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TOPOLOGY OF THE COMPLEX VARIETIES Ai
n)

I. DIBAG

1. Introduction

Define, for s <[n/2],
Vn>2s: manifold of ordered 2^-tuplets of linearly independent vectors in

Euclidean n-space Rn,
A™ : space of 2-forms in Rn of rank 2s,

fίn) yΠ,IB —> Aln): map given by

?ίΛ>Cyi, , y2,) = yi Λ ys+1 + + ys Λ y 2 s ,

F W ) 2 S : Stiefel manifold of orthonormal 2^-frames in Rn,

Aίn) = jw(ynt28) subspace of >?<n) of "normalized" 2-forms in ft71 of
rank 2s,

fίn): ^n, 2 s -> ^ , n ) : the restriction of fln) to F n , 2 s .
It was proved in [4] that the maps f^n) and ftn) induce the principal Sp(s R)-

and C/(5)-bundles respectively, and that Aln) is a strong deformation retract of

One may, equivalently, define A™ as the space of normalized complex s-
substructures of Rn, i.e., pairs (p,J) where p is a 2^-plane in Rn and J is a
normalized complex structure on p (J e O(p), J2 = —1).

To see the equivalence, let w € y4^n). Then w — y1 Λ y s +i + + ys Λ y2s

for an orthonormal 2^-frame y = (y19 , y2 s). Let p be the 2^-plane spanned
by y. For JC e p, let d .̂: p -^ Λ2p be forming wedge products with x, i.e., ^ ( z )
= x A z, and <^: ί̂2/? —> p be its "adjoint". Define a linear transformation /
on p by J(x) = δx(w), xep. Then/Cy^) = yi+s and/( j ί + s ) = —yi9 1 < / < s.
Thus / e O(p), J2 = — 1 . Conversely, a normalized complex ^-substructure /,

7 e O(p), /2 = — 1 , can be represented by the matrix L ~r\s\ relative to

some orthonormal 2s-frame y = (y19 ,y28) on p. Hence / corresponds to
w = 3Ί Λ J s + i + + ys Λ y2s in ̂ 4<n>.

It follows from either definition that A(

s

n)' = SO(n)/U(s) X S0(w — 2J) for
j < n/2, A?8' = O(2s)/U(s) = Is U Γ9 where /, = SO(2s)/U(s), A^ = Gn,2

= 6n-2(O where Gw>2 is the oriented 2-ρlanes in Rn, and Qn_2(Q is the com-
plex quadric of dimension n — 2. *

The spaces A(

s

n) appear as "fibres" in global obstruction problems involving
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2-forms of constant rank, and the foremost among these problems are the
existence and decomposability of such forms.

1. The existence of a 2-form of constant rank 2s on an jRw-bundle E (or,
a complex ^-substructure on E) is equivalent to cross-sectioning the associated
bundle AS(E) to E with fiber A™.

2. Globally decomposing a given 2-form w of constant rank 2s on E as a
sum w = yγ Λ ys+i + + ys A y2s of products of 1-forms (j*) on E is
equivalent to the lifting of the diagram

V2S(E)

where B is the base manifold, V2S(E) the associated bundle to E with fiber the
Stiefel manifold Vn>2s, and w is represented with respect to a suitable metric
on E as a "normalized" 2-form on E of constant rank 2s, i.e., as a map w:
B-+AS(E). (Refer to [4].)

2a. In the special case when E is a trivial (product) bundle (e.g., the
tangent bundles of Lie groups), the diagram reduces to

and the primary obstructions to lifting wλ are the pull-back πffo) e H2ί(B Z)
by wλ of the Chern classes ct e H2i{A{^ Z) of the principal [/(^-bundle

2b. In the general case (i.e., when the total bundle E is not necessarily
trivial) a necessary condition for globally decomposing w is that the 2s-diinen-
sional subbundle Sw of E defined by w is trivial. Using the triviality of Sw (and
a suitable metric on it) w is represented as a map wx: B -* Is, and then de-
composability of w is equivalent to the lifting of the diagram:

SO(2s)

V
B —+ίs

(which is the special case of diagram 2a for n = 2s) and again the primary
obstructions to decomposing w are the pull-back wf(ct) € H2ί(B Z) by wλ of
the Chern classes ct <= H2ί(Is Z) of SO(2s)(Is U(s)). (Refer to [4] for details.)

In this paper we make a start on these obstruction problems by studying the
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topology of the manifolds A^n\ We represent A<n) as the subvariety of the
complex Grassmann variety G£β of projective [s — l]-ρlanes lying on the
complex quadric Qn_2(C). In perfect analogy with the classical Schubert
calculus on Grassmann varieties, we define the Schubert cell Ωaoaχ...as_x, 0 < a0

< ax < < as_λ < n — 2. Then the main result of this paper, the CW-
structure theorem, states that A™ is a cell complex on the class of Schubert
cells

(βαoα1...αi-1l*i + *J' * " ~ 2 fθΓ 0 < I < / < Π - 2) .

As a corollary we obtain the additive homology and cohomology of A™. We
then develop a duality theory for A^\ and using this and the inclusion map
/: A™ —• Gc

ntS we compute the Chern classes ct € HH(A^n) Z). Thus given w
we can explicitly determine the primary obstructions w*(ct) to decompose w.

The paper, as a whole, is self contained. The arguments are based on ele-
mentary projective geometry.

2. Universality of A^

For fixed s we have a sequence of principal £/(s)-bundles:

V 18,28 y— V 2S+1,2S ^— <— V n>2S ^ y n + \,2S <— ' ' ' V oo,2S

A (2s) r— A (2β + l) r— . . . r— A (w) / — Λ (n + 1) / — Λ (oo)
•fig v__ ^ Λ . g v__ v, JΓL o v •'•••S /l .

Thus y4^oo) = dir l i m ^ ^ A™ forms a classifying space for C/(J). Let Wn>s be
the Stiefel manifold of complex orthonormal ^-frames in Cn, and define

rin): ^ n , s -^ ^2n,2s by r<n)(z19 - , z,) = (z1? , z,, /z15 , iz8), and >vs

(n): F W ) 2 ί

where ί = V — 1 . ^ n ) and w™ are l/(j)-maps, and thus induce imbeddings
r™ '- Gc

n,s —> /4fw) and wίn): A™ —> G^ s on the quotient spaces. rs

(n) o ϊvs

(w) and
ws

(2w) o r^n) are homotopic to inclusion maps A™ C ^4β

(2w) and G£jS C GξΛ>β re-
spectively. Hence rs

(oo) and vvs

(oo) are the desired homotopy equivalences of A{™y

with the standard classifying space G^)S of U(s).

Let βc(Zi, , zn) = zϊ + zl + + 4 be the nonsingular billinear form
on Cw. Then it can be easily verified from the definition that

Image w<n) = (π e G^ s | Q
c vanishes on π) .

Let Qn_2(C) be the quadric of the form Qc in PTO_i(C). We can now identify
A™ with its image in G£?s, and write this as a

Representation theorem. ^4s

(n) is represented as the complex analytic variety
of linear projective [s — l]-planes on Qn_2(C).
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3. Preliminaries

We now list the preliminaries to be needed in the sequel, and for details we
refer the reader to [6]. In what follows, J_f and J_m will denote orthogonal
complements with respect to the form Qc and the Hermitian metric on Cn

respectively. V will denote join, U union and ΓΊ intersection.

3.1. The conjugation map c: Cn+2 -> Cn+2 given by c(z0, zi9 , zn+1) =
(zo,Zι, , Zn+i) has the following properties:

( i ) Qc(z w) = <z I c(w)>, and thus zLf

(ii) Qc(c(z)) = Qc(z), and thus c maps β n (C) onto itself.
(iii) The image under c of a projective [j]-plane # lying on β n ( Q is another

projective [s]-plane q'9 which also lies on Qn(C) and is ra-orthogonal to q.
Thus c induces an involution on Aln

+\2).

(iv) Qc(z c(z)) Φ 0 for z Φ 0. Thus, if an |>]-plane q is [&]-degenerate
with degeneracy q0 (i.e., g0 = (7 Π q±r), then β c is nonsingular on the join
Q V c(q0).

3.2. Suppose that a projective [s — l]-plane q lies on Qn(C), and that P
is a point not on q. Then the join q V P lies on β n ( Q if and only if P e β n ( Q
Π q±f.

3.3. Qn(C) has a nontrivial intersection with every projective line on

P n + 1 ( O .
3.4. An [5"]-plane ^ lies on Qn(C) if and only if g c qLf. Hence s < n — s,

i.e., 5 < [n/2]. lί s < [n/2], it follows from 3.2 and 3.3 that q is contained
in an [s + l]-plane lying on Qn(C). Thus the maximal planes on Qn(C) are
[n/2]-dimensional, and any plane lying on Qn(C) can be imbedded in a
maximal one.

3.5. A?ϊϊ2) = [>]-ρlanes on Q2s(C) consists of two connected components
or irreducible subvarieties Vo and V19 each of which is homeomorphic to I8+1.
The dimension of intersection of two [j]-planes on Q2s(C) is congruent to s
(mod 2) if they belong to the same component, and to s — 1 (mod 2) if they
belong to different components.

3.6. It is a direct consequence of 3.4 and 3.5 that given an [s — l]-plane
q on Q2S(C), there exist unique |>]-planes q0 e Vo and qγ e Vγ such that q = q0 Γ)
«i, ^ X / = Q» V ^ , β 2 s(C) ΓΊ qi-t = q0U qx.

3.7. Let Q2s-ι(C) C β 2 s(C) be an inclusion of nonsingular quadrics. Then
by 3.6 above, each [j — l]-plane q on Q 2 s-i(O corresponds to a unique #0 e F o ,
<5r0 D (?, and each q0 e F o necessarily intersects β 2 s _i(O in an [s — l]-plane q.
This establishes a homeomorphism between F o and Afs+1) = t — 1]-planes on
β2s_i(C).

Let Pq be the unique point of qQ which is m-orthogonal to q. Define a con-
tinuous map f:V0-» Q2s(C) by f(qQ) = Pq. Let £ , F, $ be the canonical Cs+1-,
Cs-, C'-bundles over Vo, Afs+1) and Q2s(C) respectively. Then, since q0 = q V
Pq, we have £ = F 0 /*(f). Pq$ β2 s_!(C) by definition, and hence the map /
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factors through the open contractible space Q2S(C) — β2s_i(C), and is thus null
homotopic. Hence the pull-back /*(£) of / to Vo is trivial, i.e., /*(£) = 1 and
E = F φ l .

3.8. Let qλ C q2 be an inclusion of projective [s]- and [s + l]-planes lying
on Qn(C). Let P € (q2 — qλ). Then q±* = q^ ΓΊ P-1'. Let h be a hyperplane
in gf' not passing through P and thus intersecting the hyperplane q^f

(containing P) in an [n — s — 2]-plane h0. Central projection through P estab-
lishes a homeomorphism between (h — h0) and Qn(C) Π (gf7 — <?fθ Thus
the latter is an open cell of complex dimension n — s — 1.

3.9. Let qQ be a fixed [s — l]-ρlane in PW_1(C), and S£(g0) = (tf e
G ^ | d i m (<? Π <?o) = ί - 1) for t < min (j, Λ). Then the map St(q0) -> Gc

n,t

defined by q -^ q Π ̂ 0 is continuous.
3.10. Let OQ e Qλ(C) and P^C) be the hyperplane in P2(C) which is /-

orthogonal to O0. Let C3 = (e0, e19 e2), Qc(z) = zl + z{ + z\, O0 = [e0 + ίej.
Then the curves a(t) = [(cos t)e0 + ie1 + (sin t)e2] in Qλ{C) and b(t) =
[(cos Ô o + (icos O î + ( s i n t)e2] in F^C) both starting at O0 have a common
tangent vector e2 e S5 at this point. Hence β i ( O and P^C) have a "double"
intersection at OQ.

3.11. For k = a + b, decompose a [A: — l]-plane (?0 into a disjoint join
q0 = qaW qb of an [α — l]-plane qa and a [b — l]-plane qb. Let 5 α and 5&

be the submanifolds of Gc

n,k of [k — l]-planes containing qa and qb respec-
tively, q € Sa intersects q^m = [n — a — 1] at [b — 1], and the intersection
uniquely determines q. Hence Sa = G£_α,δ, and similarly 5 6 = G^_6?α. d im c 5 α

+ dim c 5 δ = (π — a — 6)6 + (n — b — α)α = (n — &)/:, i.e., 5 α and Sb are
of complementary dimensions in Gc

nyk. They also intersect transversally at the
single point q0. This gives a direct sum decomposition for the tangent plane to
Glk at qQ: Γίo(GJfJt) = Γ ίo(Sα) Θ Γβo(S6).

4. Topology of β n ( Q

Let [p] be a maximal plane of dimension p = [n/2] lying on β n(C), [p] Z>
[p — 1] D Z) [1] D [0] be a cellular decomposition for [/?] by its sub-
projective-spaces, and

[n + 1] D [0] 1 ' 3 [I]-1-/ D D [n - p - 1]J-/

D [p] => [p - 1] Z> D [1] =) [0]

be the corresponding cellular decomposition for Pn+1(C).
Define βfc(C) - β n ( Q Π [n - k - I]-1-/ for k > p. Then β t ( Q D [n - k

— 1], and is thus an [n — /: — l]-degenerate subquadric of Qn(C). It follows
from 3.8 that {Qk(C) — βfe_i(C)} is an open cell of complex dimension k for
k > p + 1, and that {βp+1(C) - βTO(C) Π [n - p - 1]^} is an open [p + 1]-
cell.
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For Λ = 2p + 1, Qn(C) Π [n - p - 1]-L/ = β 2 p + 1(C) Π [p]±f = [p], and
thus

β2P +i(Q =) β 2 p ( Q D D β p + 1 ( O

=> [p] => [p - 1] D D [1] D [0]

forms a cellular decomposition for β 2 p +i(C).
For n = 2/7, assume without loss of generality that [p] = [p]0 € Fo. Then

by 3.6 there exists a unique [p\ <ε Vλ such that Qn(C) Π [n — p — 1]^ =
Qip(Q Π [p - IV-' = [p]o U [ph Thus

β2 p(C) D β ^ . ^ C ) D D β p + 1(C) 3 [p]0,,

[p]x D [p - 1] D => [1] D [0]

is a cell decomposition for β 2 p ( Q .

5. CΨ-structure of Af+\2)

Define, for q e Λ^+\2) and / e Z + , qt — q Π complex /-dimensional cell of
β . ( O , i.e.,

Π W for t<n/2,

Π β t(C) for ί > n/2 ,

^ 0 = ^ ΓΊ [p]0 , ^ P l = q Π [p]x for p = n/2 .

Observation, (i) ^ έ w α subs pace of q.
(ii) T/ze sequence (qt) forms a filtration:
For n = 2p + 1,

0 = <?2p + l = > 0 2 p = > = > ^ p + i = > 0 p = > - . . = > $ ! = > tfo

For n = 2p, either

q = q2pZ) q2p^ D 3 gp + 1 D ^P o 3 ^ p - 1 3 D ^ ^ = tfP-i ,

or

q = q2pZ) q2v_λ Z) D ^ p + 1 D ^ P i D ^p_χ 3 3 ^ D ^0, qPo = ^p_χ ,

Z?y subs paces whose dimensions decrease at most 1
Proof, (i) Obviously, ^ = q ΓΊ [/] for ί < n/2 is a subspace, and

Qt = Q n β X O = 9 n β n ( o n [n - * - i ] ^ = ^ n [n - ί -

for t > w/2 is also a subspace.
(ii) For ί < n/2,
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dim qt = dim (q Π [t]) < dim (q Π [t — 1]) + 1 = dim qt_x + 1 .

For / > n/2,

dim qt+1 = dim (4 Π β ί + i ( O )

= dim (# Π [n — t - 2]1') < dim (q Π [n - ί - I P ' ) + 1

= dim (<? Π Qt{Cj) + 1 = dim qt + 1 .

If n = 2p + 1, then

d i m ^ + 1 = (dim<? Π QP+1(Q)

= dim (̂ r Π [p - I]1-') < dim {q Π [p]1-^) + 1

= dim(<z Π β 2 p + 1 (C) Π [pVO + 1

= dim (q Π [p]) + 1 = dim qp + 1 .

Thus

QL = Q2p+i Z> tf2p => => <?P+I =) ήfp 3 D ^ i =) ̂ o

is the required filtration.
If n = 2p, then

q = [p _ l]J-/ = ^ Π β 2 p(C) ΓΊ [p - 11-L/

= « Π (Wo U [p]d = qPo U qPι

is a subspace, and thus either q Π [p — I ] 1 ' = ^ P o 3 qPi or <y Π [p — l]±f

= qPl 3 <3V If 9 Π [p - 1[J-/ = ?P β D ^ P i , then °

x o i Γl [pli) = q Π [p - 1] =

dim ^ p + 1 = dim ( ί f l [ p - 2]-1-/) < dim ( g Π [ p

= dim gPo + 1 .

Thus

q = q2pZ) qlv_x D . - . D ^rp+1 D ^ o Z> ̂ p_ x D . . D ^ D ̂ r0

is the required filtration.

Similarly, if q Π [q - I ] 1 ' = <?Pi z> <?Po, then we have qPo = qp^ and

q = q2p Z> ̂ 2 p_! Z> D ^rp+1 D <?3,i D ^ _ ! D D ^ D q0

is the required filtration, q.e.d.
For 0 < a0 < ax < < as < n, we introduce the closed Schubert cell

flαoαx-α. = (? 6 ̂ ^ 2 ) I dim ̂  > 0

An immediate corollary of the preceding observation is the following.
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Corollary. A™ = (J Ωaoai...ar

However, some of the cells in this covering are "superfluous", and the next
lemma shows that A^X^ can be covered by a smaller class of Schubert cells

(̂ αoαx-.-α. l«ί + dj φ Π for ί < j).
Notation. For a == (a09 a19 , as) and b = (b09 b19 , 6β) € (Z + ) ' + 1 , we

write: b < a if and only if 6^ < dj9 0 < j < s; b = a it and only if Z^ = aj9

0 < j < s; b < a iί and only if b < a, b Φ a.

Lemma. Ωaoai...as = U < α O W - * . 1 ^ + bj Φ n for i < /).
Proof. Suppose at -\- aό = n for some / < / otherwise, the lemma follows

trivially. There are two cases to consider.
1. dim qa._x = dim qa. > ί. Define bk = min (ak; at — i + k — 1) for

0 <k<i - 1. Then dim qbk > k9 i.e., ^ € β 6 o 6 l...B <_ i α <_ l α < + 1...α β.

2. dim (?α._1 = dim ̂ α i — 1. Then [ Λ J = qa. V [α< - 1].

(i) Qaj±/Qat since ςr c Qn(C).
(ϋ) QajA-fln — aj — 1] = [«< — 1]» and thus by the above

qa. C β n ( O Π [αJ-L/ = Qn{C) Π [n - a3V
f = Qaj-i(Q ,

i.e., dim qa._λ = dim <?αy > /. Define ck = min (ak aj — j + k — 1) for 0 <

k < j - 1. Then dim ̂ rCft > k9 i.e., r̂ 6 fleoc1.»cy_1α/-iαi+1...α. Thus

where i?fc < αfc for 1 < k < i — 1, and cfe < αfc for 1 < k < j — 1. Hence
the lemma follows by induction on Σ^QCIJ = a0 + aλ + + as. q.e.d.

We now define the open Schubert cell Ω°a^.:.as for at + aό Φ n, i < j :

flS , s = (d € A ^ I dim qt = j for aj < t < aj+ι) .

The basis of our CW-structure theorem is the following.
Proposition. Ω°a^...as is an open topological cell of complex dimension

dc = Σ J=o aj — s(s + 1) + e> where e is the number of pairs (aί9 a3), i < /,
at + aj < n. For as < n/2 and 0 < j < s, Ω°am..as is the ordinary Schubert
cell (Ωc)°a^...as of the complex Grassmann manifold Gf V 2 ] + 1 > e + 1 (C A^), in
which case, e(Ωaoai...as) = $s(s + 1) and de(Ωaoai...ag) = Σsj=oβj - i Φ + 1).

Proof. We use induction on s. For s = 0, A[n+l) = Qn(C), and the open
Schubert cells of Aίn+2) are precisely the open cells of Qn(C) as determined in
§ 4. Let s > 1, and assume the induction hypothesis for s — 1. We define an
onto map F: β g £ . . α t — Ω^x...a^ by F(q) = qas_x. It follows from 3.9 that
F is continuous. Let Fq be the fiber of F at an arbitrary [s — 1]-plane q e
β^αϊ. .α,-!- We have two cases to consider.

1. as < n/2. Then Ω^...^ is precisely the ordinary Schubert cell
(<βc)αoαi αs

 i n t h e Grassmann manifold Gc

as+hs+1. weFq cuts q±m Π ([αj —
[as — 1]) at a single point Pw which uniquely determines w. Hence Fq is
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homeomorphic to qlm Π ([as] — [as — 1]) which is an open cell of complex
dimension dc = as — s. Let Oj be the unique point in [/] which is ra-orthogonal
to [/' — 1], and q = [OaQ, Oai, , Oα s_J the distinguished element of
<δαoαi αs-i B v Λe induction hypothesis, Ω^m..at_x is an open cell and thus
contractible. Hence the principal bundle U{as_λ + 1) —> G£ β _ 1 + M is "trivial"
over Ω^. .as-!, i.e., admits a cross section t: Q^...at_x — u(as_λ + 1). tq

maps § onto q, and hence # ± m onto qlm isomorphically. Also, tq transforms
[as] and [as — 1] isomorphically onto themselves. It thus induces a homeo-
morphism tq: F9 = g±m Π ([*,] - [a, - 1]) -> qlm Π ([αj - [αs - 1]) = Fq.
Hence (q, P) i-> ία(P) yields a "trivialization" for F. Thus Ω°^-as

 i s a product
bundle Ω°a

9

0™...as_1 x F 5 over flsχ..α,_1 and, by the induction hypothesis, is an
open topological cell of complex dimension dc = J]'JtsOaa — ^s(s + 1).

2. as > n/2. w e Fq again cuts qlm Π ([n — as — l ] ^ — [n — as]
±f) at

a single point Pw which uniquely determines w. It follows from 3.2 that w €
^s

(!tt2) if and only if Pw e Qn(C) Π ^ . Thus the fiber Fq is homeomorphic to

Fq = Qn(C) ΓΊ q^ Π ^ Γl ([n - a, - l ] ^ - [n - flJJ-/) .

We now observe the following.
( i ) By 3.1 (iv), Qc is nonsingular on the join q V c(q). Thus the restric-

tion of Qn(C) to its /-orthogonal complement, i.e., to the plane q±m Π qLf is
a nonsingular quadric β n _ 2 ί (C).

(ii) Let e s be the number of indices at such that / < s, at + as < n, or
equivalently, such that at < n — as — 1. Then by the definition of Ω^...at_t

w e h a v e d i m ( ^ Π [n — a s — 1 ] ) = es — 1 . S i n c e a t Φ n — a s y t, q Π [n — a s ]
= q Π [ft — as — 1], i.e., dim (^ Π [n - αj) = e s — 1.

(iii) q C Qas(C) = Qn(C) Π [n - as]^, i.e., q and [n - as] both lie on
QW(C) and are mutually /-orthogonal. Thus the join q V [n — as] lies on
Qn(C). Since dim (qV [n — as]) = dim <? + dim [n — as] — dim ((? ΓΊ [n — aj)
= n — as — s — es, the subspace ^ V [n — as — 1] of the join also lies on
Qn(C) and is of (complex) dimension n — as — s — es — 1.

(iv) Let hq and kq be the m-orthogonal complements of q in q V [ft — flj
andg V [ft — fls — 1] respectively. Then/ια c Qn(C) Π ^ X / since (? V [ft — as]
lies on β π (C). Thus

n ^ - == βn_2 s(θ ,

dim Λg = n — as — e s — 1 ,dimhq

Π [ r a -

ft.
= ft

c
—

r

Qi

= (<

»(Q n

- e*,

7 V [ft

Similarly,

^J./ n [ft - αs - I]-1-/ = ^ / Π

(v) Fq = Qn(c) n q^ n ^/ n {ψ

i.e.,
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Fq = Qn-2sic) n

where _\_f now denotes /-orthogonal complements in the plane q±m ΓΊ qLf.
Hence it follows from 3.8 that Fq is an open topological cell of (complex)
dimension

dc = n — 2s — (n — as — es — 1) — 1 = as — 2s + es

= (n — 2s) — dim hq > \{n — 2s) .

(a) If n is even and <zs — 2s + es = (̂w — 2s), then Λ̂  is a maximal plane
on <2n-2s(Q> and kq is of codimension 1 in hq. It follows from 3.6 that there
exists a unique maximal plane h'q belonging to the opposite variety containing
hq such that hq Π h'q = Λβ and βn_ 2 s(C) Π ψ = hq 1) h'q. Thus

Fq = βn-2,(C) n ^ / - βn_ 2 s(C) n AJ-/ = Λβ u K -hq = wq - k
q = wq - kq

is an open projective space.
(b) If as - 2s + es > J(/i - 2s), then Qn_2s(C) Π k£' is an [n - as - es]-

degenerate quadric βα β_ 2 s + e,(C), and hence Fq = β α s _ 2 s + e s (C) - βn_ 2 s(C) Π
Λ^ is an open quadric. Let

4,»-αf-β.,i = SO(n + 2)/U(s) X U(n - as - es)

X £7(1) X SO(as - s + e s - n)

be the flag manifold of triplets of ordered mutually m-orthogonal [s — 1],
[n — as — es — 1] and [O]-subsρaces of [n — as + s]-sρaces lying on Qn(C).
Define ί: flSSS?...α._i ->X»-αf-e.,i by ίte) = (^ Λβ, rβ) where rα is the unique
point in hq which is m-orthogonal to kq. Continuity of θ follows from 3.9. By
the induction hypothesis, Ω°^...as_x is an open contractible cell, and thus θ
admits a lifting t to SO(n + 2), i.e.,

SO(n + 2)

Let Oj be the unique point of [/], m-orthogonal to [/ — 1], O'n_3 = c{On_3)
the unique point of β / C ) , m-orthogonal to G^.^C), 0 < x < s — 1 the largest
integer such that ax < n/2, q = [Oβ 0, . . , Oaχ, O'n_aχ+1, - , O'n_J the dis-
tinguished element of Ω%£...at_l9 and ί(§) = (q, ίcq, fq) the distinguished ele-
ment of J,,n_α i-e, fi ^ m a p s § isomorphically onto q, and therefore the plane
q1' Π § ± m isomorphically onto the plane qLf Π (? l m. Hence tq maps^Q7l_2s(C)
homeomorphically onto β n _ 2 s (C). Also, tq is an isomorphism of hq and ^ α

onto hq and &α, and thus of h^f and Λ ^ onto h^ and Λ^ respectively, and
therefore induces a homeomorphism
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tq:F, = Qn.2s(C) Π (ψ - Kf) - Qn-2s(C) n (k^ - hp) = Fq .

Thus (q, P) κ» tq(P) yields a "trivialization"

Qopen v E1 ~ > (Ίopen
Jiίαoαi αs-i ^\ L q ^ ώiίαoαi αs *

Hence Ω%£...a8 is a product bundle over Ω%£*...aa_1 and, by the induction
hypothesis, is an open topological cell of (complex) dimension

dc = Σ βj - (s - ϊ)s + e(ΩaQaχ...as_x) + as-2s + es
j = 0

= Σ <*j' - s(s + 1) + β(flαoαi...αt) . q.e.d.

Suppose dim qaj > j and dim qaj_χ < /. Since dim qa. < dim ̂ α i - 1 + 1, it
follows that dim qaj = / and dim ̂ rαy-1 = / — 1. Hence we have the standard
identity

nopen Q \ \ O
ύlίaoai ' as — J l ίαoαi αs \J ύ/ύa0 "(aj-l)' 'as J

aj-i<aj-l

or, equivalently,

Πopen O I I O
b<a

which, by applying the lemma of § 5, this can be strengthened to read:

fiS , , - flαoαx-α. ~ U ΩCQ...Cs With C< + C, φ Π, i < j .
c<a

It follows from the preceeding proposition (by induction on the dimension) that
^aooi...oI>

 β i + fly φ n, ϊ < /, is a topological cell attached to the Schubert
cells (βC o C l...cJc < fl, c£ + Cj Φ n, i < j) lying on its boundary. This imme-
diately yields the following CW-structure theorem which is the main result of
this paper.

CW-structure theorem. A^+\2) is a CW-complex consisting of Schubert cells
Ωw a, ί°r 0 < a<> < «i < <<**<n,ai + ajΦ n, ί < /, Ωaoai...at is the
variety of [s]-planes on Qn(C) which intersect the complex a ̂ dimensional cell
of Qn(C) at a plane of complex dimension j , 0 < j < s, and

dim (βα o α i...α s) = 2(t aj - s(s + 1) + e) ,
\J=o J

where e is the number of pairs (at, a3), i < /, at + a5 < n.

Demonstration. As a demonstration of the CW-structure theorem, we now
present the following examples.

1. AP = [2]-planes on β6(C)
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Dual cells appear in the same column, and the number in the corner indicates 
the dimension of the cell. (Refer to 8 8 for duality.) 

2. Ai7) = [l]-planes on Q5(C) 

Corollary. The inclusion map j : Aj") c A,'",') is "cellular", and Aj") is the 
subcomplex of Aj",') consisting of Schubert cells O,,...,s for which a, = 0. In 
particular, Q,-,,(C) = Ap-2S+2) is the subcomplex of  A;;:') consisting o f  
Schubert cells for which a j  = 0, j < s. 

6. Homology and cohomology of 

Since admits a triangulation by even dimensional cells only, the 
boundary and coboundary operators are zero, and each Schubert cell represents 
a distinct homology (cohomology) class. Hence A,'",') is simply connected, 
H*(Aj",') ; 2 )  is torsion free and vanishes in odd dimensions. HZ"Ai;;2) ; 2 )  
is the free abelian group on Schubert cells 0 ,,,,...,, for which dim Q ,,,,...,, = 2i. 

The Euler-PoincarC characteristic 

X(A,'",2') = Total number of cells = 2,+le ('"[: T l) . 
It follows from Proposition 2.5.2 of [I] that K1(A,';:')) = 0 and K0(Aj",") is 
the free abelian group on x(AjZ2)) generators. 
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7. Maximal planes on Qn(C)

The special case of the CJΓ-structure theorem for s = [n/2] reduces to
Ehressmann's triangulation in [5] of the variety of maximal planes on Qn(C).

(i) For n = 2s the indices (a09 a19 - - 9 as) of a Schubert cell Ωao...as are
picked one from each column of

(0 1 s - 1 so\

X2s 2s - 1 . . . s + 1 sj '

since a% + a3 Φ n. Thus once (a09 , «^_i) are chosen (where 0 < Λ < s is
the largest integer such that ax < n/2), ax is either ^0 or s19 and the rest of the
indices (ax+1, « ,as) are the elements in the 2nd-row of the complementary
columns. Let Vj = I8+1 be the irreducible subvariety of A^2) containing [s]j
for / = 0, 1. Then it follows from 3.5 that Ωaoai...aa lies in Vo if and only if

(s0 for x = s (mod 2) ,

\sλ for JC = s — 1 (mod 2) ,

and in FΊ if and only if

for x = s (mod 2) ,

for x = s — 1 (mod 2) .

Thus the Schubert cells of Af^2) are evenly divided between Vo and Vί9 and
each Ωaoai...ag is uniquely determined by the indices (a0, flj, « , tf^-i), i.e., by
the dimensions of intersection with the decomposition [s — 1] D [5 — 2] D
• D [1] D [0]. We thus put flαoαi...α, = [α0, 01? , fl^.J and

^(β) = %χ(χ + 1) + (25 — as) + (2s — as_x — 1) + •

+ (25 - ax+ι - (s - x - 1)) ,

dimc (Ω) = Σ aj - s(s + 1) + |JC(X + 1) + 25(5 - x)

s

- Σ
j-x+1

^ α3 — \(s — x)(5 — x —

i.e.,

x-l

dim c [aQ, a19 , βx_i] = 2] *

(ii) For w = 2s + 1 the indices of a Schubert cell Ωαoαi...αβ are picked one
from each column of

/ o 1 . . . s - 1 s \
\2s + 1 25 s + 2 s + 1/ '
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Thus once the first set indices (a09 a19 , ax) are given, the rest (ax+19 , as)
are simply elements of the 2nd-row of the complementary columns. Hence
Ωaoai...as is uniquely determined by the dimensions of intersection with the de-
composition [s] D [s — 1] D D [1] D [0]. We thus denote flαoαi...α, =
[a09a19 , α j ,

- 1) + (Zs + 1 — as) + (2s - as_J +

+ (2s + 1 - ax+1 - (s - x - 1)) ,

dimc (Ω) = Σ aό, - 5(5 + 1) + JJC(Λ + 1) + 0 - x)(2s

s

Σ \( \( Λ\

i.e.,

X

dim. [an, a,, - - , # J = V α, + 1(5 -|

(iii) Let h: Λfs+1) > Vo be the canonical homeomorphism of 3.7 be-
tween the variety Af*+1) of maximal planes on Q2s-ι(C) and the irreducible
subvariety Vo of maximal planes on Q28(C). Let [s — 1] D [J — 2] D z>
[1] D [0] be the cellular decomposition of the maximal plane [s — 1] on
β2 s-i(Q> and [s]0 3 [s — 1] z> D [1] Z) [0] the cellular decomposition of
[5]0 = h[s — 1]. Then using the notation introduced above, we can identify
the Schubert cells [a0, a19 , at] of F o and [α0, Λ1? . - -, ΛJ of ^ifs+1) for 0 <
a0 < aλ < < flί < s — 1 through the homeomorphism h.

8. Duality theory for A^+\2)

We first briefly summarize the standard duality theory for G£ + 2 j S + 1 . (For
details see [8, Chapter III].) Let

( 1) [ π + 1] =>[/!]=> D [1] => [0]

be a cellular decomposition for Pn+1(C), and

( 2 ) [n + 1] z> [0]-1- D [I]-1-™ D D M 1 -

the dual cellular decomposition by m-complementary planes. Let Pj be the
unique point of [/] which is ra-orthogonal to [/ — 1]. Let (Ωc

aoai...as) and
(Ωc

bo...bs) be the two systems of Schubert cells of G*+ 2 ? s + 1 arising from (1) and
(2) respectively. Ωc

n_as...n_ao is called the dual cell of Ωc

aoai...as. The duality
theory for G£ + 2 j S + 1 states that two Schubert cells Ωc

aoai...ag and Ωc

bobί...bs of
complementary dimensions intersect transversally at a single point q =
[PaQPai ' Pas] if t n e y a r e dual, and are disjoint if not.
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We saw in § 4 that if [p] z> [p — 1] Z) z> [1] D [0] is the cellular de-
composition of a maximal plane [p] on β w (C), then the corresponding cellular
decomposition

[n + 1] => [ 0 ] ^ D [1]J-/ z> . . . z> [n - p -

Z> [p] D [p - 1] z> . . z> [1] Z> [0]

of P n + i ( O gives rise to a cellular decomposition for Qn(C):

β 2 p + 1 ( Q D β 2 p (C) z> D β p + 1 ( Q

Z) [p] 3 [p - 1] 3 - 3 [1] z> [0] for 7i = 2p + 1 ,

β 2 p (C) => β2 p_!(C) => . . . Z) β p + 1 (C) =) [p]0 ,

[p]1 D [p - 1] Z) D [0] forn = 2p .

Let

[n + 1] Z) [0] 1 - 3 3 [n - p - 1 ] ^
( 4 D {[]1^}^- Z) Z5

be the dual decomposition of Pn+1(C) by m-complementary planes. Since,
[jfc]J-» = cίtA:])-1^ and ([A]-1 )̂-1-" = c([A]), 0 < k < p, (4) is precisely the cellular
decomposition

[n + 1] Z> ciM)Lf Z) D c([n - p -

3 ( [ ] ) =) D

corresponding to the maximal plane c([p]) on Qn(C), and thus induces a cel-
lular decomposition for β n (C). We put

[£] = c([k]) for 0 < k < p ,

β,(C) = c([/i - A - I])1/ Π β n ( O ,

[A] = [TΓ^TcV = c([n - k])±f for k > p .

For rc = 2/?, [p]j is disjoint from cdj?]^) for / = 0 ,1 . It follows from 3.5 that

c([p]0) £ Vx and c([p]λ) e Vo for p even ,

c([p]0) £ Vo and cdp]^ € Fx for p odd .

Thus we put

r_Ί (c(Lp\i) for p even , fc([p]0) for p even ,

{c([p]0) for p odd , Icd^D for p odd .

Also for n = 2p + 1, put [p] =



2p+i(Q :

β 2 p (C) :

3 β 2 p
(Q-

- i ( C )

) . . .

- 1 ]

D ••

=5

Z>

β , + i (Q

• D[0]
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With this notation, the induced cellular decomposition of Qn(C) reads as:

for n = 2p + 1 ,

[p]i 3 [p - 1] ID . . . D [0] for n = 2p .

The Schubert cells, arising from this decomposition, will be denoted by Ώao...aa.
It is clear that the two cellular decompositions of Qn(C) (obtained from (1)
and (2) are congruent under the action of SO(n + 2), and thus the correspond-
ing Schubert cells Ωαoαi...αs and Ωαoαi...αs represent the same homology class.
Let also (Ωc

bo...bs) and (Ώc

bo...b) be the two systems of ordinary Schubert cells
of the Grassmann variety Gc

n+2,s+1 corresponding to (3) and (4) respectively.

Definition. Ω^...^ = Ώn_αan_αa_lmm.n_αo is called the dual cell of Ωαoαi...αs

with the following convention:
If n = 2p, then put, for αό = p0,

fPo for p even ,
n — αj — {

{pλ for p odd ,

and, for αό = px,

[pλ for p even ,[p0 for p odd .

e(Ωαoαi...αa) = number of pairs (αi9 αj), i < j , αt + αs < n .

e(βαoαi...α.) = number of pairs (αt, αj), i < /', αt + α3> n .

Thus e(Ω) + e(Ωι) = $s(s + 1), and by the CJF-structure theorem,

dimc (Ω) + dimc (Ωι) = %{s + l)(2w - 3s) = dimc A ^ .

Also Ωαoαi...αs i > βαoαx .αs i s a bίjection between Schubert cells of a fixed
dimension and those of complementary dimension.

Lemma. There exists α minimal imbedding J of the system (Ωaoai...as) of
A^+\2) into the system (Ωc

bobl...bs) of Gc

n+2jS+1, and a minimal embedding J of
Φaoai...as) into (Ωc

bobl...b) such that
( i ) Ωaoai...as C J(Ωaoai...J and Ωaoai...as C J(ΩaQai...J, and Ωaoai...aa C

Ωbobl...bs in Af+\λ) if and only if J(Ωao...J C J(Ωbo...bs) in Gc

n+2,s+1 (and a similar
condition for J).

(n) Ωaoai...as and Ώbobl...bs are "dual in A^\2) if and only if J(Ωaoai...as) and
KΩbobl...bs) are "duaΓ in G£+ a,,+ 1.

(iii) J(Ωaoai...J Π A^ϊ2) = Ωaoai...as except for n = 2p and aά = pλ for
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some j , in which case J(Ωao...pl...aa) Π A ^ = Ωαo....Pl...α, U Ωαo...Po...α$ (and a
similar condition for J).

Proof. We first construct imbeddings / and j of the cells of Qn(C) into
those of Pn+1(C) as defined by (3) and (4) respectively by putting:

= [k] forO < k < n/2 ,

/(Wo) = IP] and K[pl) = [p + 1] = [p - UJL/ for n =

/(β*(Q) = [* + 1] = [Λ - k - l]±f for k > n/2; similarly ,

j([k]) = [k] for 0 < k < n/2, and for n = 2p ,

fCP I] = [P + 1] for p even ,
7([p]o) = i r_Ί , , ,

[[p] for p odd ,

for p even ,

[ ^ Π ] for p odd ,
= [n - Λ - 1]J-/ = [k + 1] for k> n/2 .

Define / and / by

^ ^j(ao)j(a1)'"j(as)

Properties (i), (ii) and (iii) are easily verified from the definition, q.e.d.
This lemma enables us to develop a duality theory for A{Jl\2) from the

standard duality theory for G£ + 2 ϊ β + 1 .

Proposition, (i) flαoαi...α, Π fle

6o6l...6, = 0

(ii) Let Oj be the unique point of [j] which is m-orthogonal to [j — 1],
and let O'j = c(Oj), 0 < j < s. Let 0 < x < s be the largest integer such that
ax < n/2. Then ΩaoCLl...as and Ωbobl...bs of complementary dimension intersect
transversally at a single [s]-plane q = [Oao, , Oaχ, O'n_aχ+1, , O'n_as] if
they are "dual", and are disjoint if not.

Proof. Suppose Ωao...as φ Ωbobl...bs. Then J(Ωao...J ~fi J(ΩbQ...J by part (i)
of the lemma, and it follows from the duality theory for G£ + 2 j S + 1 that J(ΩaQ...a)
Π J(Ωb0...bsY = 0. Also/(β6 o...δ s)

ί - J(ΩlQ...bs) by Part (ii) of the lemma. Thus
J(Ωao...as), J(ΩlQ...it) and their subsets ΩaQ...as, Ωt

bQ...bs are disjoint, respectively,
by the lemma.

(ii) It follows from Part (ii) of the lemma that if ΩaQ...as and Ωbo...bs are
dual in A<&*? so are J(Ωao...J and J(Ωbo...bs) in G?

c

ι+2,s+1, and J(Ωao...J and
J(ΩbQ...b) intersect transversally at a single Ls]-plane q = [Oao, --,Oaχ,
On-ax+1, , <yn_αJ by the duality theory for GJ + l f f + 1 .

Obviously, q e Ωao...as Π ΩbQ...bsJ and the subset flαo...α, of J(Ωao...J and
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subset the Ωbo...bs of J(ΩbQ...bs) also intersect transversally at q. If Ωao...as and
Ώbo...bs are not dual, then it follows from Part (i) of the proposition that they
are disjoint, q.e.d.

This can be best expressed in a single theorem:
Intersection theorem. Homology classes {Ωao...as} and {Ωbo...bs} of comple-

mentary dimension intersect in 1 // they are "dual" and in 0 // not.

9. Chern classes

An immediate application of the duality theory for A™ is the computation
of the Chern classes of the principal L/(V)-bundle Vn>2s(A^n) U(s)).

Theorem. "Stability" for Chern classes is attained atn = 2s + 3, and the
ϊ'th Chern class ct = Ω$1...s_i_1 s_ί+1...s for n>2s + 3. As for the unstable
cases:

0 l

(ii) For n = 2s + 1, ct = 2[01 s - i - 1, s - i + 1 s - 1]*.
(iii) For n = 2s, cs = 0 and ct = 2[01 s — / — 2, 51 — / s — 2]*,

1 < 1 < s - 1.
Froo/. For n > 2s + 3, let /: ^f} -^ GJ,S be the "inclusion", dimc (Ωaoai...a)

= i, and

]*\Ωao.-as) = ^αo α/̂ Ol s-i-1 s-i + l s

+ linear combinations of other [/]-cells of G£jS .

Taking "intersections" of both sides with (Ωc)t

01...s_ί_1 s-ί+1...s yields

n > 2s + 3 implies that n — 1 — s > \{n — 2), and thus [aj] Π Qn_2(C) =
Qaj-ι(C) for aj > n — 1 — s. Hence

^ s ' ' \M )θl'"S-ί~l s-i + l ' s — ^s ' ' ^n-l-S""π+ί-s-2 n+i-s-'-n-l

which implies that

Ωao.-as •• (βC)θl.»β-ί-l β-ί + l β = = ΩaQ...as II ^4/ II (// )oi...s_i_i ί-i + l...,

s-i-1 s-i + l s

It follows from the duality theory for A™ that Λαo...α, except ^Oi...s_i-i s-ί+i.
all vanish. By the proposition of § 5

»*01 — g-i-l 8-ί + l—s = ^Ol . S-i-1 S-Z + l S >
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and thus

h Qc .(OCY 1
^Ol S-i-l s-ί + l" S — "01 β-i-l s-ί + l'"S Vώ* /01 s-i-l s-i + l "S — λ

by the duality theory for G^s. Hence the dual map /* on the cohomology level
satisfies

/ V« Λl s-i-1 s-i + l s — J«01...*-i-l s-i+l s

and Cί = Ω*i...s-i-i s-i+i...s by "naturality" for Chern classes.
( i ) For n = 2s + 2, again let /: A?s+2) —• G§,+2,, be the inclusion. Then

/ \M )θl"'S-i-l s-i + l"S — LΛ ^αo αs^αo αs >

dimc (Ωa)=i

Is + 1] Π β2s(C) = [ i j U [SJ, [δ,] Π β 2 s (O = β^.^C), for β j > 3 + 2,

2) p| (Qc\t
I I \M )oi...s-i-l s-i + l s

J (2S + 2) p | QC

— Λ s I I ύag + ι...8 + ι s + i + 2 2S + l

nt I I nt
^oi . . s-i-l S-ί + l' 'So U ^Ol S-ΐ-1 S-i + 1' 'Si 5

and thus

^αo αs ' I \*e )θl"'S-i-l s-i + l s

= fl.,...«,n^r!1 n(fl%...,_i_1._ί+1....
3 = 1 f*aaai a, ' ' UΛl . . s - i - l s-i + l s0 U ^Λl . s - i -1 s-i + l-.-si)

Hence kao...as except *oi...«-<-i .-<+i...*0

 a n d koi-s-i-i .-<+i...βl aU vanish.
floi...β-i-i .-<+i...« a n d (βc)Si...s-i-i ,-<+i..., intersect transversally at a single

[s - l]-plane q = [O0, , Ot^_l9 Os_ί+1, - •, Os] and q € βOi....-i-i .-i+i....ft

Π (βc)oi.. s-ί-i «-i+i...*> a n d thus their subsets

01 s-i-l s-i + l So ' V
/01 s-i-l s-i + l

also intersect transversally at q. Hence kol...s_ί_ls_i+1...So = 1, and similarly

kθl' -s-i-1 s-ί + l' Si — l

/ ^ yoi s-i-l s-ΐ + l S — ^01 β-i-l S-i + l δo "T" ^Ol . s-ΐ-1 s~i + l" Si J

and, by naturality, the result follows,
(ii) For n = 2J + 1,

m n a.^co = [ J - i ] , [5y] n βw_1(o - Qaj-i(O
A (28 + 1) Π (QC\t J(2S + 1) pi ΠC

= = ^ S - l S S + Z-2 S + ΐ 2S-l 5
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a0 + ax = (s — 1) + s — 2s — 1, and repeatedly using the method of the proof

of the lemma in § 5 we obtain

ί-2 s+ί' '2S-l = ^S-2 S s+l> -S + ί-2

)Sι.. .

, n
n

s-i-i

Af

— ύύs-i s s

= Ω\

S-1 + l...s

+1) n (Ωc)

+ l * + l-2 S + l

W - < + 1 " M

"28-1

s + i - l

- 1 - . . S

and therefore

Thus kao...as except ΛOi...β-ί-i s - u i - 5 - i *+<-i a 1 1 vanish.
ΩOi...s-i-i ,-<+i...*-i +ί-i a n d (β%.. . β -ί-i *-<+!...* intersect at a single [> - 1]-

plane q = [O0, , Oβ.i_i, O s_ ί + 1, , O8_19 O^_J, and ΛOJ...,.^! θ _ ί + i . . . β - 1 s + ί _!
is the degree of intersection at this point. Let a = [O0, , Os_i_λ, Os_i+1,
'"9 Og^], and let Sa and 50 be the submanifolds of G | s + l j S of planes passing
through a and O's_t respectively. Then by 3.11 we have a direct sum decom-
position of tangent planes

( 6 ) Tq(Gc

2s+us) = Tq(Sa)®Tq(S0) .

Also

ba ' I "oi... s_i_i s-ί + i'"S-i s+i-i — '^oι -s-i-i s-i + i" s-ι ?

So II Woi .ί-ί-l s-i + l '8-l S + i-l = = ΰ l ( ^ ) J

where Qλ{C) is the nonsingular quadric on the 2-ρlane (Os_u Y, O's_i), Y being
the unique point of [s — l]±f which is m-orthogonal to [s — 1]. Since

Oi...«-i-i«-i+i...«-i + dim Qλ(C) ,

we obtain a subdecomposition of (6):

. . Tq{Ω01...s_ί_1 s_i + ι...S-i s + i-l)

Also

^α I I l« Joi s-i-l s-i + l s = \U )oi"'S-ί-l s-i + l s-1 ?

where / on the right hand side denotes "dual" in the Grassmann manifold

<%,s_i = [s - 2]-planes on (O^)^, and
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So n (Λc)Si....-i-i .-*+i.... = is -

dim (flc)oi...*-«-i S-M...S

= dim (0%...,.*.! β-i+1...,_i + dim [j -

Thus we obtain

•f o v -* gU^ )θl S-i-l β-i + l β

Since (7) and (8) are subdecompositions of the same direct sum decomposition
(6),

•* g W » ί - i - l i- ί + i-.g-i β + i- i) I ' Tq{ίJ )01...s_i_ι s-i + i-.-s

( 9 ) = Tq(ΩQ1...s_i_1 s_ί+ι...s_ι) Π Tq(Ωc)t

01...s_ί_1 β_ί+i...s_i

θ τqQλ(c) n τ β [ 7 ^ i

The first summand is zero by the duality theory for Gl8t8_ι. Let Pi(C) =

(Oί.*)^ in the 2-plane (Os_,, Y, Os'_*). Then P^iC) C [T^T]-1-^, and it follows
from 3.10 that dim TqQλ(C) Π T.P.CC) = 1. Since Γ ^ C O ξί T j T ^ Ί
we have dim TqQx{Q Π Tq[s - 1 ] ^ = 1, and it follows from (9) that

kQ1...s_i_1 s_i+ι...s_ι ί-i = 2 , i.e.,

^ 7*ΓOcι* ? O *
c i — / \Δ* Jθl...s-ί-l s-i + l' 'S ^"JJoi. s-i-l s-i + l'"S-l S+i-l

= 2[01 J - "l - 1,S - / + 1 S - 1]*

by the notation of § 7.
(iii) For n = 2s, let F o = Is be an irreducible subvariety of Afs). The

principal t/(V)-bundle /fs): F 2 s , 2 s —> ̂ 4fs) is two disjoint copies of the canonical
ί7(s)-bundle E over F o . By 3.7, E splits into a direct sum E = 1 0 F of a
trivial line bundle 1 and the canonical ί/0 — l)-bundle F over ^4i2_sr1}, or
equivalently /fif" : V28_lt2s_2 -+ Λfl^\ Thus c,(£) = 0 and

ct(£) = c,(F) = 2[01 J - / - 2, s - i -.. j - 2]*

for 1 < / < j — 1

by (ii) above and (iii) of § 7.

10. Applications

A 2-form w of constant rank 2s on a trivial i^w-bundle E (over 5) can be
represented (after suitable normalization) as a map w1: B-*Ain\ and de-
composing w into a sum w = vx Λ ys+1 + + ys A y2s oί products of
1-forms (yt) on E is equivalent to lifting wλ to Vn>18. (Refer to [4] for details.)
We thus obtain
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Proposition. A necessary condition for the decomposability of a 2-form w
of constant rank 2s on a trivial Rn-bundle E (over B) is that wf(Ci) = 0 in
HU(B Z) where ct e H2ί(A^n) Z) are as given by the theorem of the preced-
ing section.

If the total bundle E is not trivial, then a necessary condition for a 2-form
w on E of constant rank 2s to decompose is that the 2^-dimensional subbundle
Sw of E, on which w is a 2-form of maximal rank, is trivial. Using the trivi-
ality of Sw, w is represented as a map wx: B —»Is. Then w decomposes if and
only if w1 lifts to SO(2s). By (iii) of the theorem of the preceding section, a
necessary condition for the existence of such a lift is

2>v1*([01 s - i - 2, s - i s - 2]*) = 0 for 1 < / < s - 1 .

It can be verified (although we shall not go into the ring structure of
H*(Af» Z) here) that ([01 . . s - i - 2, s - i . s - 2]*, 1 < / < s - 1)
form a homogenous system of generators for H*(IS Z), and this immediately
yields

Proposition. A necessary condition for the decomposability of a 2-form w
of constant rank 2s on an Rn-bundle E (over B) is:

1. Sw is a trivial bundle,
2. Image wf C 2-torsion in H*(B;Z).
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