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PARTI

The objectives of this paper are formulated in Part I. Definitions and theo-
rems from earlier books and papers are organized.

1. The manifold Mn and Weierstrass integral /

This paper is concerned, in the sense of reference [12], with a Weierstrass
integral / defined on a compact connected Riemannian manifold Mn. As in § 3
of [12] each locally defined 'preintegrand' F of / has values of the form

(1.1) F(u,r) = F(u\ .,un;r\ . . . , r » ) , (n > 1) ,

where u = (w1, , un) is a point of Rn in the domain U of a 'presentation'
(φ, U) € S)Mn and (r1, , rn) = r is a contravariant nonnull vector at u. F is
assumed positive definite, nonsingular in the sense of § 6 of [12] and positive
regular [12, Def. 14.2]. These are terms in classical variational theory. For
references to classical variational theory see Bibliography of [12].

The Weierstrass integral / can be taken as an integral L of length on Mn,
as classically defined in positive definite Riemannian geometry. In this special
case the extremals are geodesies and the theorems belong to differential to-
pology.

Extremals are studied which join a prescribed point pair Ax Φ A2 on Mn

and are ^^-homotopic [12, Def. 7.4] to a curve h joining Ax to A2 prescribed
on Mn. Such extremals are intimately related to topological invariants very
recently discovered by the author and termed Frέchet numbers R .̂ These
numbers are the connectivities, over the field Q, common to the pathwise
components of a basic Frechet space ^i\ of "curve classes". For the original
ideas of Frechet see [3, p. 53]. The term Frechet number was introduced by
the author to distinguish the connectivities R^ from the different kinds of con-
nectivities Ri appearing in the literature. Frechet numbers are defined in [12,
§27] and [10].

We begin by recalling a simplified version of [12, Theorem 21.2].
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Theorem 1.1. Corresponding to an arbitrary point pair Aλ Φ A2 and a
curve h joining Ax to A2 there exists at least one extremal g of J which joins
Axto A2, is AιA2-homotopic to h and affords an absolute minimum to J relative
to piecewise regular curves whch join Ax to A2 and are A1A2-homotopic to h
on Mn.

The extremal g is not necessarily unique, as simple examples show. It will
be termed homotopically minimizing when Theorem 1.1 holds. When g is
given, the points Al9 A2 are given as the endpoints of g. The point pair Ax Φ
A2 will be conditioned as follows and fixed.

Definition 1.1. A ND (nondegenerate) point pair. Let γ be an extremal
joining a point pair Ax Φ A2. Conjugate points of Ax on γ and their multiplici-
ties are defined in [12, § 10]. The index of an extremal γ joining Aλ to A2 is
the "count" of the conjugate points of Ax on γ definitely preceding A2, counting
each conjugate point with its multiplicity. The nullity of γ is by definition the
multiplicity of A2 as a conjugate point of Aλ. The extremal γ is termed ND if
its nullity is zero.

Most importantly a point pair A1 Φ A2 is termed ND if each extremal which
joins Aλ to A2 is ND.

We consider extremals which join a ND point pair A1 Φ A2 and belong to
a prescribed ^ ^ - h o m o t o p y class. We shall relate these extremals in a simple
manner to the Frechet numbers R^ of Mn. See [12, § 27].

When a point pair P Φ Q is not assumed ND, basic extremal homology
relations can still be formulated if the essential facts in the ND case have
already been organized. [12, Theorem 27.3] is a fundamental theorem on point
pairs (P, Q) of this character. We shall return to this theorem in a separate
paper: Extremal limits of ND extremals, to appear in Rend. Mat.

The first properties of ND point pairs will now be recalled.
Some properties of ND point pairs (AX,A2). According to [12, Corollary

24.2], if 04j, A2) is a ND point pair, the number of extremals γ joining Aλ to
A2 with /-lengths less than a positive constant c is less than some finite integer
Nc. Nc may become infinite with c. The number of extremals joining Ax to A2

with unconditioned /-length is finite or countably infinite. The key to the rela-
tions between ND point pairs and a degenerate point pair is the fact that the
set of ND point pairs (A19 A2) is everywhere dense on the product manifold Mn

X Mn. This is because the set af all points on Mn conjugate to a fixed point
P has the measure zero on Mn. This was first proved in [5, pp. 233-234]. In
[12] see Theorem 24.1.

The following definition will facilitate the exposition.
Definition 1.2. The set Σg of (/, g)-admίssible extremals. A ND point pair

Ax Φ A2 is prescribed and a curve h joining Aγ to A2. Theorem 1.1 is satisfied
by an extremal g, y41^42-homotopic to h. Any extremal which joins Aλ to A2

and is y41y42-homotopic to g will be called (/, g)-admissίble. This terminology
is permanent. The extremal g is fixed. Let Σg be the set of (/, ^-admissible
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extremals. The set Σg may be finite or countably infinite. The above extremal
g will be called a prime extremal of / on Mn.

Definition 1.3. The type numbers raf of Σg. Corresponding to each integer
i > 0 let raf denote the number (possibly infinite) of extremals of / of index i
in the set Σg of (/, g)-admissible extremals. The number raf is termed the ith
type number of Σg.

[12, Theorem 27.1] includes the following affirmation, here termed Theorem
1.2.

Theorem 1.2. // each of the type numbers raf is finite then raf > R^ for
each i > 0 and

ml > Ro ,

raf - raf > Rx - Ro ,

raf - raf + raf > R2 - Rx + Ro ,

Theorem 1.2 will not be established in this paper. However a first step will
be taken towards proving Theorem 1.2. Under the hypothesis of Theorem 1.2
we shall here define special integers Lf > 0, termed (/, ^connectivities of Mn.
These integers are such that the inequalities of Theorem 1.2 are valid if Rt is
replaced by Lf for each / > 0.

A second and final step in the proof of Theorem 1.2 will be taken in a
separate paper by proving the following.

Theorem 1.3. Under the hypotheses of Theorem 1.2

(1.3) Lf = R,

The (/, ^-connectivities Lf of Mn are defined in § 6. They are not topolo-
gical invariants a periori.

Example 1.1. If M2 is difϊeomorphic to a 2-sphere, each Frechet number
R^ = 1. This will be shown in [2]. See also [7, Theorem 15.1, p. 247].

2. The finiteness of the type numbers raf

The finiteness of the type numbers raf is a condition on Mn, J and g which
will be clarified by special terminology.

Definition 2.1. Manifolds Mn which are (/, g)-finite. In our terminology
such manifolds are compact connected differentiable manifolds on which a
Weierstrass integral / exists and satisfies the following two conditions:

Condition I. A homo topically minimizing extremal g of / exists whose
endpoints (A1,A2) are a ND point pair Λλ Φ A2.

Condition II. The resultant type numbers raf are finite for the prime ex-
tremal g satisfying Condition I and for each integer / > 0.

The conditions in this definition will be better understood if Mn is considered
a member of a class of manifolds now to be defined.
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Definition 2.2. The class ((Nn)). Let Nn, n > 1 be a compact connected
difϊerentiable manifold of class C°°. Let ((7VJ) be the class of all differentiate
manifolds Mn homeomorphic to Nn.

As shown in [4] the Frechet numbers R* of all manifolds in a class ((7VJ)
are the same. For example, the numbers R^ are the same for an rc-sphere as
for an exotic sphere of Milnor type. The numbers R^ are the same for a clas-
sical torus in R3 as for a flat torus.

In any given class ((Nn)) it can be shown, by example, that there always
exists a manifold Mn on which a Weierstrass integral / with extremal g exists
which satisfies Condition I of Definition 2.1 but not Condition II. This state-
ment remains true if the integrals / are required to be ^-integrals. .R-integrals
and PΓ-integrals are abbreviations for Riemann integrals and Weierstrass inte-
grals. .R-integrals are integrals of length. They are special PF-integrals.

In this paper we are considering classes ((Nn)) of manifolds in which there
always exists a manifold Mn which is (/, g)-finite for some / and g. It is our
conjecture that in every class ((Nn)) there exists a manifold Mn which is (/, g)-
finite for some / and extremal g.

In [2] it will be shown that this conjecture is true when n = 2. N2 may be
any abstract differentiable compact surface. A known lemma affirms that a
class ((iV2)) contains an abstract differentiable 2-manifold M2 of constant curva-
ture. The nullity or sign of this curvature is determined by the Euler charac-
teristic of N2. The manifold M2 is taken as an "identification space". See [6,
Appendix A].

If ((7VJ) contains a manifold Mn which is (/, g)-finite for some / and g, we
shall say that ((WJ) is (/, g)-finite. If ((iVJ) is (/, g)-finite, the Frechet numbers
R^ of each manifold Mn β ((2VJ) are finite, regardless of whether Mn is or is
not (/, g)-finite. This is shown in [4]. For other results concerning the above
conjecture see [12, § 27].

In § 3 we recall the definition and properties of elementary extremals and
broken extremals which lead to our definition of the (/, ^-connectivities Lf of
Mn.

3. Elementary extremals

The following lemma is a consequence of [12, § 19]. In this lemma a special

/-length m is defined.
Lemma 3.1. Corresponding to a W-integral J on Mn there exists a positive

number m {termed a preferred J-length) such that the following is true:
The extremals ξ with J-lengths m, issuing from a point p arbitrarily pre-

scribed on Mn, intersect in no point other than p, bear no conjugate points of
p, cover a closed topological n-dίsc on Mn with p an interior point and have
J-lengths which afford a proper absolute minimum to J relative to "admissible"
curves which join their endpoints on Mn.
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Such a lemma can be proved by relatively simple methods involving classical
implicit function theory when / is the integral L of /^-length. It cannot be
proved so simply when / is a general JF-integral. This is because geodesies are
reversible in the sense of [12, Exercise 7.2], while extremals of JP-integrals in
general are not so reversible.

Note. Our mode of Proof of Lemma 3.1 in [12, § 19] makes it clear that
if m is a "preferred length" of Lemma 3.1, then any real number in a suf-
ficiently small neighborhood of m in R could also serve as a preferred length.

Definition 3.1. Elementary extremals. An extremal of / whose /-length is
at most the preferred length m of Lemma 3.1 is called an elementary extremal.

The following definition is given in [12, § 20].
Definition 3.2. The J-distance J(p, q) between points p and q on Mn is

taken as the G. L. B. of /-lengths of piecewise regular curves which join p to q.
The /-distance J(p, q) satisfies the axioms for a distance on a metric space,

except that J(p, q) may not equal Δ(q, p). The following theorem is a conse-
quence of Theorem 20.1 and statement (a\ of [12, § 20]

Theorem 3.1. The mapping

(3.1) (p, q) - Δ{p, q): MnχMn-+R

is continuous. Restricted to the subs pace of Mn X Mn on which 0 < A(p, q)
< m, the mapping (3.1) is of class C°°.

Theorem 3.1 must be supplemented by a theorem telling how a point Q on
an elementary extremal ξ varies with its endpoints p, q and a parameter t on
ξ. To that end let ξ(p, q) be an elementary extremal on Mn with endpoints
p, q such that

(3.2) 0 < J(p, q) < m (m from Lemma 3.1) .

Let ξ(p, q) be the extremal of length m with initial arc ξ(p, q). For 0 < t < m
let Q(t, p, q) be the point Q on ξ(p, q) such that A(p, Q) = t. The following
theorem is a consequence of [12, Theorem 20.3].

Theorem 3.2. // Ω is the subspace of pairs (/?, q) e Mn X Mn for which
(3.2) holds, the mapping

(3.3) (ί, p, q) — β(ί, p, q): (0, m] x Ω -> Mn

is of class C°°. The extension of this mapping is continuous when (0, m] in
(3.3) is replaced by (0, m].

In the next section we shall recall the definition of compact subspaces [g]v

β

of the product space (Mn)
v. The spaces [g]v

β are termed vertex spaces. It is in
terms of these vertex spaces that the limiting connectivities Lf can be defined
when the type numbers raf are finite.
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4. Vertex spaces [g]v

β

A ND point pair Ax Φ A2 and a curve h joining A1 to A2 have been pre-
scribed. Ax can be joined to A2 by an extremal g which satisfies Theorem 1.1.
The extremal g is now held fast. Let β be any value in R such that J(g) < β
and β is J-ordinary, that is, not the /-length of a (/, ^-admissible extremal
(Def. 1.2). If v is a positive integer such that

(4.1) J(g) < β < m(v + 1) (m from Lemma 3.1) ,

g can be partitioned into v + 1 successive elementary extremal arcs of equal
/-length < m. The successive endpoints of these subarcs of g form a sequence

(4.2) ^ i , P i ? - >,pv9A2

of points of M n . The points p19 , pv define a v-tuple p on the y-fold product
(Mn)

v of M n by itself. The v-tuple p is on a subspace [g]v

β of (MJ V which we
now define.

Definition 4.1. 4̂ (/, g)-verte.x space [g]£. If (4.1) holds with β /-ordinary,
a maximal, pathwise connected subspace of (Mn)% satisfying the following three
conditions is called a (/, g)-vertex space [g]v

β.
Condition I. Each v-tuple z = (zl9 , zv) of [g]v

β shall be such that suc-
cessive points of Mn in the sequence

(4.3) A l 9 Z ι , - ',zv,A2

which are distinct can be joined by elementary extremals of /.
Condition II. The broken extremal, say ζv(z), joining A1 to A2 and defined

by the successive elementary extremals joining successive distinct points in
(4.3), has a /-length < β.

Condition III. [g]v

β contains the v-tuple p = (pl9 , pv) of (4.2) which
partitions g into v + 1 elementary extremals of equal /-length.

That there exist (/, g)-vertex spaces is implied by the existence of the ex-
tremal g. A vertex space [g]v

β is closed in (Mn)
v and compact. It is uniquely

determined as a subspace of (Mn)
v by / and its parameters g, v, β. An equiva-

lent characterization of a vertex space [g]v

β will be given in Lemma 8.1 in a
larger contex. Cf. [12, Def. 24.5].

Introduction to Theorem 4.1. A vertex space [g]v

β is given. The maximal
subset of extremals, which are (/, ^-admissible (Def. 1.2), have/-lengths < β
and are mutually >41y42-homotopic through broken extremals under the /-level
β, contains the extremal g. The number of such extremals is finite according
to [12, Corollary 24.2]. Let

(4.4) ^ = (ro, •• ,rr) (cf. [12, (26.11)])

be the set of these extremals. Let K be the maximum of the indices of the
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extremals in the set Sβ. For i = 0, 1, -, let μ\ be the count of extremals in
the set Sβ with the index /. Then [12, Theorem 26.1] with mt = μ\ therein
implies the following. (On [12, p. 201], Ar should be Λσr.)

Theorem 4.1. Let Rβ

t denote the ith connectivity over Q of the vertex space
[g]v

β. Then each Rξ is finite, Rξ = 1 and R? = 0 for i > K. On setting mt —
μ\ and Rt = R$ the following relations hold,

mQ> Ro ,

mγ — mQ > Rλ — Ro ,

(4.5) m2 - mι + m0 > R2 - R, + Ro ,

implying the relations

(4.6) μ\ >R\ ( / = 0,1, •••)

The number μ\ will be called the /th type number of the set Sβ of (/, g)-
admissible extremals given in (4.4). This is in contrast with the fact that some
of the global type numbers mf of Definition 1.3 may be countably infinite.

Introduction to Part II. Theorem 4.1 is essential in proving Theorem 1.2.
However, an extension Theorem 6.1 of Theorem 4.1, and a radical supple-
ment, Theorem 1.3, are required to prove the ultimate Theorem 1.2. In
Theoems 1.2 and 1.3 it is assumed that for a given prime extremal g, mf is
finite for each integer / > 0. This assumption is for the given prime extremal
g only. Theorem 6.1 is the principal theorem of Part II.

PART II

5. The homology groups of [g]v

β and [g]μ

β, μ > v

A special kind of deformation, termed a traction, is needed to prove the
principal theorem of this section. Tractions are extensions of Borsuk's retract-
ing deformations. See [1].

Definition 5.1. Deformations. Let / = [0, 1] denote an interval for the
time t. For us a deformation D of a subspace A of a topological space χ is a
continuous mapping

(5.1) ( p , t ) - + D ( p , t ) : A X l ^ χ

such that

(5.2) D(p, 0) = p (peA) .
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If F is a real-valued function with domain χ, D is called an F-deformation if
for (p,t) eA x I

(5.3) F(D(p,0))>F(D(p,t)) .

Definition 5.2. Tractions of A into B. Let 5 be a subspace of A, possibly
A. The deformation D of Definition 5.1 will be called a traction of A into B,
if D deforms A on A into B and deforms B on B. See [11, Definition 2.1].

The following lemma is proved as Lemma 2.1 of [5].
Traction Lemma 5.1. Let a traction of A into a subspace B be given. The

inclusion mapping of B into A then "induces" an isomorphic mapping of the
qth homology group of B onto that of A.

Lemma 5.1 is an extension of a classical theorem in which T is a retracting
deformation of A onto B.

The principal theorem of this section is stated as follows.
Theorem 5.1. // [g]v

β is a (/, g)-vertex space (Def. 4.1), then for any integer
μ> v the vertex spaces [g]v

β and [g]μ

β have isomorphic homology groups of each
dimension.

To prove Theorem 5.1 a special subspace Xμ of [g]μ

β will first be defined.
The subspace Xμ of [g]μ

β. To an arbitrary v-tuple z = (zl9 , zv) e [g]v

β a
«-tuple

(5.4) Θζ(z) = ( z l 9 "',zv9A2,'"9A^€ [g]μ

β

will be assigned, introducing μ — v vertices A2. The mapping

(5.5) z — θ:(z): [g]J->[*]?

is clearly continuous and is onto a subspace Xμ of [g]μ

β.
Since [g]v

β and [g]μ

β are compact and the mapping Θμ a continuous, biunique
mapping onto Xμ,Θμ is a homeomorphic mapping of [g]v

β onto Xμ. The qth
homology groups of [g]v

β and Xμ are accordingly isomorphic. Theorem 5.1 will
follow from Traction Lemma 5.1, once the following statement is proved.

(a) There is a traction Δ of [g]μ

β into Xμ

v.
Proof of (a). Let y = (yl9 , yμ) be a μ-tuple of [g]μ

β. ζμ(y) then denotes
the broken extremal of elementary extremals joining the successive distinct
points in the sequence

(5.6) A , , y l y - - , y μ 9 A 2

of points of Mn. Let

(5.7) w = (w19 •• ,wv)

be a y-tuple of successive points on ζμ(y) that subdivide ζμ(y) into v + 1 sub-
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curves of equal /-length. This length will be at most β/(v + 1) and so at most
m by (4.1).

Definition of the traction Δ. Under the deformation Δ a //-tuple y = (y19

- ' J yμ) e [g]β shall have for "final" image when t = 1 the μ-tuple

(5.8) (w19 — ,wv9A2, - , A 2 ) .

As the time t increases from 0 to 1, then under Δ the replacement, say yι

9 of
the μ-tuple y shall have an /th vertex that moves along ζμ(y) from yi9 when
t = 0, to the /th vertex of (5.8), when * = 1. Here / = 1, 2, , μ.

Set yt = Cy{, , yp. For i = 1, 2, , μ let J^t) be the /-length of the
subcurve of ζμ(y) from Aι to yj. The rate of change of / t (0, with respect to t,
shall be constant under Δ. It follows that the /-length, measured along ζμ(y),
between successive points in the sequence

(5.9) Al9yl, ' " 9 y μ 9 A 2 9

changes at a constant rate with respect to t. This /-length is at most m, since
this is true when t = 0 and t = 1. Hence the //-tuple yι is in [g]μ

β for each ί.
So defined Δ actually is a traction. In fact Δ deforms a μ-tuple of [g]μ

β on
[g]μ

β into a //-tuple (5.8), that is, into a //-tuple in Xμ. Moreover Δ deforms μ-
tuples in Xμ on Xμ, as one readily sees. Thus Δ is a traction of [g]μ

β into Xμ.
It follows from Traction Lemma 5.1 that the gth homology groups of [g]β

and Xμ are isomorphic. Since the qth homology groups of Xμ and [g]v

β have
been proved isomorphic, Theorem 5.1 follows.

The preceding proof of Theorem 5.1 implies a theorem on the mapping Θμ

of (5.5).

Theorem 5.2. By virtue of the chain transformation Θμ induced by the
mapping Θμ, a j-cycle η3 on [g]v

β is bounding or nonbounding on [g]v

β according
as θμηj is bounding or nonbounding on Xμ or equίvalently on [g]μ

β.

This theorem follows readily on making use of the fact that θμ is a homeo-
morphic mapping of [g]v

β onto Xμ and that Δ is a traction of [g]μ

β into Xμ. See
[13, pp. 229, 230] and Traction Lemma 5.1.

6. The (/, ^-connectivities Lf of Mn

The method of proof of Theorem 1.2 outlined in § 1 requires that we here
define an integer Lf for each / > 0 whenever Mn is (/, g)-finite. To do this
our terminology must be extended. The extremal g remains fixed. It joins the
ND pair Aλ and A2.

Definition 6.1. (/, g)-ordinary and (/, g)-critical values β. A value β € R
which is the /-length of a (/, ^-admissible extremal of index i will be called a
(/, g)-critical value of index /. Values β 6 R which are not (/, g)-critical values
will be called (/', g)-ordinary. According to [12, Corollary 24.2], (/, g)-critical
values are isolated in R. (For g fixed)
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Definition 6.2. The connectivities 0t\. Theorem 5.1 implies the following.
If [g]v

b is a (/, ^-admissible vertex space, then for each integer μ > v and each
integer i > 0, the /th connectivity of [g]μ

b has a value 0t\ independent of μ.
The connectivities 0ί\ are well-defined for each value b > J(g) which is

(J, ^-ordinary. How 0t\ varies for a fixed / as b increases through (/, ^-ordi-
nary values is a question of great importance. Lemma 6.1 characterizes this
behavior when Mn is (/, g)-finite. Note that £#\ = 1, since each vertex space
is path wise connected.

Notation for Lemma 6.1. If there are no (/, g)-admissible extremals of
index / set πt = J(g). If, however, raf is finite and positive, let πt denote the
maximum of the (/, g)-critical values of index /. In any case πt > J(g). We
shall refer to the value

(6.1) max (πi9 πi+1) = at (/ = 0, 1, •) .

Definition 6.3. i-Mature values βt. Let an integer / > 0 be prescribed.
When Mn is (/, g)-finite, a (/, g)-ordinary value βt will be called i-mature if
βi > at and if each (/, g)-admissible extremal of index / is ^4^2-homotopic to
g under the /-level βt.

Lemma 6.1. // βt is i-mature, then the /th connectivity of a vertex space
[gYβ. is an integer Lf independent of such values βt and of integers v such that
m(v + 1) > βt.

This lemma will be proved in § 8 and § 9. The integer Lf is thereby defined
when Mn is (/, g)-finite and is called the /th (J', g)-connectivity of Mn. Quite
independently of the lemma the Oth connectivity of a (/, g)-vertex space is 1.
Thus Lξ = 1. The numbers Lf appear in the following theorem, the principal
theorem of this paper.

Theorem 6.1. Let the manifold Mn be (J\ g)-fιnite. Then the inequalities
(1.2) of Theorem 1.2 hold if one replaces R^ by Lf for each integer / > 0.

7. Proof of Theorem 6.1

The principal hypothesis is that Mn is (/,g)-finite (Def. 2.1). Granting the
truth of Lemma 6.1, the /th connectivity of a vertex space [g]v

β. is Lf if, for
the given /, βt is /-mature in the sense of Definition 6.3. To complete the proof
of Theorem 6.1 it suffices to prove the following:

(A) If k is an arbitrary positive integer, then

mϊm$>

ml - mU + -(-l)km$ > L% - L\_λ + -(-1)*L? .

The proof of (A) will make use of Theorem 4.1, applied to a vertex space
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[g]v

β. Our choice of β depends on k. Let β be any (/, g)-ordinary value such

that

(7.2) β > max (π09 π19 , πk, πk+ι) ,

where the values πt are defined in § 6. We require further that β be so large
that each (/, g)-admissible extremal with index at most k be ^ ^ - h o m o t o p i c
to g under the /-lever β. Let the integer v then be so large that β < m(v + 1)
a (/, g)-vertex space [g]v

β then exists.
For this β, Sβ of Theorem 4.1 includes the set of (/, g)-admissible extremals

with indices 0, 1, - , k. Since k < K of Theorem 4.1 the first k + 1 relations
of (4.5) hold with m^ replaced by raf. By virtue of Lemma 6.1, i ^ in (4.5)
can be replaced by Lf for / = 0, 1, , k. The relations (4.5) thus imply the
relations (7.1).

Theorem 6.1 follows once the proof of Lemma 6.1 is completed.
The proof of Lemma 6.1 begins in § 8 by recalling the definition and some

of the properties of the real-valued function

(7.3) z-*Hz): [gΫβ^R

introduced in [12, (26.13)]. To avoid ambiguity f will here be denoted by
f*K We shall recall the definition of f in [12].

8. The real-valued function f = f^

For each y-tuple z in a (/, g)-admissible vertex space [g]v

β, let fv'β(z) be the
/-length of the broken extremal ζv(z). If b is a (/, g)-ordinary value such that

(8.1) Jig) <b<β,

then [g]v

b is a subspace of [g]v

β and

(8.2) /"δ = f >|[g]S.

To more fully describe the mapping fv'β, this mapping will be characterized as
the restriction of a mapping introduced in [12, § 21] with a much larger
domain. We do not abbreviate f'δ by f.

Elementary broken extremals. Let v > 0 be so large an integer that

(8.3) (v + l)m > Δ{Al9Aύ (cf. [12, (21.3)]) .

i -Tuples z = (z1? , zv) e (Mn)υ such that successive vertices in the sequence

(8.4) A l 9 z l 9 ' " 9 z v 9 A 2

are distinct and define elementary extremals, give rise to broken extremals ζv(z)
joining^! to A2 which are termed elementary broken extremals. The subspace
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of (Mn)
v of such v-tuples has been denoted by Z ( υ ) .

The space ZM has a compact closure in (Mn)
v. For z e Cl ZM let fv(z)

denote the /-length of the broken extremal ζυ(z). The mapping

(8.5) z = / " ( z ) : CZZ<» ->Λ (cf. [12, (21.2)])

is continuous and, restricted to Z ( υ ), of class C°°. It is called a vertex function.
By virtue of [12, Theorem 21.1] the search for extremals of / which join Ax

to A 2 and which have /-lengths less than m(v + 1) is reduced to a search for
critical v-tuples of the above vertex function /% restricted to Z ( υ ) . [12, Theo-
rem 21.1] yields the following.

Theorem 8.1. A necessary and sufficient condition that an elementary
broken extremal ζv(z) joining Axto A2 and defined by a sequence (8.4) be an
extremal γ is that the v-tuple z be a critical v-tuple of the vertex function fv

restricted to Z ( υ ) .
The extremal γ of Theorem 8.1 does not give rise to a unique critical v-tuple

(Zi, , zv) of fv. There is, however, a unique critical v-tuple of the following
type.

Definition 8.1. J-normal v-tuples. A v-tuple z = (z19 , zv) of Z ( υ ) such
that the v + 1 elementary extremals of the broken extremal ζv(z) have equal
/-lengths is called J-normal. The extremal γ of Theorem 8.1 gives rise to a
unique /-normal v-tuple z which is a critical v-tuple of f \ Such a z is called
the J-normal v-tuple of γ.

The following lemma gives a basic characterization of a vertex space [g]v

β.
In this lemma Cl Z(

β

v) denotes the subspace of v-tuples z € Cl Z{v) such that
fv(z) < β. The extremal g is given as in § 1. By hypothesis J(g) < β <
m(v + 1).

L e m m a 8 . 1 . Let Z ( υ ) be a subspace of (Mn)
v of all v-tuples z = fe, •••,£„)

€ (Mn)
v such that the sequences

(8.6) Al9zl9 --,zv,A2

define "elementary" broken extremals ζv(z). Then [g]v

β is that pathwise com-
ponent of Cl Zψ which contains the J-normal v-tuple of the extremal g.

Singleton extremals. The proof of Lemma 6.1 in § 9 will involve the con-
cept of singleton extremals. An extremal γ joining Ax to A2 is called singleton
if there is no other extremal joining Ax to A2 with the /-length of γ.

Theorem 4.1 was proved as [12, Theorem 26.1]. The first proof of this
theorem was under the assumption that the (/, g)-admissible extremals of the
set

(8.7) Sβ = (γ0, . . , Γ r ) (see [12, (26.11)])

were singleton. [12, Theorem 26.1] was then proved to be true regardless of
whether the extremals in Sβ were singleton or nonsingleton. The Replacement



NONDEGENERATE POINT PAIRS 629

Lemma 24.4 of [12] was essential for this purpose. For background see [9].
The proof of Lemma 6.1 in § 9 will involve a similar a priori assumption

and a similar elimination of this assumption.
Under the assumption that the extremals in the set Sβ of (8.7) are singleton,

we suppose that the extremals in Sβ are written in the order of increasing /-
length. Then γQ = g.

9. Proof of Lemma 6.1

In the terminology of Lemma 6.1 it suffices to prove the following lemma.
An integer / > 0 is given and fixed. Let RtX denote the zth connectivity, over
Q, of a space X.

Lemma 9.1. If βi < β are two (/, g)-ordinary values of which βt is condi-
tioned as in Lemma 6.1, then, for any integer v such that m(v + 1) > β,

(9.1) *<[*]J = Rtlsyβt.

Since (A19A2) is, by hypothesis, a ND point pair there is (as in (4.4)) at
most a finite set

(9.2) Sβ = (γ09 . . . , r r )

of (/, g)-admissible extremals with /-lengths < β, mutually ^ ^ - h o m o t o p i c
through broken extremals under the /-level β. By hypothesis, Sβ. and hence
Sβ, contains each (/, g)-admissible extremal of index /. Since β > βt >
max (πi9 πi+ί) none of the extremals γ0, , γr with /-lengths in (βu β) has an
index i or / + 1.

The truth of Lemma 9.1 is a consequence of its truth in the following two
cases.

Case I. In Case I there are no (/, g)-critical values in the interval (βi9 β).
Case II. In Case II there is just one (/, g)-critical value in the interval

(βi9 β). The corresponding J-normal critical point of fv is denoted by σ.
If there is no (/, g)-extremal other than g, Case II will never occur.
A proof of Lemma 9.1 will be given under the hypothesis that the extremals

listed in (9.2) are singleton. Exactly as in the proof of Theorem 26.1 in [121
let

(9.3) b0 < bλ < b2 < . < br (cf. [12, (26.14)1)

be the /-lengths of the respective (/, ^-admissible extremals listed in (9.2).
For an integer v such that β < m(v + 1) let

(9.4) τo,τl9. .,τr (cf. [12,(26.14)"])

be the /-normal ^-tuples of the respective extremals γ0, γλ, , γr. Here r > 0.
The case r = 0 can occur.
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A review of notation follows. If z is a v-tuple in [g]v

β, we have denoted by
fv'β(z) (or simply f(z)) the /-length of the broken extremal ζ"(z). Given a e R,
it is convenient to set

In particular fβ = [g]v

β.
Proof in Case I. Theorem 1 of Appendix IV, [12], was proved first when

r > 0. The deformation θe in this theorem is an /'-deformation of fβ. In Case
I it yields an f-traction of fβ into fv

βi, at least if the parameter e of θe is suf-
ficiently small. In case r = 0 one infers an /'-traction of fv

β into fv

β. from Theo-
rem la of Appendix IV of [12]. (9.1) follows. See page 241.

Proof in Case II. We shall apply [5, Corollary 5.1] to f in place of F. The
above critical point σ of f has, by hypothesis, an index k which is neither /
nor i + 1. It follows from [5, Corollary 5.1] that

Ri fβ = Ri fc (βt < Πσ) < β)

for some value c in the interval (βi9 b) where b = f(σ).
Now c is a (/, g)-ordinary value > βt and there is, by hypothesis, no (/, g)-

critical value in the interval (βi,c). Hence by Lemma 9.1, as established in
Case I,

Ri fc = Ri fυβt -

We infer then in Case II that

Ri fβ — Ri fβi

or, equivalently, that (9.1) is true in Case II.
Lemma 9.1 follows when γ0, , γr are singleton.
The relation (9.1) is true even when some of the extremals γt of Sβ fail to

be singleton. A clear proof of this fact requires much more detail. Reference
[9] gives some of the details when / is a Riemannian integral of length. Refer-
ence [9] will be supplemented by a similar but more complete treatment of
Weierstrass integrals in the nonsingleton case. Cf. Replacement Lemma 24.4
of [12].

Granting the truth of Lemma 9.1 in the general case, singleton or non-
singleton, Lemma 6.1 follows as well as Theorem 6.1. Theorem 6.1 is the
first step in the proof of Theorem 1.2. The second step, a proof of Theorem
1.3 will follow in a separate paper.

We shall add a lemma needed in the proof of Theorem 1.3.
Lemma 9.2. Under the hypothesis that the manifold Mn is (/, g)-finite, let

[g\v

βi and [gYβ be vertex spaces with β > βt and βt conditioned as in Lemma
6Λ.
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A prebase of singular ί-cycles for the /th homology group, over Q, of [g]v

β. is
a prebase for the ith homology group of [g]v

β:
By a prebase for a singular homology group Hi9 over Q, of finite dimension

is meant a set of singular /-cycles which includes just one /-cycle from each
homology class of a base for Ht.

The lemma is trivially true if / = 0, since the space [g]v

βi C [g]v

β and both
spaces are pathwise connected. Suppose then that / > 0. We refer to Case I
and Case II, as introduced in the proof of Lemma 9.1.

Proof in Case I. As indicated in the proof of Lemma 9.1 in Case I, there
exists a traction of [g]v

β into [g]v

βί. Lemma 9.2 follows from Traction Lemma
5.1.

Proof in Case II. We refer to the mapping f of [g]v

β into R introduced in
§8. Let σ be the /-normal critical point of fv and b the critical value fv(σ)
introduced in the proof of Lemma 9.1. By hypothesis of Case II, b is the only
critical value of f on the interval (βi9 β) and the index of σ, say k, is neither
/ or / + 1. We identify f, β, βi9 b, σ respectively, with F, β, c, a, σ of [5, § 1].
By hypothesis k is the index of σ, and i Φ k or k — 1. Suppose first that
k> 0.

We refer to the five subsets of Fβ listed in [5, (1.14)] of which the first is
Fβ and the last Fc. Let

(9.5) HPtHPtHPtHP HP ,

be the /th homology groups over Q if the respective sets listed in [5, (1.14)].
To verify Lemma 9.2 in Case II it suffices to prove the following.

(a) A prebase of each of the five homology groups H\μ) of (9.5), except
the first, is a prebase of the preceding homology group.

That (a) is true follows when μ = 5 from [5, Lemma 1.2], It is true when
μ = 4 by [5, Proposition 3.3 (1)], since q (taken as /) is neither k nor k — 1.
It is true when μ = 3 by virtue of [5, Lemma 1.1]. Its truth when μ = 2 fol-
lows from the existence of the appropriate Traction Theorems of Appendix IV
of [12]. This completes the proof in Case II when r > 0.

The case k = 0. This is a subcase of Case II in which the extremal, say
γj9 in Sβ with /-length in (βi9 β)9 has the index k = 0. Let a be the /-normal
i -tuple of γJm f(σ) equals a critical value bό listed in (9.3) with / > 0. By
hypothesis / > 0 in Lemma 9.2. We shall apply Traction Theorem Ω3 in [12,
Appendix IV]. Let μ — (n — l)v. When k = 0 the set λό in Traction Theorem
Ωj is a topological //-ball of i -tuples on (MJ% a ball which tends to 0 in
diameter with its parameter es and on which fv has an absolute minimum bj.
The Traction Theorem Ω3 implies the following.

(β) For some value c^_γ e (bj_λ, b3) and for a sufficiently small λj there
exists an fv-traction of fv

β into λό U fv

Cj_x.
From Traction Lemma 5.1 it follows that the /th homology group of fβ is

isomorphic to the /th homology group of λά U fv

Cj_1 and hence of jv

Cj_x.
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Lemma 9.2 follows.

In case the critical values of ]v on the interval (βi9 β) are singleton, the truth

of Lemma 9.2 is an obvious consequence of its truth in Case I and Case II.

The truth of Lemma 9.2 when some of the critical values of fv on the interval

(βi, β) fail to be singleton will be made clear by a paper on singleton extremals

of a Weierstrass integral.

References

[1 ] K. Borsuk, Sur les retractes, Fund. Math. 17 (1931) 152-170.
[ 2 ] S. S. Cairns & M. Morse, Frechet numbers and geodesies on surfaces, Bull. Inst.

Math. Acad. Sinica 4 (1976) 7-13.
[ 3 ] M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo

22 (1906) 1-74.
[ 4 ] D. Landis & M. Morse, Geodesic joins and Frechet curve classes, Rend. Mat.

Sen VI, 8 (1975) 161-185.
[ 5 ] , Tractions in critical point theory, Rocky Mountain J. Math., to appear.
[ 6 ] W. S. Massey, Algebraic topology: An Introduction, Harcourt Brace & World,

New York, 1967.
[ 7 ] M. Morse, The calculus of variations in the large, Amer. Math. Soc. Colloq.

Publ. Vol. 18, 4th Printing, 1965.
[ 8 ] , Frechet curve classes, J. Math. Pures Appl. 53 (1974) 291-298.
[ 9 ] , Singleton critical values, Bull. Inst. Math. Acad. Sinica, 2 (1974) 1-17.
[10] , Connectivities Ri of Frechet spaces in variational topology, Proc. Nat.

Acad. Sci. U.S.A. 72 (1975) 2069-2070.
[11] , Topologically nondegenerate functions, Fund. Math. 88 (1975) 17-52.
[12] , Global variational analysis: Weierstrass integrals on a Riemannian mani-

fold, Math. Notes, Princton University Press, Princeton, 1976.
[13] M. Morse & S. S. Cairns, Critical point theory in global analysis and differential

topology, Academic Press, New York, 1969.

INSTITUTE FOR ADVANCED STUDY




