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LEAF INVARIANTS FOR FOLIATIONS AND
THE VAN EST ISOMORPHISM

HERBERT SHULMAN & DAVID TISCHLER

Introduction

In [5], Haefliger defined a K-fibré, G-feuilleté and gave a classifying space
B(G,K) for such objects. He also defined a map ¢, from H*(g, k) to
H*(B(G, K)) which is injective for G a Lie group and K a compact subgroup.
(H*(g, k) denotes the K-basic Lie algebra cohomology of g, the Lie algebra of
G.) In the special case where K is a maximal compact subgroup, H(g, k) is
isomorphic to the continuous cohomology H¥(G) of G by the Van Est Theorem
[15]. In this paper we give a specific map @, : H(g, K) — H¥(G) (defined in
fact at the cochain level) which realizes the Van Est isomorphism, and show
that @, = n* oro @, where r: H¥(G) = H*(G) = H*(BG,) is the inclusion,
G, is G with the discrete topology, and n: B(G, K) — BG, is the map which
classifies the G, structure of the K-fibré, G-feuilleté.

The map @5 above is also shown to be related to invariants R: H(g, K) —
H*(L) for a leaf L of a foliation, defined by Reinhart and Goldman in [11]
and [4]. This is done by relating them both to the characteristic homomorphism
¢, defined by Kamber and Tondeur in [8, p. 1409]. Specifically R = @y o f
where f: L — B(G, K) classifies the K-fibre, G-feuilleté given by the foliated
normal bundle to L. As a result of this it is shown that the leaf invariants arise
from the continuous cohomology of G by the inclusion of the linear holonomy
into G. We also indicate briefly how to define global classes which give rise to
these leaf invariants. One such class is the obstruction for a foliation to be
volume-preserving. Finally, we give some examples of relations between leaf
invariants and the exotic classes for foliations. In particular, this provides a
way to obtain a result in [2] and [8, Vol. 279] on the nonvanishing of certain
of these exotic classes.

1. Leaf invariants

We first review a construction of Kamber and Tondeur in [8, p. 1409] and
[9, p. 68]. We then define Reinhart’s leaf invariants as given in [11] and [4]
for trivial normal bundle, and generalize the construction for arbitrary normal
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bundle. We conclude by showing that the two constructions give essentially
the same invariants.

Let G = Gl(k; R), and let g be its Lie algebra. Let L be a leaf of a smooth
foliation & of codimension k, and n,(L) — G, the linear holonomy of L.

Let I' C G be the image of this homomorphism, and L the covering space
associated to I". We set

LxG=LxG/Ug ~(lyg foryel,lel, geG.
r

The projection = onto the first factor is the principal normal G-bundle v of the
leaf L in the foliation 4 . This bundle is a discrete principal G-bundle over L.
For such a bundle there is a characteristic homomorphism ¢, defined as follows :
For a compact subgroup K of G, I" acts on G/K by left multiplication and we
get a factoring of z:

L

-—— X

G n,
z \E X GJK
L/ '

Now assume that » has a K reduction as a G-bundle. Then # has a section
6:L—LXG/K. Let N\*(g;K) ={we A*(G/K); Lfo = o for all g in G}
r

where A* denotes differential forms, and L, the left multiplication by g. Let
we A\*(g; K) and consider

Then 7} projects to a form @ ¢ A*(L X G/K) and ¢%® € A*(L). The cochain
r

map w — ¢*@ induces a map H*(g; K) AN H% (L), where H%, denotes the
de Rham cohomology of the manifold L, which we call the characteristic
homomorphism ¢, of L. In general ¢, depends on ¢; however if G/K is con-
tractible then all sections are homotopic and ¢, is independent of o.

For K = {e}, ¢, is the Reinhart map, as shown by the following: Since v
is a trivial G-bundle, there are global differential 1-forms w,, - - -, ®, defined
on a tubular neighborhood N of L which define & on N, and 1-forms 7,; such
that

k
da)ij = Z:lvij /\ @;
i=
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or, in matrix notation, do = 5 /\ ». Since w|, = 0, it follows that dy|, =

7 /\ p|z, where the notation |, denotes the pullback to the submanifold L.
Let {¢,;}, 1 <i, j <k, be a left invariant basis for A'(g*), i.e., Maurer-

Cartan forms. Then df = 6 A\ 6, and the map §,; — 7,; extends to a multi-

plicative cochain map A * (g) — A*(L). The induced map H*(g) & H*(L)
is the one defined by Reinhart [11].

Proposition 1.1. If w,, - - -, 0, and ¢ define the same trivializations, then
R, = o,.

Proof. It is well known [1], [5] that 5 is characterized by being the matrix
of connection 1-forms for a Bott connection of v with respect to the global
frame w,, - - -, ®;. On the principal G-bundle associated to v, over L, a Bott
connection can be given by the connection whose horizontal subspaces are
tangent to the leaves of the foliation on L X G. Therefore, given an open

r
covering {V,} of L which trivializes L X G as a I'-bundle, we have that the
r
connection form on ¥V, X G can be given by pulling back the Maurer-Cartan

forms on G by the projection V, X G iNye) Clearly z¥0;; = ©}0;; because
the 4;,’s are left invariant, and =, and z, differ by an element of I". Let 0,

represent the resulting global connection form on L X G. Hence, if o: L —
r

L % G represents the trivialization w,, - - -, w;, we have that ¢*(f,,) gives the
r

matrix of connection 1-forms with respect to the global frame w,, - - -, ;.
Therefore 7,; = o*(4;;). The result follows from this.

It is also straightforward to define R for the case of a K-reduction of the
normal bundle v, for arbitrary compact K, using differential forms [5], [4].
For this, one considers the pullback foliation on the total space of the K-bundle
over a neighborhood of L, constructs the map R, there, for the canonical frame
o, and the K-basic forms A * (g, K) will project to the base, giving R: H*(g, K)
— H*(L). This map is also seen to agree with ¢,.

Using the differential form construction, we are able to give a global inter-
pretation of these classes. If the normal bundle to the foliation # on the
manifold M is trivial, choose global w;’s (defining the foliation) and ,,’s such
that do = » A . Then we get amap p: A * (g) — A*(M) which is not a chain
map since dy # 5 /A » on M. However, if we let I* be the (differential) ideal
of forms generated by the w;’s (i.e., forms vanishing on leaves) and 4*(M)/I*
the quotient, then p projects to a chain map p with commutative diagram:

A*(g) L A*(M) /1*

N

AX(L)
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Thus the leaf invariants, for any leaf, come from elements of H*(A*(M)/I*).
The associated long exact sequence

« = H" (A (M) | I*) — H"(I*) — Hy (M) — H*(A*M) [I#) — - - -

is discussed in Reinhart [10]. From this, for example, we can define tr (y) €
H'(A*(M)/I*) which depends only on the foliation, and is the zero class if and
only if the foliation globally preserves a volume. In contrast, i* (try) € H},z(L)
is zero if and only if the linearized holonomy is volume-preserving ; see [13].

2. Haefliger’s characteristic homomorphism

In [5], Haefliger defined the notion of a K-fibré, G-feuilleté on a manifold
L, for general G, and a characteristic homomorphism ¢, : H*(g ; K) — H}z(L).
A discrete G-bundle with a given reduction to a K-bundle is an example of a
K-fibré G-feuilleté.

Proposition 2.1. Given G = Gl(k; R), K a compact subgroup, and a K-
fibré G-feuilleté on L with a K-reduction defined by a section ¢ of #, (of § 1),
then ¢y = ¢,.

Proof. Thebundle L x G Ny § (i.e., v) has a natural I" reduction defined
r

~ P
as follows. Let L —— L be the covering space associated to /" and ¥V C L be

such that V x I" —g—> p~'(V) is an isomorphism. Then we have

VX GL-vxT X GH -7 ——L xG

Ry

VC——L

[

where T(v,8) = (v, le, gI), T™'(v, [y, 8]) = (v, '), and H(v, [, gD) =
[H, 7)™, gl. Then 2, = H o T is the required trivialization over V. Now let
Az: V X G — z7Y(V) be a K-trivialization over V. Thus the 4,’s, for various
V, differ by elements of I" and the Ax’s differ by elements of K. Now consider

ViV x G2y x GG

T~ IE374
I~

TS F (D) .

Let the composite of the top row be i. Note that 2* is Haefliger’s map ¢, on
V; see [5]. The maps nx o A5 oi agree on overlaps of open sets V' (since the
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Ax’s differ by elemcnt~s of K) and hence ﬁE together to define a global section
gof #. Let ngy: A¥(L X G)gopasic — A*(L X G/K) denote projection of K-
r r

basic forms ; then
2.1) h* = i*o koAl on¥ = 0¥ omguo Az onrf

since ¢* o wge = i* o A% on K-basic forms. Then by the commutative diagram

priv)y x ¢EXe o o6
ll_’ﬂé\G//é

z (V) -——%i’f ™~

™

VXG
we get p* o Ap" o = #y”, and by tracing through the definition of ¢, we find
that the expression in (2.1) is ¢,. Thus Proposition 2.1 is proved.

3. The cochain map inducing the Van Est isomorphism

In this section, G denotes a connected semi-simple Lie group, and K a
maximal compact subgroup.

Let [g]l = (g, ---,8,) be an element of G*"*"' =G X --- X G, (n+ 1)
times. L,[g] will denote the (n + 1)-tuple (gg,, - - -, 8¢.), and [g]; the n-tuple
(80> ***58i_1>8:41» * * *» 8n).- The coset of g in G/K will be denoted g, and [g]
will denote the image of [g] in (G/K)"*'. Let [t] = (¢, - - -, ,) be an element
of R", and let 4™ denote the n-simplex given by

A":{[t]eR"]Ogtigl,itigl}.
i=1

For i # 0, the ith vertex is (0, ---, 1,0, - --,0) with 1 in the ith position, and
fori =0itis (0, ---,0). Let F;: 4°°' — 4" be the inclusion of A™! as the
ith face of 4", thatis, Fy(t;, -+, t,_) = (¢, *~ 58,1, 0, 85, -+, t,_).

Proposition 3.1. For each n > 0, there is a map ¢": 4* X G**' — G/K
with the following properties :

(1) o™ is differentiable.

(2) o"([1], L,-[8D) = L,-0([1], [g]), where L,-a([1], [g]) denotes the action
of G on G/K by the left multiplication.

(3) o"(Ful1], [gD)) = o"7'([1], [g],), for [l € 4~ and [g] € G™*'.

(4) By fixing [g] € G™*' we get a map which we will denote by of,;;: 4™ —
G /K. The map at,, is a diffeomorphism onto its image and sends the ith vertex
of 4" to g;.

Proof. Let k® p denote the Cartan decomposition of g, corresponding to
the polar decomposition G = K X P. Then G/K can be identified with P, and the
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tangent space T,(G/K) with p. Since exp: p — P is a diffeomorphism, we can
consider the maps exp and log as diffeomorphisms between T, (G/K) and G/K.
The diffeomorphism exp determines a unique path joining e to any other given
point of G/K. We can left translate these paths in order to define paths joining
any two given points of G/K ; these paths on G/K are well defined and unique
because k (exp x)k™! = exp (Ad (k)x), for all k¥ in K and x in p. These paths
give rise to a join operation on G/K. For a fixed [g] in G"*! we use this join
operation to define simplices inductively on G /K. For vertices (g, - - -, &) We
“fill-in” the simplex by connecting g, to each point in the simplex with vertices
(80, + - - 8,_1) using the above paths.

Precisely, maps of,1: 4" — G/K are defined as follows :

For n =0, 69,0 = g, and for n =1, o, .,(t) = L, -exp (1 —
t) log g;*g)), In general we define inductively,

(3'1) G?g](tly ] tn) = . €Xp ((1 - tl) lOg ng“[g] (t27 R} tn)) .

It is clear that ¢" is differentiable. The properties (2), (3) and (4) of ¢” can
all be verified inductively by straightforward computations using (3.1).

Let I" be a group with the discrete topology. We recall the simplicial con-
struction of the space BI" which classifies principal I"-bundles. For each n > 0,
take a disjoint union of n-simplices indexed by the elements of I'"*, and
identify ([7], [y];) € 4%7' X I'" with (F;[#], [y]) € 4® x I'**!, for [f] € 4" and
[yl € I'**'. The resulting acyclic simplicial complex is denoted EI'. For y e I’
we have the left action on I™**! given by L.(yy, « * *, 72) = (770 * * *» 77x)> Which
induces a free discontinuous action of I" on EI' by permuting the simplices.
The quotient space of this /" action is B/" and it has a simplicial structure with
ordered simplices induced from EI'. The real simplicial n-cochains C"(I") on
BI” consist of the set of all functions from /™**! to the reals with the property
that if fe C*(I"), then f(yye, -5 772) = f(yo» ++-> y»). The coboundary
o": Cn(l") - Cn+1([') is giVCI'l by anf(ro, Tt Tn+1) - Zn+1 l)if(ro’ ] fia
-+, 7ns+1). The cohomology of this cochain complex is called the cohomology
of the group I" with real coefficients. It will be denoted H*(I"). This construc-
tion was described in [3].

Suppose that I" is a subgroup of G. Then we can restrict ¢”: 4 X G"*' —
G/K to obtain ¢": 4" X I'**' — G /K.

Proposition 3.2. The maps ¢": 4" X ['""*' — G/K for n > 0 define a con-
tinuous map o : EI' — G /K satisfying

(1) o is differentiable when restricted to any simplex of EI.

(2) o is equivariant with respect to the left actions of I on EI' and G|K
respectively.

Proof. Given an n-simplex of EI" corresponding to [y] we map it into G/K
by o7,;. This map is differentiable by Proposition 3.1. These maps agree with
the identifications of these simplices in EI” because of Proposition 3.1 (3), and
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hence yield a map ¢: EI' — G/K. Since EI" has the weak topology as a sim-
plicial complex, it follows that ¢ is continuous. The map ¢ is equivariant
because of Proposition 3.1 (2).

We will make use of the de Rham theory for simplicial complexes as de-
veloped by Sullivan [14]. Let |X| denote a simplicial complex. A simplicial
differential form on |X| is a choice of an ordinary smooth differential form on
each closed simplex which satisfies the following compatibility condition. If 4
is the intersection of two simplices, then the form pulled back to 4 from one
of the simplices should equal the form pulled back to 4 from the other. The
ordinary exterior derivative on each simplex induces a differential on simplicial
differential forms. The complex of these real valued simplicial differential
forms with exterior derivative will be denoted by A*(X|), and the resulting
cohomology by H% (| X|). There is a map p: A*(X|) — C*(X|, R) given by

op)(d™) = j ¢, where C*(|X|, R) are the real cochains on |X|. The map p
an

commutes with differentials by Stokes’ theorem and induces
p: H} (XD — H*(X|,R) .
In particular, for |BI"|, we get
p: Hj » (BI') — H*(BI'|, R) = H*(I) .

Proposition 3.3. The function ¢.: \*(g,K) — A*(BI'|) defined by
Sr(@) (o, + + +5 10) = 0fiqw yields a map of complexes.
Proof. $(@)(yre, -+ +5 77n) = $@)(r, - - -, 74) since

* % Tk — ¥
o.(rro’---,rrn)w - o‘(TQv"'vTﬂ) L*o = O.(ro,---,rn)w

by Proposition 3.1 (2), and since o is left invariant. ¢(w) is a simplicial dif-
ferential form because Ffof;0 = o757} @ by Proposition 3.1 (3). Therefore we
get amap @,: H(g,K) — H*(I"), where @, = po¢, for I' a subgroup of G.
Let G, denote G with the discrete topology. The subcomplex C?(|BG,|, R) of
C™(BG,|, R) consisting of those cochains f: G;** — R which are continuous
with respect to the Lie group topology on G are called the continuous cochains,
the cohomology of which is denoted H*(G).

Proposition 3.4. The image of Oq,: H*(g, K) — H*(G,) is contained in
H*(G).

Proof. This follows from the differentiability of ¢” and the fact that ¢, is
defined in terms of ¢.

Let us denote by @, the map from H*(g, K) to H¥(G) which is induced by
@g,. As a corollary to Proposition 3.4, we have

Corollary 3.1. Let i denote the inclusion of I' in G,. Then ¢: N\* (g, K)
— J*(|BF ) factors as i* o ¢, and consequently @ : H*(g, K) — H*(I') factors
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as i* o @5 where i* . HY(G) — H"(I") is given by restricting to I'**' the con-
tinuous n-cochains on G,.

It was shown by Van Est [15] that H*(g, K) and H*(G) are isomorphic;
however an explicit isomorphism was not given.

Proposition 3.5. @;: H*(g, K) — H¥(G) is an algebra isomorphism.

Proof. One way to see this is to note that @, is induced by a mapping of
continuously injective resolutions of the reals in the sense of Hochschild and
Mostow ([6], see the proof of Theorem 6.1). However, we will show directly
that @, is injective, and then it will follow that @, is onto from the fact that
they are isomorphic and the finite dimensionality of H*(g, K). Let I" be a dis-
crete subgroup of G such that /"\G/K is a compact orientable manifold. The
mapping ¢: EI" — G /K is I" equivariant and hence induces a mapping ¢: BI’
— I'\G/K. Since both EI" and G/K are contractible, we conclude that ¢ is a
homotopy equivalence. Consider the following diagram which is easily seen to
commute :

H*(I") <— H¥G) <2°~ H(g, K)

| * i

H}o(BI|) «——— Hi(I'\G/K) ,

where j is the projection of the left invariant forms on G/K to I'\G/K. Since
¢ is a homotopy equivalence, po¢* is an isomorphism. The mapping j is in-
jective (see [7, Lemma 4.21, p. 22]). Hence @, is injective and hence an
isomorphism. @ is an isomorphism of real algebras because all the other maps
in the diagram are mappings of real algebras.

4. The simplicial Van Est map, leaf invariants, and @,

The construction in § 1 of ¢,, which gives a characteristic homomorphism
for a flat I"-bundle over L, can be generalized to the case where L is any
simplicial complex.

We will outline this construction first for the case of the universal /’-bundle
over the simplicial complex |BI'|. The G/K bundle associated to the universal

I-bundle is EI' X G/K —"5 BI'. This bundle restricted to a closed simplex
r
4 in |BI'| is diffeomorphic to 4 X G/K. This trivialization of EI’ X G/K can
r

be chosen to be a ['-trivialization. There is a map from A*(G/K) to A*(4 X
G/K) given by projection of 4 X G/K to G/K. These maps are compatible in
the sense that if 4’ is contained in 4, then the map to A*(4’ X G/K) is the
same as the map to 4*(4 X G/K) followed by restriction to 4A*(4’ X G/K).
There is a section |¢|: BI' — EI' X GK given by |c¢|(x) = (%, a(X)), where
r
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X% e EI’ projects to x and ¢: EI' — G/K is the map defined in Proposition 3.2.
|o| is well defined because of Proposition 3.2 (2), and the restriction of |g|: 4
— 4 X G/K for 4 in |BI'| is differentiable by Proposition 3.2 (1). The com-
posite of |¢|: 4 — 4 X G/K followed by projection to G/K induces a map
A*(G/K) — A*(4). Because of the compatibility of the maps A*(G/K) —
A*(4 X G/K) we have the following proposition.

Proposition 4.1.  The section |o|induces ¢,,,: )\ * (g, K) — A*(BI"|) which
in turn induces ¢,,,: H(g,K) — Hp(BI)).

We set §,,, = pog,,: Hg,K) — H*(BI'|,R) = H*(I).

Proposition 4.2. ¢, , is the same as the map ¢ given by Proposition 3.3,
and hence @,, = 9.

Proof. This follows simplex by simplex from the definitions.

For a I'-bundle over a simplicial complex |L|, there is a simplicial map
j: |L| — |BI"| which fits into a commutative diagram of I"-bundles:

i % G/K—Ls El x G/K
r r

A

L' ,Br

Using j we can map A*(G/K) into z~'(d), for 4 a simplex in |L|, and analo-
gously with the construction of ¢, , we can define ¢,;: H*(g, K) — H%(L])
where |s| is any smooth simplicial section of #, (that is, one which is differ-
entiable when restricted to each simplex of |L[). Such a section is given by
|s| = j~'o|a|oj. Any two such sections are homotopic since G/K is con-
tractible, and the homotopy can be taken to be differentiable when restricted
to any simplex in |L|. Therefore ¢, = j* o ¢,,, for any such |s|. Furthermore
i*: Hx(BI'|) — H}z(L|) is independent of the choice of j since all such
choices are simplicially homotopic.

From the above and Corollary 3.1, we have

Proposition 4.3. ¢, H*(g, K) — H},(L|) factors as ¢, = j*oi*odg,
(where i* is induced by the inclusion of I" in G) and hence @, = j* o i* o @g.

The above can be summarized in the following commutative diagram :

H*(L|; R)——H*(I ——H*G)
Dg
14 14 ]P =

AR L)~ % 5( BT )~ F 34 BG,) =22 H* (g, K)

Corollary 4.1. If I'" is finite or is contained in a compact connected Lie
subgroup of G then i* = 0, and hence @, is zero.
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Proof. The real continuous cohomology of a finite group or of a compact
connected Lie group is zero [15].
Suppose now that L is a smooth manifold with a smooth triangulation |L|.
If s is a smooth section s: L — L x G/K it induces a map ¢,: H(g, K) —
r

Hpz(L), and when we consider s as a smooth simplicial section |s| we get
é¢1: H(g, K) — Hpp(L)). Itis easy to see that ¢, followed by the natural map
of Hpp(L) into H pr(IL|) is the same as ¢,,. Furthemore, by [14] the com-
posite of the map of Hy,(L) into Hyg(|L|) followed by p yields the usual
de Rham isomorphism. Thus we have

Theorem 4.1. For L a manifold the map ®,: H*(g, K) — H*(L ; R) is the
same as j* oi* o @q, where j: L — BI classifies the I'-bundle over L, and i is
the inclusion of I' in G.

In [5] Haefliger gave a classifying space B(G, K) for a K-fibré, G-feuilleté.
He also defined a map ¢, : H*(g, K) — H*(B(G, K) ; R), corresponding to ¢
in § 2. B(G, K) can be taken to be E(G,) (>;< G/K. Let n: B(G, K) — BG, be

the natural projection ; it classifies the G, structure of the K-fibré, G-feuilleté.
Let us take G = Gl(n; R), and K a maximal compact subgroup of G. Then
we have

Corollary 4.2. ¢, = 7% ;.

Proof. This follows from Proposition 2.1 and the fact that we can use
Theorem 4.1 with j = z and i = identity.

We can apply Theorem 4.1 to the leaf invariants of a smooth foliation. Let
I" be the linear holonomy, j: L — BI' the map which classifies the normal
bundle to L as a discrete I'-bundle, and i: I" — G the inclusion. We get

Corollary 4.3. The following diagram commutes:

H*(L) < H*BI)

TR T,

H*(g, K) %> H(G)

where R is the Reinhart map discussed in § 1.
Now, for example, Corollary 4.1 gives information about the map R.

5. The exotic classes

It is known that several exotic classes of foliations are nonvanishing (in
BI"). References for these are [2] and [8]. In this section we show how certain
of these relate to the leaf invariants.

Let G be a semi-simple connected Lie group, H a connected subgroup of
G such that G/H is compact orientable, K a maximal compact subgroup of
G, K’ C K a maximal compact subgroup of H, and I” a discrete subgroup of G
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such that the spaces I'\G, I'\G/K = L, I'\G/K’ are compact orientable
manifolds.
The projection G/K X G/H — G/H defines a foliation which projects to
oneon E = G/K X G/H, where " acts on the left of both factors. The exotic
r

characteristic classes of this foliation are elements of H};(E). We can integrate

them over the fibre G/H of E — L to obtain elements of H};(L), These ele-

ments are in the image of ¢, : H*(g, K) — H*(L), where ¢, is the characteristic

homomorphism of the discrete G-bundle £ X G — L of § 1. This is seen by
r

the following commutative diagram :

H*(¥,, SO,)
3.1 H*(g,K’) H*(E)
IIG/H

H*(g, K) —5—H*(I'\G/K)

where the upper triangle gives the exotic classes of the foliation on E. See [2]
for notation and details of this. I;,; denotes integration over the fibre G/H,
and the left hand vertical map corresponds to integration over the fiber K/K’.
As noted above, ¢, is injective.

Kamber-Tondeur have computed the maps in the upper triangle for a large
class of groups. See [8, Vol. 279]. For G = Si(n; R), n even, and H the sub-
group fixing a ray in R", they obtained:

The exotic classes are of the form h;c; where the multi-indices J C {1, 2,
-».,n—1} and I C{1,3,--.,n —1}. Now K = S0,, K’ = SO,,_, and
H*(g,K) = E(v;,v;, +++,V,_1, ) an exterior algebra on generators v; of
dimension 2i — 1, and y of dimension #. One then finds, by direct computation,

Proposition 5.1. Ifdim(c;) = 2(n — 1) and 1 € 1, then (up to real multiple)
Ign(hcy) = ¢,(vy.-x) where I’ =1 — {1}. Thus these hjc; are nonzero in
H*(E) and hence in H*(BI'},).

This generalizes the case for n = 2 in [12]. One hopes that for other groups
G there will be further relationships between exotic classes and leaf invariants.
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