TOPOLOGY OF THE COMPLEX VARIETIES $A_{s}^{(n)}$

I. DIBAG

1. Introduction

Define, for $s \leq[n / 2]$,
$\tilde{V}_{n, 2 s}$: manifold of ordered $2 s$-tuplets of linearly independent vectors in Euclidean n-space R^{n},
$\tilde{A}_{s}^{(n)}$: space of 2-forms in $R^{\dot{n}}$ of rank $2 s$, $\tilde{f}_{s}^{(n)}: \tilde{V}_{n, 2 s} \rightarrow \tilde{A}_{s}^{(n)}: \quad$ map given by

$$
\tilde{f}_{s}^{(n)}\left(y_{1}, \cdots, y_{2 s}\right)=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}
$$

$V_{n, 2 s}$: Stiefel manifold of orthonormal $2 s$-frames in R^{n},
$A_{s}^{(n)}=\tilde{f}_{s}^{(n)}\left(V_{n, 2 s}\right)$: subspace of $\tilde{A}_{s}^{(n)}$ of "normalized" 2-forms in R^{n} of rank $2 s$,
$f_{s}^{(n)}: V_{n, 2 s} \rightarrow A_{s}^{(n)}: \quad$ the restriction of $\tilde{f}_{s}^{(n)}$ to $V_{n, 2 s}$.
It was proved in [4] that the maps $\tilde{f}_{s}^{(n)}$ and $f_{s}^{(n)}$ induce the principal $S p(s ; R)$ and $U(s)$-bundles respectively, and that $\boldsymbol{A}_{s}^{(n)}$ is a strong deformation retract of $\tilde{A}_{s}^{(n)}$.

One may, equivalently, define $\boldsymbol{A}_{s}^{(n)}$ as the space of normalized complex s substructures of R^{n}, i.e., pairs (p, J) where p is a $2 s$-plane in R^{n} and J is a normalized complex structure on $p\left(J \in O(p), J^{2}=-1\right)$.

To see the equivalence, let $w \in A_{s}^{(n)}$. Then $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ for an orthonormal $2 s$-frame $y=\left(y_{1}, \cdots, y_{2 s}\right)$. Let p be the $2 s$-plane spanned by y. For $x \in p$, let $d_{x}: p \rightarrow \Lambda^{2} p$ be forming wedge products with x, i.e., $d_{x}(z)$ $=x \wedge z$, and $\delta_{x}: \Lambda^{2} p \rightarrow p$ be its "adjoint". Define a linear transformation J on p by $J(x)=\delta_{x}(w), x \in p$. Then $J\left(y_{i}\right)=y_{i+s}$ and $J\left(y_{i+s}\right)=-y_{i}, 1 \leq i \leq s$. Thus $J \in O(p), J^{2}=-1$. Conversely, a normalized complex s-substructure J, $J \in O(p), J^{2}=-1$, can be represented by the matrix $\left[\begin{array}{cc}0 & -I_{s} \\ I_{s} & 0\end{array}\right]$ relative to some orthonormal $2 s$-frame $y=\left(y_{1}, \cdots, y_{2 s}\right)$ on p. Hence J corresponds to $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ in $A_{s}^{(n)}$.

It follows from either definition that $A_{s}^{(n)}=S O(n) / U(s) \times S O(n-2 s)$ for $s<n / 2, A_{s}^{(2 s)}=O(2 s) / U(s)=I_{s} \cup I_{s}^{\prime}$ where $I_{s}=S O(2 s) / U(s), A_{1}^{(n)}=\tilde{G}_{n, 2}$ $=Q_{n-2}(C)$ where $\tilde{G}_{n, 2}$ is the oriented 2-planes in R^{n}, and $Q_{n-2}(C)$ is the complex quadric of dimension $n-2$.

The spaces $A_{s}^{(n)}$ appear as "fibres" in global obstrüction problems involving

[^0]2-forms of constant rank, and the foremost among these problems are the existence and decomposability of such forms.

1. The existence of a 2 -form of constant rank $2 s$ on an R^{n}-bundle E (or, a complex s-substructure on E) is equivalent to cross-sectioning the associated bundle $A_{s}(E)$ to E with fiber $A_{s}^{(n)}$.
2. Globally decomposing a given 2-form w of constant rank $2 s$ on E as a sum $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ of products of 1-forms $\left(y_{i}\right)$ on E is equivalent to the lifting of the diagram

where B is the base manifold, $V_{2 s}(E)$ the associated bundle to E with fiber the Stiefel manifold $V_{n, 2 s}$, and w is represented with respect to a suitable metric on E as a "normalized" 2-form on E of constant rank $2 s$, i.e., as a map w: $B \rightarrow A_{s}(E)$. (Refer to [4].)

2a. In the special case when E is a trivial (product) bundle (e.g., the tangent bundles of Lie groups), the diagram reduces to

and the primary obstructions to lifting w_{1} are the pull-back $w_{1}^{*}\left(c_{i}\right) \in H^{2 i}(B ; Z)$ by w_{1} of the Chern classes $c_{i} \in H^{2 i}\left(A_{s}^{(n)} ; Z\right)$ of the principal $U(s)$-bundle $V_{n, 2 s}\left(A_{s}^{(n)} ; U(s)\right)$.

2b. In the general case (i.e., when the total bundle E is not necessarily trivial) a necessary condition for globally decomposing w is that the $2 s$-dimensional subbundle S_{w} of E defined by w is trivial. Using the triviality of S_{w} (and a suitable metric on it) w is represented as a map $w_{1}: B \rightarrow I_{s}$, and then decomposability of w is equivalent to the lifting of the diagram :

(which is the special case of diagram 2 a for $n=2 s$) and again the primary obstructions to decomposing w are the pull-back $w_{1}^{*}\left(c_{i}\right) \in H^{2 i}(B ; Z)$ by w_{1} of the Chern classes $c_{i} \in H^{2 i}\left(I_{s} ; Z\right)$ of $S O(2 s)\left(I_{s} ; U(s)\right)$. (Refer to [4] for details.)

In this paper we make a start on these obstruction problems by studying the
topology of the manifolds $A_{s}^{(n)}$. We represent $A_{s}^{(n)}$ as the subvariety of the complex Grassmann variety $G_{n, s}^{c}$ of projective [$s-1$]-planes lying on the complex quadric $Q_{n-2}(C)$. In perfect analogy with the classical Schubert calculus on Grassmann varieties, we define the Schubert cell $\Omega_{a_{0} a_{1} \cdots a_{s-1}}, 0 \leq a_{0}$ $<a_{1}<\cdots<a_{s-1} \leq n-2$. Then the main result of this paper, the $C W-$ structure theorem, states that $\boldsymbol{A}_{s}^{(n)}$ is a cell complex on the class of Schubert cells

$$
\left(\Omega_{a_{0} a_{1} \cdots a_{s-1}} \mid a_{i}+a_{j} \neq n-2 \text { for } 0 \leq i<j \leq n-2\right)
$$

As a corollary we obtain the additive homology and cohomology of $\boldsymbol{A}_{s}^{(n)}$. We then develop a duality theory for $A_{s}^{(n)}$, and using this and the inclusion map $j: A_{s}^{(n)} \rightarrow G_{n, s}^{c}$ we compute the Chern classes $c_{i} \in H^{2 i}\left(A_{s}^{(n)} ; Z\right)$. Thus given w we can explicitly determine the primary obstructions $w^{*}\left(c_{i}\right)$ to decompose w.

The paper, as a whole, is self contained. The arguments are based on elementary projective geometry.

2. Universality of $\boldsymbol{A}_{s}^{(\infty)}$

For fixed s we have a sequence of principal $U(s)$-bundles:

Thus $\boldsymbol{A}_{s}^{(\infty)}=\operatorname{dir}_{\lim }^{n \rightarrow \infty} \boldsymbol{A}_{s}^{(n)}$ forms a classifying space for $U(s)$. Let $W_{n, s}$ be the Stiefel manifold of complex orthonormal s-frames in C^{n}, and define $r_{s}^{(n)}: W_{n, s} \rightarrow V_{2 n, 2 s}$ by $r_{s}^{(n)}\left(z_{1}, \cdots, z_{s}\right)=\left(z_{1}, \cdots, z_{s}, i z_{1}, \cdots, i z_{s}\right)$, and $w_{s}^{(n)}: V_{n, 2 s}$ $\rightarrow W_{n, s}$ by $w_{s}^{(n)}\left(x_{1}, \cdots, x_{2 s}\right)=\left((1 / \sqrt{2})\left(x_{1}-i x_{s+1}\right), \cdots,(1 / \sqrt{2})\left(x_{s}-i x_{2 s}\right)\right)$ where $i=\sqrt{-1} . r_{s}^{(n)}$ and $w_{s}^{(n)}$ are $U(s)$-maps, and thus induce imbeddings $\bar{r}_{s}^{(n)}: G_{n, s}^{c} \rightarrow A_{s}^{(2 n)}$ and $\overline{\boldsymbol{w}}_{s}^{(n)}: A_{s}^{(n)} \rightarrow G_{n, s}^{c}$ on the quotient spaces. $\overline{\boldsymbol{r}}_{s}^{(n)} \circ \overline{\boldsymbol{w}}_{s}^{(n)}$ and $\overline{\boldsymbol{w}}_{s}^{(2 n)} \circ \bar{r}_{s}^{(n)}$ are homotopic to inclusion maps $A_{s}^{(n)} \subset A_{s}^{(2 n)}$ and $G_{n, s}^{c} \subset G_{2 n, s}^{c}$ respectively. Hence $\bar{r}_{s}^{(\infty)}$ and $\bar{w}_{s}^{(\infty)}$ are the desired homotopy equivalences of $\boldsymbol{A}_{s}^{(\infty)}$ with the standard classifying space $G_{\infty, s}^{c}$ of $U(s)$.

Let $Q^{c}\left(z_{1}, \cdots, z_{n}\right)=z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}$ be the nonsingular billinear form on C^{n}. Then it can be easily verified from the definition that

$$
\text { Image } w_{s}^{(n)}=\left(\pi \in G_{n, s}^{c} \mid Q^{c} \text { vanishes on } \pi\right)
$$

Let $Q_{n-2}(C)$ be the quadric of the form Q^{c} in $P_{n-1}(C)$. We can now identify $A_{s}^{(n)}$ with its image in $G_{n, s}^{c}$, and write this as a

Representation theorem. $A_{s}^{(n)}$ is represented as the complex analytic variety of linear projective $[s-1]$-planes on $Q_{n-2}(C)$.

3. Preliminaries

We now list the preliminaries to be needed in the sequel, and for details we refer the reader to [6]. In what follows, \perp_{f} and \perp_{m} will denote orthogonal complements with respect to the form Q^{c} and the Hermitian metric on C^{n} respectively. \vee will denote join, U union and \cap intersection.
3.1. The conjugation map $c: C^{n+2} \rightarrow C^{n+2}$ given by $c\left(z_{0}, z_{1}, \cdots, z_{n+1}\right)=$ ($\bar{z}_{0}, \bar{z}_{1}, \cdots, \bar{z}_{n+1}$) has the following properties:
(i) $Q^{c}(z ; w)=\langle z \mid c(w)\rangle$, and thus $z^{\perp f}=c(z)^{{ }^{\perp m}}$.
(ii) $Q^{c}(c(z))=\overline{Q^{c}(z)}$, and thus c maps $Q_{n}(C)$ onto itself.
(iii) The image under c of a projective $[s]$-plane q lying on $Q_{n}(C)$ is another projective [s]-plane q^{\prime}, which also lies on $Q_{n}(C)$ and is m-orthogonal to q. Thus c induces an involution on $A_{s+1}^{(n+2)}$.
(iv) $Q^{c}(z ; c(z)) \neq 0$ for $z \neq 0$. Thus, if an [s]-plane q is [k]-degenerate with degeneracy q_{0} (i.e., $q_{0}=q \cap q^{\perp f}$), then Q^{c} is nonsingular on the join $q \vee c\left(q_{0}\right)$.
3.2. Suppose that a projective $[s-1]$-plane q lies on $Q_{n}(C)$, and that P is a point not on q. Then the join $q \vee P$ lies on $Q_{n}(C)$ if and only if $P \in Q_{n}(C)$ $\cap q^{\perp f}$.
3.3. $Q_{n}(C)$ has a nontrivial intersection with every projective line on $P_{n+1}(C)$.
3.4. An [s]-plane q lies on $Q_{n}(C)$ if and only if $q \subset q^{\perp f}$. Hence $s \leq n-s$, i.e., $s \leq[n / 2]$. If $s<[n / 2]$, it follows from 3.2 and 3.3 that q is contained in an $[s+1]$-plane lying on $Q_{n}(C)$. Thus the maximal planes on $Q_{n}(C)$ are [$n / 2$]-dimensional, and any plane lying on $Q_{n}(C)$ can be imbedded in a maximal one.
3.5. $A_{s+1}^{(2 s+2)}=[s]$-planes on $Q_{2 s}(C)$ consists of two connected components or irreducible subvarieties V_{0} and V_{1}, each of which is homeomorphic to I_{s+1}. The dimension of intersection of two [s]-planes on $Q_{2 s}(C)$ is congruent to s $(\bmod 2)$ if they belong to the same component, and to $s-1(\bmod 2)$ if they belong to different components.
3.6. It is a direct consequence of 3.4 and 3.5 that given an [$s-1$]-plane q on $Q_{2 s}(C)$, there exist unique [s]-planes $q_{0} \in V_{0}$ and $q_{1} \in V_{1}$ such that $q=q_{0} \cap$ $q_{1}, q^{\perp f}=q_{0} \vee q_{1}, Q_{2 s}(C) \cap q^{\perp \rho}=q_{0} \cup q_{1}$.
3.7. Let $Q_{2 s-1}(C) \subset Q_{2 s}(C)$ be an inclusion of nonsingular quadrics. Then by 3.6 above, each [$s-1$]-plane q on $Q_{2 s-1}(C)$ corresponds to a unique $q_{0} \in V_{0}$, $q_{0} \supset q$, and each $q_{0} \in V_{0}$ necessarily intersects $Q_{2 s-1}(C)$ in an [s -1]-plane q. This establishes a homeomorphism between V_{0} and $\boldsymbol{A}_{s}^{(2 s+1)}=[s-1]$-planes on $Q_{2 s-1}(C)$.

Let P_{q} be the unique point of q_{0} which is m-orthogonal to q. Define a continuous map $f: V_{0} \rightarrow Q_{2 s}(C)$ by $f\left(q_{0}\right)=P_{q}$. Let E, F, ξ be the canonical C^{s+1}, C^{s}-, C^{1}-bundles over $V_{0}, A_{s}^{(2 s+1)}$ and $Q_{2 s}(C)$ respectively. Then, since $q_{0}=q \vee$ P_{q}, we have $E=F \oplus f^{*}(\xi)$. $P_{q} \notin Q_{2 s-1}(C)$ by definition, and hence the map f
factors through the open contractible space $Q_{2 s}(C)-Q_{2 s-1}(C)$, and is thus null homotopic. Hence the pull-back $f^{*}(\xi)$ of f to V_{0} is trivial, i.e., $f^{*}(\xi)=1$ and $E=F \oplus 1$.
3.8. Let $q_{1} \subset q_{2}$ be an inclusion of projective [s]- and [$\left.s+1\right]$-planes lying on $Q_{n}(C)$. Let $P \in\left(q_{2}-q_{1}\right)$. Then $q_{2}^{\perp^{f}}=q_{1}^{\perp^{f}} \cap P^{\perp_{f}}$. Let h be a hyperplane in $q_{1}^{\perp f}$ not passing through P and thus intersecting the hyperplane $q_{2}^{\frac{1}{2}}$ (containing P) in an [$n-s-2$]-plane h_{0}. Central projection through P establishes a homeomorphism between $\left(h-h_{0}\right)$ and $Q_{n}(C) \cap\left(q_{1}^{\perp f}-q_{2}^{\perp f}\right)$. Thus the latter is an open cell of complex dimension $n-s-1$.
3.9. Let q_{0} be a fixed [$\left.s-1\right]$-plane in $P_{n-1}(C)$, and $S_{t}\left(q_{0}\right)=(q \in$ $\left.G_{n, k}^{c} \mid \operatorname{dim}\left(q \cap q_{0}\right)=t-1\right)$ for $t \leq \min (s, k)$. Then the map $S_{t}\left(q_{0}\right) \rightarrow G_{n, t}^{c}$ defined by $q \rightarrow q \cap q_{0}$ is continuous.
3.10. Let $O_{0} \in Q_{1}(C)$ and $P_{1}(C)$ be the hyperplane in $P_{2}(C)$ which is f orthogonal to O_{0}. Let $C^{3}=\left(e_{0}, e_{1}, e_{2}\right), Q^{c}(z)=z_{0}^{2}+z_{1}^{2}+z_{2}^{2}, O_{0}=\left[e_{0}+i e_{1}\right]$. Then the curves $a(t)=\left[(\cos t) e_{0}+i e_{1}+(\sin t) e_{2}\right]$ in $Q_{1}(C)$ and $b(t)=$ $\left[(\cos t) e_{0}+(i \cos t) e_{1}+(\sin t) e_{2}\right]$ in $P_{1}(C)$ both starting at O_{0} have a common tangent vector $e_{2} \in S^{5}$ at this point. Hence $Q_{1}(C)$ and $P_{1}(C)$ have a "double" intersection at O_{0}.
3.11. For $k=a+b$, decompose a [$k-1]$-plane q_{0} into a disjoint join $q_{0}=q_{a} \vee q_{b}$ of an [a-1]-plane q_{a} and a $[b-1]$-plane q_{b}. Let S_{a} and S_{b} be the submanifolds of $G_{n, k}^{c}$ of [$k-1$]-planes containing q_{a} and q_{b} respectively. $q \in S_{a}$ intersects $q_{a}^{\perp} m=[n-a-1]$ at $[b-1]$, and the intersection uniquely determines q. Hence $S_{a}=G_{n-a, b}^{c}$, and similarly $S_{b}=G_{n-b, a}^{c}$. $\operatorname{dim}_{c} S_{a}$ $+\operatorname{dim}_{c} S_{b}=(n-a-b) b+(n-b-a) a=(n-k) k$, i.e., S_{a} and S_{b} are of complementary dimensions in $G_{n, k}^{c}$. They also intersect transversally at the single point q_{0}. This gives a direct sum decomposition for the tangent plane to $G_{n, k}^{c}$ at $q_{0}: T_{q_{0}}\left(G_{n, k}^{c}\right)=T_{q_{0}}\left(S_{a}\right) \oplus T_{q_{0}}\left(S_{b}\right)$.

4. Topology of $Q_{n}(C)$

Let $[p]$ be a maximal plane of dimension $p=[n / 2]$ lying on $Q_{n}(C),[p] \supset$ $[p-1] \supset \cdots \supset[1] \supset[0]$ be a cellular decomposition for $[p]$ by its sub-projective-spaces, and

$$
\begin{aligned}
{[n+1] } & \supset[0]^{\perp_{f}} \supset[1]^{\perp_{f}} \supset \cdots \supset[n-p-1]^{\perp_{f}} \\
& \supset[\dot{p}] \supset[p-1] \supset \cdots \supset[1] \supset[0]
\end{aligned}
$$

be the corresponding cellular decomposition for $P_{n+1}(C)$.
Define $Q_{k}(C)=Q_{n}(C) \cap[n-k-1]^{\perp f}$ for $k>p$. Then $Q_{k}(C) \supset[n-k$ $-1]$, and is thus an [n-k-1]-degenerate subquadric of $Q_{n}(C)$. It follows from 3.8 that $\left\{Q_{k}(C)-Q_{k-1}(C)\right\}$ is an open cell of complex dimension k for $k>p+1$, and that $\left\{Q_{p+1}(C)-Q_{n}(C) \cap[n-p-1]^{\perp f}\right\}$ is an open $[p+1]-$ cell.

For $n=2 p+1, Q_{n}(C) \cap[n-p-1]^{\perp f}=Q_{2 p_{+1}}(C) \cap[p]^{\perp f}=[p]$, and thus

$$
\begin{aligned}
Q_{2 p+1}(C) & \supset Q_{2 p}(C) \supset \cdots \supset Q_{p+1}(C) \\
& \supset[p] \supset[p-1] \supset \cdots \supset[1] \supset[0]
\end{aligned}
$$

forms a cellular decomposition for $Q_{2 p_{+1}}(C)$.
For $n=2 p$, assume without loss of generality that $[p]=[p]_{0} \in V_{0}$. Then by 3.6 there exists a unique $[p]_{1} \in V_{1}$ such that $Q_{n}(C) \cap[n-p-1]^{\perp_{f}}=$ $Q_{2 p}(C) \cap[p-1]^{\perp_{f}}=[p]_{0} \cup[p]_{1}$. Thus

$$
\begin{gathered}
Q_{2 p}(C) \supset Q_{2 p-1}(C) \supset \cdots \supset Q_{p+1}(C) \supset[p]_{0}, \\
{[p]_{1} \supset[p-1] \supset \cdots \supset[1] \supset[0]}
\end{gathered}
$$

is a cell decomposition for $Q_{2 p}(C)$.

5. $C W$-structure of $\boldsymbol{A}_{s+1}^{(n+2)}$

Define, for $q \in A_{s+1}^{(n+2)}$ and $t \in Z^{+}, q_{t}=q \cap$ complex t-dimensional cell of $Q_{n}(C)$, i.e.,

$$
\begin{gathered}
q_{t}= \begin{cases}q \cap[t] & \text { for } t<n / 2, \\
q \cap Q_{t}(C) & \text { for } t>n / 2,\end{cases} \\
q_{p_{0}}=q \cap[p]_{0}, \quad q_{p_{1}}=q \cap[p]_{1} \quad \text { for } p=n / 2
\end{gathered}
$$

Observation. (i) q_{t} is a subspace of q.
(ii) The sequence $\left(q_{t}\right)$ forms a filtration:

For $n=2 p+1$,

$$
q=q_{2 p+1} \supset q_{2 p} \supset \cdots \supset q_{p+1} \supset q_{p} \supset \cdots \supset q_{1} \supset q_{0} .
$$

For $n=2 p$, either

$$
q=q_{2 p} \supset q_{2 p-1} \supset \cdots \supset q_{p+1} \supset q_{p_{0}} \supset q_{p-1} \supset \cdots \supset q_{0}, q_{p_{1}}=q_{p-1}
$$

or
$q=q_{2 p} \supset q_{2 p-1} \supset \cdots \supset q_{p+1} \supset q_{p_{1}} \supset q_{p-1} \supset \cdots \supset q_{1} \supset q_{0}, q_{p_{0}}=q_{p-1}$, by subspaces whose dimensions decrease at most 1 at each step.

Proof. (i) Obviously, $q_{t}=q \cap[t]$ for $t \leq n / 2$ is a subspace, and

$$
q_{t}=q \cap Q_{t}(C)=q \cap Q_{n}(C) \cap[n-t-1]^{\perp_{f}}=q \cap[n-t-1]^{\perp_{f}}
$$

for $t>n / 2$ is also a subspace.
(ii) For $t \leq n / 2$,

$$
\operatorname{dim} q_{t}=\operatorname{dim}(q \cap[t]) \leq \operatorname{dim}(q \cap[t-1])+1=\operatorname{dim} q_{t-1}+1
$$

For $t>n / 2$,

```
\(\operatorname{dim} q_{t+1}=\operatorname{dim}\left(q \cap Q_{t+1}(C)\right)\)
    \(=\operatorname{dim}\left(q \cap[n-t-2]^{\perp f}\right) \leq \operatorname{dim}\left(q \cap[n-t-1]^{\perp f}\right)+1\)
    \(=\operatorname{dim}\left(q \cap Q_{t}(C)\right)+1=\operatorname{dim} q_{t}+1\).
```

If $n=2 p+1$, then

$$
\begin{aligned}
\operatorname{dim} q_{p+1} & =\left(\operatorname{dim} q \cap Q_{p+1}(C)\right) \\
& =\operatorname{dim}\left(q \cap[p-1]^{\perp f}\right) \leq \operatorname{dim}\left(q \cap[p]^{\perp f}\right)+1 \\
& =\operatorname{dim}\left(q \cap Q_{2 p+1}(C) \cap[p]^{\perp f}\right)+1 \\
& =\operatorname{dim}(q \cap[p])+1=\operatorname{dim} q_{p}+1 .
\end{aligned}
$$

Thus

$$
q=q_{2 p+1} \supset q_{2 p} \supset \cdots \supset q_{p+1} \supset q_{p} \supset \cdots \supset q_{1} \supset q_{0}
$$

is the required filtration.
If $n=2 p$, then

$$
\begin{aligned}
q & =[p-1]^{\perp_{f}}=q \cap Q_{2 p}(C) \cap[p-1]^{\perp f} \\
& =q \cap\left([p]_{0} \cup[p]_{1}\right)=q_{p_{0}} \cup q_{p_{1}}
\end{aligned}
$$

is a subspace, and thus either $q \cap[p-1]^{\perp f}=q_{p_{0}} \supset q_{p_{1}}$ or $q \cap[p-1]^{\perp f}$

$$
\begin{aligned}
& =q_{p_{1}} \supset q_{p_{0}} \text {. If } q \cap\left[p-1\left[\perp_{f}=q_{p_{0}} \supset q_{p_{1}},\right. \text { then }\right. \\
& \qquad \begin{aligned}
& q_{p_{1}}=q_{p_{0}} \cap q_{p_{1}}=q \cap\left([p]_{0} \cap[p]_{1}\right)=q \cap[p-1]=q_{p-1}, \\
& \operatorname{dim} q_{p_{+1}}=\operatorname{dim}\left(q \cap[p-2]^{\perp f}\right) \leq \operatorname{dim}\left(q \cap[p-1]^{\perp f}\right)+1 \\
&=\operatorname{dim} q_{p_{0}}+1 .
\end{aligned}
\end{aligned}
$$

Thus

$$
q=q_{2 p} \supset q_{2 p-1} \supset \cdots \supset q_{p+1} \supset q_{p_{0}} \supset q_{p-1} \supset \cdots \supset q_{1} \supset q_{0}
$$

is the required filtration.
Similarly, if $q \cap[q-1]^{\perp f}=q_{p_{1}} \supset q_{p_{0}}$, then we have $q_{p_{0}}=q_{p-1}$ and

$$
q=q_{2 p} \supset q_{2 p-1} \supset \cdots \supset q_{p+1} \supset q_{p_{1}} \supset q_{p-1} \supset \cdots \supset q_{1} \supset q_{0}
$$

is the required filtration. q.e.d.
For $0 \leq a_{0}<a_{1}<\cdots<a_{s} \leq n$, we introduce the closed Schubert cell

$$
\Omega_{a_{0} a_{1} \cdots a_{s}}=\left(q \in A_{s+1}^{(n+2)} \mid \operatorname{dim} q_{a_{t}} \geq t\right) .
$$

An immediate corollary of the preceding observation is the following.

Corollary. $\quad A_{s+1}^{(n+2)}=\bigcup \Omega_{a_{0} a_{1} \cdots a_{s}}$.
However, some of the cells in this covering are "superfluous", and the next lemma shows that $A_{s+1}^{(n+2)}$ can be covered by a smaller class of Schubert cells $\left(\Omega_{a_{0} a_{1} \cdots a_{s}} \mid a_{i}+a_{j} \neq n\right.$ for $\left.i<j\right)$.

Notation. For $a=\left(a_{0}, a_{1}, \cdots, a_{s}\right)$ and $b=\left(b_{0}, b_{1}, \cdots, b_{s}\right) \in\left(Z^{+}\right)^{s+1}$, we write: $b \leq a$ if and only if $b_{j} \leq a_{j}, 0 \leq j \leq s ; b=a$ if and only if $b_{j}=a_{j}$, $0 \leq j \leq s ; b<a$ if and only if $b \leq a, b \neq a$.

Lemma. $\quad \Omega_{a_{0} a_{1} \cdots a_{s}}=\bigcup_{b \leq a}\left(\Omega_{b_{0} b_{1} \cdots b_{s}} \mid b_{i}+b_{j} \neq n\right.$ for $\left.i<j\right)$.
Proof. Suppose $a_{i}+a_{j}=n$ for some $i<j$; otherwise, the lemma follows trivially. There are two cases to consider.

1. $\operatorname{dim} q_{a_{i}-1}=\operatorname{dim} q_{a_{i}} \geq i$. Define $b_{k}=\min \left(a_{k} ; a_{i}-i+k-1\right)$ for $0 \leq k \leq i-1$. Then $\operatorname{dim} q_{b_{k}} \geq k$, i.e., $q \in \Omega_{b_{0} b_{1} \cdots b_{i-1} a_{i}-1 a_{i+1} \cdots a_{s}}$.
2. $\operatorname{dim} q_{a_{i}-1}=\operatorname{dim} q_{a_{i}}-1$. Then $\left[a_{i}\right]=q_{a_{i}} \vee\left[a_{i}-1\right]$.
(i) $q_{a_{j}} \perp_{f} q_{a_{i}}$ since $q \subset Q_{n}(C)$.
(ii) $q_{a_{j} \perp_{f}}\left[n-a_{j}-1\right]=\left[a_{i}-1\right]$, and thus by the above

$$
q_{a_{j}} \subset Q_{n}(C) \cap\left[a_{i}\right]^{\perp f}=Q_{n}(C) \cap\left[n-a_{j}\right]^{\perp f}=Q_{a_{j-1}}(C)
$$

i.e., $\operatorname{dim} q_{a_{j-1}}=\operatorname{dim} q_{a_{j}} \geq j$. Define $c_{k}=\min \left(a_{k} ; a_{j}-j+k-1\right)$ for $0 \leq$ $k \leq j-1$. Then $\operatorname{dim} q_{c_{k}} \geq k$, i.e., $q \in \Omega_{c_{0 c_{1} \cdots c_{j-1} a_{j}-1 a_{j+1} \cdots a_{s}} \text {. Thus }}$

$$
\Omega_{a_{0} a_{1} \cdots a_{s}}=\Omega_{b_{0} \cdots b_{i-1} a_{i}-1 a_{i+1} \cdots a_{s}} \cup \Omega_{c_{0} \cdots c_{j-1} a_{j-1 a_{j+1} \cdots a_{s}}}
$$

where $b_{k} \leq a_{k}$ for $1 \leq k \leq i-1$, and $c_{k} \leq a_{k}$ for $1 \leq k \leq j-1$. Hence the lemma follows by induction on $\sum_{j=0}^{s} a_{j}=a_{0}+a_{1}+\cdots+a_{s}$. q.e.d.

We now define the open Schubert cell $\Omega_{a_{0} a_{1} \cdots a_{s}}^{\text {open }}$ for $a_{i}+a_{j} \neq n, i<j$:

$$
\Omega_{a_{0} a_{1} \cdots a_{s}}^{\text {open }}=\left(q \in A_{s+1}^{(n+2)} \mid \operatorname{dim} q_{t}=j \text { for } a_{j} \leq t<a_{j+1}\right) .
$$

The basis of our $C W$-structure theorem is the following.
Proposition. $\Omega_{a_{0} a_{1} \ldots a_{s}}^{\text {open }}$ is an open topological cell of complex dimension $d_{c}=\sum_{j=0}^{s} a_{j}-s(s+1)+e$, where e is the number of pairs $\left(a_{i}, a_{j}\right), i<j$, $a_{i}+a_{j}<n$. For $a_{j} \leq n / 2$ and $0 \leq j \leq s, \Omega_{a_{0} a_{1} \ldots a_{s}}^{\text {open }}$ is the ordinary Schubert cell $\left(\Omega^{c}\right)_{a_{0 a 1} \ldots a_{s}}^{\text {open }}$ of the complex Grassmann manifold $G_{[n / 2]+1, s+1}^{c}\left(\subset A_{s+1}^{(n+1)}\right)$, in which case, $e\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)=\frac{1}{2} s(s+1)$ and $d_{c}\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)=\sum_{j=0}^{s} a_{j}-\frac{1}{2} s(s+1)$.

Proof. We use induction on s. For $s=0, A_{1}^{(n+1)}=Q_{n}(C)$, and the open Schubert cells of $A_{1}^{(n+2)}$ are precisely the open cells of $Q_{n}(C)$ as determined in $\S 4$. Let $s \geq 1$, and assume the induction hypothesis for $s-1$. We define an onto map $F: \Omega_{a_{0} a_{1} \ldots a_{s}}^{\text {open }} \rightarrow \Omega_{a_{0} a_{1} \ldots a_{s-1}}^{\text {open }}$ by $F(q)=q_{a_{s-1}}$. It follows from 3.9 that F is continuous. Let F_{q} be the fiber of F at an arbitrary [s-1]-plane $q \in$ $\Omega_{a_{0} a_{1} \cdots a_{s-1}}^{\text {open }}$. We have two cases to consider.

1. $a_{s} \leq n / 2$. Then $\Omega_{a_{0} a_{1} \cdots a_{s}}^{\text {open }}$ is precisely the ordinary Schubert cell $\left(\Omega^{c}\right)_{a_{0} a_{1} \ldots a_{s}}^{\text {open }}$ in the Grassmann manifold $G_{a_{s}+1, s+1}^{c} . w \in F_{q}$ cuts $q^{\perp m} \cap\left(\left[a_{s}\right]-\right.$ [$\left.a_{s}-1\right]$) at a single point P_{w} which uniquely determines w. Hence F_{q} is
homeomorphic to $q^{\perp m} \cap\left(\left[a_{s}\right]-\left[a_{s}-1\right]\right)$ which is an open cell of complex dimension $d_{c}=a_{s}-s$. Let O_{j} be the unique point in [j] which is m-orthogonal to $[j-1]$, and $\tilde{q}=\left[O_{a_{0}}, O_{a_{1}}, \cdots, O_{a_{s-1}}\right]$ the distinguished element of $\Omega_{a_{0 a_{1} \ldots} \ldots a_{s-1}}^{\text {open }}$. By the induction hypothesis, $\Omega_{a_{0 a_{1} \ldots a_{s-1}}^{\text {open }}}$ is an open cell and thus contractible. Hence the principal bundle $U\left(a_{s-1}+1\right) \rightarrow G_{a_{s-1}+1, s}^{c}$ is "trivial" over $\Omega_{a_{0} a_{1} \cdots a_{s-1}}^{\text {open }}$, i.e., admits a cross section $t: \Omega_{a_{0} a_{1} \cdots a_{s-1} \rightarrow}^{\text {open }} \xrightarrow{\text { op }}\left(a_{s-1}+1\right) . t_{q}$ maps \tilde{q} onto q, and hence $\tilde{q}^{\perp_{m}}$ onto $q^{\perp_{m}}$ isomorphically. Also, t_{q} transforms $\left[a_{s}\right]$ and $\left[a_{s}-1\right]$ isomorphically onto themselves. It thus induces a homeomorphism $t_{q}: F_{\tilde{q}}=\tilde{q}^{\perp_{m}} \cap\left(\left[a_{s}\right]-\left[a_{s}-1\right]\right) \rightarrow q^{\perp_{m}} \cap\left(\left[a_{s}\right]-\left[a_{s}-1\right]\right)=F_{q}$. Hence $(q, P) \mapsto t_{q}(P)$ yields a "trivialization" for F. Thus $\Omega_{a_{o a_{1} \ldots a_{s}}^{\text {open }}}$ is a product bundle $\Omega_{a_{0} a_{1} \cdots a_{s-1}}^{\text {open }} \times F_{\tilde{q}}$ over $\Omega_{a_{0} a_{1} \ldots a_{s-1}}^{\text {open }}$ and, by the induction hypothesis, is an open topological cell of complex dimension $d_{c}=\sum_{j=0}^{s} a_{j}-\frac{1}{2} s(s+1)$.
2. $a_{s}>n / 2 . w \in F_{q}$ again cuts $q^{\perp_{m}} \cap\left(\left[n-a_{s}-1\right]^{\perp_{f}}-\left[n-a_{s}\right]^{\perp_{f}}\right)$ at a single point P_{w} which uniquely determines w. It follows from 3.2 that $w \in$ $A_{s+1}^{(n+2)}$ if and only if $P_{w} \in Q_{n}(C) \cap q^{\perp f}$. Thus the fiber F_{q} is homeomorphic to

$$
F_{q}=Q_{n}(C) \cap q^{\perp_{m}} \cap q^{\perp_{f}} \cap\left(\left[n-a_{s}-1\right]^{\perp_{f}}-\left[n-a_{s}\right]^{\perp_{f}}\right) .
$$

We now observe the following.
(i) By 3.1 (iv), Q^{c} is nonsingular on the join $q \vee c(q)$. Thus the restriction of $Q_{n}(C)$ to its f-orthogonal complement, i.e., to the plane $q^{\perp_{m}} \cap q^{\perp_{f}}$ is a nonsingular quadric $Q_{n-2 s}(C)$.
(ii) Let e_{s} be the number of indices a_{t} such that $t<s, a_{t}+a_{s}<n$, or equivalently, such that $a_{t} \leq n-a_{s}-1$. Then by the definition of $\Omega_{a_{0} a_{1}}^{\text {open }}$ we have $\operatorname{dim}\left(q \cap\left[n-a_{s}-1\right]\right)=e_{s}-1$. Since $a_{t} \neq n-a_{s} \forall t, q \cap\left[n-a_{s}\right]$ $=q \cap\left[n-a_{s}-1\right]$, i.e., $\operatorname{dim}\left(q \cap\left[n-a_{s}\right]\right)=e_{s}-1$.
(iii) $q \subset Q_{a_{s}}(C)=Q_{n}(C) \cap\left[n-a_{s}\right]^{\perp f}$, i.e., q and $\left[n-a_{s}\right]$ both lie on $Q_{n}(C)$ and are mutually f-orthogonal. Thus the join $q \vee\left[n-a_{s}\right]$ lies on $Q_{n}(C)$. Since $\operatorname{dim}\left(q \vee\left[n-a_{s}\right]\right)=\operatorname{dim} q+\operatorname{dim}\left[n-a_{s}\right]-\operatorname{dim}\left(q \cap\left[n-a_{s}\right]\right)$ $=n-a_{s}-s-e_{s}$, the subspace $q \vee\left[n-a_{s}-1\right]$ of the join also lies on $Q_{n}(C)$ and is of (complex) dimension $n-a_{s}-s-e_{s}-1$.
(iv) Let h_{q} and k_{q} be the m-orthogonal complements of q in $q \vee\left[n-a_{s}\right]$ and $q \vee\left[n-a_{s}-1\right]$ respectively. Then $h_{q} \subset Q_{n}(C) \cap q^{\perp f}$ since $q \vee\left[n-a_{s}\right]$ lies on $Q_{n}(C)$. Thus

$$
\begin{gathered}
h_{q} \subset Q_{n}(C) \cap q^{\perp_{f}} \cap q^{\perp_{m}}=Q_{n-2 s}(C), \\
\operatorname{dim} h_{q}=n-a_{s}-e_{s}, \quad \operatorname{dim} k_{q}=n-a_{s}-e_{s}-1, \\
q^{\perp_{f}} \cap\left[n-a_{s}\right]^{\perp_{f}}=\left(q \vee\left[n-a_{s}\right]\right)^{\perp_{f}}=\left(q \vee h_{q}\right)^{\perp_{f}}=q^{\perp_{f}} \cap h_{q}^{\perp_{f}} .
\end{gathered}
$$

Similarly,

$$
\begin{gather*}
q^{\perp f} \cap\left[n-a_{s}-1\right]^{\perp f}=q^{\perp f} \cap k_{q}^{\perp f} . \\
F_{q}=Q_{n}(C) \cap q^{\perp_{m}} \cap q^{\perp f} \cap\left(k_{q}^{\perp f}-h_{q}^{\perp f}\right), \tag{v}
\end{gather*}
$$

i.e.,

$$
F_{q}=Q_{n-2 s}(C) \cap\left(k_{q}^{\perp f}-h_{q}^{\perp f}\right),
$$

where \perp_{f} now denotes f-orthogonal complements in the plane $q^{\perp_{m}} \cap q^{\perp f}$. Hence it follows from 3.8 that F_{q} is an open topological cell of (complex) dimension

$$
\begin{aligned}
d_{c} & =n-2 s-\left(n-a_{s}-e_{s}-1\right)-1=a_{s}-2 s+e_{s} \\
& =(n-2 s)-\operatorname{dim} h_{q} \geq \frac{1}{2}(n-2 s) .
\end{aligned}
$$

(a) If n is even and $a_{s}-2 s+e_{s}=\frac{1}{2}(n-2 s)$, then h_{q} is a maximal plane on $Q_{n-2 s}(C)$, and k_{q} is of codimension 1 in h_{q}. It follows from 3.6 that there exists a unique maximal plane h_{q}^{\prime} belonging to the opposite variety containing h_{q} such that $h_{q} \cap h_{q}^{\prime}=k_{q}$ and $Q_{n-2 s}(C) \cap k_{q}^{\perp f}=h_{q} \cup h_{q}^{\prime}$. Thus

$$
F_{q}=Q_{n-2 s}(C) \cap k_{q}^{\perp f}-Q_{n-2 s}(C) \cap h_{q}^{\perp f}=h_{q} \cup h_{q}^{\prime}-h_{q}=h_{q}^{\prime}-k_{q}
$$

is an open projective space.
(b) If $a_{s}-2 s+e_{s}>\frac{1}{2}(n-2 s)$, then $Q_{n-2 s}(C) \cap k_{q}^{\perp f}$ is an $\left[n-a_{s}-e_{s}\right]$ degenerate quadric $Q_{a_{s-2 s+e_{s}}}(C)$, and hence $F_{q}=Q_{a_{s}-2 s+e_{s}}(C)-Q_{n-2 s}(C) \cap$ $h_{q}^{\perp f}$ is an open quadric. Let

$$
\begin{aligned}
\Delta_{s, n-a_{s}-e_{s}, 1}= & S O(n+2) / U(s) \times U\left(n-a_{s}-e_{s}\right) \\
& \times U(1) \times S O\left(a_{s}-s+e_{s}-n\right)
\end{aligned}
$$

be the flag manifold of triplets of ordered mutually m-orthogonal [$s-1$], $\left[n-a_{s}-e_{s}-1\right]$ and [0]-subspaces of $\left[n-a_{s}+s\right]$-spaces lying on $Q_{n}(C)$. Define $\theta: \Omega_{a_{0} a_{1} \ldots a_{s-1}}^{\text {open }} \rightarrow \Lambda_{s, n-a_{s}-e_{s}, 1}$ by $\theta(q)=\left(q, k_{q}, r_{q}\right)$ where r_{q} is the unique point in h_{q} which is m-orthogonal to k_{q}. Continuity of θ follows from 3.9. By the induction hypothesis, $\Omega_{a_{0 a_{1} \ldots a_{s-1}}^{\text {open }}}^{\text {is }}$ an open contractible cell, and thus θ admits a lifting t to $S O(n+2)$, i.e.,

Let O_{j} be the unique point of [j], m-orthogonal to $[j-1], O_{n-j}^{\prime}=c\left(O_{n-j}\right)$ the unique point of $Q_{j}(C)$, m-orthogonal to $Q_{j-1}(C), 0 \leq x \leq s-1$ the largest integer such that $a_{x} \leq n / 2, \tilde{q}=\left[O_{a_{0}}, \cdots, O_{a_{x}}, O_{n-a_{x+1}}^{\prime}, \cdots, O_{n-a_{s}}^{\prime}\right]$ the distinguished element of $\Omega_{a_{0 a_{1}} \ldots a_{s-1}}^{\text {open }}$, and $\theta(\tilde{q})=\left(\tilde{q}, \tilde{k}_{q}, \tilde{r}_{q}\right)$ the distinguished element of $U_{s, n-a_{s}-e_{s}, 1} \cdot t_{q} \operatorname{maps} \tilde{q}$ isomorphically onto q, and therefore the plane $\tilde{q}^{\perp f} \cap \tilde{q}^{\perp m}$ isomorphically onto the plane $q^{\perp_{f}} \cap q^{\perp m}$. Hence t_{q} maps $\tilde{Q}_{n-2 s}(C)$ homeomorphically onto $Q_{n-2 s}(C)$. Also, t_{q} is an isomorphism of \tilde{h}_{q} and \tilde{k}_{q} onto h_{q} and k_{q}, and thus of $\tilde{\boldsymbol{h}}_{q}^{\perp f}$ and $\tilde{k}_{q}^{\perp^{f}}$ onto $h_{q}^{\perp f}$ and $k_{q}^{\perp^{f}}$ respectively, and therefore induces a homeomorphism

$$
t_{q}: F_{\tilde{q}}=\tilde{Q}_{n-2 s}(C) \cap\left(\tilde{k}_{q}^{\perp f}-\tilde{h}_{q}^{\perp f}\right) \rightarrow Q_{n-2 s}(C) \cap\left(k_{q}^{\perp f}-h_{q}^{\perp f}\right)=F_{q} .
$$

Thus $(q, P) \mapsto t_{q}(P)$ yields a "trivialization"

$$
\Omega_{a_{0} a_{1} \cdots a_{s-1}}^{\text {open }} \times F_{\tilde{q}} \xrightarrow{=} \Omega_{a_{0} a_{1} \cdots a_{s}}^{\text {open }} .
$$

Hence $\Omega_{a_{0} a_{1} \ldots a_{s}}^{\text {open }}$ is a product bundle over $\Omega_{a_{0} a_{1} \ldots a_{s-1}}^{\text {open }}$ and, by the induction hypothesis, is an open topological cell of (complex) dimension

$$
\begin{aligned}
d_{c} & =\sum_{j=0}^{s-1} a_{j}-(s-1) s+e\left(\Omega_{a_{0} a_{1} \cdots a_{s-1}}\right)+a_{s}-2 s+e_{s} \\
& =\sum_{j=0}^{s} a_{j}-s(s+1)+e\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right) \cdot \text { q.e.d. }
\end{aligned}
$$

Suppose $\operatorname{dim} q_{a_{j}} \geq j$ and $\operatorname{dim} q_{a_{j-1}}<j$. Since $\operatorname{dim} q_{a_{j}} \leq \operatorname{dim} q_{a_{j-1}}+1$, it follows that $\operatorname{dim} q_{a_{j}}=j$ and $\operatorname{dim} q_{a_{j-1}}=j-1$. Hence we have the standard identity

$$
\Omega_{a_{00} \cdots a_{1}}^{\text {open }}=\Omega_{a_{0} a_{1} \cdots a_{s}}-\bigcup_{a_{j-1}<a_{j}-1} \Omega_{a_{0} \cdots\left(a_{j}-1\right) \cdots a_{s}},
$$

or, equivalently,

$$
\Omega_{a_{0} a_{1} \cdots a_{s}}^{\mathrm{open}}=\Omega_{a_{0} a_{1} \cdots a_{s}}-\bigcup_{b<a} \Omega_{b_{0} b_{1} \cdots b_{s}}
$$

which, by applying the lemma of $\S 5$, this can be strengthened to read:

$$
\Omega_{a_{0} a_{1} \cdots a_{s}}^{\mathrm{oppn}}=\Omega_{a_{0} a_{1} \cdots a_{s}}-\bigcup_{c<a} \Omega_{c_{0} \cdots c_{s}} \quad \text { with } \quad c_{i}+c_{j} \neq n, i<j .
$$

It follows from the preceeding proposition (by induction on the dimension) that $\Omega_{a_{0} a_{1} \cdots a_{s}}, a_{i}+a_{j} \neq n, i<j$, is a topological cell attached to the Schubert cells ($\Omega_{c_{0} c_{1} \ldots c_{s}} \mid c<a, c_{i}+c_{j} \neq n, i<j$) lying on its boundary. This immediately yields the following $C W$-structure theorem which is the main result of this paper.
$C W$-structure theorem. $A_{s+1}^{(n+2)}$ is a $C W$-complex consisting of Schubert cells $\Omega_{a_{0} a_{1} \cdots a_{s}}$ for $0 \leq a_{0}<a_{1}<\cdots<a_{s} \leq n, a_{i}+a_{j} \neq n, i<j, \Omega_{a_{0} a_{1} \cdots a_{s}}$ is the variety of [s]-planes on $Q_{n}(C)$ which intersect the complex a_{j}-dimensional cell of $Q_{n}(C)$ at a plane of complex dimension $j, 0 \leq j \leq s$, and

$$
\operatorname{dim}\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)=2\left(\sum_{j=0}^{s} a_{j}-s(s+1)+e\right)
$$

where e is the number of pairs $\left(a_{i}, a_{j}\right), i<j, a_{i}+a_{j}<n$.
Demonstration. As a demonstration of the $C W$-structure theorem, we now present the following examples.

1. $A_{3}^{(8)}=[2]$-planes on $Q_{6}(C)$

| Ω_{012} | Ω_{0130} | Ω_{0131} | Ω_{014} | Ω_{0230} | $\Omega_{023_{1}}$ | Ω_{025} | $\Omega_{03_{0} 4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ω_{456} | $\Omega_{3_{156}}$ | Ω_{3056} | Ω_{256} | Ω_{3146} | Ω_{3046} | Ω_{146} | $\Omega_{23,6}$ |

$\Omega_{08_{1} 4}$	$\Omega_{03_{0} 5}$	$\Omega_{03,5}$	$\Omega_{045} \sqrt[10]{0}$	$\Omega_{123_{0}}$	$\Omega_{123_{1}}$	$\Omega_{13_{0} 4}$	$\Omega_{13_{14}}$
$\Omega_{2306}{ }^{12}$	$\Omega_{1316}{ }^{10}$	Ω_{106}	Ω_{126}	$\Omega_{3_{145}}$	$\Omega_{3_{0} 45}{ }^{12}$	$\Omega_{23,5}{ }^{10}$	$\Omega_{2305}{ }^{10}$

Dual cells appear in the same column, and the number in the corner indicates the dimension of the cell. (Refer to $\S 8$ for duality.)
2. $\quad A_{2}^{(7)}=[1]$-planes on $Q_{5}(C)$

| Ω_{01} | Ω_{02} | Ω_{03} | Ω_{04} | Ω_{12} | Ω_{13} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Ω_{45} | Ω_{35} | Ω_{25} | Ω_{15} | Ω_{34} | Ω_{24} |

Corollary. The inclusion map j: $A_{s}^{(n)} \subset A_{s+1}^{(n+1)}$ is "cellular", and $A_{s}^{(n)}$ is the subcomplex of $A_{s+1}^{(n+2)}$ consisting of Schubert cells $\Omega_{a_{0} \cdots a_{s}}$ for which $a_{0}=0$. In particular, $Q_{n-2 s}(C)=A_{1}^{(n-2 s+2)}$ is the subcomplex of $A_{s+1}^{(n+2)}$ consisting of Schubert cells for which $a_{j}=0, j<s$.

6. Homology and cohomology of $A_{s+1}^{(n+2)}$

Since $A_{s+1}^{(n+2)}$ admits a triangulation by even dimensional cells only, the boundary and coboundary operators are zero, and each Schubert cell represents a distinct homology (cohomology) class. Hence $\boldsymbol{A}_{s+1}^{(n+2)}$ is simply connected, $H^{*}\left(A_{s+1}^{(n+2)} ; Z\right)$ is torsion free and vanishes in odd dimensions. $H^{2 i}\left(A_{s+1}^{(n+2)} ; Z\right)$ is the free abelian group on Schubert cells $\Omega_{a_{0} a_{1} \cdots a_{s}}$ for which $\operatorname{dim} \Omega_{a_{0} a_{1} \ldots a_{s}}=2 i$.

The Euler-Poincaré characteristic

$$
\chi\left(A_{s+1}^{(n+2)}\right)=\text { Total number of cells }=2^{s+1} \cdot\binom{[n / 2]+1}{s+1} .
$$

It follows from Proposition 2.5.2 of [1] that $K^{1}\left(A_{s+1}^{(n+2)}\right)=0$ and $K^{0}\left(A_{s+1}^{(n+2)}\right)$ is the free abelian group on $\chi\left(A_{s+1}^{(n+2)}\right)$ generators.

7. Maximal planes on $Q_{n}(C)$

The special case of the $C W$-structure theorem for $s=[n / 2]$ reduces to Ehressmann's triangulation in [5] of the variety of maximal planes on $Q_{n}(C)$.
(i) For $n=2 s$ the indices $\left(a_{0}, a_{1}, \cdots, a_{s}\right)$ of a Schubert cell $\Omega_{a_{0} \cdots a_{s}}$ are picked one from each column of

$$
\left(\begin{array}{cccc}
0 & 1 & \cdots s-1 & s_{0} \\
2 s & 2 s-1 & \cdots s+1 & s_{1}
\end{array}\right)
$$

since $a_{i}+a_{j} \neq n$. Thus once $\left(a_{0}, \cdots, a_{x-1}\right)$ are chosen (where $0 \leq x \leq s$ is the largest integer such that $a_{x} \leq n / 2$), a_{x} is either s_{0} or s_{1}, and the rest of the indices $\left(a_{x+1}, \cdots, a_{s}\right)$ are the elements in the 2nd-row of the complementary columns. Let $V_{j}=I_{s+1}$ be the irreducible subvariety of $A_{s+1}^{(2 s+2)}$ containing [$\left.s\right]_{j}$ for $j=0,1$. Then it follows from 3.5 that $\Omega_{a_{0} a_{1} \cdots a_{s}}$ lies in V_{0} if and only if

$$
a_{x}=\left\{\begin{array}{lll}
s_{0} & \text { for } x \equiv s & (\bmod 2), \\
s_{1} & \text { for } x \equiv s-1 & (\bmod 2),
\end{array}\right.
$$

and in V_{1} if and only if

$$
a_{x}=\left\{\begin{array}{lll}
s_{1} & \text { for } x \equiv s & (\bmod 2), \\
s_{0} & \text { for } x \equiv s-1 & (\bmod 2) .
\end{array}\right.
$$

Thus the Schubert cells of $A_{s+1}^{(2 s+2)}$ are evenly divided between V_{0} and V_{1}, and each $\Omega_{a_{0} a_{1} \cdots a_{s}}$ is uniquely determined by the indices $\left(a_{0}, a_{1}, \cdots, a_{x-1}\right)$, i.e., by the dimensions of intersection with the decomposition $[s-1] \supset[s-2] \supset$ $\cdots \supset[1] \supset[0]$. We thus put $\Omega_{a_{0} a_{1} \cdots a_{s}}=\left[a_{0}, a_{1}, \cdots, a_{x-1}\right]$ and

$$
\begin{aligned}
e(\Omega)= & \frac{1}{2} x(x+1)+\left(2 s-a_{s}\right)+\left(2 s-a_{s-1}-1\right)+\cdots \\
& +\left(2 s-a_{x+1}-(s-x-1)\right), \\
\operatorname{dim}_{c}(\Omega)= & \sum_{j=0}^{s} a_{j}-s(s+1)+\frac{1}{2} x(x+1)+2 s(s-x) \\
& -\sum_{j-x+1}^{s} a_{j}-\frac{1}{2}(s-x)(s-x-1),
\end{aligned}
$$

i.e.,

$$
\operatorname{dim}_{c}\left[a_{0}, a_{1}, \cdots, a_{x-1}\right]=\sum_{j=0}^{x-1} a_{j}+\frac{1}{2} s(s-2 x+1)
$$

(ii) For $n=2 s+1$ the indices of a Schubert cell $\Omega_{a_{0} a_{1} \ldots a_{s}}$ are picked one from each column of

$$
\left(\begin{array}{cccc}
0 & 1 \cdots s-1 & s \\
2 s+1 & 2 s \cdots s+2 & s+1
\end{array}\right) .
$$

Thus once the first set indices $\left(a_{0}, a_{1}, \cdots, a_{x}\right)$ are given, the rest (a_{x+1}, \cdots, a_{s}) are simply elements of the 2 nd-row of the complementary columns. Hence $\Omega_{a_{0} a_{1} \cdots a_{s}}$ is uniquely determined by the dimensions of intersection with the decomposition $[s] \supset[s-1] \supset \cdots \supset[1] \supset[0]$. We thus denote $\Omega_{a_{0} a_{1} \cdots a_{s}}=$ $\left[a_{0}, a_{1}, \cdots, a_{x}\right]$,

$$
\begin{aligned}
e(\Omega)= & \frac{1}{2} x(x+1)+\left(2 s+1-a_{s}\right)+\left(2 s-a_{s-1}\right)+\cdots \\
& +\left(2 s+1-a_{x+1}-(s-x-1)\right) \\
\operatorname{dim}_{c}(\Omega)= & \sum_{j=0}^{s} a_{j}-s(s+1)+\frac{1}{2} x(x+1)+(s-x)(2 s+1) \\
& -\sum_{j=x+1}^{s} a_{j}-\frac{1}{2}(s-x)(s-x-1),
\end{aligned}
$$

i.e.,

$$
\operatorname{dim}_{c}\left[a_{0}, a_{1}, \cdots, a_{x}\right]=\sum_{j=0}^{x} a_{j}+\frac{1}{2}(s+1)(s-2 x) .
$$

(iii) Let $h: A_{\mathrm{s}}^{(2 s+1)} \xrightarrow{=} V_{0}$ be the canonical homeomorphism of 3.7 between the variety $A_{s}^{(2 s+1)}$ of maximal planes on $Q_{2 s-1}(C)$ and the irreducible subvariety V_{0} of maximal planes on $Q_{2 s}(C)$. Let $[s-1] \supset[s-2] \supset \cdots \supset$ [1] $\supset[0]$ be the cellular decomposition of the maximal plane $[s-1]$ on $Q_{2 s-1}(C)$, and $[s]_{0} \supset[s-1] \supset \cdots \supset[1] \supset[0]$ the cellular decomposition of $[s]_{0}=h[s-1]$. Then using the notation introduced above, we can identify the Schubert cells $\left[a_{0}, a_{1}, \cdots, a_{t}\right]$ of V_{0} and $\left[a_{0}, a_{1}, \cdots, a_{t}\right]$ of $A_{s}^{(2 s+1)}$ for $0 \leq$ $a_{0}<a_{1}<\cdots<a_{t} \leq s-1$ through the homeomorphism h.

8. Duality theory for $\boldsymbol{A}_{s+1}^{(n+2)}$

We first briefly summarize the standard duality theory for $G_{n+2, s+1}^{c}$. (For details see [8, Chapter III].) Let

$$
\begin{equation*}
[n+1] \supset[n] \supset \cdots \supset[1] \supset[0] \tag{1}
\end{equation*}
$$

be a cellular decomposition for $P_{n+1}(C)$, and

$$
\begin{equation*}
[n+1] \supset[0]^{\perp_{m}} \supset[1]^{\perp_{m}} \supset \cdots \supset[n]^{\perp_{m}} \tag{2}
\end{equation*}
$$

the dual cellular decomposition by m-complementary planes. Let P_{j} be the unique point of $[j]$ which is m-orthogonal to $[j-1]$. Let $\left(\Omega_{a_{0} a_{1} \ldots a_{s}}^{c}\right)$ and $\left(\bar{\Omega}_{b_{0} \ldots b_{s}}^{c}\right)$ be the two systems of Schubert cells of $G_{n+2, s+1}^{c}$ arising from (1) and (2) respectively. $\bar{\Omega}_{n-a_{s} \cdots n-a_{0}}^{c}$ is called the dual cell of $\Omega_{a_{0} a_{1} \cdots a_{s}}^{c}$. The duality theory for $G_{n+2, s+1}^{c}$ states that two Schubert cells $\Omega_{a_{0} a_{1} \cdots a_{s}}^{c}$ and $\bar{\Omega}_{b_{0} b_{1} \cdots b_{s}}^{c}$ of complementary dimensions intersect transversally at a single point $q=$ [$P_{a_{0}} P_{a_{1}} \cdots P_{a_{s}}$] if they are dual, and are disjoint if not.

We saw in $\S 4$ that if $[p] \supset[p-1] \supset \cdots \supset[1] \supset[0]$ is the cellular decomposition of a maximal plane $[p]$ on $Q_{n}(C)$, then the corresponding cellular decomposition

$$
\begin{align*}
{[n+1] } & \supset[0]^{\perp f} \supset[1]^{\perp_{f}} \supset \cdots \supset[n-p-1]^{\perp f} \tag{3}\\
& \supset[p] \supset[p-1] \supset \cdots \supset[1] \supset[0]
\end{align*}
$$

of $P_{n+1}(C)$ gives rise to a cellular decomposition for $Q_{n}(C)$:

$$
\begin{aligned}
Q_{2 p+1}(C) & \supset Q_{2 p}(C) \supset \cdots \supset Q_{p+1}(C) & \\
& \supset[p] \supset[p-1] \supset \cdots \supset[1] \supset[0] & \text { for } n=2 p+1, \\
Q_{2 p}(C) & \supset Q_{2 p-1}(C) \supset \cdots \supset Q_{p+1}(C) \supset[p]_{0}, & \\
& {[p]_{1} \supset[p-1] \supset \cdots \supset[0] } & \text { for } n=2 p .
\end{aligned}
$$

Let

$$
\begin{align*}
{[n+1] } & \supset[0]^{\perp_{m}} \supset \cdots \supset[n-p-1]^{\perp_{m}} \\
& \supset\left\{[p]^{\left.\perp_{f}\right\}^{\perp_{m}} \supset \cdots \supset\left\{[0]^{\left.\perp_{f}\right\}^{\perp_{m}}}\right.}\right. \tag{4}
\end{align*}
$$

be the dual decomposition of $P_{n+1}(C)$ by m-complementary planes. Since, $[k]^{\perp_{m}}=c([k])^{\perp_{f}}$ and $\left([k]^{\perp^{\perp}}\right)^{\perp_{m}}=c([k]), 0 \leq k \leq p$, (4) is precisely the cellular decomposition

$$
\begin{align*}
{[n+1] } & \supset c([0])^{\perp f} \supset \cdots \supset c([n-p-1])^{\perp f} \\
& \supset c([p]) \supset \cdots \supset c([0]) \tag{5}
\end{align*}
$$

corresponding to the maximal plane $c([p])$ on $Q_{n}(C)$, and thus induces a cellular decomposition for $Q_{n}(C)$. We put

$$
\begin{aligned}
{[\bar{k}] } & =c([k]) \quad \text { for } 0<k<p, \\
\overline{Q_{k}(C)} & =c([n-k-1])^{\perp_{f}} \cap Q_{n}(C), \\
{[\bar{k}] } & =[\overline{n-k}]^{\perp_{f}}=c([n-k])^{\perp_{f}} \quad \text { for } k>p .
\end{aligned}
$$

For $n=2 p,[p]_{j}$ is disjoint from $c\left([p]_{j}\right)$ for $j=0,1$. It follows from 3.5 that

$$
\begin{array}{llll}
c\left([p]_{0}\right) \in V_{1} & \text { and } & c\left([p]_{1}\right) \in V_{0} & \text { for } p \text { even } \\
c\left([p]_{0}\right) \in V_{0} & \text { and } & c\left([p]_{1}\right) \in V_{1} & \text { for } p \text { odd } .
\end{array}
$$

Thus we put

$$
[\bar{p}]_{0}=\left\{\begin{array}{ll}
c\left([p]_{1}\right) & \text { for } p \text { even }, \\
c\left([p]_{0}\right) & \text { for } p \text { odd },
\end{array} \quad[\bar{p}]_{1}= \begin{cases}c\left([p]_{0}\right) & \text { for } p \text { even } \\
c\left([p]_{1}\right) & \text { for } p \text { odd }\end{cases}\right.
$$

Also for $n=2 p+1$, put $[\bar{p}]=c([p])$.

With this notation, the induced cellular decomposition of $Q_{n}(C)$ reads as:

$$
\begin{aligned}
Q_{2 p+1}(C) & \supset \overline{Q_{2 p}(C)} \supset \cdots \supset \overline{Q_{p+1}(C)} & \\
& \supset[\bar{p}] \supset[\overline{p-1}] \supset \cdots \supset[\overline{0}] & \text { for } n=2 p+1, \\
Q_{2 p}(C) & \supset \overline{Q_{2 p-1}(C)} \supset \cdots \supset \overline{Q_{p+1}(C)} \supset[\bar{p}]_{0}, & \\
& \quad[\bar{p}]_{1} \supset[\overline{p-1}] \supset \cdots \supset[\overline{0}] & \text { for } n=2 p .
\end{aligned}
$$

The Schubert cells, arising from this decomposition, will be denoted by $\bar{\Omega}_{a_{0} \ldots a_{s}}$. It is clear that the two cellular decompositions of $Q_{n}(C)$ (obtained from (1) and (2) are congruent under the action of $S O(n+2)$, and thus the corresponding Schubert cells $\Omega_{a_{0} a_{1} \cdots a_{s}}$ and $\bar{\Omega}_{a_{0} a_{1} \cdots a_{s}}$ represent the same homology class. Let also ($\Omega_{b_{0} \ldots b_{s}}^{c}$) and ($\bar{\Omega}_{b_{0} \ldots b_{s}}^{c}$) be the two systems of ordinary Schubert cells of the Grassmann variety $G_{n+2, s+1}^{c}$ corresponding to (3) and (4) respectively.

Definition. $\quad \Omega_{a_{0} a_{1} \cdots a_{s}}^{t}=\bar{\Omega}_{n-a_{s} n-a_{s-1} \cdots n-a_{0}}$ is called the dual cell of $\Omega_{a_{0} a_{1} \cdots a_{s}}$ with the following convention:

If $n=2 p$, then put, for $a_{j}=p_{0}$,

$$
n-a_{j}= \begin{cases}p_{0} & \text { for } p \text { even } \\ p_{1} & \text { for } p \text { odd }\end{cases}
$$

and, for $a_{j}=p_{1}$,

$$
\begin{gathered}
n-a_{j}= \begin{cases}p_{1} & \text { for } p \text { even }, \\
p_{0} & \text { for } p \text { odd } .\end{cases} \\
e\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)=\text { number of pairs }\left(a_{i}, a_{j}\right), i<j, a_{i}+a_{j}<n . \\
e\left(\Omega_{a_{0} a_{1} \ldots a_{s}}^{t}\right)=\text { number of pairs }\left(a_{i}, a_{j}\right), i<j, a_{i}+a_{j}>n .
\end{gathered}
$$

Thus $e(\Omega)+e\left(\Omega^{t}\right)=\frac{1}{2} s(s+1)$, and by the $C W$-structure theorem,

$$
\operatorname{dim}_{c}(\Omega)+\operatorname{dim}_{c}\left(\Omega^{t}\right)=\frac{1}{2}(s+1)(2 n-3 s)=\operatorname{dim}_{c} A_{s+1}^{(n+2)} .
$$

Also $\Omega_{a_{0} a_{1} \cdots a_{s}} \longmapsto \Omega_{a_{0} a_{1} \cdots a_{s}}^{t}$ is a bijection between Schubert cells of a fixed dimension and those of complementary dimension.

Lemma. There exists a minimal imbedding J of the system $\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)$ of $A_{s+1}^{(n+2)}$ into the system ($\Omega_{b_{0} b_{1} \cdots b_{s}}^{c}$) of $G_{n+2, s+1}^{c}$, and a minimal embedding \bar{J} of $\left(\bar{\Omega}_{a_{0} a_{1} \ldots a_{s}}\right)$ into $\left(\bar{\Omega}_{b_{0} b_{1} \ldots b_{s}}^{c}\right)$ such that
(i) $\Omega_{a_{0} a_{1} \cdots a_{s}} \subset J\left(\Omega_{a_{0} a_{1} \ldots a_{s}}\right)$ and $\bar{\Omega}_{a_{0} a_{1} \ldots a_{s}} \subset \bar{J}\left(\bar{\Omega}_{a_{0} a_{1} \cdots a_{s}}\right)$, and $\Omega_{a_{0} a_{1} \cdots a_{s}} \subset$ $\Omega_{b_{0} b_{1} \ldots b_{s}}$ in $A_{s+1}^{(n+1)}$ if and only if $J\left(\Omega_{a_{0} \ldots a_{s}}\right) \subset J\left(\Omega_{b_{0} \ldots b_{s}}\right)$ in $G_{n+2, s+1}^{c}$ (and a similar condition for $\bar{J})$.
(ii) $\Omega_{a_{0} a_{1} \cdots a_{s}}$ and $\bar{\Omega}_{b_{0} b_{1} \cdots b_{s}}$ are "dual in $A_{s+1}^{(n+2)}$ if and only if $J\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)$ and $\bar{J}\left(\bar{\Omega}_{b_{0} b_{1} \ldots b_{s}}\right)$ are "dual" in $G_{n+2, s+1}^{c}$.
(iii) $J\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right) \cap A_{s+1}^{(n+2)}=\Omega_{a_{0} a_{1} \cdots a_{s}}$ except for $n=2 p$ and $a_{j}=p_{1}$ for
some j, in which case $J\left(\Omega_{a_{0} \cdots p_{1} \cdots a_{s}}\right) \cap A_{s+1}^{(n+2)}=\Omega_{a_{0} \cdots p_{1} \cdots a_{s}} \cup \Omega_{a_{0} \cdots p_{0} \cdots a_{s}}$ (and a similar condition for $\bar{J})$.

Proof. We first construct imbeddings j and \bar{j} of the cells of $Q_{n}(C)$ into those of $P_{n+1}(C)$ as defined by (3) and (4) respectively by putting:

$$
\begin{aligned}
j([k]) & =[k] \quad \text { for } 0<k<n / 2, \\
j\left([p]_{0}\right) & =[p] \quad \text { and } \quad j\left([p]_{1}\right)=[p+1]=[p-1]^{\perp_{f}} \quad \text { for } n=2 p, \\
j\left(Q_{k}(C)\right) & =[k+1]=[n-k-1]^{\perp_{f}} \quad \text { for } k>n / 2 ; \text { similarly }, \\
\bar{j}([\bar{k}]) & =[\bar{k}] \quad \text { for } 0 \leq k<n / 2, \text { and for } n=2 p, \\
\bar{j}\left([p]_{0}\right) & = \begin{cases}{[\overline{p-1}]^{\perp_{f}}=[\overline{p+1}]} & \text { for } p \text { even }, \\
{[\bar{p}]} & \text { for } p \text { odd },\end{cases} \\
\bar{j}\left([p]_{1}\right) & = \begin{cases}{[\bar{p}]} & \text { for } p \text { even }, \\
{[\overline{p-1}]^{\perp_{f}}=[\overline{p+1}]} & \text { for } p \text { odd }, \\
\bar{j} \overline{\left.Q_{k}(C)\right)} & =[n-k-1]^{\perp_{f}}=[\overline{k+1}] \\
\text { for } k>n / 2 .\end{cases}
\end{aligned}
$$

Define \boldsymbol{J} and $\overline{\boldsymbol{J}}$ by

$$
\begin{aligned}
& J\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)=\Omega_{j\left(a_{0}\right) j\left(a_{1}\right) \cdots j\left(a_{s}\right)}^{c}, \\
& \bar{J}\left(\bar{\Omega}_{a_{0} a_{1} \cdots a_{s}}\right)=\bar{\Omega}_{j\left(a_{0}\right) j\left(a_{1}\right) \cdots j\left(a_{s}\right)}^{c} .
\end{aligned}
$$

Properties (i), (ii) and (iii) are easily verified from the definition. q.e.d.
This lemma enables us to develop a duality theory for $A_{s+1}^{(n+2)}$ from the standard duality theory for $G_{n+2, s+1}^{c}$.

Proposition. (i) $\Omega_{a_{0} a_{1} \cdots a_{s}} \cap \Omega_{b_{0} b_{1} \cdots b_{s}}^{t}=\emptyset$ unless

$$
\left.\Omega_{a_{0} a_{1} \cdots a_{s}} \supset \Omega_{b_{0} b_{1} \cdots b_{s}} \quad \text { (i.e., } a \geq b\right)
$$

(ii) Let O_{j} be the unique point of [j] which is m-orthogonal to $[j-1]$, and let $O_{j}^{\prime}=c\left(O_{j}\right), 0 \leq j \leq s$. Let $0 \leq x \leq s$ be the largest integer such that $a_{x} \leq n / 2$. Then $\Omega_{a_{0} a_{1} \cdots a_{s}}$ and $\bar{\Omega}_{b_{0} b_{1} \cdots b_{s}}$ of complementary dimension intersect transversally at a single $[s]$-plane $\tilde{q}=\left[O_{a_{0}}, \cdots, O_{a_{x}}, O_{n-a_{x+1}}^{\prime}, \cdots, O_{n-a_{s}}^{\prime}\right]$ if they are "dual", and are disjoint if not.

Proof. Suppose $\Omega_{a_{0} \cdots a_{s}} \not \supset \Omega_{b_{0} b_{1} \cdots b_{s}}$. Then $J\left(\Omega_{a_{0} \cdots a_{s}}\right) \not \supset J\left(\Omega_{b_{0} \cdots b_{s}}\right)$ by part (i) of the lemma, and it follows from the duality theory for $G_{n+2, s+1}^{c}$ that $J\left(\Omega_{a_{0} \cdots a_{s}}\right)$ $\cap J\left(\Omega_{b_{0} \cdots b_{s}}\right)^{t}=\emptyset$. Also $J\left(\Omega_{b_{0} \ldots b_{s}}\right)^{t}=\bar{J}\left(\Omega_{b_{0} \cdots b_{s}}^{t}\right)$ by Part (ii) of the lemma. Thus $J\left(\Omega_{a_{0} \cdots a_{s}}\right), \bar{J}\left(\Omega_{b_{0} \ldots b_{s}}^{t}\right)$ and their subsets $\Omega_{a_{0} \cdots a_{s}}, \Omega_{b_{0} \cdots b_{s}}^{t}$ are disjoint, respectively, by the lemma.
(ii) It follows from Part (ii) of the lemma that if $\Omega_{a_{0} \ldots a_{s}}$ and $\bar{\Omega}_{b_{0} \ldots b_{s}}$ are dual in $A_{s+1}^{(n+2)}$, so are $J\left(\Omega_{a_{0} \cdots a_{s}}\right)$ and $\bar{J}\left(\bar{\Omega}_{b_{0} \cdots b_{s}}\right)$ in $G_{n+2, s+1}^{c}$, and $J\left(\Omega_{a_{0} \ldots a_{s}}\right)$ and $\bar{J}\left(\bar{\Omega}_{b_{0} \ldots b_{s}}\right)$ intersect transversally at a single [s]-plane $\tilde{q}=\left[O_{a_{0}}, \cdots, O_{a_{x}}\right.$, $\left.O_{n-a_{x+1}}^{\prime}, \cdots, O_{n-a_{s}}^{\prime}\right]$ by the duality theory for $G_{n+2, s+1}^{c}$.

Obviously, $\tilde{q} \in \Omega_{a_{0} \cdots a_{s}} \cap \bar{\Omega}_{b_{0} \cdots v_{s}}$, and the subset $\Omega_{a_{0} \cdots a_{s}}$ of $J\left(\Omega_{a_{0} \cdots a_{s}}\right)$ and
subset the $\bar{\Omega}_{b_{0} \cdots b_{s}}$ of $\bar{J}\left(\bar{\Omega}_{b_{0} \ldots b_{s}}\right)$ also intersect transversally at \tilde{q}. If $\Omega_{a_{0} \cdots a_{s}}$ and $\bar{\Omega}_{b_{0} \ldots b_{s}}$ are not dual, then it follows from Part (i) of the proposition that they are disjoint. q.e.d.

This can be best expressed in a single theorem:
Intersection theorem. Homology classes $\left\{\Omega_{a_{0} \cdots a_{s}}\right\}$ and $\left\{\Omega_{b_{0} \cdots b_{s}}\right\}$ of complementary dimension intersect in 1 if they are "dual" and in 0 if not.

9. Chern classes

An immediate application of the duality theory for $A_{s}^{(n)}$ is the computation of the Chern classes of the principal $U(s)$-bundle $V_{n, 2 s}\left(A_{s}^{(n)} ; U(s)\right)$.

Theorem. "Stability" for Chern classes is attained at $n=2 s+3$, and the i th Chern class $c_{i}=\Omega_{01 \ldots s-i-1 s-i+1 \ldots s}^{*}$ for $n \geq 2 s+3$. As for the unstable cases:
(i) For $n=2 s+2, c_{i}=\Omega_{01 \ldots s-i-1}^{*} s-i+1 \ldots s_{0}+\Omega_{01 \ldots s-i-1}^{*}{ }_{s-i+1 \ldots s_{1}}$.
(ii) For $n=2 s+1, c_{i}=2[01 \cdots s-i-1, s-i+1 \cdots s-1]^{*}$.
(iii) For $n=2 s, c_{s}=0$ and $c_{i}=2[01 \cdots s-i-2, s-i \cdots s-2]^{*}$, $1 \leq i \leq s-1$.

Proof. For $n \geq 2 s+3$, let $j: A_{s}^{(n)} \rightarrow G_{n, s}^{c}$ be the "inclusion", $\operatorname{dim}_{c}\left(\Omega_{a_{0} a_{1} \cdots a_{s}}\right)$ $=i$, and

$$
\begin{aligned}
j_{*}\left(\Omega_{a_{0} \cdots a_{s}}\right)= & k_{a_{0} \cdots a_{s}} \Omega_{01 \cdots s-i-1 s-i+1 \cdots s}^{c} \\
& + \text { linear combinations of other [i]-cells of } G_{n, s}^{c}
\end{aligned}
$$

Taking "intersections" of both sides with $\left(\Omega^{c}\right)_{01 \ldots s-i-1}^{t}{ }_{s-i+1 \ldots s}$ yields

$$
k_{a_{0} \cdots a_{s}}=j_{*}\left(\Omega_{a_{0} \cdots a_{s}}\right) \cdot\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s}^{t}
$$

$n \geq 2 s+3$ implies that $n-1-s>\frac{1}{2}(n-2)$, and thus $\left[\bar{a}_{j}\right] \cap Q_{n-2}(C)=$ $\bar{Q}_{a_{j-1}}(C)$ for $a_{j} \geq n-1-s$. Hence

$$
\begin{aligned}
A_{s}^{(n)} \cap\left(\Omega^{c}\right)_{01}^{t} \ldots s-i-1 s-i+1 \cdots s & =A_{s}^{(n)} \cap \bar{\Omega}_{n-1-s \cdots n+i-s-2 n+i-s \cdots n-1}^{c} \\
& =\bar{\Omega}_{n-2-s \cdots n+i-s-3 n+i-s-1 \cdots n-2} \\
& =\Omega_{01 \cdots s-i-1}^{t} s-i+1 \cdots s
\end{aligned}
$$

which implies that

$$
\begin{aligned}
\Omega_{a_{0} \cdots a_{s}} \cap\left(\Omega^{c}\right)_{01 \ldots s-i-1 s-i+1 \cdots s}^{t} & =\Omega_{a_{0} \cdots a_{s}} \cap A_{s}^{(n)} \cap\left(\Omega^{c}\right)_{01}^{t} \ldots s-i-1 s-i+1 \ldots s \\
& =\Omega_{a_{0} \cdots a_{s}} \cap \Omega_{01 \ldots s-i-1 s-i+1 \ldots s}^{t}
\end{aligned}
$$

It follows from the duality theory for $A_{s}^{(n)}$ that $k_{a_{0} \cdots a_{s}}$ except $k_{01 \cdots s-i-1}{ }_{s-i+1 \cdots s}$ all vanish. By the proposition of $\S 5$

$$
\Omega_{01 \cdots s-i-1 s-i+1 \cdots s}=\Omega_{01 \ldots s-i-1 s-i+1 \cdots s}^{c}
$$

and thus

$$
k_{01 \cdots s-i-1} s-i+1 \cdots s=\Omega_{01 \cdots s-i-1 s-i+1 \cdots s}^{c} \cdot\left(\Omega^{c}\right)_{01 \cdots s-i-1}^{t}{ }_{s-i+1 \cdots s}=1
$$

by the duality theory for $G_{n, s}^{c}$. Hence the dual map j^{*} on the cohomology level satisfies

$$
j^{*}\left(\Omega^{c}\right)_{01 \ldots s-i-1 s-i+1 \ldots s}^{*}=\Omega_{01 \ldots s-i-1 s-i+1 \ldots s}^{*}
$$

and $c_{i}=\Omega_{01 \ldots s-i-1}^{*}{ }_{s-i+1 \ldots s}$ by "naturality" for Chern classes.
(i) For $n=2 s+2$, again let $j: A_{s}^{(2 s+2)} \rightarrow G_{2 s+2, s}^{c}$ be the inclusion. Then

$$
\begin{aligned}
& j^{*}\left(\Omega^{c}\right)_{01 \ldots s-i-1}^{*}{ }_{s-i+1 \ldots s}=\sum_{\operatorname{dim}_{c}\left(\Omega_{a}\right)=i} k_{a_{0} \ldots a_{s}} \Omega_{a_{0} \cdots a_{s}}^{*}, \\
& {[\overline{s+1}] \cap Q_{2 s}(C)=\left[\bar{s}_{0}\right] \cup\left[\bar{s}_{1}\right],\left[\bar{a}_{j}\right] \cap Q_{2 s}(C)=\bar{Q}_{a_{j-1}}(C), \text { for } a_{j} \geq s+2,} \\
& A_{s}^{(2 s+2)} \cap\left(\Omega^{c}\right)_{01 \ldots s-i-1 s-i+1 \cdots s}^{t} \\
& =A_{s}^{(2 s+2)} \cap \bar{\Omega}_{s+1 \cdots s+i}^{c}{ }_{s+i+2 \cdots 2 s+1} \\
& =\bar{\Omega}_{s_{0} s+1 \cdots s+i-1 s+i+1 \cdots 2 s} \cup \bar{\Omega}_{s_{1} s+1 \cdots s+i-1 s+i+1 \cdots 2 s} \\
& =\Omega_{01 \cdots s-i-1}^{t}{ }_{s-i+1 \cdots s_{0}}^{t} \cup \Omega_{01 \ldots s-i-1 s-i+1 \cdots s_{1}}^{t} \text {, }
\end{aligned}
$$

and thus

$$
\begin{aligned}
& \Omega_{a_{0} \cdots a_{s}} \cap\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s}^{t} \\
& =\Omega_{a_{0} \cdots a_{s}} \cap A_{s}^{(2 s+2)} \cap\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s}^{t} \\
& =\Omega_{a_{0} a_{1} \cdots a_{s}} \cap\left(\Omega_{01 \cdots s-i-1}^{t}{ }_{s-i+1 \ldots s_{0}} \cup \Omega_{01 \cdots s-i-1}^{t}{ }_{s-i+1 \ldots s_{1}}\right) \text {. }
\end{aligned}
$$

Hence $k_{a_{0} \cdots a_{s}}$ except $k_{01 \ldots s-i-1} s-i+1 \cdots s_{0}$ and $k_{01 \cdots s-i-1} s-i+1 \cdots s_{1}$ all vanish.
$\Omega_{01 \ldots s-i-1 s-i+1 \ldots s}^{c}$ and $\left(\Omega^{c}\right)_{01 \ldots s-i-1 s-i+1 \ldots s}^{t}$ intersect transversally at a single $[s-1]$-plane $\tilde{q}=\left[O_{0}, \cdots, O_{s-i-1}, O_{s-i+1}, \cdots, O_{s}\right]$ and $\tilde{q} \in \Omega_{01 \cdots s-i-1 s-i+1 \cdots s_{0}}$ $\cap\left(\Omega^{c}\right)_{01 \ldots s-i-1 s-i+1 \cdots s}^{t}$, and thus their subsets

$$
\Omega_{01 \cdots s-i-1 s-i+1 \cdots s_{0}}, \quad\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s}^{t}
$$

also intersect transversally at \tilde{q}. Hence $k_{01 \cdots s-i-1} s-i+1 \cdots s_{0}=1$, and similarly $k_{01 \ldots s-i-1}{ }_{s-i+1 \cdots s_{1}}=1$.

$$
j^{*}\left(\Omega^{c}\right)_{01 \cdots s-i-1}^{*} s-i+1 \cdots s=\Omega_{01 \cdots s-i-1}^{*} s-i+1 \cdots s_{0}+\Omega_{01 \cdots s-i-1}^{*}{ }_{s-i+1 \cdots s_{1}},
$$

and, by naturality, the result follows.
(ii) For $n=2 s+1$,
$[\bar{s}] \cap Q_{2 s-1}(C)=[\overline{s-1}], \quad\left[\bar{a}_{j}\right] \cap Q_{2 s-1}(C)=\bar{Q}_{a_{j-1}}(C) \quad a_{j}>s$, $A_{s}^{(2 s+1)} \cap\left(\Omega^{c}\right)_{01 \ldots s-i-1}^{t}{ }_{s-i+1 \ldots s}=A_{s}^{(2 s+1)} \cap \bar{\Omega}_{s \ldots s+i-1}^{c} s+i+1 \ldots 2 s$

$$
=\bar{\Omega}_{s-1} s \cdots s+i-2 s+i \cdots 2 s-1,
$$

$a_{0}+a_{1}=(s-1)+s=2 s-1$, and repeatedly using the method of the proof of the lemma in §5 we obtain

$$
\begin{aligned}
\bar{\Omega}_{s-1} s s+1 \cdots s+i-2 s+i \cdots 2 s-1 & =\bar{\Omega}_{s-2} s s+1 \cdots s+i-2 s+i \cdots 2 s-1 \\
& \vdots \\
& =\bar{\Omega}_{s-i} s s+1 \cdots s+i-2 s+i \cdots 2 s-1 \\
& =\Omega_{01 \cdots s-i-1}^{t} s-i+1 \cdots s-1 s+i-1
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\Omega_{a_{0} \cdots a_{s}} & \cap\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s}^{t} \\
& =\Omega_{a_{0} \cdots a_{s}} \cap A_{s}^{(2 s+1)} \cap\left(\Omega^{c}\right)_{01}^{t} \cdots s-i-1 s-i+1 \cdots s \\
& =\Omega_{a_{0} \cdots a_{s}} \cap \Omega_{01 \cdots s-i-1 s-i+1 \cdots s-1 s+i-1}^{t}
\end{aligned}
$$

Thus $k_{a_{0} \cdots a_{s}}$ except $k_{01 \cdots s-i-1}{ }_{s-i+1 \cdots s-1}{ }_{s+i-1}$ all vanish.
$\Omega_{01 \ldots s-i-1} s-i+1 \ldots s-1 s+i-1,1$ and $\left.\left(\Omega^{c}\right)_{01}^{t} \ldots s-i-1 s-i+1 \ldots s\right)$ intersect at a single [$\left.s-1\right]$ plane $\tilde{q}=\left[O_{0}, \cdots, O_{s-i-1}, O_{s-i+1}, \cdots, O_{s-1}, O_{s-i}^{\prime}\right]$, and $k_{01 \cdots s-i-1 s-i+1 \cdots s-1 s+i-1}$ is the degree of intersection at this point. Let $a=\left[O_{0}, \cdots, O_{s-i-1}, O_{s-i+1}\right.$, $\left.\cdots, O_{s-1}\right]$, and let S_{a} and S_{0} be the submanifolds of $G_{2 s+1, s}^{c}$ of planes passing through a and O_{s-i}^{\prime} respectively. Then by 3.11 we have a direct sum decomposition of tangent planes

$$
\begin{equation*}
T_{q}\left(G_{2 s+1, s}^{c}\right)=T_{q}\left(S_{a}\right) \oplus T_{q}\left(S_{0}\right) \tag{6}
\end{equation*}
$$

Also

$$
\begin{aligned}
& S_{a} \cap \Omega_{01 \ldots s-i-1} s-i+1 \cdots s-1 s+i-1 \\
& S_{0} \cap \Omega_{01 \cdots s-i-1}=\Omega_{01 \cdots s-i+1 \cdots s-1 s+i-1}=Q_{1}(C)
\end{aligned}
$$

where $Q_{1}(C)$ is the nonsingular quadric on the 2-plane ($O_{s-i}, Y, O_{s-i}^{\prime}$), Y being the unique point of $[s-1]^{\perp s}$ which is m-orthogonal to $[s-1]$. Since

$$
\operatorname{dim} \Omega_{01 \ldots s-i-1} s-i+1 \cdots s-1 s+i-1=\operatorname{dim} \Omega_{01 \ldots s-i-1 s-i+1 \ldots s-1}+\operatorname{dim} Q_{1}(C)
$$

we obtain a subdecomposition of (6) :

$$
\left.\begin{array}{l}
T_{q}\left(\Omega_{01 \cdots s-i-1} s-i+1 \cdots s-1 s+i-1\right. \tag{7}
\end{array}\right)
$$

Also

$$
S_{a} \cap\left(\Omega^{c}\right)_{01 \cdots s-i-1}^{t} s-i+1 \cdots s=\left(\Omega^{c}\right)_{01 \cdots s-i-1}^{t} s-i+1 \cdots s-1
$$

where t on the right hand side denotes "dual" in the Grassmann manifold $G_{2 s, s-1}^{c}=[s-2]$-planes on $\left(O_{s-i}^{\prime}\right)^{\perp m}$, and

$$
\begin{aligned}
& S_{0} \cap\left(\Omega^{c}\right)_{01 \ldots s-i-1}^{t} s-i+1 \ldots s=[\overline{s-1}]^{\perp f}, \\
& \operatorname{dim}\left(\Omega^{c}\right)_{01}^{t} \ldots s-i-1 s-i+1 \cdots s \\
& =\operatorname{dim}\left(\Omega^{c}\right)_{01 \cdots s-i-1}^{t}{ }_{s-i+1 \cdots s-1}+\operatorname{dim}[s-1]^{\perp f} .
\end{aligned}
$$

Thus we obtain

$$
\begin{align*}
& T_{q}\left(\Omega^{c}\right)_{01 \ldots s-i-1 s-i+1 \cdots s}^{t} \tag{8}\\
& \quad=T_{q}\left(\Omega^{c}\right)_{01}^{t} \ldots s-i-1 s-i+1 \cdots s-1
\end{align*} \oplus T_{q}[\overline{s-1}]^{\perp f} .
$$

Since (7) and (8) are subdecompositions of the same direct sum decomposition (6),

$$
\begin{align*}
& T_{q}\left(\Omega_{01 \cdots s-i-1 s-i+1 \cdots s-1 s+i-1}\right) \cap T_{q}\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s}^{t} \\
& =T_{q}\left(\Omega_{01 \cdots s-i-1 s-i+1 \cdots s-1}\right) \cap T_{q}\left(\Omega^{c}\right)_{01 \cdots s-i-1 s-i+1 \cdots s-1}^{t} \tag{9}\\
& \quad \oplus T_{q} Q_{1}(C) \cap T_{q}[s-1]^{\perp f}
\end{align*}
$$

The first summand is zero by the duality theory for $G_{2 s, s-1}^{c}$. Let $P_{1}(C)=$ $\left(O_{s-i}^{\prime}\right)^{\perp f}$ in the 2-plane $\left(O_{s-i}, Y, O_{s-i}^{\prime}\right)$. Then $P_{1}(C) \subset[\overline{s-1}]^{\perp f}$, and it follows from 3.10 that $\operatorname{dim} T_{q} Q_{1}(C) \cap T_{q} P_{1}(C)=1$. Since $T_{q} Q_{1}(C) \not \subset T_{q}[\overline{s-1}]^{\perp f}$, we have $\operatorname{dim} T_{q} Q_{1}(C) \cap T_{q}[s-1]^{\perp_{f}}=1$, and it follows from (9) that

$$
\begin{aligned}
k_{01 \cdots s-i-1} s-i+1 \cdots s-1 s+i-1
\end{aligned}=2, \quad \text { i.e., }, ~ \begin{aligned}
c_{i}=j^{*}\left(\Omega^{c}\right)_{01 \cdots s-i-1}^{*} s-i+1 \cdots s s & =2 \Omega_{01 \ldots s-i-1}^{*} s-i+1 \cdots s-1 s+i-1 \\
& =2[01 \cdots s-i-1, s-i+1 \cdots s-1]^{*}
\end{aligned}
$$

by the notation of $\S 7$.
(iii) For $n=2 s$, let $V_{0}=I_{s}$ be an irreducible subvariety of $A_{s}^{(2 s)}$. The principal $U(s)$-bundle $f_{s}^{(2 s)}: V_{2 s, 2 s} \rightarrow A_{s}^{(2 s)}$ is two disjoint copies of the canonical $U(s)$-bundle E over V_{0}. By 3.7, E splits into a direct sum $E=1 \oplus F$ of a trivial line bundle 1 and the canonical $U(s-1)$-bundle F over $A_{s-1}^{(2 s-1)}$, or equivalently $f_{s-1}^{(2 s-1)}: V_{2 s-1,2 s-2} \rightarrow A_{s-1}^{(2 s-1)}$. Thus $c_{s}(E)=0$ and

$$
\begin{aligned}
& c_{i}(E)=c_{i}(F)=2[01 \cdots s-i-2, s-i \cdots s-2]^{*} \\
& \quad \text { for } 1 \leq i \leq s-1
\end{aligned}
$$

by (ii) above and (iii) of $\S 7$.

10. Applications

A 2 -form w of constant rank $2 s$ on a trivial R^{n}-bundle E (over B) can be represented (after suitable normalization) as a map $w_{1}: B \rightarrow A_{s}^{(n)}$, and decomposing w into a sum $w=y_{1} \wedge y_{s+1}+\cdots+y_{s} \wedge y_{2 s}$ of products of 1-forms (y_{i}) on E is equivalent to lifting w_{1} to $V_{n, 2 s}$. (Refer to [4] for details.) We thus obtain

Proposition. A necessary condition for the decomposability of a 2-form w of constant rank $2 s$ on a trivial R^{n}-bundle E (over B) is that $w_{1}^{*}\left(c_{i}\right)=0$ in $H^{2 i}(B ; Z)$ where $c_{i} \in H^{2 i}\left(A_{s}^{(n)} ; Z\right)$ are as given by the theorem of the preceding section.

If the total bundle E is not trivial, then a necessary condition for a 2 -form w on E of constant rank $2 s$ to decompose is that the $2 s$-dimensional subbundle S_{w} of E, on which w is a 2 -form of maximal rank, is trivial. Using the triviality of S_{w}, w is represented as a map $w_{1}: B \rightarrow I_{s}$. Then w decomposes if and only if w_{1} lifts to $S O(2 s)$. By (iii) of the theorem of the preceding section, a necessary condition for the existence of such a lift is

$$
2 w_{1}^{*}\left([01 \cdots s-i-2, s-i \cdots s-2]^{*}\right)=0 \quad \text { for } 1 \leq i \leq s-1
$$

It can be verified (although we shall not go into the ring structure of $H^{*}\left(A_{s}^{(n)} ; Z\right)$ here) that ([01 $\left.\left.\cdots s-i-2, s-i \cdots s-2\right]^{*}, 1 \leq i \leq s-1\right)$ form a homogenous system of generators for $H^{*}\left(I_{s} ; Z\right)$, and this immediately yields

Proposition. A necessary condition for the decomposability of a 2-form w of constant rank $2 s$ on an R^{n}-bundle E (over B) is:

1. S_{w} is a trivial bundle,
2. Image $w_{1}^{*} \subset 2$-torsion in $H^{*}(B ; Z)$.

References

[1] M. F. Atiyah, K-theory, Benjamin, New York, 1967.
[2] -, Some examples of complex manifolds, Bonn Math. Schr. 6 (1958).
[3] S. S. Chern, Complex manifolds without potential theory, Van Nostrand, Princeton, 1967.
[4] I. Dibag, Decomposition in the large of two-forms of constant rank, Ann. Inst. Fourier (Grenoble) 24 (1974) 317-335.
[5] C. Ehressmann, Topologie de certaines espaces homogenes, Ann. of Math. 35 (1934) 396-443.
[6] W. V. D. Hodge \& D. Pedoe, Methods of algebraic geometry, Vol. II, Cambridge Univ. Press, Cambridge, 1951.
[7] W. S. Massey, Obstructions to the existence of almost complex structures, Bull. Amer. Math. Soc. 67 (1961) 559-564.
[8] J. T. Schwarz, Differential geometry and topology, Gordon and Breach, New York, 1968.

Middle-East Technical University Ankara, Turkey

[^0]: Received May 1, 1973, and, in revised form, January 16, 1974.

