ANTI-INVARIANT SUBMANIFOLDS OF A SASAKIAN MANIFOLD WITH VANISHING CONTACT BOCHNER CURVATURE TENSOR

KENTARO YANO

0. Introduction

In 1949, by using a complex coordinate system Bochner [3] (see also Yano and Bochner [23]) introduced, as an analogue of the Weyl conformal curvature tensor in a Riemannian manifold, what we now call the Bochner curvature tensor in a Kaehlerian manifold. In 1967 Tachibana [13] gave a tensor expression of this curvature tensor in a real coordinate system. Since then the tensor has been studied by Chen [5], Ishihara [25], Liu [14], Matsumoto [10], Sato [17], Tachibana [14], Takagi [15], Watanabe [15], Yamaguchi [17], and the present author [5], [19], [20], [21], [22], [25].

Let M^{2m} be a real 2m-dimensional Kaehlerian manifold with the almost complex structure F, and M^n an n-dimensional Riemannian manifold isometrically immersed in M^{2m} . If $T_x(M^n) \perp FT_x(M^n)$, where $T_x(M^n)$ denotes the tangent space to M^n at a point x of M^n and is identified with its image under the differential of the immersion, then we call M^n a totally real or antiinvariant submanifold of M^{2m} . Since the rank of F is 2m, we have $n \leq 2m - n$, that is, $n \leq m$.

The totally real submanifolds of a Kaehlerian manifold have been studied by Chen [4], Houh [6], Kon [7], [26], [27], Ludden [8], [9], Ogiue [4], Okumura [8], [9] and the present author [8], [9], [21], [22], [26], [27].

As a theorem connecting the Weyl conformal curvature tensor and the Bochner curvature tensor, Blair [1] proved

Theorem A. Let M^{2n} , $n \ge 4$, be a Kaehlerian manifold with vanishing Bochner curvature tensor, and M^n a totally geodesic, totally real submanifold of M^{2n} . Then M^n is conformally flat.

Generalizing this theorem of Blair, the present author [21] established the following theorems.

Theorem B. Let M^n , $n \ge 4$, be a totally umbilical, totally real submanifold of a Kaehlerian manifold M^{2m} with vanishing Bochner curvature tensor. Then M^n is conformally flat.

Theorem C. Let M^3 be a totally geodesic, totally real submanifold of a

Communicated April 30, 1975.

Kaehlerian manifold M^{2m} with vanishing Bochner curvature tensor. Then M^3 is conformally flat.

Theorem D. Let M^n , $n \ge 4$, be a totally real submanifold of a Kaehlerian manifold M^{2n} with vanishing Bochner curvature tensor. If the second fundamental tensors of M^n commute, then M^n is conformally flat.

The main purpose of the present paper is to obtain theorems, analogous to the above theorems, for anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor. For anti-invariant submanifolds of a Sasakian manifold, see Blair and Ogiue [2], Yamaguchi, Kon and Ikawa [16], Yano and Kon [28], [29], and for the contact Bochner curvature tensor see Matsumoto and Chūman [11].

First of all, in § 1 we recall the definition and the fundamental properties of a Sasakian manifold. In § 2 we define a curvature tensor in a Sasakian manifold which is called the contact Bochner curvature tensor and corresponds to the Bochner curvature tensor in a Kaehlerian manifold.

§ 3 is devoted to general discussions on anti-invariant submanifolds of a Sasakian manifold, and § 4 to the study of anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor.

In the last two sections (§§ 5 and 6) we study Sasakian manifolds with vanishing contact Bochner curvature tensor regarded as fibred spaces with invariant Riemannian metric (see Yano and Ishihara [24]).

1. Sasakian manifolds

We first of all recall the definition and the fundamental properties of almost contact manifolds for the later use. Let M^{2m+1} be a (2m + 1)-dimensional differentiable manifold of class C^{∞} covered by a system of coordinate neighborhoods $\{U; x^{\epsilon}\}$ in which there are given a tensor field $\varphi_{\lambda}^{\epsilon}$ of type (1,1), a vector field ξ^{ϵ} and a 1-form η_{λ} satisfying

(1.1)
$$\varphi_{\lambda}^{\epsilon}\varphi_{\mu}^{\ \lambda} = -\delta_{\mu}^{\epsilon} + \eta_{\mu}\xi^{\epsilon}, \quad \varphi_{\lambda}^{\epsilon}\xi^{\lambda} = 0, \quad \eta_{\lambda}\varphi_{\mu}^{\ \lambda} = 0, \quad \eta_{\lambda}\xi^{\lambda} = 1,$$

where and in the sequel the indices $\alpha, \beta, \dots, \kappa, \lambda, \mu, \dots$ run over the range $\{1, 2, \dots, 2m + 1\}$. Such a set (φ, ξ, η) consisting of a tensor field φ , a vector field ξ and a 1-form η is called an *almost contact structure*, and a manifold with an almost contact structure an *almost contact manifold* (see Sasaki [12]).

If the Nijenhuis tensor

(1.2)
$$N_{\mu\lambda}{}^{\epsilon} = \varphi_{\mu}{}^{\alpha}\partial_{\alpha}\varphi_{\lambda}{}^{\epsilon} - \varphi_{\lambda}{}^{\alpha}\partial_{\alpha}\varphi_{\mu}{}^{\epsilon} - (\partial_{\mu}\varphi_{\lambda}{}^{\alpha} - \partial_{\lambda}\varphi_{\mu}{}^{\alpha})\varphi_{\alpha}{}^{\epsilon}$$

formed with φ_{λ} satisfies

(1.3)
$$N_{\mu\lambda}^{\mu} + (\partial_{\mu}\eta_{\lambda} - \partial_{\lambda}\eta_{\mu})\xi^{\mu} = 0 ,$$

where $\partial_{\mu} = \partial/\partial x^{\mu}$, then the almost contact structure is said to be normal and

the manifold is called a normal almost contact manifold.

Suppose that in an almost contact manifold there is given a Riemannian metric $g_{\mu\lambda}$ such that

(1.4)
$$g_{\gamma\beta}\varphi_{\mu}{}^{\gamma}\varphi_{\lambda}{}^{\beta} = g_{\mu\lambda} - \eta_{\mu}\eta_{\lambda} , \qquad \eta_{\lambda} = g_{\lambda x}\xi^{x} ,$$

then the almost contact structure is said to be *metric*, and the manifold is called an *almost contact metric manifold*. In view of the second equation of (1.4) we shall write ξ_{λ} instead of η_{λ} in the sequel. In an almost contact metric manifold, the tensor field $\varphi_{\mu\lambda} = \varphi_{\mu}^{\alpha} g_{\alpha\lambda}$ is skew-symmetric.

If an almost contact metric structure satisfies

(1.5)
$$\varphi_{\mu\lambda} = \frac{1}{2} (\partial_{\mu} \xi_{\lambda} - \partial_{\lambda} \xi_{\mu}) ,$$

then the almost contact metric structure is called a *contact structure*. A manifold with a normal contact structure is called a *Sasakian manifold*.

It is well known that in a Sasakian manifold we have

(1.6)
$$\nabla_{\lambda}\xi^{*} = \varphi_{\lambda}^{*},$$

(1.7)
$$\nabla_{\mu}\varphi_{\lambda}^{*} = -g_{\mu\lambda}\xi^{*} + \delta_{\mu}^{*}\xi_{\lambda},$$

where \overline{V}_{λ} denotes the operator of covariant differentiation with respect to $g_{\mu\lambda}$. (1.6) written as $\overline{V}_{\lambda}\xi_{\epsilon} = \varphi_{\lambda\epsilon}$ shows that ξ^{ϵ} is a Killing vector field.

(1.6), (1.7) and the Ricci identity

$$abla_{
u}
abla_{\mu}\xi^{\mu} -
abla_{\mu}
abla_{
u}\xi^{\mu} = K_{
u\mu\lambda}{}^{\mu}\xi^{\lambda},$$

where $K_{\nu\mu\lambda}$ is the curvature tensor, give

(1.8)
$$K_{\nu\mu\lambda}{}^{*}\xi^{\lambda} = \delta^{*}_{\nu}\xi_{\mu} - \delta^{*}_{\mu}\xi_{\nu},$$

or

(1.9)
$$K_{\nu\mu\lambda}\xi_{\mu} = \xi_{\nu}g_{\mu\lambda} - \xi_{\mu}g_{\nu\lambda}.$$

From (1.9) by contraction we have

$$(1.10) K_{\mu\lambda}\xi^{\lambda} = 2m\xi_{\mu},$$

where $K_{\mu\lambda} = K_{\alpha\mu\lambda}^{\alpha}$ is the Ricci tensor.

(1.6), (1.7) and the Ricci identity

$$\nabla_{\nu}\nabla_{\mu}\varphi_{\lambda}{}^{\mu} - \nabla_{\mu}\nabla_{\nu}\varphi_{\lambda}{}^{\mu} = K_{\nu\mu\alpha}{}^{\mu}\varphi_{\lambda}{}^{\alpha} - K_{\nu\mu\lambda}{}^{\alpha}\varphi_{\alpha}{}^{\mu}$$

imply

(1.11)
$$K_{\nu\mu\alpha}{}^{\epsilon}\varphi_{\lambda}{}^{\alpha} - K_{\nu\mu\lambda}{}^{\alpha}\varphi_{\alpha}{}^{\epsilon} = -\varphi_{\nu}{}^{\epsilon}g_{\mu\lambda} + \varphi_{\mu}{}^{\epsilon}g_{\nu\lambda} - \delta_{\nu}{}^{\epsilon}\varphi_{\mu\lambda} + \delta_{\mu}{}^{\epsilon}\varphi_{\nu\lambda},$$

from which, by contraction, it follows that

(1.12)
$$K_{\mu\alpha}\varphi_{\lambda}^{\alpha} + K_{\beta\mu\lambda\alpha}\varphi^{\beta\alpha} = -(2m-1)\varphi_{\mu\lambda},$$

where $\varphi^{\beta\alpha} = g^{\beta\lambda}\varphi_{\lambda}^{\alpha}$, $g^{\beta\lambda}$ being contravariant components of the metric tensor. Since $K_{\beta\mu\lambda\alpha}\varphi^{\beta\alpha}$ is skew-symmetric in μ and λ , we have from (1.12)

(1.13)
$$K_{\mu\alpha}\varphi_{\lambda}^{\alpha} + K_{\lambda\alpha}\varphi_{\mu}^{\alpha} = 0 .$$

From (1.12) we also find

(1.14)
$$K_{\beta\alpha\mu\lambda}\varphi^{\beta\alpha} = 2K_{\mu\alpha}\varphi_{\lambda}^{\alpha} + 2(2m-1)\varphi_{\mu\lambda}$$

2. Contact Bochner curvature tensor

As an analogue of the Bochner curvature tensor in a Kaehlerian manifold, we define the contact Bochner curvature tensor in a Sasakian manifold by

$$B_{\nu\mu\lambda}^{\epsilon} = K_{\nu\mu\lambda}^{\epsilon} + (\delta_{\nu}^{\epsilon} - \xi_{\nu}\xi^{\epsilon})L_{\mu\lambda} - (\delta_{\mu}^{r} - \xi_{\mu}\xi^{\epsilon})L_{\nu\lambda} + L_{\nu}^{\epsilon}(g_{\mu\lambda} - \xi_{\mu}\xi_{\lambda})$$

$$(2.1) \qquad - L_{\mu}^{\epsilon}(g_{\nu\lambda} - \xi_{\nu}\xi_{\lambda}) + \varphi_{\nu}^{\epsilon}M_{\mu\lambda} - \varphi_{\mu}^{\epsilon}M_{\nu\lambda} + M_{\nu}^{\epsilon}\varphi_{\mu\lambda} - M_{\mu}^{\epsilon}\varphi_{\nu\lambda}$$

$$- 2(\varphi_{\nu\mu}M_{\lambda}^{\epsilon} + M_{\nu\mu}\varphi_{\lambda}^{\epsilon}) + (\varphi_{\nu}^{\epsilon}\varphi_{\mu\lambda} - \varphi_{\mu}^{\epsilon}\varphi_{\nu\lambda} - 2\varphi_{\nu\mu}\varphi_{\lambda}^{\epsilon}),$$

where

(2.2)
$$L_{\mu\lambda} = \frac{1}{2(m+2)} [-K_{\mu\lambda} - (L+3)g_{\mu\lambda} + (L-1)\xi_{\mu}\xi_{\lambda}],$$
$$L_{\mu}^{\epsilon} = L_{\mu\alpha}g^{\alpha\epsilon},$$

$$(2.3) L = g^{\mu\lambda} L_{\mu\lambda} ,$$

$$(2.4) M_{\mu\lambda} = -L_{\mu\alpha}\varphi_{\lambda}^{\alpha}, M_{\nu}^{\epsilon} = M_{\nu\alpha}g^{\alpha \epsilon}.$$

From (2.2) and (2.3) it follows that

(2.5)
$$L = -\frac{K + 2(3m + 2)}{4(m + 1)},$$

where K is the scalar curvature of the manifold.

Using (1.10) we have, from (2.2),

$$(2.6) L_{\mu\lambda}\xi^{\lambda} = -\xi_{\mu},$$

which, together with the first equation of (2.4), yields

$$(2.7) M_{\mu\alpha}\varphi_{\lambda}^{\alpha} = L_{\mu\lambda} + \xi_{\mu}\xi_{\lambda} .$$

We can easily verify that the contact Bochner curvature tensor satisfies the following identities:

$$(2.8) \qquad B_{\nu\mu\lambda}{}^{\epsilon} = -B_{\mu\nu\lambda}{}^{\epsilon}, \quad B_{\nu\mu\lambda}{}^{\epsilon} + B_{\mu\lambda\nu}{}^{\epsilon} + B_{\lambda\nu\mu}{}^{\epsilon} = 0, \quad B_{\alpha\mu\lambda}{}^{\alpha} = 0,$$

$$(2.9) B_{\nu\mu\lambda\kappa} = -B_{\nu\mu\kappa\lambda}, B_{\nu\mu\lambda\kappa} = B_{\lambda\kappa\nu\mu},$$

where $B_{\nu\mu\lambda\kappa} = B_{\nu\mu\lambda}{}^{\alpha}g_{\alpha\kappa}$ and

$$(2.10) B_{\nu\mu\lambda}{}^{\epsilon}\xi_{\epsilon} = 0 , B_{\nu\mu\lambda}{}^{\epsilon}\varphi_{\lambda}{}^{\alpha} = B_{\nu\mu\lambda}{}^{\alpha}\varphi_{\alpha}{}^{\epsilon} , B_{\nu\mu\lambda}{}^{\epsilon}\varphi^{\nu\mu} = 0 .$$

3. Anti-invariant submanifolds of a Sasakian manifold

We consider an *n*-dimensional Riemannian manifold M^n , n > 1, covered by a system of coordinate neighborhoods $\{V; y^n\}$ and isometrically immersed in a Sasakian manifold M^{2m+1} , and denote the immersion by

$$(3.1) x^{\epsilon} = x^{\epsilon}(y^{h})$$

where and in the sequel the indices h, i, j, \cdots run over the range $\{1', 2', \cdots, n'\}$. We put

$$(3.2) B_i^{\epsilon} = \partial_i x^{\epsilon} (\partial_i = \partial/\partial y^i),$$

and denote 2m + 1 - n mutually orthogonal unit vectors normal to M^n by C_y^{*} , where and in the sequel the indices x, y, z run over the range $\{(n + 1)', \dots, (2m + 1)'\}$.

Then the metric tensor g_{ji} of M^n and that of the normal bundle are respectively given by

$$(3.3) g_{ji} = g_{\mu\lambda} B_{ji}^{\mu\lambda}$$

$$(3.4) g_{zy} = g_{\mu\lambda} C_{zy}^{\mu\lambda} ,$$

where $B_{ji}^{\mu\lambda} = B_{j}^{\mu}B_{i}^{\lambda}$ and $C_{zy}^{\mu\lambda} = C_{z}^{\mu}C_{y}^{\lambda}$.

If the transform by $\varphi_{\lambda}^{\epsilon}$ of any vector tangent to M^n is orthogonal to M^n , we say that the submanifold M^n is *anti-invariant* in M^{2m+1} . Since the rank of $\varphi_{\lambda}^{\epsilon}$ is 2m, we have $n-1 \leq 2m+1-n$, that is, $n \leq m+1$.

For an anti-invariant submanifold M^n in M^{2m+1} , we have equations of the form

$$\varphi_i^* B_i^{\lambda} = -f_i^* C_x^*,$$

(3.6)
$$\varphi_{\lambda} C_{\lambda}^{\lambda} = f_{y}^{i} B_{i}^{\epsilon} + f_{y}^{x} C_{x}^{\epsilon} ,$$

$$(3.7) \qquad \qquad \xi^{\epsilon} = \xi^{i} B_{i}^{\ \epsilon} + \xi^{x} C_{x}^{\ \epsilon} \ .$$

Using $\varphi_{\mu\lambda} = -\varphi_{\lambda\mu}$ we have, from (3.5) and (3.6),

$$(3.8) f_{iy} = f_{yi},$$

where $f_{iy} = f_i^z g_{zy}$ and $f_{yi} = f_y^j g_{ji}$ and

(3.9)
$$f_{yx} = -f_{xy}$$
,

where $f_{yx} = f_y^z g_{zx}$.

Applying φ to (3.5), (3.6) and (3.7) and using (1.1), (3.8), (3.9) we find

(i)
$$f_{i}^{y}f_{y}^{h} = \delta_{i}^{h} - \xi_{i}\xi^{h}$$
,
(ii) $f_{i}^{y}f_{y}^{x} = -\xi_{i}\xi^{x}$,
(iii) $f_{y}^{z}f_{z}^{h} = \xi_{y}\xi^{h}$,
(3.10) (iv) $f_{y}^{z}f_{z}^{x} = -\delta_{y}^{x} + \xi_{y}\xi^{x} + f_{y}^{i}f_{i}^{x}$,
(v) $f_{x}^{i}\xi^{x} = 0$,
(vi) $f_{i}^{x}\xi^{i} = f_{y}^{x}\xi^{y}$,
(vii) $\xi_{i}\xi^{i} + \xi_{y}\xi^{y} = 1$,

where $\xi_i = g_{ih}\xi^h$ and $\xi_y = g_{yx}\xi^x$, (vii) being a consequence of $\xi_i\xi^i = 1$.

Differentiating (3.5), (3.6) and (3.7) covariantly over M^n and using (1.6), (1.7), (3.10), equations of Gauss

and those of Weingarten

$$(3.12) \nabla_j C_{y'} = -h_j{}^i{}_y B_i{}^s,$$

where V_j denotes the operator of covariant differentiation over M^n , and h_{ji}^x and $h_{j'y} = h_{ji}^z g^{ti} g_{zy}$ are the second fundamental tensors of M^n with respect to the normals C_x^z , we find

(3.13)
(i)
$$-g_{ji}\xi^{h} + \delta_{j}^{h}\xi_{i} = -h_{ji}x_{fx}^{h} + h_{j}^{h}x_{fi}^{x}$$
,
(ii) $\nabla_{j}f_{i}^{x} = g_{ji}\xi^{x} - h_{ji}v_{fy}^{x}$,
(iii) $\nabla_{j}f_{y}^{h} = \delta_{j}^{h}\xi_{y} + h_{j}^{h}x_{fy}^{x}$,
(iv) $\nabla_{j}f_{y}^{x} = -h_{ji}x_{fy}^{i} + h_{j}^{i}v_{j}f_{i}^{x}$,
(v) $\nabla_{j}\xi^{h} = h_{j}^{h}v_{j}\xi^{y}$,
(vi) $\nabla_{j}\xi^{x} = -f_{j}x - h_{ji}x\xi^{i}$.

I. The case in which ξ^{ϵ} is tangent to M^n . Suppose that n = m + 1. Then the codimension of M^n is 2m + 1 - n = n - 1, and consequently $[f_y^h, \xi^h]$ and $\begin{bmatrix} f_i^y \\ \xi_i \end{bmatrix}$ are both square matrices and satisfy

$$[f_{y}^{h}, \xi^{h}] \begin{bmatrix} f_{i}^{y} \\ \xi_{i} \end{bmatrix} = \text{unit matrix}$$

because of (3.10) (i). Thus we have

$$\begin{bmatrix} f_i^x \\ \xi_i \end{bmatrix} [f_y^i, \xi^i] = \text{unit matrix },$$

from which it follows that

(3.14)
$$f_i{}^x f_y{}^i = \delta^x_y, \quad f_i{}^x \xi^i = 0, \quad \xi_i f_y{}^i = 0, \quad \xi_i \xi^i = 1.$$

By remembering that $\xi_i \xi^i + \xi_x \xi^x = 1$, we further find $\xi^x = 0$ and hence ξ^x is tangent to M^n .

In general suppose that ξ^{r} is tangent to M^{n} , that is, $\xi^{x} = 0$. Then (3.10) becomes

(3.15)
(i)
$$f_i^y f_y^h = \delta_i^h - \xi_i \xi^h$$
,
(ii) $f_i^y f_y^x = 0$,
(iii) $f_y^z f_z^h = 0$,
(iv) $f_y^z f_z^x = -\delta_y^x + f_y^i f_i^x$,
(v) $f_i^x \xi^i = 0$,
(vi) $\xi_i \xi^i = 1$.

From (3.15)(iii) and (iv) we see that f_y^x defines a so-called *f*-structure in the normal bundle (see Yano [18]). In this case (3.13) becomes

(3.16)
(i)
$$-g_{ji}\xi^{h} + \delta^{h}_{j}\xi_{i} = -h_{ji}{}^{x}f_{x}^{h} + h_{j}{}^{h}{}_{x}f_{i}^{x}$$
,
(ii) $\nabla_{j}f_{i}{}^{x} = -h_{ji}{}^{y}f_{y}{}^{x}$,
(iii) $\nabla_{j}f_{y}{}^{h} = h_{j}{}^{h}{}_{x}f_{y}{}^{x}$,
(iv) $\nabla_{j}f_{y}{}^{x} = -h_{ji}{}^{x}f_{y}{}^{i} + h_{j}{}^{i}{}_{y}f_{i}{}^{x}$,
(v) $\nabla_{j}\xi^{h} = 0$,
(vi) $h_{ji}{}^{x}\xi^{i} + f_{j}{}^{x} = 0$.

(3.16)(v) shows that whenever the vector field ξ^{r} is tangent to an antiinvariant submanifold of a Sasakian manifold, it is parallel over the submanifold.

(3.16)(i) shows that an anti-invariant submanifold tangent to ξ^{x} cannot be totally umbilical or totally contact umbilical. For, if h_{ji}^{x} is of the form $(\alpha g_{ji} + \beta \xi_{j} \xi_{i}) h^{x}$, then from (3.16)(i) we have

$$-g_{ji}\xi^h + \delta^h_j\xi_i = -(\alpha g_{ji} + \beta\xi_j\xi_i)h^x f_x^h + (\alpha \delta^h_j + \beta\xi_j\xi^h)h_x f_i^x,$$

from which, by contracting with respect to h and j and using (3.15)(v) we obtain

$$(n-1)\xi_i = (n-1)\alpha h_x f_i^x + \beta h_x f_i^x,$$

and consequently transvecting with ξ^i and using (3.15)(v) give $(n-1)\xi_i\xi^i = 0$, which is a contradiction for n > 1.

We now come back to the case n = m + 1. In this case, from the first equation of (3.14) and (3.15)(iv), we have $f_y{}^z f_z{}^x = 0$ or $f_{yx}f^{yx} = 0$ because $f_{yx} = f_y{}^z g_{zx}$ is skew-symmetric and $f_y{}^x = 0$. Thus (3.16)(ii) becomes

$$(3.17) \nabla_j f_i^x = 0 ,$$

from which, using the Ricci identity we obtain

(3.18)
$$K_{kji}{}^{h}f_{h}{}^{x} - K_{kjy}{}^{x}f_{i}{}^{y} = 0,$$

where K_{kji}^{h} (respectively, K_{kjy}^{x}) is the curvature tensor of M^{n} (respectively, the normal bundle of M^{n}).

From (3.18) we have, taking account of the first equation of (3.14) and (3.15)(i),

(3.19)
$$K_{kjy}{}^{x}f_{i}{}^{y}f_{x}{}^{h} = K_{kji}{}^{h},$$

because of $K_{kji}{}^{h}\xi^{i} = 0$ derived from (3.16)(v). (3.19) and (3.20) show that $K_{kji}{}^{h} = 0$ and $K_{kjy}{}^{x} = 0$ are equivalent.

II. The case in which ξ^{ϵ} is normal to M^n . Now suppose that ξ^{ϵ} is normal to M^n , that is, $\xi^h = 0$. Then (3.10) becomes

(i)
$$f_i{}^y f_y{}^h = \delta_i^h$$
,
(ii) $f_i{}^y f_y{}^x = 0$,
(iii) $f_y{}^y f_z{}^h = 0$,
(iv) $f_y{}^z f_z{}^h = 0$,
(v) $f_y{}^z f_z{}^x = -\delta_y{}^x + \xi_y{}^z \xi^x + f_y{}^i f_i{}^x$,
(v) $f_x{}^i \xi^x = 0$,
(vi) $f_y{}^x \xi^y = 0$,
(vii) $\xi_y{}^y \xi^y = 1$.

(3.21) (iiii), (iv) and (vi) show that f_y^x defines an *f*-structure in the normal bundle. In this case, (3.13) becomes

(3.22)
(i)
$$-h_{ji}{}^{x}f_{x}{}^{h} + h_{j}{}^{h}{}_{x}f_{i}{}^{x} = 0$$
,
(ii) $\nabla_{j}f_{i}{}^{x} = g_{ji}\xi^{x} - h_{ji}{}^{y}f_{y}{}^{x}$,
(iii) $\nabla_{j}f_{y}{}^{h} = \delta_{j}{}^{h}\xi_{y} + h_{j}{}^{h}{}_{x}f_{y}{}^{x}$,
(iv) $\nabla_{j}f_{y}{}^{x} = -h_{ji}{}^{x}f_{y}{}^{i} + h_{j}{}^{i}{}_{y}f_{i}{}^{x}$,

$$\begin{array}{ll} (\mathbf{v}) & h_j{}^h{}_y\xi{}^y = 0 \ , \\ (\mathrm{vi}) & \nabla_j\xi{}^x = -f_j{}^x \ . \end{array}$$

From (3.21)(i) it follows that $f_{iy}f^{yi} = n$, and consequently by (3.21)(iv) and (vii) we find

$$-f_{zy}f^{zy} = -(2m + 1 - n) + 1 + n = -2(m - n)$$

Thus, if n = m, then we have $f_y^x = 0$, and (3.21) and (3.22) become respectively

$$(3.23) \qquad \begin{array}{ll} (i) & f_{i}^{v}f_{y}^{h} = \delta_{i}^{h} , \\ (ii) & f_{i}^{x}f_{y}^{i} = \delta_{y}^{x} - \xi_{y}\xi^{x} , \\ (iii) & f_{x}^{h}\xi^{x} = 0 , \\ (iv) & \xi_{x}\xi^{x} = 1 ; \\ (i) & -h_{ji}^{x}f_{x}^{h} + h_{j}^{h}{}_{x}f_{i}^{x} = 0 , \\ (ii) & \nabla_{j}f_{i}^{x} = g_{ji}\xi^{x} , \\ (iii) & \nabla_{j}f_{y}^{h} = \delta_{j}^{h}\xi_{y} , \\ (iv) & -h_{ji}^{x}f_{y}^{i} + h_{j}^{i}{}_{y}f_{i}^{x} = 0 , \\ (v) & h_{j}^{h}{}_{y}\xi^{y} = 0 , \\ (vi) & \nabla_{i}\xi^{x} = -f_{i}^{x} . \end{array}$$

Suppose that M^n is totally umbilical, and put $h_{ji}{}^x = g_{ji}h^x$. Then from (3.24)(i) we have

$$-g_{ji}h^{x}f_{x}^{h}+\delta^{h}_{j}h_{x}f_{i}^{x}=0,$$

which implies $h^{x}f_{x}^{h} = 0$ for n > 1. From (3.24)(iv) it follows that

$$-h^x f_{yj} + h_y f_j^x = 0 ,$$

from which, by transvecting with h^{y} and using $f_{yj}h^{y} = 0$ we have $h_{y}h^{y}f_{j}^{x} = 0$, and consequently $h_{y}h^{y} = 0$ and hence $h_{y} = 0$. Thus M^{n} must be totally geodesic.

By (3.24)(ii) and (vi), we find

$$\nabla_{j}\nabla_{i}\xi^{x}=-g_{ji}\xi^{x},$$

from which, using the Ricci identity we obtain

$$K_{kjy}{}^{x}\xi^{y}=0.$$

On the other hand, from (3.24)(ii) and (vi), we have, using the Ricci identity,

 $-K_{kji}{}^{h}f_{h}{}^{x} + K_{kjy}{}^{x}f_{i}{}^{y} = -f_{k}{}^{x}g_{ji} + f_{j}{}^{x}g_{ki} ,$

which, together with (3.23)(i), implies that

$$(3.25) K_{kji}{}^h = K_{kjy}{}^x f_i{}^y f_x{}^h + \delta^h_k g_{ji} - \delta^h_j g_{ki}$$

and that, in consequence of $K_{kjy}{}^{x}\xi^{y} = 0$ and (3.23)(ii),

(3.26)
$$K_{kjy}{}^{x} = K_{kji}{}^{h}f_{y}{}^{i}f_{h}{}^{x} + f_{yk}f_{j}{}^{x} - f_{yj}f_{k}{}^{x}$$

(3.25) and (3.26) show that M^n is of constant curvature 1 if and only if the connection induced in the normal bundle is of zero curvature.

4. Anti-invariant submanifolds of a Sasakian manifold with vanishing contact Bochner curvature tensor

We first of all remember that the equations of Gauss, Codazzi and Ricci are respectively

(4.1)
$$K_{kjih} = K_{\nu\mu\lambda\epsilon} B^{\nu\mu\lambda\epsilon}_{kjih} + h_{khx} h_{ji}{}^x - h_{jhx} h_{ki}{}^x ,$$

(4.2)
$$0 = K_{\nu\mu\lambda\epsilon} B_{kji}^{\nu\mu\lambda} C_{y}^{\epsilon} - (\nabla_{k} h_{jiy} - \nabla_{j} h_{kiy}) ,$$

(4.3)
$$K_{kjyx} = K_{\nu\mu\lambda x} B_{kj}^{\nu\mu} C_{yx}^{\lambda x} - (h_k^{\ t} y h_{jtx} - h_j^{\ t} y h_{ktx}) ,$$

where $K_{\nu\mu\lambda\epsilon}$, K_{kjih} and K_{kjyx} are the covariant components of the curvature tensors of M^{2m+1} , M^n and the normal bundle respectively, $B_{kjih}^{\nu\mu\lambda\epsilon} = B_k^{\nu}B_j^{\mu}B_i^{\lambda}B_h^{\epsilon}$ and $B_{kji}^{\nu\mu\lambda} = B_k^{\nu}B_j^{\mu}B_i^{\lambda}$.

We assume that the contact Bochner curvature tensor of M^{2m+1} vanishes identically. Then from (2.1) we have

(4.4)
$$K_{\nu\mu\lambda\epsilon} + (g_{\nu\epsilon} - \xi_{\nu}\xi_{\epsilon})L_{\mu\lambda} - (g_{\mu\epsilon} - \xi_{\mu}\xi_{\epsilon})L_{\nu\lambda} + L_{\nu\epsilon}(g_{\mu\lambda} - \xi_{\mu}\xi_{\lambda}) - L_{\mu\epsilon}(g_{\nu\lambda} - \xi_{\nu}\xi_{\lambda}) + \varphi_{\nu\epsilon}M_{\mu\lambda} - \varphi_{\mu\epsilon}M_{\nu\lambda} + M_{\nu\epsilon}\varphi_{\mu\lambda} - M_{\mu\epsilon}\varphi_{\nu\lambda} - 2(\varphi_{\nu\mu}M_{\lambda\epsilon} + M_{\nu\mu}\varphi_{\lambda\epsilon}) + (\varphi_{\nu\epsilon}\varphi_{\mu\lambda} - \varphi_{\mu\epsilon}\varphi_{\nu\lambda} - 2\varphi_{\nu\mu}\varphi_{\lambda\epsilon}) = 0,$$

from which, by using $g_{\mu\lambda}B_{ji}^{\mu\lambda} = g_{ji}$, $\varphi_{\mu\lambda}B_{ji}^{\mu\lambda} = 0$, $\varphi_{\mu\lambda}B_{j}^{\mu}C_{y}^{\lambda} = -f_{jy}$, $\varphi_{\mu\lambda}C_{yx}^{\mu\lambda} = f_{yx}$, $\xi_{\nu}B_{k}^{\nu} = \xi_{k}$ and $\xi_{\nu}C_{y}^{\nu} = \xi_{y}$, we find

(4.5)
$$\begin{array}{l} K_{\nu\mu\lambda\epsilon}B_{kjih}^{\nu\mu\lambda\epsilon} + (g_{kh} - \xi_k\xi_h)L_{ji} - (g_{jh} - \xi_j\xi_h)L_{ki} \\ + L_{kh}(g_{ji} - \xi_j\xi_i) - L_{jh}(g_{ki} - \xi_k\xi_i) = 0 \end{array} ,$$

(4.6)
$$\frac{K_{\nu\mu\lambda\epsilon}B_{kji}^{\nu\mu\lambda}C_{y}^{\epsilon} - \xi_{k}\xi_{y}L_{ji} + \xi_{j}\xi_{y}L_{ki} + L_{ky}(g_{ji} - \xi_{j}\xi_{i})}{-L_{jy}(g_{ki} - \xi_{k}\xi_{i}) - f_{ky}M_{ji} + f_{jy}M_{ki} + 2M_{kj}f_{iy} = 0},$$

(4.7)
$$\begin{array}{c} K_{\nu\mu\lambda x}B_{kj}^{\nu\mu}C_{yx}^{\lambda x} - \xi_{k}\xi_{x}L_{jy} + \xi_{j}\xi_{x}L_{ky} - L_{kx}\xi_{j}\xi_{y} + L_{jx}\xi_{k}\xi_{y} - f_{kx}M_{jy} \\ + f_{jx}M_{ky} - M_{kx}f_{jy} + M_{jx}f_{ky} - 2M_{kj}f_{yx} + (f_{kx}f_{jy} - f_{jx}f_{ky}) = 0 \end{array} ,$$

where

(4.8)
$$\begin{array}{ccc} L_{ji} = L_{\mu\lambda} B_{ji}^{\mu\lambda} , & L_{ky} = L_{\mu\lambda} B_k^{\mu} C_y^{\lambda} , \\ M_{ji} = M_{\mu\lambda} B_{ji}^{\mu\lambda} , & M_{ky} = M_{\mu\lambda} B_k^{\mu} C_y^{\lambda} . \end{array}$$

Since $M_{\mu\lambda} = -L_{\mu\alpha}\varphi_{\lambda}^{\alpha}$, we have

$$M_{ji} = -L_{\mulpha} \varphi_{\lambda}^{\ lpha} B_{ji}^{\mu\lambda} = L_{\mulpha} B_{j}^{\ \mu} f_{i}^{\ x} C_{x}^{\ lpha}$$
,

that is,

$$(4.9) M_{ji} = L_{jx} f_i^x ,$$

and also

$$M_{ky} = -L_{\mu\alpha}\varphi_{\lambda}^{\alpha}B_{k}^{\mu}C_{y}^{\lambda} = -L_{\mu\alpha}B_{k}^{\mu}(f_{y}^{i}B_{i}^{\alpha} + f_{y}^{x}C_{x}^{\alpha}) ,$$

that is,

(4.10)
$$M_{ky} = -L_{ki}f_{y}^{i} - L_{kx}f_{y}^{x}$$

Thus (4.1), (4.2) and (4.3) can be written respectively as

(4.11)
$$\begin{array}{c} K_{kjih} + (g_{kh} - \xi_k \xi_h) L_{ji} - (g_{jh} - \xi_j \xi_h) L_{ki} + L_{kh} (g_{ji} - \xi_j \xi_i) \\ - L_{jh} (g_{ki} - \xi_k \xi_i) - (h_{khx} h_{ji}{}^x - h_{jhx} h_{ki}{}^x) = 0 , \end{array}$$

(4.12)
$$\begin{array}{l} (\xi_k L_{ji} - \xi_j L_{ki}) \xi_y - L_{ky} (g_{ji} - \xi_j \xi_i) + L_{jy} (g_{ki} - \xi_k \xi_i) \\ + f_{ky} M_{ji} - f_{jy} M_{ki} - 2M_{kj} f_{iy} - (\nabla_k h_{jiy} - \nabla_j h_{kiy}) = 0 \end{array},$$

(4.13)
$$\begin{array}{l} K_{kjyx} - (\xi_k L_{jy} - \xi_j L_{ky})\xi_x - (L_{kx}\xi_j - L_{jx}\xi_k)\xi_y \\ + M_{ky}f_{jx} - M_{jy}f_{kx} + f_{ky}M_{jx} - f_{jy}M_{kx} - 2M_{kj}f_{yx} \\ + (f_{kx}f_{jy} - f_{jx}f_{ky}) + (h_k^{\ t}_y h_{jtx} - h_j^{\ t}_y h_{ktx}) = 0 \ . \end{array}$$

I. The case in which the vector field ξ^{ϵ} is tangent to M^n . We now assume that n = m + 1. Then the vector field ξ^{ϵ} is tangent to M^n and $f_y^x = 0$. Thus (4.13) becomes

$$\begin{split} K_{kjyx} &- f_{kx} M_{jy} + f_{jx} M_{ky} - M_{kx} f_{jy} + M_{jx} f_{ky} \\ &+ (f_{kx} f_{jy} - f_{jx} f_{ky}) + (h_k^t {}_y h_{jtx} - h_j^t {}_y h_{ktx}) = 0 , \end{split}$$

from which, by transvecting with $f_i^{\nu}f_h^{x}$ and using $f_{jx}f_i^{x} = g_{ji} - \xi_j\xi_i$ derived from (3.15)(i), we find

We now assume that the second fundamental tensors are commutative. Then from (3.19) and (4.14) we have

(4.15)

$$K_{kjih} + (g_{kh} - \xi_k \xi_h) N_{ji} - (g_{jh} - \xi_j \xi_h) N_{ki} + N_{kh} (g_{ji} - \xi_j \xi_i) - N_{jh} (g_{ki} - \xi_k \xi_i) + (g_{kh} - \xi_k \xi_h) (g_{ji} - \xi_j \xi_i) - (g_{jh} - \xi_j \xi_h) (g_{ki} - \xi_k \xi_i) = 0,$$

where $N_{ji} = -M_{jy}f_i^{y}$.

Now since the vector field ξ^h is parallel, the Riemannian manifold M^n is locally a product of M^{n-1} and M^1 generated by ξ^h , and M^{n-1} is totally geodesic in M^n . We represent M^{n-1} in M^n by parametric equations $y^h = y^h(z^a)$ $(a, b, c, d, \dots = 1'', 2'', \dots, (n-1)'')$, and put $B_b{}^h = \partial y^h / \partial z^b$. Then we have $\xi_i B_b{}^i = 0$, and the curvature tensor K_{deba} of M^{n-1} is given by

$$(4.16) K_{dcba} = K_{kjih} B_{dcba}^{kjih} ,$$

where $B_{dcba}^{kjih} = B_d {}^k B_c {}^j B_b {}^i B_a {}^h$. Thus transvecting (4.15) with B_{dcba}^{kjih} , we obtain

$$(4.17) K_{dcba} + g_{da}C_{cb} - g_{ca}C_{db} + C_{da}g_{cb} - C_{ca}g_{db} = 0 ,$$

where $g_{cb} = g_{ji}B_c{}^jB_b{}^i$ is the metric tensor of M^{n-1} and

$$C_{cb} = N_{ji}B_c{}^jB_b{}^i + \frac{1}{2}g_{cb}$$
.

(4.17) shows that the Weyl conformal curvature tensor of M^{n-1} vanishes, and M^{n-1} is conformally flat if $n-1 \ge 4$. Thus we have

Theorem 4.1. Let M^n , $n \ge 5$, be an anti-invariant submanifold of a Sasakian manifold M^{2n-1} with vanishing contact Bochner curvature tensor. If the second fundamental tensors of M^n commute, then M^n is locally a product of a conformally flat Riemannian space and a 1-dimensional space.

II. The case in which the vector field ξ^{ϵ} is normal to M^n . We now consider the case in which the vector field ξ^{ϵ} is normal to the anti-invariant submanifold M^n , so that $\xi^h = 0$. Then from (4.11) we obtain

(4.18)
$$K_{kjih} + g_{kh}L_{ji} - g_{jh}L_{ki} + L_{kh}g_{ji} - L_{jh}g_{ki} \\ - (h_{khx}h_{ji}{}^x - h_{jhx}h_{ki}{}^x) = 0 .$$

If M^n is umbilical, that is, if $h_{jix} = g_{ji}h_x$, then we can write (4.18) in the form

(4.19)
$$\begin{array}{l} K_{kjih} + g_{kh}(L_{ji} - \frac{1}{2}h_xh^xg_{ji}) - g_{jh}(L_{ki} - \frac{1}{2}h_xh^xg_{ki}) \\ + (L_{kh} - \frac{1}{2}h_xh^xg_{kh})g_{ji} - (L_{jh} - \frac{1}{2}h_xh^xg_{jh})g_{ki} = 0 \end{array},$$

which shows that the Weyl conformal curvature tensor of M^n vanishes. Thus we have

Theorem 4.2. Let M^n , $n \ge 4$, be a totally umbilical anti-invariant submanifold normal to the structure vector field ξ^{ϵ} of a Sasakian manifold M^{2m+1} with vanishing contact Bochner curvature tensor. Then M^n is conformally flat. Next from (4.13) we obtain

Next from (4.13) we obtain

(4.20)
$$\begin{array}{c} K_{kjyx} + M_{ky}f_{jx} - M_{jy}f_{kx} + f_{ky}M_{jx} - f_{jy}M_{kx} + 2M_{kj}f_{yx} \\ + (f_{kx}f_{jy} - f_{jx}f_{ky}) + (h_k{}^t{}_yh_{jtx} - h_j{}^t{}_yh_{ktx}) = 0 \end{array} .$$

If n = m, which implies that $f_y^x = 0$, and the second fundamental tensors of M^n commute, then from (4.20) we have

(4.21)
$$K_{kjyx} - f_{kx}M_{jy} + f_{jx}M_{ky} - M_{kx}f_{jy} + M_{jx}f_{ky} + (f_{kx}f_{jy} - f_{jx}f_{ky}) = 0 ,$$

from which, by transvecting with $f_i^{y} f_h^{x}$ and using (3.23)(i), we find

(4.22)
$$\frac{K_{kjyx}f_i^{y}f_h^{x} - g_{kh}M_{jy}f_i^{y} + g_{jh}M_{ky}f_i^{y} - M_{ky}f_h^{y}g_{ji} + M_{jy}f_h^{y}g_{ki}}{+ (g_{kh}g_{ji} - g_{jh}g_{ki}) = 0}.$$

Substituting (4.22) in (3.25) yields

$$(4.23) \quad K_{kjih} - g_{kh} M_{jy} f_i^{y} + g_{jh} M_{ky} f_i^{y} - M_{ky} f_h^{y} g_{ji} + M_{jy} f_h^{y} g_{ki} = 0$$

which shows that the Weyl conformal curvature tensor of M^n vanishes. Thus we have

Theorem 4.3. Let M^n , $n \ge 4$, be an anti-invariant submanifold normal to the structure vector field ξ^{ϵ} of a Sasakian manifold M^{2n+1} with vanishing contact Bochner curvature tensor. If the second fundamental tensors commute, then M^n is conformally flat.

5. Sasakian manifolds as fibred spaces with invariant Riemannian metric

It is well known that in a Sasakian manifold we have

(5.1)
$$\mathscr{L}g_{\mu\lambda} = 0$$
, $\mathscr{L}\varphi_{\lambda}^{*} = 0$, $\mathscr{L}\xi_{\lambda} = 0$

where \mathscr{L} denotes the operator of Lie derivation with respect to the structure vector field ξ^{ϵ} . Thus, assuming that ξ^{ϵ} is regular, we can regard a Sasakian manifold M^{2m+1} as a fibred space with invariant Riemannian metric (see Yano and Ishihara [24]). Denoting 2m functionally independent solutions of

$$\xi^{\prime}\partial_{\lambda}u=0$$

by $u^{h}(x)$, we see that u^{h} are local coordinates of the base space M^{2m} . We put

(5.2)
$$E_{\lambda}^{h} = \partial_{\lambda} u^{h}, \quad E_{\lambda} = \xi_{\lambda}, \quad E^{\kappa} = \xi^{\kappa},$$

where and in the sequel the indices h, i, j, \cdots run over the range $\{1', 2', \cdots, (2m)'\}$. Then we have

$$E^{\lambda}E_{\lambda}^{h}=0, \qquad E^{\lambda}E_{\lambda}=1.$$

Since E_{λ}^{h} and E_{λ} are linearly independent, we put

$$\begin{bmatrix} E_{\lambda}^{h} \\ E_{\lambda} \end{bmatrix}^{-1} = \begin{bmatrix} E^{\lambda}_{i}, E^{\lambda} \end{bmatrix}.$$

Then we have

(5.3)
$$E_{\lambda}^{h}E^{\lambda}_{i} = \delta_{i}^{h}, \quad E_{\lambda}^{h}E^{\lambda} = 0, \quad E_{\lambda}E^{\lambda}_{i} = 0, \quad E_{\lambda}E^{\lambda} = 1,$$

(5.4)
$$E_{\lambda}^{i}E_{i}^{\epsilon} + E_{\lambda}E^{\epsilon} = \delta_{\lambda}^{\epsilon}.$$

For the Lie derivatives of E's we have

(5.5)
$$\mathscr{L}E_{\lambda}^{h} = 0$$
, $\mathscr{L}E_{\lambda} = 0$, $\mathscr{L}E_{i}^{\epsilon} = 0$, $\mathscr{L}E^{\epsilon} = 0$.

Thus using $\mathscr{L}g_{\mu\lambda} = 0$ and (5.5) we see that

$$(5.6) g_{ji} = g_{\mu\lambda} E^{\mu}{}_{j} E^{\lambda}{}_{i}$$

is the metric tensor of the base space M^{2m} . From (5.6) we have

(5.7)
$$g_{\mu\lambda} = g_{ji}E_{\mu}{}^{j}E_{\lambda}{}^{i} + E_{\mu}E_{\lambda}$$
.

It will be easily verified that

(5.8)
$$E_{i}^{\kappa} = E_{\lambda}^{j} g^{\lambda \kappa} g_{ji}$$
, $E^{\kappa} = E_{\lambda} g^{\lambda \kappa}$, $E_{\lambda}^{h} = E_{\mu}^{\mu} g_{\mu \lambda} g^{ih}$, $E_{\lambda} = E^{\mu} g_{\mu \lambda}$

where g^{ih} are contravariant components of the metric tensor g_{ji} of the base space M^{2m} . Also using $\mathscr{L}\varphi_{\lambda}^{r} = 0$ and (5.5) we see that

(5.9)
$$F_i{}^h = \varphi_i{}^{\kappa} E^{\lambda}{}_i E_{\kappa}{}^h$$

is a tensor field of type (1, 1) of the base space M^{2m} and defines an almost complex structure of M^{2m} . From (5.6) and (5.9) we easily find

(5.10)
$$g_{is}F_{j}{}^{t}F_{i}{}^{s} = g_{ji}$$
,

which shows that g_{ji} is a Hermitian metric with respect to this almost complex structure. Thus the base space M^{2m} is an almost Hermitian manifold.

From (5.9) it follows that

(5.11)
$$\varphi_{\lambda} E^{\lambda}{}_{i} = F_{i} E^{\lambda} E^{\lambda}{}_{h}, \quad \varphi_{\lambda} E^{\lambda}{}_{s} = F_{i} E^{\lambda}{}_{\lambda}, \quad \varphi_{\lambda} = F_{i} E^{\lambda} E^{\lambda}{}_{\lambda} E^{\lambda}{}_{h}.$$

For a function f(u(x)) on the base manifold M^{2m} we have

(5.12)
$$\partial_{\lambda} f = E_{\lambda}^{i} \partial_{i} f$$
, $\partial_{i} f = E_{\lambda}^{i} \partial_{\lambda} f$,

where $\partial_i = \partial/\partial u^i$.

Now using (5.7) we compute the Christoffel symbols $\{ {}_{\mu}{}_{\lambda} \}$ formed with $g_{\mu\lambda}$ and find

(5.13)
$$\{ {}^{\epsilon}_{\mu \lambda} \} = \{ {}^{h}_{i} \} E_{\mu}{}^{j} E_{\lambda}{}^{i} E^{\epsilon}{}_{h} + (\partial_{\mu} E_{\lambda}{}^{h}) E^{\epsilon}{}_{h} + \frac{1}{2} (\partial_{\mu} E_{\lambda} + \partial_{\lambda} E_{\mu}) E^{\epsilon} \\ + E_{\mu} \varphi_{\lambda}{}^{\epsilon} + E_{\lambda} \varphi_{\mu}{}^{\epsilon} ,$$

where $\{j_i^h\}$ are Christoffel symbols formed with g_{ji} . From (5.13) we have, in consequence of (5.11),

(5.14)
$$\partial_{\mu}E_{\lambda}^{h} - \{_{\mu}^{s}\}E_{\lambda}^{h} + \{_{j}^{h}\}E_{\mu}^{j}E_{\lambda}^{i} = -(E_{\mu}E_{\lambda}^{i} + E_{\lambda}E_{\mu}^{i})F_{i}^{h}.$$

Putting

(5.15)
$$\nabla_{\mu}E_{\lambda}^{h} = \partial_{\mu}E_{\lambda}^{h} - \{ {}^{s}_{\mu\lambda} \}E_{s}^{h} + \{ {}^{h}_{j} \}E_{\mu}^{j}E_{\lambda}^{i} ,$$

we have, from (5.14),

(5.16)
$$V_{\mu}E_{\lambda}{}^{h} = -(E_{\mu}E_{\lambda}{}^{i} + E_{\lambda}E_{\mu}{}^{i})F_{i}{}^{h}$$

Thus putting $\nabla_j = E^{\mu}_{\ j} \nabla_{\mu}$ we find

(5.17)
$$\nabla_{j}E_{\lambda}^{h} = -F_{j}^{h}E_{\lambda},$$

from which it follows that

$$(5.18) \nabla_j E^{\epsilon}{}_i = -F_{ji}E^{\epsilon},$$

where $F_{ji} = F_j^t g_{ti}$. Thus by (5.9), (5.17) and (5.18) we obtain

which shows that the base manifold M^{2m} is Kaehlerian.

From (5.16) and the Ricci identity

$$\nabla_{\nu}\nabla_{\mu}E_{\lambda}^{h}-\nabla_{\mu}\nabla_{\nu}E_{\lambda}^{h}=-K_{\nu\mu\lambda}E_{\lambda}^{h}+K_{kji}E_{\nu}E_{\mu}E_{\lambda}E_{\lambda}^{i},$$

we find

(5.20)
$$K_{kji}{}^{h}E_{\nu}{}^{k}E_{\mu}{}^{j}E_{\lambda}{}^{i} = K_{\nu\mu\lambda}{}^{t}E_{\lambda}{}^{h} - (E_{\nu}E_{\mu}{}^{h} - E_{\mu}E_{\nu}{}^{h})E_{\lambda} + (E_{\nu}{}^{i}\varphi_{\mu\lambda} - E_{\mu}{}^{i}\varphi_{\nu\lambda} - 2\varphi_{\nu\mu}E_{\lambda}{}^{i})F_{i}{}^{h},$$

which implies that

(5.21)
$$K_{kjih} = K_{\nu\mu\lambda\kappa} E_{kjih}^{\nu\mu\lambda\kappa} + (F_{kh}F_{ji} - F_{jh}F_{ki} - 2F_{kj}F_{ih}),$$

where $E_{kjih}^{\nu\mu\lambda\kappa} = E_{k}^{\nu}E_{i}^{\mu}E_{i}^{\lambda}E_{h}^{\kappa}$.

6. Sasakian manifolds with vanishing contact Bochner curvature tensor as a fibred space with invariant Riemannian metric

We now assume that the contact Bochner curvature tensor of the Sasakian manifold M^{2m+1} vanishes identically. Then transvecting (4.4) with $E_{kjih}^{\nu\mu\lambda\epsilon}$ we find

$$K_{\nu\mu\lambda\epsilon} E_{kjih}^{\nu\mu\lambda\epsilon} + g_{kh}L_{ji} - g_{jh}L_{ki} + L_{kh}g_{ji} - L_{jh}g_{ki} (6.1) + F_{kh}M_{ji} - F_{jh}M_{ki} + M_{kh}F_{ji} - M_{jh}F_{ki} - 2(F_{kj}M_{ih} + M_{kj}F_{ih}) + (F_{kh}F_{ji} - F_{jh}F_{ki} - 2F_{kj}F_{ih}) = 0 ,$$

where

$$L_{j\imath} = L_{\mu\imath} E^{\mu}{}_{j} E^{\imath}{}_{i}$$
, $M_{j\imath} = M_{\mu\imath} E^{\mu}{}_{j} E^{\imath}{}_{\imath}$.

Thus we have

$$M_{ji} = -L_{\mulpha} \varphi_{\lambda}^{\ lpha} E^{\mu}{}_{j} E^{\lambda}{}_{i} = -L_{\mulpha} E^{\mu}{}_{j} F_{i}{}^{t} E^{lpha}{}_{t}$$

that is,

$$(6.2) M_{ji} = -L_{ji}F_i^t,$$

which implies that

$$(6.3) L_{ji} = M_{jt}F_i^t.$$

Substituting (6.1) in (5.21) we find

(6.4)
$$\frac{K_{kjih} + g_{kh}L_{ji} - g_{jh}L_{ki} + L_{kh}g_{ji} - L_{jh}g_{ki} + F_{kh}M_{ji} - F_{jh}M_{ki}}{+ M_{kh}F_{ji} - M_{jh}F_{ki} - 2(F_{kj}M_{ih} + M_{kj}F_{ih}) = 0},$$

from which, by transvecting with g^{kh} and using (6.2), we find

(6.5)
$$K_{ji} = -2(m+2)L_{ji} - Lg_{ji},$$

where $L = g^{ji}L_{ji}$, from which transvecting with g^{ji} gives

(6.6)
$$K = -4(m+1)L$$
 or $L = -\frac{1}{4(m+1)}K$

Substituting (6.6) in (6.5) we find

(6.7)
$$L_{ji} = -\frac{1}{2(m+2)}K_{ji} + \frac{1}{8(m+1)(m+2)}Kg_{ji}.$$

Thus (6.4) shows that the Bochner curvature tensor of the base space M^{2m} vanishes. Hence we have

Theorem 6.1. Let M^{2m+1} be a Sasakian manifold with vanishing contact Bochner curvature tensor regarded as a fibred space with invariant Riemannian metric. Then the Bochner curvature tensor of the Kaehlerian base space vanishes.

Bibliography

- [1] D. E. Blair, On the geometric meaning of the Bochner tensor, Geometriae Dedicata, 4 (1975) 33-38.
- [2] D. E. Blair & K. Ogiue, Geometry of integral submanifolds of a contact distribution, Illinois J. Math. 19 (1975) 269-276.
- [3] S. Bochner, Curvature and Betti numbers. II, Ann. of Math. 50 (1949) 77-93.
- [4] B. Y. Chen & K. Ogiue, On totally real submanifolds, Trans. Amer. Math. Soc. 193 (1974) 257-266.
- [5] B. Y. Chen & K. Yano, Manifolds with vanishing Weyl or Bochner curvature tensor, J. Math. Soc. Japan 27 (1975) 106-112.
- [6] C. S. Houh, Some totally real minimal surfaces in CP², Proc. Amer. Math. Soc. 40 (1973) 240-244.
- [7] M. Kon, Totally real submanifolds in a Kaehlerian manifold, J. Differential Geometry 11 (1976) 251-257.
- [8] G. D. Ludden, M. Okumura & K. Yano, Totally real submanifolds of complex manifolds, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Natur. 58 (1975) 346-353.
- [9] —, A totally real surface in CP² that is not totally geodesic, Proc. Amer. Math. Soc. 53 (1975) 186–190.
- [10] M. Matsumoto, On Kaehlerian spaces with parallel or vanishing Bochner curvature tensor, Tensor, N. S. 20 (1969) 25–28.
- [11] M. Matsumoto & G. Chūman, On the C-Bochner curvature tensor, TRU. Math. 5 (1969) 21-30.
- [12] S. Sasaki, Almost contact manifolds, Lecture notes. I, 1965, Tôhoku University.
- [13] S. Tachibana, On the Bochner curvature tensor, Natural Sci. Rep., Ochanomizu Univ. 18 (1967) 15-19.
- [14] S. Tachibana & R. C. Liu, Notes on Kaehlerian metrics with vanishing Bochner curvature tensor, Kōdai Math. Sem. Rep. 22 (1970) 313-321.
- [15] H. Takagi & Y. Watanabe, On the holonomy groups of Kaehlerian manifold with vanishing Bochner curvature tensor, Tôhoku Math. J. 25 (1973) 177–184.
- [16] S. Yamaguchi, M. Kon & T. Ikawa, C-totally real submanifolds, J. Differential Geometry 11 (1976) 59-64.
- [17] S. Yamaguchi & S. Sato, On complex hypersurfaces with vanishing Bochner curvature tensor in Kaehlerian manifolds, Tensor, N. S. 22 (1971) 77-81.
- [18] K. Yano, On a structure defined by a tensor field f of type (1, 1) satisfying $f^3 + f = 0$, Tensor, N. S. 14 (1963) 99-109.
- [19] —, Manifolds and submanifolds with vanishing Weyl or Bochner curvature tensor, Proc. Symposia in Pure Math. 27 (1975) 253-262.
- [20] —, On complex conformal connections, Kōdai Math. Sem. Rep. 26 (1975) 137-151.
- [21] —, Totally real submanifolds of a Kaehlerian manifold, J. Differential Geometry 11 (1976) 351–359.
- [22] —, Differential geometry of totally real submanifolds, Topics in differential geometry, Academic Press, New York, 1976, 173–184.
- [23] K. Yano & S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, No. 32, Princeton University Press, Princeton, 1953.
- [24] K. Yano & S. Ishihara, Fibred spaces with invariant Riemannian metric, Ködai Math. Sem. Rep. 19 (1967) 317–360.
- [25] —, Kaehlerian manifolds with constant scalar curvature whose Bochner curvature tensor vanishes, Hokkaido Math. J. 3 (1974) 297–304.

- [26] K. Yano & M. Kon, Totally real submanifolds of complex space forms. I, Tôhoku Math. J. 28 (1976) 215-225.
- [27] —, Totally real submanifolds of complex space forms. II, Kōdai Math. Sem. Rep. 27 (1976) 385-399.
- [28] —, Anti-invariant submanifolds of Sasakian space forms. I, Tôhoku Math. J. 29 (1977) 9-23.
- [29] —, Anti-invariant submanifolds of Sasakian space forms. II, J. Korean Math. Soc. 13 (1976) 1-14.

TOKYO INSTITUTE OF TECHNOLOGY