ORTHONORMAL FRAMES ON 3-DIMENSIONAL RIEMANNIAN MANIFOLDS

SHÛKICHI TANNO

1. Introduction

Let (M, g) be a Riemannian manifold. An orthonormal frame $(X_i, i = 1, 2, \dots, m = \dim M)$ on an open set U of M is called a Killing frame if each X_i is a Killing vector field on U = (U, g = g | U). D'Atri and Nickerson [1] proved that if (X_i) is a Killing frame on (U, g), then (U, g) is locally symmetric. It is also proved that such a space (U, g) is of nonnegative curvature.

In this paper we prove

Theorem A. If a 3-dimensional Riemannian manifold (M, g) admits a Killing frame (X_i) on an open set U, then (U, g) is of nonnegative constant curvature.

Next we study orthonormal frames satisfying some additional conditions.

Theorem B. Let (M, g) be a 3-dimensional Riemannian manifold, and (X_i) an orthonormal frame on an open set U of M such that

(1)
$$[X_1, X_2] = aX_3$$
, $[X_2, X_3] = aX_1$, $[X_3, X_1] = aX_2$

for some constant a. Then (X_i) is a Killing frame, and (U,g) is of constant curvature $\frac{1}{4}a^2$.

Theorem B for the case $a \neq 0$ follows from the next more general Theorem B*.

Theorem B*. Let (M, g) be a 3-dimensional Riemannian manifold, and (X_i) an orthonormal frame on an open set U of M such that

(2)
$$[X_1, X_2] = cX_3$$
, $[X_2, X_3] = aX_1$, $[X_3, X_1] = bX_2$

for some positive (or negative) constants a, b, c. Let θ and ψ be the 1-forms on U which are the duals of X_1 and X_2 with respect to g. Then U admits a Riemannian metric \overline{g} of constant curvature 1 such that

(3)
$$g|U = \frac{4}{ab}\overline{g} + \frac{a-c}{c}\theta \otimes \theta + \frac{b-c}{b}\psi \otimes \psi .$$

Theorem C. Let (M, g) be a 3-dimensional Riemannian manifold, and (X_i)

Communicated by K. Yano, December 27, 1974.

an orthonormal frame on U such that

$$(4) [X_1, X_2] = 0, [X_2, X_3] = aX_1, [X_3, X_1] = aX_2$$

for some constant a. Then X_3 is a Killing vector field on U, and (U, g) is locally flat.

Theorem C*. Let (M, g) be a 3-dimensional Riemannian manifold, and (X_i) an orthonormal frame on U such that

$$(5) [X_1, X_2] = 0, [X_2, X_3] = aX_1, [X_3, X_1] = bX_2$$

for some positive (or negative) constants a, b. Let θ be the 1-form dual to X_1 with respect to g. Then U admits a flat metric \overline{g} such that

(6)
$$g|U = \bar{g} + \frac{a-b}{a}\theta \otimes \theta .$$

An interesting application of Theorem B^* is given on the tangent sphere bundles of a 2-dimensional Riemannian manifold of constant curvature.

Theorem D. Let (M, g) be a 2-dimensional oriented Riemannian manifold of constant curvature K > 0, and (T_uM, g^s) the tangent sphere bundle (consisting of tangent vectors of length u) with the induced metric from the Sasaki metric g^s of the tangent bundle TM. Let J be the natural almost complex structure tensor on M. Then J* and J° (defined by (24) and (25)) are vector fields on TM which are tangent to each tangent sphere bundle T_uM . Let F be the geodesic flow vector field, which is also tangent to T_uM . Then on (T_uM, g^s) we have the global orthonormal frame $(X_1 = J^v/u, X_2 = F/u, X_3 = J^*/u)$ which satisfies (2) with a = Ku, b = c = 1/u. Therefore T_uM admits a Riemannian metric \overline{g} of constant curvature 1 such that

(7)
$$g^{s}|T_{u}M = \frac{4}{K}\bar{g} + \frac{Ku^{2}-1}{Ku^{2}}\theta\otimes\theta,$$

where θ is the 1-form dual to J^v/u on (T_uM, g^s) .

In particular, $(T_u M, g^s)$ with $u^2 = 1/K$ is of constant curvature $\frac{1}{4}K$.

As a corollary, if we put K = 1 and u = 1, we have a theorem of Klingenberg and Sasaki [2] that the tangent unit sphere bundle of a 2-dimensional sphere of constant curvature 1 is a real projective 3-space of constant curvature $\frac{1}{4}$.

2. Proofs of Theorems A, B, B*, C and C*

Denote by V the Riemannian connection of (M, g), and by R the Riemannian curvature tensor

ORTHONORMAL FRAMES

$$R(X, Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z,$$

where X, Y, Z are vector fields on M. For our purpose the following lemma is useful.

Lemma 2.1 (D'Atri and Nickerson [1, proof of Lemma 3.4]). For a Killing frame (X_i) on U we have

(8)
$$4R(X_k, X_l)X_j = -[[X_k, X_l], X_j].$$

From now on in this section we assume that (M, g) is a 3-dimensional Riemannian manifold and (U, g = g | U) is an open set where an orthonormal frame $(X_i, i = 1, 2, 3)$ is defined.

Lemma 2.2. Assume that $[X_1, X_2] = cX_3$, $[X_2, X_3] = aX_1$, $[X_3, X_1] = bX_2$ hold for some positive (or negative) constants a, b, c. Let θ and ψ be the duals of X_1 and X_2 with respect to g. If we put $s = a/|a| = \pm 1$ and

(9)
$$\bar{X}_1 = \frac{2s}{\sqrt{bc}} X_1, \quad \bar{X}_2 = \frac{2s}{\sqrt{ac}} X_2, \quad \bar{X}_3 = \frac{2s}{\sqrt{ab}} X_3,$$

(10)
$$4\bar{g} = abg + b(c-a)\theta \otimes \theta + a(c-b)\psi \otimes \psi$$

then we have a new orthonormal frame (\bar{X}_i) with respect to \bar{g} such that

(11)
$$[\bar{X}_1, \bar{X}_2] = 2\bar{X}_3, \quad [\bar{X}_2, \bar{X}_3] = 2\bar{X}_1, \quad [\bar{X}_3, \bar{X}_1] = 2\bar{X}_2.$$

Proof. By the assumption on a, b, c, the tensor \overline{g} defined by (10) is a Riemannian metric on U. Then it is easy to verify the required relations.

Lemma 2.3. If the relations

(12)
$$[X_1, X_2] = aX_3$$
, $[X_2, X_3] = aX_1$, $[X_3, X_1] = aX_2$

hold on U for some constant a, then each X_i is a Killing vector field on U. Proof. It is easy to verify that $L_{X_i}g = 0$ by the following relations:

$$0 = L_{X_i}(g(X_j, X_k))$$

= $(L_{X_i}g)(X_j, X_k) + g([X_i, X_j], X_k) + g(X_j, [X_i, X_k])$

where L_{X_i} denotes the Lie derivation with respect to X_i .

Lemma 2.4. Let (X_i) be a Killing frame on U. Then we have a constant a such that (12) holds.

Proof. Since X_i , i = 1, 2, 3, are orthonormal Killing vector fields, we have $g(L_{X_1}X_2, X_1) = 0 = g(L_{X_1}X_2, X_2)$, that is, $[X_1, X_2] = cX_3$ for some function c on U. However, since X_3 and cX_3 are both Killing vector fields, c must be constant by a classical result. Similarly, $[X_2, X_3] = aX_1$ and $[X_3, X_1] = bX_2$ hold for some constants a and b. By

SHÛKICHI TANNO

$$0 = (L_{X_1}g)(X_2, X_3) = g([X_1, X_2], X_3) + g(X_2, [X_1, X_3]) ,$$

we have b = c. Similarly, a = b. Hence Lemma 2.4 is proved.

Proof of Theorem A. Let (X_i) be a Killing frame on U. Then (X_i) satisfies (12) by Lemma 2.4. Using Lemma 2.1 we get

$$4g(R(X_1, X_2)X_2, X_1) = -g([aX_3, X_2], X_1) = a^2$$

Changing indices we see that (U, g) is of constant curvature $\frac{1}{4}a^2$. Here we note that (1) is invariant under the rotation $(X_i) \to (\alpha_i^r X_r), \alpha \in SO(3)$.

Proof of Theorem B. This follows from Lemma 2.3 and Theorem A.

Proof of Theorem B*. For a given orthonormal frame (X_i) on U, we define a new metric \overline{g} and a new orthonormal frame (\overline{X}_i) with respect to \overline{g} by (10) and (9) in Lemma 2.2. Then the relations (11) hold. By Theorem B, \overline{g} is of constant curvature 1. Hence (3) and (10) are equivalent.

Lemma 2.5. Assume that (X_i) satisfies

$$[X_1, X_2] = 0$$
, $[X_2, X_3] = aX_1$, $[X_3, X_1] = bX_2$

for some positive(or negative) constants a, b. Let θ be the dual of X_1 with respect to g. If we put $s = a/|a| = \pm 1$ and

(13)
$$\overline{X}_1 = s\sqrt{a/b}X_1$$
, $\overline{X}_2 = sX_2$, $\overline{X}_3 = sX_3$,

(14)
$$\bar{g} = g + \frac{b-a}{a} \theta \otimes \theta ,$$

then (\overline{X}_i) is an orthonormal frame such that

(15)
$$[\bar{X}_1, \bar{X}_2] = 0$$
, $[\bar{X}_2, \bar{X}_3] = \sqrt{ab}\bar{X}_1$, $[\bar{X}_3, \bar{X}_1] = \sqrt{ab}\bar{X}_2$.

Proof. It can be proved by a simple calculation. **Lemma 2.6.** Assume that (X_i) satisfies

(16)
$$[X_1, X_2] = 0$$
, $[X_2, X_3] = aX_1$, $[X_3, X_1] = aX_2$

for some constant $a \neq 0$.

(i) X_3 is a Killing vector field on U. By ϕ_t we denote the local 1-parameter group of local isometries generated by X_3 .

(ii) The distribution defined by X_1 and X_2 is completely integrable. Let N be an integral submanifold such that $W = (\phi_t N, |t| \le \varepsilon) \subset U$, and define vector fields X_1^* and X_2^* on W by

(17)
$$(X_1^*)_{\phi_t x} = \cos at \ (X_1)_{\phi_t x} - \sin at \ (X_2)_{\phi_t x} ,$$

(18)
$$(X_2^*)_{\phi_t x} = \sin at \ (X_1)_{\phi_t x} + \cos at \ (X_2)_{\phi_t x} ,$$

470

for $x \in N$ and $\phi_t x \in W$. Then $(X_1^*, X_2^*, X_3^* = X_3)$ is an orthonormal frame with respect to g such that

(19)
$$[X_i^*, X_j^*] = 0, \quad i, j = 1, 2, 3.$$

Proof. By (16) we can verify that $(L_{X_3}g)(X_i, X_j) = g([X_3, X_i], X_j) + g(X_i, [X_3, X_j]) = 0$, so that X_3 is a Killing vector field. From $[X_1, X_2] = 0$ it follows that the distribution (X_1, X_2) is completely integrable. Therefore we can choose an integral submanifold N and a positive number ε so that $W \subset U$. Rewrite (17) and (18) as

(17)'
$$X_1^* = f X_1 - h X_2,$$

(18)'
$$X_2^* = hX_1 + fX_2.$$

Then $X_1f = X_1h = X_2f = X_2h = 0$. Next we have $X_3f = -ah$, because $(X_3f)_{\phi_t x} = d(\cos at)/dt = -a \sin at = -ah_{\phi_t x}$. Similarly $X_3h = af$. Then by (16) we can prove (19).

Proof of Theorem C. By Lemma 2.6 the given orthonormal frame (X_i) on U can be changed to an orthonormal frame (X_i^*) satisfying (19) with respect to g on W. By Theorem B, (W, g) is locally flat. Since for each point p of U we can choose W(p), (U, g) is locally flat.

Proof of Theorem C^{*}. Lemma 2.5 and Theorem C give a proof of Theorem C^{*}.

3. Tangent bundles of Kählerian manifolds and proof of Theorem D

Let (M, g) be an *m*-dimensional Riemannian manifold, and *TM* its tangent bundle $(\pi: TM \to M)$. For a coordinate neighborhood $(U, x^i, i = 1, \dots, dim M = m)$ in *M* we have the corresponding natural coordinate neighborhood $(\pi^{-1}U, x^i, y^i)$ in *TM*, where $(x^i, y^i) = y^r \partial/\partial x^r$. By $(x^i, y^i; V^i, W^i)$ we denote the vector field on *TM* (or the tangent vector) such that $V^r \partial/\partial x^r + W^r \partial/\partial y^r$. Let Γ_{jk}^i be the Christoffel symbols of (M, g). Then the geodesic flow vector field *F* is given by

(20)
$$F = (x^{i}, y^{i}; y^{i}, -\Gamma_{rs}^{i}y^{r}y^{s}) .$$

Let $X = (X^i)$ be a vector field on M (or a tangent vector). Then we define vector fields on TM (or tangent vectors at (x, y)) X^* and X^v by

(21)
$$X^* = (x^i, y^i; X^i, -\Gamma^i_{rs} y^r y^s) ,$$

(22)
$$X^{v} = (x^{i}, y^{i}; 0, X^{i}) .$$

The Sasaki metric g^s on TM is characterized by

SHÛKICHI TANNO

(23)
$$g^{S}(X^{*}, Y^{*}) = g(X, Y) \cdot \pi , \quad g^{S}(X^{*}, Y^{v}) = 0 ,$$
$$g^{S}(X^{v}, Y^{v}) = g(X, Y) \cdot \pi$$

for all vector fields X, Y on M (or tangent vectors at each point). Let $A = (A_j^i)$ be a (1, 1)-tensor field on M, and define vector fields A^* and A^v on TM by (cf. [5], [6])

(24)
$$A^* = (x^i, y^i; A^i_r y^r, -\Gamma^i_{ru} A^u_s y^r y^s) ,$$

(25)
$$A^{v} = (x^{i}, y^{i}; 0, A^{i}_{r}y^{r})$$
.

Denote the 0-section in TM by (M). Let (M, g, J) be a Kählerian manifold with an almost complex structure tensor J and a Kählerian metric g. Then TM - (M) admits a 3-dimensional distribution $D = (F, J^*, J^v)$. F depends on g, J^v on J, and J^* on g and J. Therefore D reflects geometric property of (M, g, J) in the tangent bundle TM.

The normal vector to each tangent sphere bundle $T_u M$ is given by $N_{(x,y)} = (x^i, y^i; 0, y^i)$. We see that J^v, J^*, F, N are orthogonal, since

$$egin{array}{lll} J^v_{(x,y)} &= (Jy)^v_{(x,y)} \;, & J^*_{(x,y)} &= (Jy)^*_{(x,y)} \;, \ F_{(x,y)} &= (y)^*_{(x,y)} \;, & N_{(x,y)} &= (y)^v_{(x,y)} \;. \end{array}$$

Therefore, J^v , J^* and F are tangent to each $T_u M$.

Lemma 3.1. For J^v , F, J^* we have

(26)
$$[J^v, F] = J^*$$
,

(27)
$$[F, J^*] = (x^i, y^i; 0, R^i_{rks} J^k_t y^r y^s y^t) ,$$

(28)
$$[J^*, J^v] = F$$
,

where $(R^{i}_{rks}\partial/\partial x^{i}) = R(\partial/\partial x^{k}, \partial/\partial x^{s})\partial/\partial x^{r}$.

Proof. We obtain these equations from direct calculations, using $J_r^i J_j^r = -\delta_i^i$ and $\nabla_r J_i^i = 0$. q.e.d.

A Kählerian manifold (M, g, J) is of constant holomorphic sectional curvature at x if and only if R(X, JX)X is proportional to JX for any tangent vector X at x (cf. Tanno [4]). Therefore $D = (F, J^*, J^v)$ is completely integrable, if and only if $[F, J^*]$ is proportional to J^v , that is, (M, g, J) is of constant holomorphic sectional curvature at each point. In this case we have

(29)
$$[F, J^*] = Hg(y, y)J^v$$
,

where $H = g(R(y, Jy)Jy, y)/g(y, y)^2$.

Proof of Theorem D. Since dim M = 2, the almost complex structure tensor J (which gives the $\frac{1}{2}\pi$ -rotation of tangent vectors) and g define a Kählerian structure on M. Since (M, g) is of constant curvature K, we have

472

 $[J^v, F] = J^*$, $[F, J^*] = Ku^2 J^v$, $[J^*, J^v] = F$,

where $u^2 = g(y, y)$. Then

$$(X_1 = J^v/u, X_2 = F/u, X_3 = J^*/u)$$

is an orthonormal frame on $(T_u M, g^s)$ and satisfies (2) with a = Ku, b = c = 1/u. Applying Theorem B* we obtain Theorem D.

Corollary 3.2. Let $S^2(K)$ be the Euclidean 2-sphere of constant curvature K. Then $(T_u S^2(K), G^S)$, $u = 1/\sqrt{K}$, is isometric to a real projective 3-space of constant curvature $\frac{1}{4}K$.

Proof. This follows from Theorem D and the fact that $T_u S^2$ is topologically a real projective space (cf. [2]).

Theorem E. Let (M, g, J) be a Kählerian manifold of dimension ≥ 4 . Then the canonical distribution $D = (F, J^*, J^v)$ on TM - (M) is completely integrable if and only if (M, g, J) is of constant holomorphic sectional curvature H.

Furthermore, $g^{s}([F, J^{*}], J^{v}) = Hg(y, y)^{2}$ holds, and hence H is positive if and only if $g^{s}([F, J^{*}], J^{v})$ is positive. In this case, if (M, g) is complete, then (M, g, J) is a complex projective space with the Fubini-Study metric: $(CP^{n}, g, J, H) = (CP^{n}, H), m = 2n$.

Let $L(x_0, y_0)$ be the integral submanifold of D passing through a point (x_0, y_0) of $T(CP^n, H)$ such that $g(y_0, y_0) = u^2$. Then $\pi L(x_0, y_0)$ is a complex projective line (CP^1, H) , $L(x_0, y_0)$ is the tangent sphere bundle of (CP^1, H) (consisting of tangent vectors of length u), and $L(x_0, y_0)$ with the induced metric from g^s is a 3-dimensional real projective space with property (7).

We prepare two lemmas.

Lemma 3.3. The integral curve $E_t(x_0, y_0)$ of J^v passing through a point (x_0, y_0) of TM is given by

(30)
$$E_t(x_0, y_0) = (x_0, \cos ty_0 + \sin tJy_0) .$$

Proof. In a local coordinate, we have

$$\frac{dE_t(x_0, y_0)}{dt} = (x_0^i, \cos ty_0^i + \sin tJ_r^i y_0^r; 0, -\sin ty_0^i + \cos tJ_r^i y_0^r),$$

which is identical with the local expression of J^{v} at $E_{t}(x_{0}, y_{0})$.

Lemma 3.4. Let $L(x_0, y_0)$ be the integral submanifold of D passing through a point (x_0, y_0) of $T(CP^n, H)$. Then $\pi L(x_0, y_0) = (CP^1, H)$, and $L(x_0, y_0)$ is the tangent sphere bundle of (CP^1, H) .

Proof. Since F is the geodesic flow vector field, the projection of each integral curve of F is a geodesic in (CP^n, H) . By Lemma 3.3, $L(x_0, y_0)$ contains a circle (30) in the fiber over x_0 . This means that the tangent space to $\pi L(x_0, y_0)$ at x_0 is a holomorphic plane (y_0, Jy_0) . All geodesics passing through x_0 and

SHÛKICHI TANNO

tangent to (y_0, Jy_0) define a complex projective line (CP^1, H) .

Proof of Theorem E. The first part follows from the statement between the proofs of Lemma 3.1 and Theorem D, and the fact that a Kählerian manifold is of constant holomorphic sectional curvature if it is of constant holomorphic sectional curvature at each point for $m \ge 4$.

The second part follows from (29) and the well known fact that a Kählerian space form of positive holomorphic sectional curvature H is (CP^n, H) .

The last part follows from Lemma 3.4 and Theorem D.

Remark. From Lemma 3.1 we see that if (M, g) is a 2-dimensional locally flat Riemannian manifold, then (T_uM, g^s) has a global orthonormal frame $(X_1 = F/u, X_2 = J^*/u, X_3 = J^v/u)$ satisfying (4) with a = 1/u. In particular, (T_uM, g^s) is locally flat for each u.

References

- J. E. D'Atri & H. K. Nickerson, The existence of spetial orthonormal frames, J. Differential Geometry 2 (1968) 393-409.
- W. Klingenberg & S. Sasaki, On the tangent sphere bundle of a 2-sphere, Tôhoku Math. J. 27 (1975) 49-56.
- [3] S. Sasaki, Differential geometry of tangent bundles. I, II, Tôhoku Math. J. 10 (1958) 338–354, 14 (1962) 146–155.
- [4] S. Tanno, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973) 190-201.
- [5] —, Infinitesimal isometries on the tangent bundles with complete lift metric, Tensor 28 (1974) 139–144.
- [6] —, Killing vectors and geodesic flow vectors on tangent bundles, J. Reine Angew. Math 282 (1976) 162–171.

TÔHOKU UNIVERSITY

474