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PROLONGATION OF CONNECTIONS TO BUNDLES
OF INFINITELY NEAR POINTS

AKIHIKO MORIMOTO

Introduction

The purpose of this paper is to generalize the results of [5] to the bundles
of infinitely near points of A -kinds in the sense of A. Weil [7], which gener-
alizes the notions of pr-jets in the sense of C. Ehresmann [1], [2]. Our results
naturally generalizes the results of several authors, e.g., [4], [8], [10]. In fact,
we have treated the same problem in the author's lecture notes (cf. [6, Part V]).
However, in [6] we fully used the basis and structure constants of the local
algebra A, and were obliged to consider (Λ)-lifts of vector fields, 1-forms or
tensor fields of type (p, q) with p = 0 or 1, where λ = 0 ,1, 2, , N and
iV + 1 = dim^4. Moreover, the geometric meaning of (Λ)-lifts for λ = 1,2,
• ,N are not so clear as that of (O)-lifts. In this paper, we shall essentially
not use the basis and structure constants of the algebra A, and shall show that
there exists essentially only one lift, which has a significant geometric meaning,
and other (Λ)-lifts can be derived naturally from that lift. Further, the proofs
in [6] are much simplified, and some of results are somewhat sharpened (cf. [6,
Theorem 6.6]).

In § 1, we explain the notion of local algebras and the infinitely near points
of ^4-kind which will be simply called ^-points. The covariant functor, which
assigns to each manifold M its bundle MA of infinitely near points, has many
nice properties similar to the functor which assigns to M its tangent bundle
Γ(M). In particular, if G is a Lie group (acting on a manifold M), then GA is
also a Lie group (acting on MA).

In § 2, by means of two different methods we define two ^4-module structures
on the tangent space to MA at each point of MA, and we shall in fact show
that these two ^4-module structures are essentially the same.

In § 3, we shall define the lift of vector fields and establish some relations
between the lift of functions and the bracket of vector fields.

In § 4, § 5, we shall consider the lifting of covariant tensor fields and (1, 1)-
tensor fields respectively. We shall prove that the lifting JA of an almost com-
plex structure / is integrable if and only if / is integrable.

In § 6, we shall first construct the prolongation of aίfine connections (Theo-
rem 6.1), and next show that the prolonged aίfine connection FA is locally
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affine symmetric if and only if V is.
In § 7, we shall give a proof for the fact that if M is an affine symmetric

space then MA is also so. In such a manner, we obtain a method to construct
a large number of affine symmetric spaces (resp. complex manifolds) from a
given affine symmetric space (resp. complex manifold), (cf. [10, Introduction]).

In this paper, all manifolds and mappings (functions) are assumed to be
differentiable of class C°°, unless otherwise stated.

The author wishes to thank Professor J. L. Koszul who gave him an op-
portunity to stay at the University of Grenoble and suggested the idea of Λ-
module structure in § 2, which has essentially improved [6, Part V].

1. Infinitely near points of A -kind

In this section we shall recall the notion of local algebras and infinitely near
points of A -kind in the sense of A. Weil [7].

Definition 1.1. Let A be an associative algebra over the field R of real
numbers with a unit (denoted by 1). We call A a local algebra if A is com-
mutative and of finite dimension over R, admitting a unique maximal ideal m
such that A /m is of dimension 1 over R and that mh+1 = (0) for a nonnegative
integer h. The smallest h such that xnh+1 = (0) will be called the height of A.
We shall identify the field R with the subspace of A consisting of all scalar
multiples of the unit 1. Clearly A is the direct sum of R and m as a vector
space. If a e A, the scalar a0 e R, defined by a = a0 mod m, will be called the
finite part of α. lίA/m is identified with R, the map a —> a0 is a homomorphism
of A onto R.

Let R[p] = R[[X19 , Xp\] be the algebra of all formal power series of p
indeterminates X19 , Xp, and let mp be the maximal ideal of R[p] consisting
of all formal power series without constant terms. Let a be an ideal of R[p]
such that dim R[p]/a < + oo. We see that A = R[p]/a is a local algebra with
the maximal ideal m = m p /α. Conversely, we know that every local algebra
is isomorphic to such a local algebra (cf. [7, p. 112]).

Let M be a manifold of dimension n, and let C°°(M) be the algebra of all
differentiable functions on M. Take a point x e M.

Definition 1.2. Let A be a local algebra with the maximal ideal m. An
algebra homomorphism xf: C~(M) —> A will be called an A-point of M near
to x (or infinitely near point to x on M of ^4-kind) if the finite part of xf(j) is
equal to f(x), i.e.,

(1.1) x\f) = ί(x) modm

for every / e C°°{M). We denote by Mj. the set of all A -points of M near to x

and MA = {J^M Mi> a n d d e f i n e πA\MA->M by πA(MA) = xίoτxeM.
Remark 1.3. If JC7 e MA

9 and / e C^iM) vanishes identically on a neighbor-
hood of x, then we see that x'(f) = 0.
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This remark shows that we can consider x\f) for any difϊerentiable function
/ defined on a neighborhood of x if xf e MA.

Remark 1.4. If we take a = (mpy~\ and A = R[p]/a, then we see that
the notion of A -points is nothing but the notion of /?r-jets (cf. [1], [2], [7]).
In particular, if a = (ntx)2, D = R[l]/a, then the notion of Z)-points is nothing
but the notion of tangent vectors on M. We denote by τ = π(X^), where X1 is
the indeterminate in R[l] and π: R[l] —• D is the natural projection.

Let U be a coordinate neighborhood of x0 in M with coordinate system
{*!, , xn}. Take a basis {1 = B°, B\ , BN} of a local algebra A, where
B\ - , BN span the maximal ideal m of ^4. We define xUλ: π2\Ό) -^ Rby

(1.2) Σ xUxΊB2 = x*(Xi) ,

for any x' € π21(U), where we have used Remark 1.3 for / = xt (/ = 1,
• , n). We see readily that the set MΛ becomes a differentiate manifold of
dimension n(N + 1) by the coordinate neighborhoods π2\U) with coordinate
system {xUλ \ i = 1, , n Λ = 0, 1, , N} induced by the coordinate system
{xly , xn} on U. Clearly this differentiate structure on MA does not depend
on the choice of the basis {B\ . ., BN} of A.

Definition 1.5. The differentiable manifold MA defined above with the
projection πA: MA —• M will be called the bundle of A-points of M (or bundle
of infinitely near points of M of y4-kind).

Remark 1.6. The notion of bundle of D-kmά is the same as that of tangent
bundles. A tangent vector X € TXM at x is identified with xf <z Mζ defined by
*'(/) = /(*) + ( Z / ) τ for / e C"(M).

Let Φ: M -^ M r be a map of a manifold M into a manifold M''. Then the
map ΦA: M^1 —> M M is defined by

(1.3) (ΦA(x'))g = x'(goΦ)

for x' € M^1 and g e C°°(M0. Clearly Φ 4 is differentiable.
Lemma 1.7. L^ί ^ : M2 x M2 —> Af€ (z = 1, 2) 6^ ί/iβ projections. Then

(Mj X M2)^ can 6e identified with MA x M^ fcy the following identification

/or JC7 g (Afx X M2)
A.

Proof. Straightforward verification.
Lemma 1.8. Let Φι:Mι-^ M[, Φ2:M2-> M'2, W1:M1-^ M[' and Φ[: M[

—> M be differentiable maps, M1 ? M[, M2, M'2, M"9 M being manifolds. Then we
have the following equalities:

(φ[ o φy = φ'A o φA , (φx x Φ2)
A = φ^ x φ^ ,
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where \M stands for the identity map of M. Further, if we denote by πt (resp.
Tti) the projection of Mλ X M2 (resp. Mf X Mf) onto Mt (resp. Mf) for i =
1, 2, then we have πf = 7tt (i = 1, 2).

Proof. Straightforward verification by using (1.3) and (1.4).
Lemma 1.9. RA can be identified with A by RA 3 x' -> x'(ΐ) <= A, where t

is the natural coordinates on R.
Proof. Straightforward verification (cf. [7]).
Lemma 1.10. Let A and B be two local algebras. Then we can identify

AB with A (x) B (cf. [7]).
Lemma 1.11. A,B being as above, we can define canonically a diβeo-

morphism ψ: (MA)B -> MA®B.
Proof. Take x" e (MA)B and / e C~(M). Since /: M -+ R is a C°°-map, we

can consider the map fA: MA —> RA = A (cf. Lemma 1.9). Hence using the
map (fA)B: (MA)B -^ AB = A (x) B we can consider the map xr: C°°(M) -^ A
(x) B defined by x'(f) = (fA)B(x") eA®B, which is easily seen to be an A ® B-
point on M. Thus we get a map x" -> xr from ( M A ) 5 to MA®B, which can be
verified to be a difϊeomorphism (for detail, see [7]).

Corollary 1.12. A and B being as above, we can identify x" e (MA)B with
x" e (MB)A for elements x" and x" characterized by

(fA)B(x") = (fB)A(x[')

for every f € C°°(M), where we have identified A® B with B (x) A.
Proof. Clear from the proof of Lemma 1.11.
Lemma 1.13. Let G be a Lie group with group multiplication μ. Then GA

becomes a Lie group with group multiplication μA: (G X G)A = GA X GA

->GA.
Proof. Omitted (cf. [7]).

2. A -module structures on the tangent spaces of MA

In this section, we define canonically an A -module structure on the tangent
space of MA at every point of MA.

Let μ: R X MD —> MD be the scalar multiplication of the tangent vectors
of M, i.e., μ(t,X) = t X for t e R, X e MD. Since RA = A and (MD)A =

(MA)D by our identification (cf. Corollary 1.12), the map μA: (R x MD)A =
RA x (MD)A -> (MD)A can be considered as the map μA: A x (MA)D -^ (MA)D.

Definition 2.1. Put μA(a, x") = a-x" for a € A, x" e (MA)D. We denote by
πD (resp. πD) the projection MD -^ M (resp. (MA)D -> M^4).

Lemma 2.2. The notation being as above, we have
(i) πD(a x") = πD(x") for every a e A and x" e (MA)D,
(ii) for any x! € MA, the tangent space (MA)ξ, becomes an A-module by

the multiplication (a, x") -* a-x" for (a, x") € A x (MA)£.
Remark 2.3. In fact, in the next section (cf. Corollary 3.10) we shall show
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that (MA)ξ, is a free A -module for any x' € MA.
Proof of Lemma 2.2. (i) Consider the following diagram:

RA X (MA)D

(2.D fej
MA

where π2: RA X {MA)D -* (M^) ΰ (resp. τr2: 1? X MD -> M ΰ ) is the projection
and Γ 1 = i: (MD)A -* (M^)D is the identification map (cf. Corollary 1.12).
Since π^oμ = πDoπ2, the middle rectangle of (2.1) is commutative. It is now
sufficient to verify the commutativity of the right rectangle of (2.1), because
a x" = (i o μA o (1 x /))(<?, a") for (a, x") eAx (MA)D, and the commutativity
of the left rectangle is implied by that of the right one.

Take x" e (MD)A and put x'{ = i(x") e (MA)D. Then for any / e C°°(M), we
have

(2.2) (m*Ό = (^)ΰ«o,

(cf. Corollary 1.12), where we have identified: A®D = D®A. To show
that (πD)Λ(x") = πD{x"), it suffices to show

(2.3) (θrz>

for / e C°°(M^). (2.3) is equivalent to

(2.4) JC / /(/o7r z,)=^fe(Λί0) .

Now, we know that fD = foπD (mod R r), where D = R® Rτ. Therefore we
have (f1)^ = jAoπD (mod^4 (x)/?τ). Considering the ^-components of (2.2)
in A (x) D = A 0 A ® i?r, we obtain (2.4), since ( / ^ ( * " ) = x"(fD) =
x"(f°πD) (mod^4 (x) Rτ). Thus (i) is proved.

(ii) Let μ0: R X R-+ R and /^ : A X A —> 4̂ be the multiplication in R and
4̂ respectively. We see easily that (μo)

A = μA. The equality (t s) X = ί (s X)
for t,seR and Z e M ΰ can be written as μo(μ0oπί2,π3) = μo(πl9μoπ2z),
where π12: R X R X M ^ R X R, π3: R X R X M -> M etc. denote the
natural projection. Then by the functoriality of μ—>μA, etc. (cf. Lemma 1.8)
it follows that μAo(μAoπu,π3) = μA 0(7^, μA oτf23), where ί 1 2 :^ X i X M 4

—> ̂ 4 x 4̂ etc. denote the natural projection similar to πu etc. Thus we get the
associativity: (a-b) x" = a-(b-x") for a, b € A, x" e MA.

The distributivity (a + b)-x" = a x" + b>x", a>(x! + x") = a-x' + a>x"
are similarly proved by using the addition a: MD 0 MD —• MD of tangent
vectors, where MD 0 MD denotes the Whitney sum of the tangent bundles MD

with itself.
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Remark 2.4. We can prove (ii) of Lemma 2.1 more quickly by using the
local coordinate system around x" e {MD)A and the local expression of μA by
coordinates. In fact, taking a coordinate system {x19 ., xn) around x, we see
that

xt,.,λ(a>x") =
*,,.,,(*")

(e = 1) ,

(e = 0)

for a = Σ <*β*9 B' B" = Σ CV'B1 (cf. (1.2)).
We want to give another interpretation of the ̂ -module structure on the

tangent space TX,(MA) with xf e MA. Let L e TX,(MA) be a tangent vector at
xf € MA. Then there exists a curve t —> x[ on MA such that x'o = xf and that

(2.5)

for / e

dt

). We define V: C°°(M) -> ̂  by

The map V: C°°(M) —> A is well-defined and linear, and has

(2.6)

Lemma 2.5.
the property

(2.7)

forf9geC°(M).
Proof. Since xf

t(f) = fA(x't), x't(f) is difϊerentiable with respect to t and

= L(fA), (cf. (2.5)). If another curve JC" on MA satisfies x" = xr

dt

, then we have
dt

dx'/(f)
dt

. Thus V is well-

defined.
(2.7) can be verified directly.
Definition 2.6. We denote by T'X,(MA) the set of all linear map L': C~(M)

-> A such that (2.7) holds for every f,ge C°°(M).
Remark 2.7. For V e TXM

A, we can define L'h for any C°°-function /ι
around x.

Thus we have obtained a map /: Γ^Af4 -> TX,M
A by /(L) = L r, (cf. (2.6)).

Lemma 2.8. The map j is a bijective linear map.
Proof. Let L19 L2 6 TXM

A. For / e C°°(M) we have (Lx + L2)'f = (Lx + L2)f*
= L ^ + L2/^ = L[f + V2f = (Li + L'2)f. Similarly (aLJ'f = (aLx)fA = a(Lxf

A)
= a(L[f) = (ocL'Jf for α 6 R. Thus / is linear.

To prove the bijectivity of /, we first prove
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(2.7) dim TXMA < dim MA .

In fact, take a coordinate system {x19 , xn} around x, and consider the
linear map g: TXMA -> ̂ 4" by g(L') = {JJxl9 , L'xn). We show first that g
is injective. Take Li and L£ € Γ^Af4 and assume Lfo = L ^ for every / =
1, •••,«. For any / € C°°(M) we can find a polynomials P,Qoϊx19 , * w and
g <= C°°(M) such that

holds on some neighborhood of x, where Q is homogeneous and of degree >
height of A. Then we have

L'J = L[{P) + L[{g)x'(Q) + x'(g)L[{Q)

= Lί(P) + xf{g)L[{Q) = L'2(P) + x'{g)U2{Q) = L'2f ,

where we have used the fact that x\fι fh) = 0 for ft ε C^ίM) with f^x)
= 0. Thus L[ — L'2, which proves the injectivity of g. Therefore we get (2.7).

To prove the injectivity of /, it suffices to show that L'f = 0 for every / e
C°°(M) implies L = 0. Now Σ L(xU3)-B* = L(xt

A) = Lfxt = 0, which implies
L(xUλ) = 0 for any i = 1, • •, n λ = 0, - - , N. Thus L = 0. The injectivity
and the inequality (2.7) imply the bijectivity of /.

Remark 2.9. TXM
A becomes canonically an A -module, i.e., for a e A and

V € T'X,(MA) we define a U € TJJMLA) by

for / € C~(M).
Lemma 2.10. For any a e A and L e TX,(MA), we have

(2.8) (a-LY = a*U .

(Cf. Definition 2.1 for a L).
Proof. To make the several identifications more clear, we introduce the

following notation. For L e TXMA the identified element in (MΛ)% will be
denoted by L*, and conversely for K € (MA)%, the corresponding element in
TX,MA will be denoted by *K. Similarly for S e TXMA, we denote 'S = Γι(S).
Further for L* e (MA)D the corresponding element in (MD)A will be denoted
by Lf. Then (2.8) means more precisely

(2.8y (*(a.L*)Y = Q.V .

Now (2.8)' is equivalent to

(2.8)" μA(
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which is equivalent to

(2.8)"' (ΠA(μΛ(a, L*)) = (/^(('(αL'))*)

for/eC~(M).

The left hand side of (2.8)"' is equal to

(f>° μY(a,L*) = {a,L*W ° μ) ,

while the right hand side of (2.8)'" is equal to

('(ctL'ψin = f\x>) + '(σLOf r

= fΛ(x') + (a-U)f-τ = fA(x') + a-L'f τ .

Therefore it remains to verify

(2.9) (a, L*)(fD o μ) = f*(χ') + a L'f-τ

for / e C"(M).
Now, since L* and Lf are corresponding elements in (MA)D and {MD)A,

we have

(2.10) (fDV(L*) = (JA)D(L*)

for / e C"(Aί).
Put K = (a,Lf). Then we have K(goKl) = α(g), K(g'°π2) = Lffe') for

5 e C"(if), g' s C"(MD). Next, we have, for (/, X) e Λ X M f l,

= (/ o π) o π2(t, X) + (1 o ffl(ί, Z)) π2(t, X)f. Γ

= (foπ)oπi(t,X) + (loπJ.(foπύ(t,X).τ ,

where /' 6 C°°(MΛ) is denned by f(X) = Z/ for X e MD. Hence we have

K(fD o ^) = £((/ o ff) o ff2) + K(l o ffl) K(f oπ2)-τ

= L?(foπ) + a L?r τ.

On the other hand, from (2.10) we get

(ίDnW = L*(Π = Lf(foπ + f .Γ) = L*(/oπ) + Lff r ,

(/^)B(L*) = L*(/^) = /4(^0 + LfΛ τ = /4(^') + L'/ Γ ,

which imply

(2.12) Lf(/ o π ) = f»(*0 , Lff - L'/ .

Combining (2.10), (2.11) and (2.12), we get (2.9).
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3. Lifting of vector fields

We denote by JΊ(M) the set of all vector fields on M. Take X e f&M).
The corresponding X': M —> MD is defined by

(3.1) X\x)f = Kx) + (X(x)f) -τeD

for / e C°°(M) and xeM. The map X1 induces a map X'A: MA -> ( M 5 ) 4 .
Consider the map X = ioX'A:MA-+ (MA)D, where i: (MD)A -* (M 4 ) 5 is the
identification map. The commutativity of the right triangle of the diagram (2.1)
implies that X(x') e (MΛ)£ for every xf e MΛ. Hence by Remark 1.6 we obtain
a tangent vector in TX,(MA) corresponding to X(x;), which we denote by XA(x').

Thus we obtain a vector field XA e ^J(M^).
Definition 3.1. The vector field XA is called the lift of I to M ^
Remark 3.2. Any Z 6 ^J(M^) can be extended to a derivation of

C-(Λ^,Λ) by

where {1, B\ , 5^} is a basis of A, and / = 2 ffi1 with /̂  €
Lemma 3.3. For any X g ^J(M) and / € C~(M), we have

(3.2) (Z/)^1 = XAfA .

Proof. We have to show

(3.3)

for Λ:' € MA. Put Λ:" = Z M (Λ: ') e (MD) 4 . Then < = (Z^(Λ:0)' is the element

corresponding to x" in (M^)D (for the notation ( )' see Remark 1.6). Using
Corollary 1.12 we have

(fΎ(χ") = ( / r ω = χίvA) = (

= f 1(jc0+^(Jc0f 1 r .

The left hand side of (3.3) is equal to

(3.5) ((nA o X'*)(χ') = (f> o X'Y{χ') = χ'(f° o ZO .

Since

(fD°X')(x) = / B (Z'«) = X>(x)(f) = f(x) + (Xf)(x)-τ

= (f + Xf τXx),

(3.5) is equal to

(3.6) x'(f) + x'iXn-τ = fA(x') + (Xf)A(x') τ .
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Comparing (3.4) and (3.6), we obtain (3.3).
Lemma 3.4. The map X —> XA is linear.
Proof. Take / e C°°(M) and X, Y <= «TJ(M). Then by Lemma 3.3 we have

(X + Y)AfA = {{X + Y)j)A = (Xf + Yf)A = (Xf)A + (Yf)A = XAfA + YAfA

= (XA + YA)fA, and therefore ((X + Y)AYf = (X + Y)AfA = (XA + YA)fA

= (XA + YA)'f, which implies ((X + Y)AY = (XA + YAY (for the notation
( Y see Lemme 2.8). Hence we get (Z + Y)A = XA + YA. Similarly,
(a X)A = a-XAίoraeR.

Lemma 3.5. For any f e C°°(M) and X e &Ί(M)9 we have

(3.7) (f.X)A = fA XA ,

equivalently,

(fX)A(x') = fA{x')XA{x')

for every xf ς. MA (cf. Definition 2.1).
Proof. Let μ: R X MD —> MD be the scalar multiplication of tangent

vectors. Identifying X with its corresponding Xf: M -> MD (cf. Definition 3.1),
we have

Definition 3.6. For X e ̂ ί ( M ^ ) , we define a map X 7 : C~(M)
by

for / € C°°(M) and *' e MA (cf. Remark 2.7).
Remark 3.7. By Lemma 2.8, we have

for g € C°°(M^, ̂ ) , X

Lemma 3.8. For ae A, X e &Ί(M) and f <= C°°(M),

(3.8)

Proof. We have

where we have used Lemma 2.5, Lemma 3.3 and Remark 3.7.
Lemma 3.9. Let {xl9 ••-,*„} be a coordinate system on some neighbor-

hood of M. Then we have

(3.9) B
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for i = 1, , n λ = 0, , N.
Proof. We have (Bx(dldxdA){Xj)A = Bι(dXj/dXi)A = B ^ ) 4 = JJ'.J,,. On

the other hand we have

Hence we get (3.9).
Corollary 3.10. For any xr g MA, the A-module TX,M

A, is a free A-module.
Proof. Take Xi = (3/3^)^ (i = 1, , ή). Then {Xl9 . , Xn) is a free

,4-basis of Γ^M4.
Lemma 3.11. For any X, Y e T&M) we have

= [X, YV .

Proof. For any / € C°°(M), we have

[xΛ, YΛ]fΛ =

= ax, YW = [x, YVfA.
Hence we have

[XA, YAYf = \x\ YAψ = [X, YVfA = ([X, YVYf,

which implies [XA, YAY = ([Z, Y]4)' and hence we get [XA, YA] = [X, Y]A.
Lemma 3.12. For any a,b € A and X, Y e ̂ \(M) we have

(3.10) [aXA, bYΛ] = (a b) [X, Y]A .

Proof. We calculate as follows: for any / e C°°(M)

[aXA, bYA]fA = (aXA)(bYA)fA - (bYA)(aXA)fA

= {a XA){b.(Yf)A) - bYA(a (Xf)A)

= b-{aXA(Yf)A) - a.(bYA (Xf)A)

= b-a {XYf)A -a-b(YXf)A

= (Λ.fc).([Z, YW = (a.b)(lX, YYfA)

= ((ab)[X, YY)fA .

By the same argument as in Lemma 3.10 we get (3.10).
Remark 3.13. We can verify that if {Φ1} is a one-parameter group of dif-

feomorphisms on M generated by a vector field X, then the one-parameter
group {{0l)A} induces the vector field XA.
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4. Lifting of covariant tensor fields

Take / e C°°(M). Since fA: MA —»A is an A -valued function, we can consider
dfA: T{MA) —> A. On the other hand, since df: MD —> 2? is a function, we can
consider (d/) 4 : (M^y — ^ = A.

Lemma 4.1. Identifying T(MA) = (M^) ΰ wftΛ ( M ^ , we Λαve

(4.1) (df)A = dfA .

Proof. Let π (resp. π) be the projection π: RD = R® Rτ -+ Rτ = R
(resp. τf:^Z) = ^ 4 0 ^ . τ ^ ^ r = ^ ) . Then we have, by definition, d/ =
πofD,dfA = πo (fA)D. Hence (d/)4 = ^^ o (fD)A. Then the commutative diagram

1

S4D\A jζA

proves (4.1). q.e.d.
Take a 1-form 0 e &Ί(M). Then 0 can be considered as a function 0:

—> R. Hence ΘA: ( M 5 ) 4 -^ ̂ 4 is an ̂ 4-valued function on (MD)A = (MA)D. To
prove that ΘA is in fact a 1-form on MA, we shall first prove

Lemma 4.2. Tα/ e 01? 02 e JΊ(M). Then we have

(4.2) (0, + 02)^ = 0/ + 0/ .

Proof. Let a: R X R-+ R (resp. α^: ̂ 4 X 4̂ —> ̂ 4) be the addition in R
(resp. A). Then we know that aA = aA, and therefore that

(0X + 02)^ = (a o (01? 02))^ = aA o (βA, ΘA)

Lemma 4.3. For f <= C°°(M) and 0 e &Ί(M), we have

(4.3) (f.θ)A = fA.θA .

Proof. Let μ0: R x R -* R (resp. / ^ : A x A-^ A) be the multiplication
in R (resp. in ̂ 4). Then we know (μo)

A = μA, and therefore (/ Θ)A = (^0 ° (/»^))4

= (μo)A o (/4

5 «
A) = ^ o (/ ,̂ 0^) = fA θA.

Lemma 4.4. For any 0 e ^J(M), we /ιαvβ ΘA € ^ ( M 4 ) .
Proo/. Since the problem is local, we can assume that 0 = Σ gt dfi with

^ , / ^ C ° ° ( M ) . By (4.1), (4.2), (4.3) we have ΘA = Σ SiAdfiΛ, which is a
1-form on M^1.

Lemma 4.5. For 0 <= 9~\(M) and X e &*&M)9 we have
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(4.4) (Θ{X))A = ΘA(XA) ;.-

Proof. The function Θ(X): M -> R can be written as 0(Z) = 0 o X, where
X : M -> MD and 0: Af* -» R. Hence we have {Θ(X))A = (0 oZ)^ = 0^ o Z 4

= ΘA{XA).
Lemma 4.6. For 0 e ^ ί ( M ) , α € ̂ 4 and X e 7V(M^), we have

(4.5) θΛ(a-X) = a θA(X) .

Since 0(ί Z) = tθ{X) for ί € R and X € T(M) we have (0 o μ)(ί, X)
= μo(t,θ(X)) = φ X θ)(t,X). Hence {θoμY = ^ o ( l x ^ ) =

^ ° ( 1 X 0 4), which implies (4.5).
Since ΘA is an A -valued 1-form on MA, we can consider it as ΘA e JΊ(MA)

(x) A. We can easily verify
Lemma 4.7. ^%(MA) (x) A becomes an associative graded algebra over A

with the multiplication:

(Kλ (x) ad ® (K2 ® a2) = Kλ®K2® (axa2)

for K,, K2 e ZΓ%{MA) = ΣQ y°q(MA) and a19 a2eA.
Lemma 4.8. The map L: &~%(M) -^ ̂ U M ^ ) (x) ̂  d^wβd foj L{βx ®

(x) 0 )̂ = 0 / (x) . . . (g) ^Q^ /or 0̂  6 ̂ *Ϊ(M) w an algebra homomorphism.
Proof. Let L: (^Ϊ(M))« -^ ^^(M^1) (g) ̂ 4 be defined by L(01? . , θq) = 0 ^

Θ (x) 0 / . It is easily checked that Ltf^, , /β^β) = (/i fq)
ΛWi,

θq) for /, e JΓ°(M), 0, € ̂ Ϊ ( M ) . Hence there exists a map L: 2Γ\(M) -+ ^\(MA)
(x) A such that L(0X ® (x) 0Q) = L(01? , θq). Now it is easy to see that L
is an algebra homomorphism.

5. Lifting of (1, l)-tensor fields

Let K e £Γ\(M) be a (1, l)-tensor field on M. Then K can be considered as
a map K: MD-> MD such that πoK = π. Then KA: ( M β ) i -> (MD)A can be
considered as KA: (MA)D -> (M^1)^.

Lemma 5.1. A/1 w α (1, l)-tensor field on MA.
Proof. Since the problem is local, we assume K = Yiθi®Yί with θt €

and Yi e 2Γ\{M). Then

= Σ 0<(W - Σ
= (ar o (/i o (01? y i o Γ), . . ., ̂  o (0 r , y o π ) ) ) (Z) ,

where ar: Rr -^ R is the addition α r(α1 ? , αr) = ax + + ar for ^ e
Hence we have

which implies
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κ\x) = Σβ

for X e (MΛ)D. Thus KΛ e T\(MA).

Lemma 5.2. For K <= &Ί(M)9 X e ^J(M) and a e A, we have

KΛ(a XΛ) = a (K(X))A .

Proof. As before, we can assume K = J]θi®Yi. Then

κA(a xA) = Σ θAaXA)>(YΎ = Σ a θΛ

Theorem 5.3. Let J e £Γ\{M) be an almost complex structure on M. Then
JA is an almost complex structure on MA. Moreover, JA is integrable if and
only if J is.

Proof. Let / be the (1, l)-tensor field of identity maps of TXM for x e M.
Since / = Σ dxt ® d/dxt locaUy, we get, for X e (MA)D,

IA(X) = Σ idxt)A{lt)
dXi

where we have used (3.9) and (4.5). Thus we have JA o JA = (/ o J)A = (~I)Λ

= —IA= —7, where 7 is the (1, l)-tensor field of identity maps of MA. Hence
JA is an almost complex structure on MA.

Next, / is integrable if and only if

(5.1) J[X, Y] = [JX, Y] + [X, JY] + J[JX, JY]

for every X, Y e JΊ(M). Using Lemmas 3.12 and 5.2 we have

JA[axA, bYA] = JA(ab[X, Y]A) = (ab)(J[X, Y])A

= (ab){[JAXA, YA] + [XA,JAYA] + JA[JAXA,JAYA]}

= [JΛ(aXA), bYA] + [aXA, JA(bYA)] + JA[JA(aXA), JΛ(bYA)]

for a, b e A. Since TX,M
A is a free A -module (Corollary 3.10), we conclude

that JA is integrable. Conversely, if JA is integrable, we get

(/[Z, Y])A = ([JX, Y] + [X,JY] + J[JX,JY])A

for X, Y € 3Γ\(M), which implies (5.1), and hence / is integrable.
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6. Prolongations of affine connections

Let V be the covariant differentiation defined by an affine connection of M.
In the sequel, for the sake of convenience of notation, we shall denote by
F(X, K) the covariant differentiation of a tensor field K on M with respect to

) , i.e.,

Theorem 6.1. There exists one and only one affine connection on MA whose
covariant differentiation V satisfies the following condition

for every X,Y e ̂ \{M) and a,b € A.
Proof. Take a coordinate neighborhood U with coordinate system {x19 ,

xn} and let Γxf be the connection components of V with respect to {xl9 , xn},
i.e.,

(6.2) r ( — , — ) = Σ Λ * j —
\ OXi dXj'/ uXjc

for /, 7 = 1, , n. Let /^/ be the connection components of V with respect
to another coordinate system {y19 , yn} on £7. Then we have the following
equalities:

(f, Ί\ p/k V Vχb "xc Wle p a _ι_ V " Xa ^ k
b c i" LΛσJi 9^^ α ĉα dyidyj dxa

for ί, / = 1,2, , n (cf. for instance [3, p. 27]). Let {xiti \ i = 1, , n λ =
0,1, , iV} (resp. {̂  ,}) be the induced coordinate system on TΓ^'^C/). Define

Λ*,a>(*"°</,,) b y

(6.4) Σ ̂ aJ^u,^ = BλB^Γijk)Λ

for i, 7, k = 1, . ., n λ, μ9 v = 0, 1, v , Â ? where {£° = 1, B1, . , BN} is a
basis of /4 as in § 1.

We shall now prove that there exists a connection V whose connection com-
ponents with respect to {xUλ} are given by (6.4). To prove this we have to
prove the following equalities (6.5) similar to (6.3):

P' (k,λ) yι Oχb,β Vχc,r ^ k q p (a,a)

dyi oy * oxa a

(6.5) ' „ '" _ '
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for i, j ,  k = 1, . . . , n ; 2, p, Y = 0, 1, . . . , N, where r{i,u,(kJ{j,r, denote the con- 
nection components of v with respect to the coordinate system {y,,,). Denoting 
the right hand side of (6.5) by f ~ , , , ' ~ , " ~ , ~ ,  and using Lemmas 3.8 and 3.9, we 
calculate as follows : 

a,,. 
($)A,. a~ , , "a~ j , "  

which implies (6.5). 
Thus we have proved the existence of whose connection components with 

respect to {xi,,) are given by  (6.4). 
Next, we shall prove (6.1) for X = dlax,, Y = alax,, and a = B1, b = Bp. 

We calculate as follows : 

which proves (6.1) for X = d/axi,  Y = a/dxj  and a = B1, b = B" and hence 
for arbitrary a, b E A. 

Now put Xi  = ajax, for i = 1, . . ., n. We shall prove (6.1) for X = fX,, 
Y = X j  with f E Y : ( U ) .  We calculate as follows: 

which proves our assertion. Therefore we see that (6.1) holds for X E F i ( M )  
and Y = X j  with j = 1, - . . , n. Next we prove that (6.1) holds for X E FA(M) 
and Y = f . X j  with f E Y : ( U )  and j = 1, . . . , n. We calculate as follows : 
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F(a XA, b YA) = F(a XA, b(f Xj)A) = F(aXA, bfA-XjA)

= fAFaχΛ bXA + aXA(bfA)XjA = fAab(FxYj)A + ab(Xf)AXj

A

= ab(fFxYj + Xf-XjV = ab(FxfYj)A = ab(F(X, Y))A ,

where we have used Lemmas 3.5 and 3.8.
Thus we have proved (6.1) for any X, Y € JΊ(M) and a,b e A. The uni-

queness of such F follows from Lemma 3.9.
Definition 6.2. The unique affine connection F in Theorem 6.1 will be

called the prolongation of F to MA and will be denoted by F = FA.
Theorem 6.3. Let T and R (resp. f and R) be the torsion and curvature

tensor fields of F (resp. F = FΛ). Then according as T = 0, FT = 0, R = 0
or FR = 0, we have T = 0, FT = 0, R = 0 or FR = 0 and vice versa. In
particular, if M is locally affine symmetric with respect to F, so is MA with
respect to F = FA.

Proof. First we prove

(6.6) T(aXA, bYA) = ab(T(X, Y))A

for X, Y e ?Γ\(M) and a, b ε A.
In fact, by the definition of f, Lemma 3.12 and (6.1) we get

T(aXA, bYA) = FaχA bYA - FbYA aXA - [aXA, bYA]

- (ab)(FxY - FYX - [X, Y])A = ab(T(X, Y))A .

Thus we see that T = 0 if and only if f = 0 (cf. Corollary 3.10).
Similarly we know that R(aXA, bYA, cZA) = (abc)(R(X, Y, Z))A for X, Y, Z

e y\(M) and a, b, c € A, from which we see that R = 0 if and only if R = 0.
The proof for the case FT and FR is similar.

7. Affine symmetric spaces

Lemma 7.1. Let Φ be a diβeomorphism of M onto M\ and let X e &*\(M)

and a e A. Then we have

(7.1) (TΦA)(aXA) = a((TΦ)X)A .

Proof. Take / e C°°(M). We have

(ΦA)D(aXA)fA = (aXA)(fAoφA) = (aXA)(foφγ = a-XA(foφ)A

= a-(X(foφ))A = a ((ΦDX)f)A = a<((ΦDX)AfA)

= (a(ΦDX)A)fA ,

from which follows (7.1).

Lemma 7.2. Let F (resp. Ff) be an affine connection on M (resp. on Mf)
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and let Φ be a diffeomorphism of M onto M/ transforming V onto Vf. Then
ΦA transforms VA onto VfA.

Proof. Take X, Y e JΊ(M). Then we have, for a, b <= A,

TΦA(FA

χA bYA) = TΦA{abVxY)A = ab(TΦ(VxY))A = ab(V'TΦXTΦY)A

= rTΦHaχA)τΦA{bYA),

where we have used Lemma 7.1. Since X, Y, a, b are arbitrary, Lemma 7.2
follows.

Lemma 7.3. Let X e f\(M)9 and x0 e M. Assume XXQ = 0. Then (XA)£o

= 0, where x0 e MA is defined by xo(f) = f(x0) for f e C°°(M).
Proof. Let Φι be a local one-parameter group of local diffeomorphisms

around xQ generated by X. Then XA generates the local group (Φι)A around xQ

(cf. Remark 3.13). Since Φ\x^) = x0, we get (ΦO^(^o) = ô and therefore

Lemma 7.4. Let Φ: M —> M be a diffeomorphism such that there exist
x^M and a g R with Φ(x0) = x0 and TXoΦ = (X 1TXQM. Then T£oΦ

A =

Proof. Let {JC1? , ̂ w} be a local coordinate system around x0. By Lemma
7.1 we have TΦ\d\dx^A — (TΦ{dldxτ))A for / = 1, . , π. Hence we get

Put X = TΦ(d/dXi) - a(d/dXi). Then Z is a vector field around x0 on M with
Z X o = 0. Therefore by Lemma 7.3 we get (XA)£Q = 0, which implies

(TΦ(d/dxM = te

Take an arbitrary a € A. Then we have

Since {flr(3/3jcf)
4|fl e 4̂} span the tangent space T$QMA (cf. Lemma 3.9), we

getT£oΦ
A = a lT£oMA.

Corollary 7.5. Let Φ be the affine symmetry at a point xoe M with respect
to an affine connection V on M. Then ΦA is the affine symmetry of MA at x0

with respect to FΛ.
Proof. Since Φ leaves V invariant, ΦA leaves VA invariant by Lemma 7.2.

Next, since Φ is the affine symmetry we see that TXoΦ = —1TXQM- Thus by
Lemma 7.4 we get T£QΦA = — 1TSOM^ which means that ΦA is the affine sym-
metry at x0.

Proposition 7.6. Let V be an affine connection on M and let X € T\(M)
be an infinitesimal affine transformation of V. Then, for any a e A, aXΛ is also
an infinitesimal affine transformation of VA.
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Proof. A necessary and sufficient condition for X to be an infinitesimal
affine transformation of M is that

for every Y € &~\(M), where Lx (or L(X)) denotes the Lie derivation with
respect to X. Therefore we have to prove

(7.2) L(a.XAWA(?9 K)) - FA(Ϋ, L(aXA)K) = FA([aXA, ? ] , K)

for every K e ^(MA) and Ϋ <ε JΊ(MA). To prove (7.2) it suffices to prove
(7.2) for the special cases, where Ϋ = bYA with Y e 3~\(M), b e A, and K =
cZA or ΘA with Z <= ^J(M), ^ € ^ ( M ) and ceA. Moreover, to prove (7.2)
for K = ΘA, it suffices to prove it for θ = df with / e

If £ = cZA, we calculate as follows:

LaXAVhYAcZA - FbYALaXAcZA =

= αfcc[Z, F F Z ] 4 - bac(Fγ[X,Z])A

= abc((LxFγ - FYLX)Z)A = abc(FίXtYΊZ)A

lίK = dfA, we have

LaXΛ FbYM
A) - FbYA LaχA(dfΛ)(cZA)

= (aXA)(FbYAdfA)(cZA) - (FbYAdfA)(aXA,cZA) - (FbγAd(aXAfA))(cZA)

= (aXA){(bYA)(cZA)(fA) - (FbYAcZA)fA)

- {bYA[aXA,cZA]fA - (FbYA[aXA,cZA])fA}

- {bYA(cZA)(aXA)fA - (FbYAcZA)(aXA)fA}

= abc({LxoFγ - FγoLx}(df)(Z))A = abc((FίX,n(df))Z)A

= abc([X, Y]Zf - (FίXtY^Z)f)A

= [aXA,bYA](cZA)fA - (FίaχA,bYA^cZA)fA

= (FίaχA,bγA,(df)A)(cZA) .

Theorem 7.7. Let M be an affine symmetric space with connection F.
Then MA is also an affine symmetric space with connection FA.

Proof. Let G be the connected component of the group of all affine trans-
formations of M. Then G operates transitively on M. Let X19 , Xm be a
basis of the Lie algebra g of G. We denote by Z * <= ^ ( M ) the vector field
induced by the one-parameter group of affine transformations generated by
X € g. Now we can show that aXA is a left invariant vector field on the Lie
group GA and that (a-XA)* = a (X*)A holds for azA (the detail will be
omitted), which implies that a (X*)Λ is complete, i.e., generates a global one-
parameter group of affine transformations of MA (cf. Proposition 7.6). Hence
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we see that any element of GA is an affine transformation of MA. The transi-

tivity of G shows that dim ({X* | X e g}) = dim M for any x e M, which implies

dim ({(a (X*)A)X, \ a e A, X <= g}) = dim MA

for any x' e MA and hence the transitivity of GA on MA follows. On the other

hand, by Corollary 7.5 we have an affine symmetry at x0 of MA for xQ e M.

Hence MA is affinely symmetric.

Proposition 7.8. Let V be an affine connection on M. If MA is affinely

symmetric with respect to FA, then M is also so with respect to F.

Proof. Consider the map ζ : M-> MA defined by (ζ(jt))/ = f(x) for xeM,

f e C^iM). Let γ: / —> M be a curve on M, where / is an open interval in R.

Put f = ζoγ. From (6.4), we see that

for i,j,k= 1, , n λ = 0, 1, , N, from which we can verify that γ is a

geodesic on M if and only if f is so on M^1. Further, we can conclude that the

submanifold M = ζ(M) is a totally geodesic submanifold of MA with respect

to VA and that the induced affine connection V on M is isomorphic with V by

the diffeomorphism ζ : M —» M.

Now, take an arbitrary point x 6 M and consider x = ζ( c) € M 4 . Since MA

is affinely symmetric, there exists an affine symmetry Φ of MA at x. Since

T£Φ = —1T£MΛ, and M is totally geodesic, we see that Φ(M) = M and that

Φ|j5r: M —> M is an affine transformation of P . Then Φ\g induces the affine

symmetry Ψ: M —> M of M at x.
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