
J . DIFFERENTIAL GEOMETRY
11 (1976) 535-546

LEAF INVARIANTS FOR FOLIATIONS AND
THE VAN EST ISOMORPHISM

HERBERT SHULMAN & DAVID TISCHLER

Introduction

In [5], Haeίliger defined a X-fϊbre, G-feuillete and gave a classifying space
B(G,K) for such objects. He also defined a map φH from H*(g,k) to
H*(B(G, K)) which is injective for G a Lie group and K a compact subgroup.
(H*(g, k) denotes the £-basic Lie algebra cohomology of g, the Lie algebra of
G.) In the special case where K is a maximal compact subgroup, H(g, k) is
isomorphic to the continuous cohomology H*(G) of G by the Van Est Theorem
[15]. In this paper we give a specific map ΦG : H(g, K) —> H*(G) (defined in
fact at the cochain level) which realizes the Van Est isomorphism, and show
that ΦH = 7r* o r o φG where r: H*(G) =—> H*(G) = #*(5G 0 ) is the inclusion,
Go is G with the discrete topology, and π: B(G, K) —> BG0 is the map which
classifies the Go structure of the X-fibre, G-feuillete.

The map ΦH above is also shown to be related to invariants R: H(g, K) —•
H*(L) for a leaf L of a foliation, defined by Reinhart and Goldman in [11]
and [4]. This is done by relating them both to the characteristic homomorphism
ψσ defined by Kamber and Tondeur in [8, p. 1409]. Specifically R = φHof
where /: L —> B(G, K) classifies the 2£-fibre, G-feuillete given by the foliated
normal bundle to L. As a result of this it is shown that the leaf invariants arise
from the continuous cohomology of G by the inclusion of the linear holonomy
into G. We also indicate briefly how to define global classes which give rise to
these leaf invariants. One such class is the obstruction for a foliation to be
volume-preserving. Finally, we give some examples of relations between leaf
invariants and the exotic classes for foliations. In particular, this provides a
way to obtain a result in [2] and [8, Vol. 279] on the nonvanishing of certain
of these exotic classes.

1. Leaf invariants

We first review a construction of Kamber and Tondeur in [8, p. 1409] and
[9, p. 68]. We then define Reinhart's leaf invariants as given in [11] and [4]
for trivial normal bundle, and generalize the construction for arbitrary normal
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bundle. We conclude by showing that the two constructions give essentially
the same invariants.

Let G = Gl(k R), and let g be its Lie algebra. Let L be a leaf of a smooth
foliation <F of codimension k, and πx(L) —> G, the linear holonomy of L.

Let Γ c G b e the image of this homomorphism, and L the covering space
associated to Γ. We set

LχG=Lχ G/(/, g) ~ (γ./, r g) for r e Γ, / € L, g e G .
Γ

The projection π onto the first factor is the principal normal G-bundle v of the
leaf L in the foliation ίF. This bundle is a discrete principal G-bundle over L.
For such a bundle there is a characteristic homomorphism φσ defined as follows:
For a compact subgroup K of G, Γ acts on G/K by left multiplication and we
get a factoring of π:

IX
Γ

1z, ϊ

X
r

Now assume that v has a X reduction as a G-bundle. Then π has a section
σ:L-^Lχ G/K. Let Λ*(£\ K) = {ω z A*(G/K) Z*ω = ω for all g in G}

Γ

where ^4* denotes differential forms, and Lg the left multiplication by g. Let
we /\* (g; K) and consider

£ X G/K -^-> G/X

I
L x G/K .

Γ

Then πfω projects to a form ώζA*(L x G/K) and σ*ώ € A*(L). The cochain
ΓΓ

map ω —• σ*ώ induces a map H*(g K) —^> H%R(L), where ^g^ denotes the
de Rham cohomology of the manifold L, which we call the characteristic
homomorphism φσ of L. In general φσ depends on σ however if G/K is con-
tractible then all sections are homotopic and φσ is independent of σ.

For K = {e}, ^ is the Reinhart map, as shown by the following: Since v
is a trivial G-bundle, there are global differential 1-forms ω19 , ωk defined
on a tubular neighborhood N of L which define J^ on iV, and 1-forms ηij such
that

k

do>ij = Σ 37^ Λ ω^
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or, in matrix notation, dω = η A ω. Since ω\L = 0, it follows that dη\L =
V Λ η\L9 where the notation \L denotes the pullback to the submanifold L.

Let {θij}, 1 < /, / < k, be a left invariant basis for /\* (g*), i.e., Maurer-
Cartan forms. Then dθ = θ A θ, and the map # o —> ^ extends to a multi-

plicative cochain map /\* (g) —> ^4*(L). The induced map #*(g) —^> H*(L)
is the one defined by Reinhart [11].

Proposition 1.1. // ω19 , ωfc and σ define the same trivialίzations, //*£/?

# ω = p..
Proof. It is well known [1], [5] that η is characterized by being the matrix

of connection 1-forms for a Bott connection of v with respect to the global
frame ω19 , ωk. On the principal G-bundle associated to v, over L, a Bott
connection can be given by the connection whose horizontal subspaces are
tangent to the leaves of the foliation on L x G. Therefore, given an open

Γ

covering {Va} of L which trivializes L x G as a /"-bundle, we have that the
r

connection form on Va x G can be given by pulling back the Maurer-Cartan
forms on G by the projection Va x G —%• G. Clearly τrJ0^ = πfθij because
the θi/s are left invariant, and πa and πβ differ by an element of Γ. Let #^
represent the resulting global connection form on L x G. Hence, if σ: L —•

L x G represents the trivialization ω19 , ωk, we have that σ*(^^) gives the
Γ

matrix of connection 1-forms with respect to the global frame ωί9 -,ωk.
Therefore 7]iά = σ*0ij). The result follows from this.

It is also straightforward to define R for the case of a K-reduction of the
normal bundle v, for arbitrary compact K, using differential forms [5], [4].
For this, one considers the pullback foliation on the total space of the ^-bundle
over a neighborhood of L, constructs the map Rω there, for the canonical frame
ω, and the £-basic forms /\ * (g, K) will project to the base, giving R: H*(g, K)
—> H*(L). This map is also seen to agree with φσ.

Using the differential form construction, we are able to give a global inter-
pretation of these classes. If the normal bundle to the foliation !F on the
manifold M is trivial, choose global ω/s (defining the foliation) and j ^ / s such
that dω = η A ω. Then we get a map p: /\ * (g) —> >4*(M) which is not a chain
map since dη Φ η A η on M. However, if we let /* be the (differential) ideal
of forms generated by the ω/s (i.e., forms vanishing on leaves) andv4*(M)//*
the quotient, then p projects to a chain map ~p with commutative diagram:

Λ*(g)
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Thus the leaf invariants, for any leaf, come from elements of //*G4*(M)//*).
The associated long exact sequence

> Hn-\A*(M)ll*) -* Hn(I*) -> Hn

DR(M) -> Hn(A*(M)/I*) -> . . ,

is discussed in Reinhart [10]. From this, for example, we can define tτ(η) e
H\A*(M)/I*) which depends only on the foliation, and is the zero class if and
only if the foliation globally preserves a volume. In contrast, z* (tr ή) e /7J,Λ(L)
is zero if and only if the linearized holonomy is volume-preserving see [13].

2. Haefliger's characteristic homomorphism

In [5], Haefliger defined the notion of a £-fibre, G-feuillete on a manifold
L, for general G, and a characteristic homomorphism φH: H*(g; K)-+ H%R(L).
A discrete G-bundle with a given reduction to a K-bundle is an example of a
£-fibre G-feuillete.

Proposition 2.1. Given G = Gl(k R), K a compact subgroup, and a K-
fibre G-feuillete on L with a K-reduction defined by a section σ of π, (of § 1),
then φH = φσ.

Proof. The bundle L x G > L (i.e., v) has a natural Γ reduction defined
Γ

P
as follows. Let L > L be the covering space associated to Γ and F c L b e

such that V x Γ —^> p~ι(V) is an isomorphism. Then we have
H

V X

where T(v,g) = (v, [e, g]), T~\v, [γ, g]) = (v, γ-'g), and H(v, [γ, g]) =
[H(v, γ)~\ g\. Then λΓ = H o T is the required trivialization over V. Now let
λκ: V X G —» TΓ'^F) be a K-trivialization over F. Thus the ^Γ's, for various
F, differ by elements of Γ and the λκ's differ by elements of K. Now consider

*κ

Let the composite of the top row be h. Note that ft* is Haefliger's map 0# on
F ; see [5]. The maps πκolκoi agree on overlaps of open sets F (since the
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λκ's differ by elements of K) and hence fit together to define a global section
a of π. Let πκ*: A*(L x G)^_b a s i c -> A*(L X G/K) denote projection of K-

Γ Γ

basic forms then

(2.1) h* = i* o λ* o λ-1* o π* = σ* o πκ* o ^ * o π2* ,

since σ* o πκ* = /* o λ% on X-basic forms. Then by the commutative diagram

X G

we get p* o Xj.1* o πf = π"*, and by tracing through the definition of <pσ we find
that the expression in (2.1) is ψσ. Thus Proposition 2.1 is proved.

3. The cochain map inducing the Van Est isomorphism

In this section, G denotes a connected semi-simple Lie group, and K a
maximal compact subgroup.

Let [g] = (go, ••-,&») be an element of Gn+1 = G X - X G, (n + 1)
times. Lg[g] will denote the (n + l)-tuρle (gg0, , ggn), and [g]t the n-tuple
feo, , gi-i, 8i+ι> »^n) T h e c o s e t o f 5 i n G 1/^ will be denoted g, and [g]
will denote the image of [g] in (G/K)n+ι. Let [ί] = (ί1? , tn) be an element
of Rn, and let Δn denote the n-simplex given by

For / Φ 0, the /th vertex is (0, , 1, 0, , 0) with 1 in the /th position, and
for / = 0 it is (0, - , 0). Let Ft: Δn~ι -> Δn be the inclusion of Δn~ι as the
/th face of Δn, that is, F ^ ^ , , tn_λ) = (fl9 . . -, ί^, 0, ί4, - , ί n - 1 ) .

Proposition 3.1. For each n>0, there is a map σn: Δn X G w + 1

w/ίΛ the following properties:
(1) σn is diβerentiable.

(2) (jn(M,Lj [g]) = L^ σ(W, [g]), wfer^ Lg>σ([t], [g]) dβπoto ίΛ
of G on G/K by the left multiplication,

(3) σ*φ<!ί[t\9 [g])) = ^ ^ ( W , [g],), for [t] e Δ"-1 and [g] <= G Λ + 1 .
(4) 5v fixing [g] ζ Gn+1 we get a map which we will denote by σ^:

G/K. The map σ ^ w α diffeomorphism onto its image and sends the /th
o/ j w to f<β

Proof. Let £ 0 g denote the Cartan decomposition of g, corresponding to
the polar decomposition G = KχP. Then G/K can be identified with P, and the
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tangent space TS(G/K) with p. Since exp: p —> P is a diffeomorphism, we can
consider the maps exp and log as difϊeomorphisms between TB (G/K) and G/K.
The diffeomorphism exp determines a unique path joining e to any other given
point of G/K. We can left translate these paths in order to define paths joining
any two given points of G/K these paths on G/K are well denned and unique
because k (exp x)k~ι = exp (Ad (k)x), for all k in K and x in p. These paths
give rise to a join operation on G/K. For a fixed [g] in Gn+1 we use this join
operation to define simplices inductively on G/K. For vertices (g0, , gn) we
"fill-in" the simplex by connecting g n to each point in the simplex with vertices
(fo> * g«-i) u s i n g t n e above paths.

Precisely, maps σ^: J w —> G/K are defined as follows:

For Ai = 0, <40)(0) = g0, and for n = 1, ^ 0 , y i ) ( ί i ) = L^0-exp((l -

O log go^gi). In general we define inductively,

(3.1) άfaifi, --,tn) = Lg0.exp ((1 - tλ) l o g ^ i i M o ( ί 2 , , *»))

It is clear that σw is differentiable. The properties (2), (3) and (4) of σn can
all be verified inductively by straightforward computations using (3.1).

Let Γ be a group with the discrete topology. We recall the simplicial con-
struction of the space BΓ which classifies principal Γ-bundles. For each n > 0,
take a disjoint union of n-simplices indexed by the elements of Γn+1, and
identify ([ί], [γ]^ e Δn~ι X Γn with (FJί], [r]) e Δn X Γ n + 1 , for [ί] € J""1 and
[/Ί € Γn+1. The resulting acyclic simplicial complex is denoted EΓ. For γ e Γ
we have the left action on Γn+1 given by Lr(γ0, , γn) = (^0, , ^ w ) , which
induces a free discontinuous action of Γ on E/1 by permuting the simplices.
The quotient space of this Γ action is BΓ and it has a simplicial structure with
ordered simplices induced from EΓ. The real simplicial n-cochains Cn{Γ) on
BΓ consist of the set of all functions from Γn+1 to the reals with the property
that if / e Cn(Γ), then f(rϊθ9 , γγn) = f(To, . , γn). The coboundary

δn . C » ( Γ ) _ c w + 1 (Γ) is given by δnKγ0, , Γ n + 1 ) = ΣKl ( - 1 ) * / ^ , -, f<,
• > 7Wi) The cohomology of this cochain complex is called the cohomology
of the group Γ with real coefficients. It will be denoted H*(Γ). This construc-
tion was described in [3].

Suppose that Γ is a subgroup of G. Then we can restrict σn: Δn X Gn+ι —>
G / £ to obtain σn: Jn X Γn+1 -> G/K.

Proposition 3.2. T&e raa/w σ" : Δn X Γ n + 1 -> G/K for n>0 define a con-
tinuous map σ: EΓ —^ G/K satisfying

(1) σ is differentiable when restricted to any simplex of EΓ.
(2) σ is equivarίant with respect to the left actions of Γ on EΓ and G/K

respectively.
Proof. Given an ^-simplex of EΓ corresponding to [γ] we map it into G/K

by σfr3. This map is differentiable by Proposition 3.1. These maps agree with
the identifications of these simplices in EΓ because of Proposition 3.1 (3), and
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hence yield a map σ: EΓ —> G/K. Since EΓ has the weak topology as a sim-
plicial complex, it follows that σ is continuous. The map a is equivariant
because of Proposition 3.1 (2).

We will make use of the de Rham theory for simplicial complexes as de-
veloped by Sullivan [14]. Let |AΓ| denote a simplicial complex. A simplicial
differential form on \X\ is a choice of an ordinary smooth differential form on
each closed simplex which satisfies the following compatibility condition. If Δ
is the intersection of two simplices, then the form pulled back to Δ from one
of the simplices should equal the form pulled back to Δ from the other. The
ordinary exterior derivative on each simplex induces a differential on simplicial
differential forms. The complex of these real valued simplicial differential
forms with exterior derivative will be denoted by A*(\X\), and the resulting
cohomology by H*mSχ\X\). There is a map p: A*(\X\) — C*(|X|, R) given by

p(φ)(Δn) = φ, where C*QX\,R) are the real cochains on \X\. The map p

commutes with differentials by Stokes' theorem and induces

P:Ht.BX\X\)^H*(\X\,R) .

In particular, for \BΓ\, we get

p: H*D.RX\BΓ\) -> H*(BΓ\,R) « H*(Γ) .

Proposition 3.3. The function φΓ: /\* (g,K) — A*QBΓ\) defined by
φr(ω)(ϊo> ' * * J Tn) — σ*riω yields a map of complexes.

Proof. φ(ω)(γγQ, , γγn) = φ(ω)(γ, , γn) since

by Proposition 3.1 (2), and since ω is left invariant. φ(ω) is a simplicial dif-
ferential form because Ffσ^ω = σl~{*ω by Proposition 3.1 (3). Therefore we
get a map ΦΓ: H(g, K) —> fl*(Γ), where ΦΓ = p o φΓ for Γ a subgroup of G.
Let Go denote G with the discrete topology. The subcomplex C"(\BG0\, R) of
CnQBGQ\,R) consisting of those cochains /: G%+1 -^ R which are continuous
with respect to the Lie group topology on G are called the continuous cochains,
the cohomology of which is denoted H*(G).

Proposition 3.4. The image of ΦGo: H*(g,K) -> #*(G 0 ) is contained in

H*(G).
Proof. This follows from the differentiability of σn and the fact that φGo is

defined in terms of σ.
Let us denote by ΦG the map from H*(g9 K) to H*(G) which is induced by

ΦGo. As a corollary to Proposition 3.4, we have
Corollary 3.1. Let i denote the inclusion of Γ in Go. Then φΓ: /\k (g, K)

-> Λ*(\BΓ\) factors as i* o φGo and consequently ΦΓ: H*(g, K) -> H*(Γ) factors
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as /* o φG where i* : H"(G) —> Hn(Γ) is given by restricting to Γn+1 the con-
tinuous n-cochains on Go.

It was shown by Van Est [15] that H*(g,K) and H*(G) are isomorphic;
however an explicit isomorphism was not given.

Proposition 3.5. ΦG : H*(g, K) —> H*(G) is an algebra isomorphism.
Proof. One way to see this is to note that Φc is induced by a mapping of

continuously injective resolutions of the reals in the sense of Hochschild and
Mostow ([6], see the proof of Theorem 6.1). However, we will show directly
that Φc is injective, and then it will follow that Φc is onto from the fact that
they are isomorphic and the finite dimensionality of H*(g, K). Let Γ b e a dis-
crete subgroup of G such that Γ\G/K is a compact orientable manifold. The
mapping σ: EΓ —> G/K is Γ equivariant and hence induces a mapping a: BΓ
—> Γ\G/K. Since both EΓ and G/K are contractible, we conclude that σ is a
homotopy equivalence. Consider the following diagram which is easily seen to
commute:

i* Φr

H*(Γ) < H*(G) «-i- H(g, K)

i
H*DR(Γ\G/K) ,

where / is the projection of the left invariant forms on G/K to Γ\G/K. Since
σ is a homotopy equivalence, ^ o ^ * is an isomorphism. The mapping j is in-
jective (see [7, Lemma 4.21, p. 22]). Hence ΦG is injective and hence an
isomorphism. ΦG is an isomorphism of real algebras because all the other maps
in the diagram are mappings of real algebras.

4. The simplicial Van Est map, leaf invariants, and ΦG

The construction in § 1 of <pσ, which gives a characteristic homomorphism
for a flat /"-bundle over L, can be generalized to the case where L is any
simplicial complex.

We will outline this construction first for the case of the universal .Γ-bundle
over the simplicial complex \BΓ\. The G/K bundle associated to the universal

.Γ-bundle is EΓ X G/K > BΓ. This bundle restricted to a closed simplex
Γ

Δ in \BΓ\ is diffeomorphic to J X G/K. This trivialization of EΓ X G/K can
Γ

be chosen to be a .Γ-trivialization. There is a map from A*(G/K) to A*(d x
G/K) given by projection of Δ X G/K to G/K. These maps are compatible in
the sense that if Δf is contained in Δ, then the map to A*(Δ' X G/K) is the
same as the map to A*(Δ x G/K) followed by restriction to A*{Δ' X G/K).

There is a section \σ\: BΓ -> EΓ X GK given by |σ| (JC) = (x, σ(x)), where
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x € EΓ projects to x and σ: EΓ —> G/K is the map defined in Proposition 3.2.
|σ| is well defined because of Proposition 3.2 (2), and the restriction of \σ\: Δ
- > J χ G/K for Δ in |RΓ | is differentiate by Proposition 3.2 (1). The com-
posite of \σ\: Δ —> Δ X G/K followed by projection to G/K induces a map
A*(G/K)-*A*(d). Because of the compatibility of the maps A*(G/K)^
A*(Δ X G/K) we have the following proposition.

Propos i t ion 4 . 1 . The section \σ\ induces φ [ σ ] : /\ * (g, X ) - > A*(\BΓ\) which
in turn induces φ l σ ] : H(g,K) — HDR(\BΓ\).

We set Φ,,, = p o fl σ,: #(g, K) -> # * ( | 5 Γ | , # ) « JΪ*(Γ).
Proposition 4.2. 0,σ, /.y ί/ze 5βmβ α̂s //ẑ  map φΓ given by Proposition 3.3,

and hence Φlσl = Φ Γ .
Proo/. This follows simplex by simplex from the definitions.
For a .Γ-bundle over a simplicial complex \L\, there is a simplicial map

7: |L | —> | 5 Γ | which fits into a commutative diagram of Γ-bundles:

L x G/K—^EΓ x
Γ Γ

Using j we can map A*(G/K) into π " 1 ^ ) , for J a simplex in |L|, and analo-
gously with the construction of φlσ], we can define ^ | s | : H*(g,K) —> jH"gΛ(|L|)
where |ΛΓ| is any smooth simplicial section of 7?, (that is, one which is differ-
entiable when restricted to each simplex of |L|). Such a section is given by
j^l — / - 1 o|cy|o/. Any two such sections are homotopic since G/K is con-
tractible, and the homotopy can be taken to be differentiate when restricted
to any simplex in |L| . Therefore φ]sl = /* oφlσ] for any such |s|. Furthermore
; * : H%R(\BΓ\) -> H$B(\L\) is independent of the choice of / since all such
choices are simplicially homotopic.

From the above and Corollary 3.1, we have
Proposition 4.3. 0,,,: #*(g, K) — ^ ^ ( 1 L | ) factors as $,, = /* o /* o φGo

(where i* is induced by the inclusion of Γ in G) and hence Φ[sl = /'* o /* o φG.

The above can be summarized in the following commutative diagram:

Corollary 4.1. // Γ is finite or is contained in a compact connected Lie
subgroup of G then i* = 0, and hence Φls] is zero.



544 HERBERT SHULMAN & DAVID TISCHLER

Proof. The real continuous cohomology of a finite group or of a compact
connected Lie group is zero [15].

Suppose now that L is a smooth manifold with a smooth triangulation |L | .
If s is a smooth section s: L —> L x G/K it induces a map φs: H(g, £ ) —>

HDR(L), and when we consider 5 as a smooth simplicial section \s\ we get
0,β,: #(g, IT) —> 77^(1 LI). It is easy to see that φs followed by the natural map
oίHDR(L) into HDRQL\) is the same as φ{s]. Furthemore, by [14] the com-
posite of the map of HDB(L) into HDB(\L\) followed by p yields the usual
de Rham isomorphism. Thus we have

Theorem 4.1. For L a manifold the map Φs: #*(g, K) -> H*(L R) is the
same as /* o ί* o φG, where /: L —• BΓ classifies the Γ-bundle over L, and i is
the inclusion of Γ in G.

In [5] Haefliger gave a classifying space B(G, K) for a X-fibre, G-feuillete.
He also defined a map φH: #*(g, K) —> H*(B(G, K) i?), corresponding to ^
in § 2. £(G, i^) can be taken to be E(G0) X G/K. Let TΓ : B(G, K) -> 5G 0 be

Go

the natural projection it classifies the Go structure of the K-fibre, G-feuillete.
Let us take G = Gl(n JR), and X a maximal compact subgroup of G. Then
we have

Corollary 4.2. 0 H = π* oφG.
Proof. This follows from Proposition 2.1 and the fact that we can use

Theorem 4.1 with / = π and / = identity.
We can apply Theorem 4.1 to the leaf invariants of a smooth foliation. Let

Γ be the linear holonomy, /: L —> BΓ the map which classifies the normal
bundle to L as a discrete Γ-bundle, and /: Γ —> G the inclusion. We get

Corollary 4.3. The following diagram commutes:

— H*(BΓ)

where R is the Reinhart map discussed in § 1.
Now, for example, Corollary 4.1 gives information about the map R.

5. The exotic classes

It is known that several exotic classes of foliations are nonvanishing (in
BΓ). References for these are [2] and [8]. In this section we show how certain
of these relate to the leaf invariants.

Let G be a semi-simple connected Lie group, H a connected subgroup of
G such that G/H is compact orientable, K a maximal compact subgroup of
G, K! C K a maximal compact subgroup of H, and Γ a discrete subgroup of G
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such that the spaces Γ\G, Γ\G/K = L, Γ\G/K' are compact orientable
manifolds.

The projection G/K x G/H —> G/H defines a foliation which projects to
one on E = G/K X G/H, where Γ acts on the left of both factors. The exotic

Γ

characteristic classes of this foliation are elements of H%R(E). We can integrate
them over the fibre G/H of E —> L to obtain elements of H%R(L), These ele-
ments are in the image of φσ: H*(g, K) —> #*(L), where 0, is the characteristic
homomorphism of the discrete G-bundle I x G ^ L o f §1 . This is seen by

Γ

the following commutative diagram:

H*Wn,SOn)

(5.1) H*(g,K') -H*(E)

UG/H

where the upper triangle gives the exotic classes of the foliation on E. See [2]
for notation and details of this. IG/H denotes integration over the fibre G/H,
and the left hand vertical map corresponds to integration over the fiber K/K'.
As noted above, φσ is injective.

Kamber-Tondeur have computed the maps in the upper triangle for a large
class of groups. See [8, Vol. 279]. For G = Sl(n \R),n even, and H the sub-
group fixing a ray in Rn, they obtained:

The exotic classes are of the form hjCj where the multi-indices / C {1, 2,
. , n - 1} and / c {1, 3, , n - 1}. Now K = SOn, K! = SOn_x and
H*(g,K) = E(v3, vδ, ,uTO_i, χ) an exterior algebra on generators vt of
dimension 2i — 1, and χ of dimension n. One then finds, by direct computation,

Proposition 5.1. // dim (cj) = 2(n — 1) and 1 e /, ί/zen (wp to r^α/ multiple)
IG/HQTΊCJ) = φσ(vΓ-χ) where Γ = I — {1}. Thus these hjCj are nonzero in
H*{E) and hence in H*(BΓk).

This generalizes the case for n = 2 in [12]. One hopes that for other groups
G there will be further relationships between exotic classes and leaf invariants.
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