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ORTHONORMAL FRAMES ON 3-DIMENSIONAL
RIEMANNIAN MANIFOLDS

SHUKICHI TANNO

1. Introduction

Let (M, g) be a Riemannian manifold. An orthonormal frame (Xt, ί = 1,2,
. ., m = dim M) on an open set U of M is called a Killing frame if each Xt

is a Killing vector field on U = (U, g = g \ U). D'Atri and Nickerson [1] proved
that if (Xt) is a Killing frame on (U, g), then ([/, g) is locally symmetric. It is
also proved that such a space (U, g) is of nonnegative curvature.

In this paper we prove
Theorem A. // a 3-dimensional Riemannian manifold (M, g) admits a

Killing frame (Xt) on an open set U, then (U, g) is of nonnegative constant
curvature.

Next we study orthonormal frames satisfying some additional conditions.
Theorem B. Let (M, g) be a ^-dimensional Riemannian manifold, and (X^

an orthonormal frame on an open set U of M such that

( 1 ) [XuX2] = aXz, [Xi9X,] = aXl9 [X»X1] = aXt

for some constant a. Then (Xt) is a Killing frame, and (U, g) is of constant
curvature \a2.

Theorem B for the case a Φ 0 follows from the next more general Theorem
B*.

Theorem B*. Let (M, g) be a 3-dimensional Riemannian manifold, and
(Xi) an orthonormal frame on an open set U of M such that

( 2 ) [X19 X2] = cXz , [X2, Z 3] = άXx , [X3> XJ = bX2

for some positive (or negative) constants a, b, c. Let Θ and ψ be the ί-forms
on U which are the duals of Xλ and X2 with respect to g. Then U admits a
Riemannian metric g of constant curvature 1 such that

( 3 )

Theorem C. Let (M, g) be a 3-dimensional Riemannian manifold, and
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an orthonormal frame on U such that

( 4 ) [X19X2] = O9 [X29X3]=aX19 [X39Xι] = aX2

for some constant a. Then X3 is a Killing vector field on U, and (U,g) is
locally flat.

Theorem C* Let (M, g) be a 3-dimensional Riemannian manifold, and
(Xi) an orthonormal frame on U such that

( 5 ) [X1,X2] = 0, [X2,X,] = aXι, [XZ9Xι] = bX2

for some positive (or negative) constants a, b. Let θ be the l-form dual to Xλ

with respect to g. Then U admits a flat metric g such that

(6) g\U = g + A n Λ

An interesting application of Theorem B* is given on the tangent sphere
bundles of a 2-dimensional Riemannian manifold of constant curvature.

Theorem D. Let (M, g) be a 2-dimensional oriented Riemannian manifold
of constant curvature K > 0, and (TUM, gs) the tangent sphere bundle (con-
sisting of tangent vectors of length ύ) with the induced metric from the Sasaki
metric gs of the tangent bundle TM. Let J be the natural almost complex
structure tensor on M. Then J* and Jv (defined by (24) and (25)) are vector
fields on TM which are tangent to each tangent sphere bundle TUM. Let F be
the geodesic flow vector field, which is also tangent to TUM. Then on (TUM, gs)
we have the global orthonormal frame (Xλ = Jv/u, X2 = F/u, Xz = J*/u)
which satisfies (2) with a = Ku, b = c = 1/u. Therefore TUM admits a
Riemannian metric g of constant curvature 1 such that

( 7 ) g s \ T u M = ± g + K u 2 l

where θ is the l-form dual to Jv/u on (TUM, gs).
In particular, (TUM, gs) with u2 = 1/K is of constant curvature \K.
As a corollary, if we put K = 1 and u = 1, we have a theorem of

Klingenberg and Sasaki [2] that the tangent unit sphere bundle of a 2-dimen-
sional sphere of constant curvature 1 is a real projective 3-space of constant
curvature \.

2. Proofs of Theorems A, B, B*, C and C*

Denote by V the Riemannian connection of (M, g), and by R the Riemannian
curvature tensor
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, Y)Z = VXVYZ - VYVXZ - Fίz,Y2Z ,

where X, Y, Z are vector fields on M. For our purpose the following lemma
is useful.

Lemma 2.1 (DΆtriand Nίckerson [1, proof of Lemma 3.4]). For a Killing
frame (X^ on U we have

( 8 ) 4R(Xk, Xι)Xj = -[[Xk, Xt], Xj] .

From now on in this section we assume that (M,g) is a 3-dimensional
Riemannian manifold and (U9 g = g\ U) is an open set where an orthonormal
frame (Xi9 i = 1, 2, 3) is defined.

Lemma 2.2. Assume that [X19 X2] = cZ 3, [X29 X3] = aX19 \XZ9 Xλ] = bX2

hold for some positive (or negative) constants a,b,c. Let θ and ψ be the duals
of Xλ and X2 with respect to g. If we put s = a/\a\ = ± 1 and

( 9 ) Xγ = ,— Xι , X2 = 1=^X ^ X
Vb Vac

, — Xι , X2 = 1=^X2 J ^ 3 = /—γ- X% •>

Vbc Vac Vab

(10) 4f = έϊfeg + 6(c - d)θ ® θ + α(c - b)ψ (x) ψ ,

ί/ien we /zflve α new orthonormal frame (Xt) with respect to g such that

(11) [X19 X2] = 2Z 3 , [X2, Γ3] - 2X, , [Γ3, ^ J - 2Z 2 .

Proof. By the assumption on a9 b, c, the tensor g defined by (10) is a
Riemannian metric on U. Then it is easy to verify the required relations.

Lemma 2.3. // the relations

(12) [Xl9 X2] = aX3 , [Xi9 X3] = aXx , [Z3, ̂ J = αZ 2

on U for some constant a, then each Xi is a Killing vector field on U.
Proof. It is easy to verify that Lx.g = 0 by the following relations:

= (LXig)(XpXk) + gdX^XjlX,) + g(Xp [Xi9Xk]) ,

where LXi denotes the Lie derivation with respect to Xt.
Lemma 2.4. Let (Xt) be a Killing frame on U. Then we have a constant

a such that (12) holds.
Proof. Since Xi9 i = 1, 2, 3, are orthonormal Killing vector fields, we have

g(LXlX2, Xλ) — 0 = g(LXlX2, X2), that is, [X19 X2] = cXz for some function c
on U. However, since Z 3 and cX3 are both Killing vector fields, c must be
constant by a classical result. Similarly, [X29 Xz] = aXλ and [Z3, Z J = bX2

hold for some constants a and δ. By
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0 = (LZlg)(X2,Xz) = gdXvXλXO

we have b = c. Similarly, a — b. Hence Lemma 2.4 is proved.
Proof of Theorem A. Let {Xi) be a Killing frame on U. Then (Xt) satisfies

(12) by Lemma 2.4. Using Lemma 2.1 we get

Changing indices we see that (U, g) is of constant curvature \a2. Here we note
that (1) is invariant under the rotation (Xt) -» (alXr), a e SO(3).

Proof of Theorem B. This follows from Lemma 2.3 and Theorem A.
Proof of Theorem 2?*. For a given orthonormal frame (Xt) on U, we define

a new metric g and a new orthonormal frame (X^ with respect to g by (10)
and (9) in Lemma 2.2. Then the relations (11) hold. By Theorem B, g is of
constant curvature 1. Hence (3) and (10) are equivalent.

Lemma 2.5. Assume that (Xt) satisfies

[X19 * J = 0 , [X2, XΛ] = aXλ , [Z3, Z J = bX2

for some positive^ or negative) constants a, b. Let θ be the dual of Xx with
respect to g. If we put s = a/\a\ = + 1 and

(13) Xx = sVa/bX, , X2 = sX2 , Xz = sX3 ,

(14) f = g ^ ±
a

then (Xi) is an orthonormal frame such that

(15) [Xl9 X2] = 0 , [ ί a , J 3 ] - V M

Proof. It can be proved by a simple calculation.
Lemma 2.6. Assume that (X^ satisfies

(16) [Z1? Z2] = 0 , [X2, Z3] - «^i , [^s, * J = ^ 2

/or .some constant a Φ 0.
(i) X3is a Killing vector field on U. By φt we denote the local 1-parameter

group of local isometries generated by Xs.
(ii) The distribution defined by Xλ and X2 is completely integrable. Let N

be an integral submanifold such that W = (φtN, \t\ < ε) C U, and define
vector fields X? and Xf on W by

(17) (X*)φtx = cos at (Xλ)ΦtX - sin at (X2)φtX ,

(18) (Xf)φtx = sin at (Xγ)ΦtX + cos at (X2)φtX ,
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for x € N and φtx e W. Then (Xf, Xf,Xf = Z 3) is an orίhonormal frame with
respect to g such that

(19) [Xf9Xf] = O9 Ϊ , / = 1 , 2 , 3 .

Proof. By (16) we can verify that (LZ9g)(Xi9Xj) = gdX^X^Xj) +
g(Xi9 [X3, Xj\) = 0, so that Z 3 is a Killing vector field. From [X19 X2] = 0 it
follows that the distribution (Xl9 X2) is completely integrable. Therefore we
can choose an integral submanifold N and a positive number ε so that W C U.
Rewrite (17) and (18) as

(17)' Xf = fXι - hX2 ,

(18)' Xf = hXx + fX2 .

Then Xif = XJi = Z 2/ = X2h = 0. Next we have XJ = — αΛ, because
(XJ)φtX = d(cosat)/dt = —a sin at = —ahφtX. Similarly Z3/z = α/. Then by
(16) we can prove (19).

Proo/ o/ Theorem C. By Lemma 2.6 the given orthonormal frame (Xt}
on C/ can be changed to an orthonormal frame (Xf) satisfying (19) with respect
to g on W. By Theorem B, (W9 g) is locally flat. Since for each point p of U
we can choose W(p)9 (U9 g) is locally flat.

Proof of Theorem C*. Lemma 2.5 and Theorem C give a proof of
Theorem C*.

3. Tangent bundles of Kahlerian manifolds and proof of Theorem D

Let (M, g) be an m-dimensional Riemannian manifold, and TM its tangent
bundle (π: TM —• M). For a coordinate neighborhood (U9 x\ i = 1, ,
dim M = m ) i n M w e have the corresponding natural coordinate neighborhood
Or"1!/,**,)>*) in ΓM, where (x\yι) = yrd/dxr. By (jc*,y*; V\ Wι) we denote
the vector field on TM (or the tangent vector) such that Vrd/dxr + Wrd/dyr.
Let Γ)k be the Christoffel symbols of (M,g). Then the geodesic flow vector
field F is given by

(20) F = (x<9y
i;yi

9-Γi

ryy).

Let X = (Z0 be a vector field on M (or a tangent vector). Then we define
vector fields on TM (or tangent vectors at (JC, y)) Z * and Xv by

(21) X* = (x*9y
i;X<9-Γi

rty'y)9

(22) Z- = (x%y;0,Z0.

The Sasaki metric gs on TM is characterized by
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for all vector fields X, Y on M (or tangent vectors at each point). Let A =
(A)) be a (1, l)-tensor field on M, and define vector fields A* and Av on TM
by (cf. [5], [6])

(24) A* = (**, y* A\y, -ΓUAtyy) ,

(25) ^ = ( * % y ; 0 , ^ ) .

Denote the 0-section in TM by (M). Let (M, g, /) be a Kahlerian manifold
with an almost complex structure tensor / and a Kahlerian metric g. Then
TM — (M) admits a 3-dimensional distribution D = (F, /*, /"). F depends on
£, /υ on /, and /* on g and /. Therefore D reflects geometric property of
(M, g, J) in the tangent bundle TM.

The normal vector to each tangent sphere bundle TUM is given by Nix>y) =
(x\ yι 0, yι). We see that JV,J*,F,N are orthogonal, since

Γix,V) — \shxiV) ' iy{x,V) —

Therefore, Jv, J* and F are tangent to each TUM.
Lemma 3.1. For JΌ, F, /* we have

(26) [Λfl=/*,

(27) [F, /*] = (x\ y 0, R^Jb

(28) [/*,/ϋ] = F ,

= R(d/dxk, d/dxs)d/dxr.
Proof. We obtain these equations from direct calculations, using /*/$ =

—3} and Fr/} = 0. q.e.d.
A Kahlerian manifold (M, g, J) is of constant holomorphic sectional curva-

ture at x if and only if R(X, JX)X is proportional to JX for any tangent vector
X at x (cf. Tanno [4]). Therefore D = (F,/*,/υ) is completely integrable, if
and only if [F, /*] is proportional to JΌ

9 that is, (Λf, g, /) is of constant holo-
morphic sectional curvature at each point. In this case we have

(29) [F,J*]=Hg(y,y)Γ ,

where H = g(#(>>, /y)/y, y)/g(y, j)2.
Proo/ o/ Theorem D. Since dimM = 2, the almost complex structure

tensor / (which gives the Jτr-rotation of tangent vectors) and g define a
Kahlerian structure on M. Since (M, g) is of constant curvature AT, we have
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[Jv,F] = /* , [F,/*] = Ku2Jv , [ 7 * , / 1 = F ,

where u2 — g(y, y). Then

* 3 - / * / M )

is an orthonormal frame on (TUM, gs) and satisfies (2) with a = Kw, fr = c
= 1/u. Applying Theorem B* we obtain Theorem D.

Corollary 3.2. Let S2(K) be the Euclidean 2-sphere of constant curvature
K. Then (TUS\K),GS), u = 1/Λ/K, is isometric to a real projective 3-space
of constant curvature \K.

Proof. This follows from Theorem D and the fact that TUS2 is topologically
a real projective space (cf. [2]).

Theorem E. Let (M, g, J) be a Kάhlerian manifold of dimension > 4.
Then the canonical distribution D = (F,J*,JV) on TM — (M) is completely
integrable if and only if (M, g, J) is of constant holomorphic sectional curva-
ture H.

Furthermore, gs([F,J*],Jv) = Hg(y,y)2 holds, and hence H is positive if
and only if gs([F,J*],JΌ) is positive. In this case, if (M,g) is complete, then
(M, g, J) is a complex projective space with the Fubini-Study metric: (CPn, g,
J,H) = (CPn,H), m = In.

Let L(xQ, yQ) be the integral submanifold of D passing through a point (xQ, y0)
of T(CPn, H) such that g(y0, y0) = u2. Then πL(xQ, yQ) is a complex projective
line (CPι,H), L(xo,yQ) is the tangent sphere bundle of {CPι,H) (consisting of
tangent vectors of length u), and L(x0, yQ) with the induced metric from gs is
a 3-dimensional real projective space with property (7).

We prepare two lemmas.
Lemma 3.3. The integral curve Et(x0, y0) of Jv passing through a point

(*o> Jo) of TM is given by

(30) Et(xQ, y0) = Oo, cos ty0 + sin tJy0) .

Proof. In a local coordinate, we have

d E ^ y ^ = CJCJ, COS tyi + sin tJ\yl 0, -sin ty\ + cos tJ\yl) ,
dt

which is identical with the local expression of P at Et(xQ, y0).
Lemma 3.4. Let L(x0, yQ) be the integral submanifold of D passing through

a point (xo,yo) of T(CPn,H). Then πL(xo,yo) = (CP\H), and L(xo,yo) is the
tangent sphere bundle of (CP1, H).

Proof. Since F is the geodesic flow vector field, the projection of each
integral curve of F is a geodesic in (C? n , H). By Lemma 3.3, L(xQ, y0) contains
a circle (30) in the fiber over JC0. This means that the tangent space to τrL(;t0, yQ)
at x0 is a holomorphic plane (yo,Jyo). All geodesies passing through x0 and
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tangent to (y0, Jy0) define a complex projective line (CP\ H).
Proof of Theorem E. The first part follows from the statement between

the proofs of Lemma 3.1 and Theorem D, and the fact that a Kahlerian
manifold is of constant holomorphic sectional curvature if it is of constant
holomorphic sectional curvature at each point for m > 4.

The second part follows from (29) and the well known fact that a Kahlerian
space form of positive holomorphic sectional curvature H is (CPn, H).

The last part follows from Lemma 3.4 and Theorem D.
Remark. From Lemma 3.1 we see that if (M, g) is a 2-dimensional locally

flat Riemannian manifold, then (TuM,gs) has a global orthonormal frame
(Xλ = F/u, X2 = J*/u, X3 = Jυ/u) satisfying (4) with a — \\u. In particular,
(TUM, gs) is locally flat for each u.
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