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NONDEGENERATE POINT PAIRS IN GLOBAL
VARIATIONAL ANALYSIS

MARSTON MORSE

PART I

The objectives of this paper are formulated in Part I. Definitions and theo-
rems from earlier books and papers are organized.

1. The manifold M, and Weierstrass integral J

This paper is concerned, in the sense of reference [12], with a Weierstrass
integral J defined on a compact connected Riemannian manifold M,,. Asin § 3
of [12] each locally defined ‘preintegrand’ F of J has values of the form

(1'1) F(u’r)=F(u17"'9un;rl"";rn)9 (fl>1),
where u = (u, - -+, u™) is a point of R* in the domain U of a ‘presentation’
(p, U) e M, and (1", - - -, r") = r is a contravariant nonnull vector at u. F is

assumed positive definite, nonsingular in the sense of § 6 of [12] and positive
regular [12, Def. 14.2]. These are terms in classical variational theory. For
references to classical variational theory see Bibliography of [12].

The Weierstrass integral J can be taken as an integral L of length on M,
as classically defined in positive definite Riemannian geometry. In this special
case the extremals are geodesics and the theorems belong to differential to-
pology.

Extremals are studied which join a prescribed point pair 4, #+ 4, on M,
and are A4,4,-homotopic [12, Def. 7.4] to a curve 4 joining A, to A, prescribed
on M,. Such extremals are intimately related to topological invariants very
recently discovered by the author and termed Fréchet numbers R,. These
numbers are the connectivities, over the field O, common to the pathwise
components of a basic Fréchet space %42 of “curve classes”. For the original
ideas of Fréchet see [3, p. 53]. The term Fréchet number was introduced by
the author to distinguish the connectivities R; from the different kinds of con-
nectivities R; appearing in the literature. Fréchet numbers are defined in [12,
§27] and [10].

We begin by recalling a simplified version of [12, Theorem 21.2].
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Theorem 1.1. Corresponding to an arbitrary point pair A, + A, and a
curve h joining A, to A, there exists at least one extremal g of J which joins
A, to A,, is A\A,-homotopic to h and affords an absolute minimum to J relative
to piecewise regular curves whch join A, to A, and are A,A,-homotopic to h
onM,.

The extremal g is not necessarily unique, as simple examples show. It will
be termed homotopically minimizing when Theorem 1.1 holds. When g is
given, the points A,, 4, are given as the endpoints of g. The point pair A, +*
A, will be conditioned as follows and fixed.

Definition 1.1. A ND (nondegenerate) point pair. Let y be an extremal
joining a point pair 4, # A,. Conjugate points of 4, on y and their multiplici-
ties are defined in [12, § 10]. The index of an extremal y joining A, to 4, is
the “count” of the conjugate points of 4, on y definitely preceding 4,, counting
each conjugate point with its multiplicity. The nullity of y is by definition the
multiplicity of 4, as a conjugate point of A4,. The extremal y is termed ND if
its nullity is zero.

Most importantly a point pair A, #+ A, is termed ND if each extremal which
joins A, to A, is ND.

We consider extremals which join a ND point pair 4, #+ A, and belong to
a prescribed A,4,-homotopy class. We shall relate these extremals in a simple
manner to the Fréchet numbers R, of M,,. See [12, § 27].

When a point pair P = Q is not assumed ND, basic extremal homology
relations can still be formulated if the essential facts in the ND case have
already been organized. [12, Theorem 27.3] is a fundamental theorem on point
pairs (P, Q) of this character. We shall return to this theorem in a separate
paper: Extremal limits of ND extremals, to appear in Rend. Mat.

The first properties of ND point pairs will now be recalled.

Some properties of ND point pairs (A,, A,). According to [12, Corollary
24.2], if (A4,, A,) is a ND point pair, the number of extremals y joining 4, to
A, with J-lengths less than a positive constant c is less than some finite integer
N.. N, may become infinite with ¢. The number of extremals joining 4, to 4,
with unconditioned J-length is finite or countably infinite. The key to the rela-
tions between ND point pairs and a degenerate point pair is the fact that the
set of ND point pairs (4,, A4,) is everywhere dense on the product manifold M,
X M,,. This is because the set af all points on M, conjugate to a fixed point
P has the measure zero on M,. This was first proved in [5, pp. 233-234]. In
[12] see Theorem 24.1.

The following definition will facilitate the exposition.

Definition 1.2. The set X, of (J, g)-admissible extremals. A ND point pair
A, + A, is prescribed and a curve 4 joining A4, to A,. Theorem 1.1 is satisfied
by an extremal g, A,4,-homotopic to 4. Any extremal which joins 4, to 4,
and is A,4,-homotopic to g will be called (J, g)-admissible. This terminology
is permanent. The extremal g is fixed. Let X', be the set of (/, g)-admissible
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extremals. The set X, may be finite or countably infinite. The above extremal
g will be called a prime extremal of J on M,,.

Definition 1.3. The type numbers mg of 2,. Corresponding to each integer
i > 0 let m# denote the number (possibly infinite) of extremals of J of index i
in the set 3, of (/, g)-admissible extremals. The number m¢ is termed the ith
type number of 2.

[12, Theorem 27.1] includes the following affirmation, here termed Theorem
1.2.

Theorem 1.2. If each of the type numbers m¢ is finite then m# > R, for
each i > 0 and

m§ >R,
mf_mngl_RO’
m§ —mf + mf >R, — R, + Ry,
.2.

1.2)

Theorem 1.2 will not be established in this paper. However a first step will
be taken towards proving Theorem 1.2. Under the hypothesis of Theorem 1.2
we shall here define special integers L > 0, termed (J, g)-connectivities of M,,.
These integers are such that the inequalities of Theorem 1.2 are valid if R; is
replaced by L# for each i > 0.

A second and final step in the proof of Theorem 1.2 will be taken in a
separate paper by proving the following.

Theorem 1.3. Under the hypotheses of Theorem 1.2

(1.3) Lf =R, .

The (J, g)-connectivities L# of M,, are defined in § 6. They are not topolo-
gical invariants a periori.

Example 1.1. If M, is diffeomorphic to a 2-sphere, each Fréchet number
R; = 1. This will be shown in [2]. See also [7, Theorem 15.1, p. 247].

2. The finiteness of the type numbers m$

The finiteness of the type numbers m# is a condition on M,,, J and g which
will be clarified by special terminology.

Definition 2.1. Manifolds M, which are (J, g)-finite. In our terminology
such manifolds are compact connected differentiable manifolds on which a
Weierstrass integral J exists and satisfies the following two conditions :

Condition I. A homotopically minimizing extremal g of J exists whose
endpoints (4,, A,) are a ND point pair 4, # A4,.

Condition 1. The resultant type numbers m¢ are finite for the prime ex-
tremal g satisfying Condition I and for each integer i > 0.

The conditions in this definition will be better understood if M, is considered
a member of a class of manifolds now to be defined.
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Definition 2.2. The class (N,)). Let N,, n > 1 be a compact connected
differentiable manifold of class C~. Let ((V,) be the class of all differentiable
manifolds M, homeomorphic to N,,.

As shown in [4] the Fréchet numbers R; of all manifolds in a class ((V,))
are the same. For example, the numbers R; are the same for an n-sphere as
for an exotic sphere of Milnor type. The numbers R; are the same for a clas-
sical torus in R® as for a flat torus.

In any given class ((N,)) it can be shown, by example, that there always
exists a manifold M, on which a Weierstrass integral J with extremal g exists
which satisfies Condition I of Definition 2.1 but not Condition II. This state-
ment remains true if the integrals J are required to be R-integrals. R-integrals
and W-integrals are abbreviations for Riemann integrals and Weierstrass inte-
grals. R-integrals are integrals of length. They are special W-integrals.

In this paper we are considering classes ((NV,)) of manifolds in which there
always exists a manifold M, which is (J, g)-finite for some J and g. It is our
conjecture that in every class ((V,)) there exists a manifold M, which is (/, g)-
finite for some J and extremal g.

In [2] it will be shown that this conjecture is true when n = 2. N, may be
any abstract differentiable compact surface. A known lemma affirms that a
class ((NV,)) contains an abstract differentiable 2-manifold M, of constant curva-
ture. The nullity or sign of this curvature is determined by the Euler charac-
teristic of N,. The manifold M, is taken as an “‘identification space”. See [6,
Appendix A].

If ((NV,)) contains a manifold M, which is (J, g)-finite for some J and g, we
shall say that (N,)) is (J, g)-finite. If ((N,)) is (J, g)-finite, the Fréchet numbers
R, of each manifold M, ¢ (N,)) are finite, regardless of whether M, is or is
not (J, g)-finite. This is shown in [4]. For other results concerning the above
conjecture see [12, § 27].

In § 3 we recall the definition and properties of elementary extremals and
broken extremals which lead to our definition of the (J, g)-connectivities L# of
M,.

3. Elementary extremals

The following lemma is a consequence of [12, § 19]. In this lemma a special
J-length m is defined.

Lemma 3.1. Corresponding to a W-integral J on M, there exists a positive
number m (termed a preferred J-length) such that the following is true:

The extremals & with J-lengths m, issuing from a point p arbitrarily pre-
scribed on M, intersect in no point other than p, bear no conjugate points of
p, cover a closed topological n-disc on M,, with p an interior point and have
J-lengths which afford a proper absolute minimum to J relative to “admissible”
curves which join their endpoints on M.



NONDEGENERATE POINT PAIRS 621

Such a lemma can be proved by relatively simple methods involving classical
implicit function theory when J is the integral L of R-length. It cannot be
proved so simply when J is a general W-integral. This is because geodesics are
reversible in the sense of [12, Exercise 7.2], while extremals of W-integrals in
general are not so reversible.

Note. Our mode of Proof of Lemma 3.1 in [12, § 19] makes it clear that
if m is a “preferred length” of Lemma 3.1, then any real number in a suf-
ficiently small neighborhood of m in R could also serve as a preferred length.

Definition 3.1. Elementary extremals. An extremal of J whose J-length is
at most the preferred length m of Lemma 3.1 is called an elementary extremal.

The following definition is given in [12, § 20].

Definition 3.2. The J-distance A(p, q) between points p and g on M, is
taken as the G.L. B. of J-lengths of piecewise regular curves which join p to g.

The J-distance 4(p, q) satisfies the axioms for a distance on a metric space,
except that 4(p, g) may not equal 4(q, p). The following theorem is a conse-
quence of Theorem 20.1 and statement (a), of [12, § 20]

Theorem 3.1. The mapping

3.1 (P, @) — 4, 9): M, X M, — R

is continuous. Restricted to the subspace of M, X M, on which 0 < A(p, q)
< m, the mapping (3.1) is of class C~.

Theorem 3.1 must be supplemented by a theorem telling how a point Q on
an elementary extremal & varies with its endpoints p, g and a parameter ¢ on
&. To that end let &(p, g) be an elementary extremal on M, with endpoints
D, g such that

(3.2) 0<4dlp,9) <m (m from Lemma 3.1) .

Let &(p, g) be the extremal of length m with initial arc £&(p, g). For0 < ¢t < m
let O(t, p, q) be the point Q on &(p, q) such that A(p, Q) = ¢. The following
theorem is a consequence of [12, Theorem 20.3].

Theorem 3.2. If 2 is the subspace of pairs (p, q) e M, X M, for which
(3.2) holds, the mapping

(3.3) tp,9) -0t p,¢: (0,m] X 2> M,

is of class C=. The extension of this mapping is continuous when (0, m] in
(3.3) is replaced by (0, m].

In the next section we shall recall the definition of compact subspaces [g]’
of the product space (M,)*. The spaces [g] are termed vertex spaces. It is in
terms of these vertex spaces that the limiting connectivities L¢# can be defined
when the type numbers m¢ are finite.
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4. Vertex spaces [g]}

A ND point pair 4, # A, and a curve & joining A, to A, have been pre-
scribed. A4, can be joined to A4, by an extremal g which satisfies Theorem 1.1.
The extremal g is now held fast. Let 8 be any value in R such that J(g) < B
and §is J-ordinary, that is, not the J-length of a (J, g)-admissible extremal
(Def. 1.2). If v is a positive integer such that

“4.1) J@ <pg<mp+1) (m from Lemma 3.1) ,

g can be partitioned into v + 1 successive elementary extremal arcs of equal
J-length < m. The successive endpoints of these subarcs of g form a sequence

(42) Alapla cc s Dy Az

of points of M,,. The points p,, - - -, p, define a p-tuple p on the y-fold product
(M,)" of M, by itself. The v-tuple p is on a subspace [g]; of (M,)* which we
now define.

Definition 4.1. A4 (J, g)-vertex space [g];. If (4.1) holds with g J-ordinary,
a maximal, pathwise connected subspace of (M,)*, satisfying the following three
conditions is called a (J, g)-vertex space [g];.

Condition I. Each v-tuple z = (z,, - - -, z,) of [g]; shall be such that suc-
cessive points of M, in the sequence

(43) Al, s 5 %y AZ

which are distinct can be joined by elementary extremals of J.

Condition 11.  The broken extremal, say {*(z), joining A, to 4, and defined
by the successive elementary extremals joining successive distinct points in
(4.3), has a J-length < 8.

Condition II1.  [g]; contains the y-tuple p = (p;, - - -, p,) of (4.2) which
partitions g into v + 1 elementary extremals of equal J-length.

That there exist (J, g)-vertex spaces is implied by the existence of the ex-
tremal g. A vertex space [g]} is closed in (M,)* and compact. It is uniquely
determined as a subspace of (M,)* by J and its parameters g, v, 8. An equiva-
lent characterization of a vertex space [g]; will be given in Lemma 8.1 in a
larger contex. Cf. [12, Def. 24.5].

Introduction to Theorem 4.1. A vertex space [g]}; is given. The maximal
subset of extremals, which are (J, g)-admissible (Def. 1.2), have J-lengths < 3
and are mutually A4,4,-homotopic through broken extremals under the J-level
B8, contains the extremal g. The number of such extremals is finite according

to [12, Corollary 24.2]. Let
(4.4) S,g = (To; °c '9Tr) (Cf' [12, (26'11)])

be the set of these extremals. Let » be the maximum of the indices of the



NONDEGENERATE POINT PAIRS 623

extremals in the set S,. Fori = 0,1, - - -, let zf be the count of extremals in
the set S, with the index i. Then [12, Theorem 26.1] with m; = p# therein
implies the following. (On [12, p. 201], 4, should be 4,,.)

Theorem 4.1. Let R? denote the ith connectivity over Q of the vertex space
[);. Then each R is finite, Rf = 1 and R{ = O for i > k. On setting m; =
18 and R, = R¢ the following relations hold,

my > Ry,
m, —my >R, — Ry,
4.5 m,—m +m>R,— R, + R,
>

m,—m,_, + ---(=1)ymy=R, — R._, + ---(=1)R,
implying the relations
(4.6) p > R} i=0,1,--).

The number p? will be called the ith type number of the set S, of (J, g)-
admissible extremals given in (4.4). This is in contrast with the fact that some
of the global type numbers m#¢ of Definition 1.3 may be countably infinite.

Introduction to Part II. Theorem 4.1 is essential in proving Theorem 1.2.
However, an extension Theorem 6.1 of Theorem 4.1, and a radical supple-
ment, Theorem 1.3, are required to prove the ultimate Theorem 1.2. In
Theoems 1.2 and 1.3 it is assumed that for a given prime extremal g, mé is
finite for each integer i > 0. This assumption is for the given prime extremal
g only. Theorem 6.1 is the principal theorem of Part II.

PART II

S. The homology groups of [¢]; and [g]5, 1 > v

A special kind of deformation, termed a traction, is needed to prove the
principal theorem of this section. Tractions are extensions of Borsuk’s retract-
ing deformations. See [1].

Definition 5.1. Deformations. Let I = [0, 1] denote an interval for the
time z. For us a deformation D of a subspace A of a topological space y is a
continuous mapping

5.1 @, ) > D, ): A X1 -y
such that

(5.2) D(p,0)=p (ped).
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If F is a real-valued function with domain y, D is called an F-deformation if
for (p,HeAd x I

(5.3) F(D(p,0)) > F(D(p, 1)) .

Definition 5.2. Tractions of A into B. Let B be a subspace of A4, possibly
A. The deformation D of Definition 5.1 will be called a traction of A into B,
if D deforms 4 on A into B and deforms B on B. See [11, Definition 2.1].

The following lemma is proved as Lemma 2.1 of [5].

Traction Lemma 5.1. Let a traction of A into a subspace B be given. The
inclusion mapping of B into A then “induces” an isomorphic mapping of the
gth homology group of B onto that of A.

Lemma 5.1 is an extension of a classical theorem in which T is a retracting
deformation of 4 onto B.

The principal theorem of this section is stated as follows.

Theorem 5.1. If [g]} is a (J, g)-vertex space (Def. 4.1), then for any integer
i > v the vertex spaces (g1} and [g]4 have isomorphic homology groups of each
dimension.

To prove Theorem 5.1 a special subspace X of [g]4 will first be defined.

The subspace X of [gl;. To an arbitrary v-tuple z = (z,, ---,2) € [g]} a
u-tuple

(5.9 0s(2) = (21, =+ 52,5 Ay, - -+, A) e [gl5
will be assigned, introducing p — v vertices 4,. The mapping
(5.5) 72— 0:(2): [g]; — [gl;

is clearly continuous and is onto a subspace X# of [g]4.

Since [g]% and [g]4 are compact and the mapping O a continuous, biunique
mapping onto X*, ©¢ is a homeomorphic mapping of [g]; onto X%. The gth
homology groups of [g]; and X* are accordingly isomorphic. Theorem 5.1 will
follow from Traction Lemma 5.1, once the following statement is proved.

(@) There is a traction 4 of [gl4 into X&. 7

Proof of (). Lety = (y,, ---,¥,) be a u-tuple of [g]4. {#(y) then denotes
the broken extremal of elementary extremals joining the successive distinct
points in the sequence

(56) Al’yli "‘;y;nAz
of points of M,. Let
6.7 w= W, -, W)

be a v-tuple of successive points on {#(y) that subdivide {#(y) into v 4+ 1 sub-
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curves of equal J-length. This length will be at most 5/(v + 1) and so at most
m by (4.1).
Definition of the traction 4. Under the deformation 4 a p-tuple y = (y,,
-+, ¥,) € [g]4 shall have for “final” image when ¢ = 1 the p-tuple

(5~8) (wla e, W, AZ’ ""AZ) .

As the time ¢ increases from O to 1, then under 4 the replacement, say y*, of
the p-tuple y shall have an ith vertex that moves along (*(y) from y;, when
t = 0, to the ith vertex of (5.8), whent = 1. Here i = 1,2, .- -, p.

Set y* = (4, ---,¥). For i = 1,2, .., u let J,() be the J-length of the
subcurve of #(y) from A, to y.. The rate of change of J,(¢), with respect to ¢,
shall be constant under 4. It follows that the J-length, measured along {“(y),
between successive points in the sequence

(59) Ala yi’ s 'sy:n Az s

changes at a constant rate with respect to ¢. This J-length is at most m, since
this is true when ¢ = 0 and ¢+ = 1. Hence the p-tuple y* is in [g]4 for each z.

So defined 4 actually is a traction. In fact 4 deforms a p-tuple of [g]; on
[g]4 into a p-tuple (5.8), that is, into a p-tuple in X%. Moreover 4 deforms -
tuples in X* on X*, as one readily sees. Thus 4 is a traction of [g]4 into X=.

It follows from Traction Lemma 5.1 that the gth homology groups of [g]s
and X are isomorphic. Since the gth homology groups of X# and [g]; have
been proved isomorphic, Theorem 5.1 follows.

The preceding proof of Theorem 5.1 implies a theorem on the mapping ©*
of (5.5).

Theorem 5.2. By virtue of the chain transformation @‘,‘ induced by the
mapping O, a j-cycle n; on [g]; is bounding or nonbounding on [g]} according
as @fy; 5 is bounding or nonbounding on X! or equivalently on [gl4.

This theorem follows readily on making use of the fact that ©# is a homeo-
morphic mapping of [g]; onto X# and that 4 is a traction of [g]; into X“. See
[13, pp. 229, 230] and Traction Lemma 5.1.

6. The (J, g)-connectivities L¢ of M,

The method of proof of Theorem 1.2 outlined in § 1 requires that we here
define an integer Lf for each i > O whenever M, is (J, g)-finite. To do this
our terminology must be extended. The extremal g remains fixed. It joins the
ND pair A, and A4,.

Definition 6.1. (J, g)-ordinary and (J, g)-critical values B. A value fe R
which is the J-length of a (J, g)-admissible extremal of index i will be called a
(J, g)-critical value of index i. Values 8 € R which are not (J, g)-critical values
will be called (J, g)-ordinary. According to [12, Corollary 24.2], (J, g)-critical
values are isolated in R. (For g fixed)
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Definition 6.2. The connectivities ?. Theorem 5.1 implies the following.
If [g]; is a (J, g)-admissible vertex space, then for each integer x > v and each
integer i > 0, the ith connectivity of [g]4 has a value %? independent of .

The connectivities #? are well-defined for each value b > J(g) which is
(J, g)-ordinary. How #? varies for a fixed i as b increases through (J, g)-ordi-
nary values is a question of great importance. Lemma 6.1 characterizes this
behavior when M, is (J, g)-finite. Note that #? = 1, since each vertex space
is pathwise connected.

Notation for Lemma 6.1. If there are no (J, g)-admissible extremals of
index i set z; = J(g). If, however, m# is finite and positive, let z; denote the
maximum of the (J, g)-critical values of index i. In any case ; > J(g). We
shall refer to the value

(6.1) max (rs, 75.) =a; (@ =0,1,---).

Definition 6.3. i-Mature values p;. Let an integer i > 0 be prescribed.
When M, is (J, g)-finite, a (J, g)-ordinary value g; will be called i-mature if
B: > a; and if each (J, g)-admissible extremal of index i is A,4,-homotopic to
g under the J-level B;.

Lemma 6.1. If B, is i-mature, then the ith connectivity of a vertex space
(]}, is an integer L§ independent of such values f; and of integers v such that
m( + 1) > 5.

This lemma will be proved in § 8 and § 9. The integer L# is thereby defined
when M, is (J, g)-finite and is called the ith (J, g)-connectivity of M,. Quite
independently of the lemma the Oth connectivity of a (J, g)-vertex space is 1.
Thus L& = 1. The numbers Lf appear in the following theorem, the principal
theorem of this paper.

Theorem 6.1. Let the manifold M, be (J, g)-finite. Then the inequalities
(1.2) of Theorem 1.2 hold if one replaces R; by L# for each integer i > 0.

7. Proof of Theorem 6.1

The principal hypothesis is that M,, is (J, g)-finite (Def. 2.1). Granting the
truth of Lemma 6.1, the ith connectivity of a vertex space [g]}, is L# if, for
the given i, f; is i-mature in the sense of Definition 6.3. To complete the proof
of Theorem 6.1 it suffices to prove the following:

(A) If k is an arbitrary positive integer, then

m§ > Lf ,
m§ — m§ > Lf — Lf,

mg — mg_y + (= DFmf > Lf — LE, + - (— DAL

(7.1)

The proof of (A) will make use of Theorem 4.1, applied to a vertex space
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[g]3. Our choice of 3 depends on k. Let g be any (J, g)-ordinary value such
that

(7.2) B> max (m, Ty, * * *5 Tpy Ts) >

where the values r; are defined in § 6. We require further that 3 be so large
that each (J, g)-admissible extremal with index at most k be A,4,-homotopic
to g under the J-lever . Let the integer v then be so large that 3 <m(v + 1);
a (J, g)-vertex space [g]}; then exists.

For this g, S, of Theorem 4.1 includes the set of (/, g)-admissible extremals
with indices 0, 1, - - -, k. Since k < & of Theorem 4.1 the first ¥ + 1 relations
of (4.5) hold with m, replaced by mé¢. By virtue of Lemma 6.1, R; in (4.5)
can be replaced by Lf fori = 0, 1, - - -, k. The relations (4.5) thus imply the
relations (7.1).

Theorem 6.1 follows once the proof of Lemma 6.1 is completed.

The proof of Lemma 6.1 begins in § 8 by recalling the definition and some
of the properties of the real-valued function

(7.3) z—f(2):[gls = R
introduced in [12, (26.13)]. To avoid ambiguity f* will here be denoted by
8. We shall recall the definition of f* in [12].

8. The real-valued function f* = f*#

For each v-tuple z in a (J, g)-admissible vertex space [g];, let f#(z) be the
J-length of the broken extremal {*(z). If b is a (J, g)-ordinary value such that

@.1) I® <b< g,
then [g]; is a subspace of [g]}; and
(8.2) v = fr el .

To more fully describe the mapping f*#, this mapping will be characterized as
the restriction of a mapping introduced in [12, §21] with a much larger
domain. We do not abbreviate f»* by f*.

Elementary broken extremals. Let v > 0 be so large an integer that

8.3) v+ m > 4(A4,, A,) (cf. [12, (21.3)]) .
v-Tuples z = (z,, - - -, z,) € (M,,)* such that successive vertices in the sequence
(8'4) Al) 2y 0 ",Z,,Ag

are distinct and define elementary extremals, give rise to broken extremals £*(z)
joining A4, to A, which are termed elementary broken extremals. The subspace
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of (M,,)” of such »-tuples has been denoted by Z*.
The space Z® has a compact closure in (M,)". For z e Cl Z» let #*(z)
denote the J-length of the broken extremal £*(z). The mapping

(8.5) z=2@):ClZ¥ >R (cf. [12, (21.2)D)

is continuous and, restricted to Z*, of class C=. It is called a vertex function.

By virtue of [12, Theorem 21.1] the search for extremals of J which join 4,
to 4, and which have J-lengths less than m(y 4+ 1) is reduced to a search for
critical y-tuples of the above vertex function #*, restricted to Z*. [12, Theo-
rem 21.1] yields the following.

Theorem 8.1. A necessary and sufficient condition that an elementary
broken extremal {*(2) joining A, to A, and defined by a sequence (8.4) be an
extremal y is that the v-tuple z be a critical v-tuple of the vertex function ¢*
restricted to Z™.

The extremal y of Theorem 8.1 does not give rise to a unique critical y-tuple
(zy + -+, z,) of #*. There is, however, a unique critical y-tuple of the following
type.

Definition 8.1. J-normal v-tuples. A v-tuple z = (z;, - - -, z,) of Z* such
that the v + 1 elementary extremals of the broken extremal {*(z) have equal
J-lengths is called J-normal. The extremal y of Theorem 8.1 gives rise to a
unique J-normal v-tuple z which is a critical v-tuple of #*. Such a z is called
the J-normal v-tuple of 7.

The following lemma gives a basic characterization of a vertex space [g]3.
In this lemma CIZ{’ denotes the subspace of v-tuples z e CI Z* such that
F*(z) < B. The extremal g is given as in § 1. By hypothesis J(g) < 8 <
m(y + 1).

Lemma 8.1. Let Z® be a subspace of (M, of all v-tuples z = (z,, - - -, 2,)
e (M)’ such that the sequences

(86) Ala 215 005 2y A2

define ‘‘elementary’’ broken extremals ¢*(z). Then [g]; is that pathwise com-
ponent of Cl Z$ which contains the J-normal v-tuple of the extremal g.

Singleton extremals. The proof of Lemma 6.1 in § 9 will involve the con-
cept of singleton extremals. An extremal 7 joining A4, to A, is called singleton
if there is no other extremal joining A4, to 4, with the J-length of 7.

Theorem 4.1 was proved as [12, Theorem 26.1]. The first proof of this
theorem was under the assumption that the (J, g)-admissible extremals of the
set

®.7) Sy = (o o7 (see [12, (26.11)])

were singleton. [12, Theorem 26.1] was then proved to be true regardless of
whether the extremals in S, were singleton or nonsingleton. The Replacement
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Lemma 24.4 of [12] was essential for this purpose. For background see [9].
The proof of Lemma 6.1 in § 9 will involve a similar a priori assumption
and a similar elimination of this assumption.
Under the assumption that the extremals in the set S, of (8.7) are singleton,
we suppose that the extremals in S, are written in the order of increasing J-
length. Then 7, = g.

9. Proof of Lemma 6.1

In the terminology of Lemma 6.1 it suffices to prove the following lemma.
An integer i > 0 is given and fixed. Let R;X denote the ith connectivity, over
0, of a space X.

Lemma 9.1. If g, < B are two (J, g)-ordinary values of which B, is condi-
tioned as in Lemma 6.1, then, for any integer v such that m(y 4 1) > B,

9.1) R[]y = R,[gls, .

Since (4,, 4,) is, by hypothesis, a ND point pair there is (as in (4.4)) at
most a finite set

9.2) Ss= (o510

of (J, g)-admissible extremals with J-lengths < 8, mutually 4,4 ,-homotopic
through broken extremals under the J-level 8. By hypothesis, S,, and hence
S;, contains each (J, g)-admissible extremal of index i. Since p> g; >
max (z;, 7;,,) none of the extremals y,, - - -, y, with J-lengths in (8;, ) has an
indexiori + 1.

The truth of Lemma 9.1 is a consequence of its truth in the following two
cases.

Case 1. In Case 1 there are no (J, g)-critical values in the interval (B;, p).

Case I1. In Case 11 there is just one (J, g)-critical value in the interval
(B> B The corresponding J-normal critical point of f* is denoted by ¢.

If there is no (J, g)-extremal other than g, Case II will never occur.

A proof of Lemma 9.1 will be given under the hypothesis that the extremals
listed in (9.2) are singleton. Exactly as in the proof of Theorem 26.1 in [12]
let

9.3) by < b <b, < ... <hbh, (cf. [12, (26.14)'])

be the J-lengths of the respective (J, g)-admissible extremals listed in (9.2).
For an integer v such that § < m(y + 1) let

.49 TorTys ***5 Tr (cf. [12, (26.14)"])

be the J-normal v-tuples of the respective extremals 7y, 7y, - - -, 7,. Here r > 0.
The case r = 0 can occur.
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A review of notation follows. If z is a y-tuple in [g]s, we have denoted by
f#(z) (or simply f*(z)) the J-length of the broken extremal {*(z). Given a € R,
it is convenient to set

fo={zelgly|f(x) < a} .

In particular f; = [gl]3.

Proof in Case 1. Theorem 1 of Appendix IV, [12], was proved first when
r > 0. The deformation 6, in this theorem is an f*-deformation of f3. In Case
I it yields an f-traction of f; into f%,, at least if the parameter e of 6, is suf-
ficiently small. In case r = O one infers an f*-traction of f3 into f3, from Theo-
rem la of Appendix IV of [12]. (9.1) follows. See page 241.

Proof in Case I1. 'We shall apply [5, Corollary 5.1] to f in place of F. The
above critical point ¢ of f* has, by hypothesis, an index k which is neither i
nor { 4+ 1. It follows from [5, Corollary 5.1] that

Rz f; =R, f; (ﬁz < flo) < [B)

for some value c in the interval (3;, b) where b = ().

Now c is a (J, g)-ordinary value > §; and there is, by hypothesis, no (J, g)-
critical value in the interval (8;,¢). Hence by Lemma 9.1, as established in
Case 1,

Ri f: = Rz f:;i .
We infer then in Case II that
R, f3 = R; f3,

or, equivalently, that (9.1) is true in Case II.

Lemma 9.1 follows when y,, - - -, 7, are singleton.

The relation (9.1) is true even when some of the extremals y; of S, fail to
be singleton. A clear proof of this fact requires much more detail. Reference
[9] gives some of the details when J is a Riemannian integral of length. Refer-
ence [9] will be supplemented by a similar but more complete treatment of
Weierstrass integrals in the nonsingleton case. Cf. Replacement Lemma 24.4
of [12].

Granting the truth of Lemma 9.1 in the general case, singleton or non-
singleton, Lemma 6.1 follows as well as Theorem 6.1. Theorem 6.1 is the
first step in the proof of Theorem 1.2. The second step, a proof of Theorem
1.3 will follow in a separate paper.

We shall add a lemma needed in the proof of Theorem 1.3.

Lemma 9.2. Under the hypothesis that the manifold M, is (J, )-finite, let
[gls, and [g]; be vertex spaces with 8 > B; and p; conditioned as in Lemma
6.1.
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A prebase of singular i-cycles for the ith homology group, over Q, of [gl}, is
a prebase for the ith homology group of [g].

By a prebase for a singular homology group H;, over Q, of finite dimension
is meant a set of singular i-cycles which includes just one i-cycle from each
homology class of a base for H;.

The lemma is trivially true if i = O, since the space [g];, C [g]; and both
spaces are pathwise connected. Suppose then that i > 0. We refer to Case 1
and Case II, as introduced in the proof of Lemma 9.1.

Proof in Case I.  As indicated in the proof of Lemma 9.1 in Case I, there
exists a traction of [g]; into [g];,. Lemma 9.2 follows from Traction Lemma
5.1.

Proof in Case 11.  We refer to the mapping f* of [g]; into R introduced in
§8. Let ¢ be the J-normal critical point of f* and b the critical value f(g)
introduced in the proof of Lemma 9.1. By hypothesis of Case II, b is the only
critical value of f* on the interval (3;, f) and the index of ¢, say k, is neither
iori+ 1. We identify f*, 8, 8;, b, o respectively, with F, 8,c,a,o of [5, § 1].
By hypothesis k is the index of ¢, and i = k or kK — 1. Suppose first that
k> 0.

We refer to the five subsets of F, listed in [5, (1.14)] of which the first is
F; and the last F,. Let

9.5) H®,H® H® H®, H® ,

be the ith homology groups over Q if the respective sets listed in [5, (1.14)].
To verify Lemma 9.2 in Case II it suffices to prove the following.

(x) A prebase of each of the five homology groups H* of (9.5), except
the first, is a prebase of the preceding homology group.

That («) is true follows when g = 5 from [5, Lemma 1.2], It is true when
¢ = 4 by [5, Proposition 3.3 (1)], since g (taken as ) is neither k nor k — 1.
It is true when g = 3 by virtue of [5, Lemma 1.1]. Its truth when p = 2 fol-
lows from the existence of the appropriate Traction Theorems of Appendix IV
of [12]. This completes the proof in Case II when r > 0.

The case k = 0. This is a subcase of Case II in which the extremal, say
74 in S, with J-length in (8;, f), has the index k = 0. Let ¢ be the J-normal
v-tuple of y;. f*(¢) equals a critical value b; listed in (9.3) with j > 0. By
hypothesis i > 0 in Lemma 9.2. We shall apply Traction Theorem £, in [12,
Appendix IV]. Let 4 = (n — 1)v. When k = O the set 4; in Traction Theorem
£; is a topological p-ball of v-tuples on (M,)*, a ball which tends to O in
diameter with its parameter e; and on which f* has an absolute minimum b;.
The Traction Theorem 2, implies the following.

(B) For some value c;_, e (b;_,, b;) and for a sufficiently small 2; there
exists an f*-traction of f; into 2; U f:,_,.

From Traction Lemma 5.1 it follows that the ith homology group of f; is
isomorphic to the ith homology group of 2; U f:,_, and hence of f

v v
Cj—1 cj—1°



632 MARSTON MORSE

Lemma 9.2 follows.

In case the critical values of j* on the interval (g;, p) are singleton, the truth
of Lemma 9.2 is an obvious consequence of its truth in Case I and Case II.
The truth of Lemma 9.2 when some of the critical values of f* on the interval
(B:» P fail to be singleton will be made clear by a paper on singleton extremals
of a Weierstrass integral.
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