6.4) shows that the Bochner curvature tensor of the base space M*™
vanishes. Hence we have
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Theorem 6.1. Let M*™*' be a Sasakian manifold with vanishing contact
Bochner curvature tensor regarded as a fibred space with invariant Riemannian
metric. Then the Bochner curvature tensor of the Kaehlerian base space
vanishes.
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