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ORTHONORMAL FRAMES ON 3-DIMENSIONAL
RIEMANNIAN MANIFOLDS

SHUKICHI TANNO

1. Introduction

Let (M, g) be a Riemannian manifold. An orthonormal frame (X;,i = 1,2,
.++,m = dim M) on an open set U of M is called a Killing frame if each X,
is a Killing vector field on U = (U, g = g|U). D’ Atri and Nickerson [1] proved
that if (X,) is a Killing frame on (U, g), then (U, g) is locally symmetric. It is
also proved that such a space (U, g) is of nonnegative curvature.

In this paper we prove

Theorem A. If a 3-dimensional Riemannian manifold (M,g) admits a
Killing frame (X;) on an open set U, then (U, g) is of nonnegative constant
curvature.

Next we study orthonormal frames satisfying some additional conditions.

Theorem B. Let (M, g) be a 3-dimensional Riemannian manifold, and (X;)
an orthonormal frame on an open set U of M such that

@) [X, X,] =aX,, [X,X,]=aX,, [X,X]=aX,

for some constant a. Then (X,) is a Killing frame, and (U, g) is of constant
curvature at.

Theorem B for the case a # 0 follows from the next more general Theorem
B*.

Theorem B*. Let (M, g) be a 3-dimensional Riemannian manifold, and
(X,) an orthonormal frame on an open set U of M such that

(2) [Xl’ XZ] = CX3 5 [Xz, Xs] = aXl 5 [X3, Xl] = sz

for some positive (or negative) constants a, b,c. Let  and + be the 1-forms
on U which are the duals of X, and X, with respect to g. Then U admits a
Riemannian metric g of constant curvature 1 such that

b —
b

a—=¢c¢

Q06 + v .

(3) glU="2¢g1
ab

Theorem C. Let (M, g) be a 3-dimensional Riemannian manifold, and (X ;)
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an orthonormal frame on U such that
(4) X, X;] =0, [X,X]=aX,, [X,;X]=aX,

for some constant a. Then X, is a Killing vector field on U, and (U, g) is
locally flat.

Theorem C*. Let (M, g) be a 3-dimensional Riemannian manifold, and
(X,) an orthonormal frame on U such that

(5) [X, X,] =0, [X,X]=aX,, [X,X]=D5bX,

for some positive (or negative) constants a,b. Let 6 be the 1-form dual to X,
with respect to g. Then U admits a flat metric g such that

(6) glU=2+ ”;bo@w.

An interesting application of Theorem B* is given on the tangent sphere
bundles of a 2-dimensional Riemannian manifold of constant curvature.

Theorem D. Let (M, g) be a 2-dimensional oriented Riemannian manifold
of constant curvature K > 0, and (T ,M, g5) the tangent sphere bundle (con-
sisting of tangent vectors of length u) with the induced metric from the Sasaki
metric g5 of the tangent bundle TM. Let J be the natural almost complex
structure tensor on M. Then J* and J* (defined by (24) and (25)) are vector
fields on TM which are tangent to each tangent sphere bundle T,M. Let F be
the geodesic flow vector field, which is also tangent to T,M. Then on (T ,M, g%)
we have the global orthonormal frame (X, = J°[u, X, = Flu, X, = J*|u)
which satisfies (2) with a = Ku, b = ¢ = 1/u. Therefore T,M admits a
Riemannian metric g of constant curvature 1 such that

4_  Kuw—1
7 SITM=-"5+ -2 " -60®96,
(7) g°| 2t ks

where @ is the 1-form dual to J°/u on (T, M, g5).

In particular, (T M, g5) with u* = 1/K is of constant curvature 1K.

As 'a corollary, if we put K =1 and u =1, we have a theorem of
Klingenberg and Sasaki [2] that the tangent unit sphere bundle of a 2-dimen-
sional sphere of constant curvature 1 is a real projective 3-space of constant
curvature %.

2. Proofs of Theorems A, B, B*, C and C*

Denote by I the Riemannian connection of (M, g), and by R the Riemannian
curvature tensor
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RX,Y)Z =VilVyZ — VeV 1xZ — Vix i Z ,

where X, Y, Z are vector fields on M. For our purpose the following lemma
is useful.

Lemma 2.1 (D’Atri and Nickerson [1, proof of Lemma 3.4]). For a Killing
frame (X,) on U we have

(8) 4R(X;, X)X ; = —[[X,, X,], X1 .

From now on in this section we assume that (M, g) is a 3-dimensional
Riemannian manifold and (U, g = g|U) is an open set where an orthonormal
frame (X, i = 1,2, 3) is defined.

Lemma 2.2, Assume that [X,, X,] = cX,, [X,, X,;] = aX,, [X,, X|] = bX,
hold for some positive (or negative) constants a, b, c. Let § and + be the duals
of X, and X, with respect to g. If we put s = a/la| = +1 and

2s
vbe

(10 4g = abg + b(c — )0 ® 0 + alc — )V Q@+ ,

(9) A71= X1a X’2=—_—X2, Ysz—

then we have a new orthonormal frame (X,) with respect to g such that
11 [X:nj;z] =2X,3, [72,73]2271, [‘YS?YI] =2}?2-

Proof. By the assumption on a, b, ¢, the tensor g defined by (10) is a
Riemannian metric on U. Then it is easy to verify the required relations.
Lemma 2.3. If the relations

(12) [X,, X,] = aX,, [X,, Xl =aX,, [X;X|]=aX,

hold on U for some constant a, then each X, is a Killing vector field on U.
Proof. 1t is easy to verify that Ly.g = O by the following relations:

0 = Lx,(8(X;, X))
= (Lx @)X, Xp) + 8([X,, X1, X)) + 8(X;, [X, Xi])

where Ly, denotes the Lie derivation with respect to X,.

Lemma 2.4. Let (X,) be a Killing frame on U. Then we have a constant
a such that (12) holds.

Proof. Since X;,i = 1,2, 3, are orthonormal Killing vector fields, we have
gLy X,, X)) = 0 = g(Lg,X,, X,), that is, [X,, X,] = cX, for some function ¢
on U. However, since X, and cX, are both Killing vector fields, ¢ must be
constant by a classical result. Similarly, [X,, X;] = aX, and [X,, X,] = bX,
hold for some constants a and b. By
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0 = (Lx8)(Xy, Xy) = g([X), X,], X)) + 8(X,, [X,, Xi])

we have b = c. Similarly, a = b. Hence Lemma 2.4 is proved.
Proof of Theorem A. Let (X;) be a Killing frame on U. Then (X)) satisfies
(12) by Lemma 2.4. Using Lemma 2.1 we get

4g(R(X,, X)X,, X)) = —g([aX,, X,], X)) =a*.

Changing indices we see that (U, g) is of constant curvature 1a’. Here we note
that (1) is invariant under the rotation (X,) — (a7X,), a € SO(3).

Proof of Theorem B. This follows from Lemma 2.3 and Theorem A.

Proof of Theorem B*. For a given orthonormal frame (X,) on U, we define
a new metric g and a new orthonormal frame (X;) with respect to g by (10)
and (9) in Lemma 2.2. Then the relations (11) hold. By Theorem B, g is of
constant curvature 1. Hence (3) and (10) are equivalent.

Lemma 2.5. Assume that (X,) satisfies

[XI:XZ] =0 ’ [Xza Xs] = aX1 ) [Xs, X1] == sz

for some positive( or negative) constants a,b. Let § be the dual of X, with
respect to g. If we put s = a/|a| = +1 and

13) X, =sva/bX,, X, =sX,, X,=sX,,

b—a
a

(14) g§=8+ R0,

then (X;) is an orthonormal frame such that
15) [X,X,]=0, [X,X,]=+abX,, I[X,X,]=+abX,.

Proof. It can be proved by a simple calculation.
Lemma 2.6. Assume that (X)) satisfies

(16) [Xn Xz] =0 s [Xza Xs] = aXl 5 [X3, Xl] = aXZ

for some constant a # 0.

(1) X, is a Killing vector field on U. By ¢, we denote the local 1-parameter
group of local isometries generated by X,.

(i) The distribution defined by X, and X, is completely integrable. Let N
be an integral submanifold such that W = (¢,N, |t| < e) C U, and define
vector fields X¥ and X} on W by

amn (X¥),,. = cos at (X)),,, — sinat (X,),,
(18) (X¥),, = sinat (X,),,, + cosat (X,);,,
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for x e N and ¢,x e W. Then (XF, X¥, X§ = X,) is an orthonormal frame with
respect to g such that

Proof. By (16) we can verify that (Lx9)(X,;, X;) = g([X,, X,], X)) +
8(X;, [X;, X;]) = 0, so that X is a Killing vector field. From [X,, X,] =0 it
follows that the distribution (X, X,) is completely integrable. Therefore we
can choose an integral submanifold N and a positive number ¢ so that W C U.
Rewrite (17) and (18) as

a7y X¥ =fX, — hX,,
asy X¥ = hX, + {X, .

Then X,f = X,h = X,f = X,h = 0. Next we have X,f = —ah, because
(X:f),,» = d(cos at) /dt = —asin at = —ah,,,. Similarly X;h = af. Then by
(16) we can prove (19).

Proof of Theorem C. By Lemma 2.6 the given orthonormal frame (X,)
on U can be changed to an orthonormal frame (X¥) satisfying (19) with respect
to g on W. By Theorem B, (W, g) is locally flat. Since for each point p of U
we can choose W(p), (U, g) is locally flat.

Proof of Theorem C*. Lemma 2.5 and Theorem C give a proof of
Theorem C*.

3. Tangent bundles of Kéhlerian manifolds and proof of Theorem D

Let (M, g) be an m-dimensional Riemannian manifold, and TM its tangent
bundle (z: TM — M). For a coordinate neighborhood (U,x% i=1, ...,
dim M = m) in M we have the corresponding natural coordinate neighborhood
(="'U, x%, y*) in TM, where (x¢, y%) = y"d/ox". By (x%, y*; Vi, W) we denote
the vector field on TM (or the tangent vector) such that V7d/ox™ + W73/ay".
Let I'i; be the Christoffel symbols of (M, g). Then the geodesic flow vector

field F is given by
(20) F = (x%y'; ¥4 —Ty"y") .

Let X = (X?) be a vector field on M (or a tangent vector). Then we define
vector fields on TM (or tangent vectors at (x,y)) X* and X° by

21 X* = (xt, yt; Xt —Tiy™y®) ,
(22) X° = (x%,y*;0,X%) .

The Sasaki metric g5 on TM is characterized by
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gS(X*s Y*) = g(X3 Y)ﬂ s gS(X*a Yv) =0 ’

(23) /
gS(XD’ YU) = g(X7 Y)n'

for all vector fields X, Y on M (or tangent vectors at each point). Let 4 =
(A4%) be a (1, 1)-tensor field on M, and define vector fields 4* and A® on TM

by (cf. [51, [6])
24) A* = (xt,yty ALy, —T'L, AYy"y)
(25) A" = (x%,y";0,4Ly") .

Denote the O-section in TM by (M). Let (M, g,J) be a Kihlerian manifold
with an almost complex structure tensor J and a Kihlerian metric g. Then
TM — (M) admits a 3-dimensional distribution D = (F, J*, J*). F depends on
g,J° on J, and J* on g and J. Therefore D reflects geometric property of
(M, g,J) in the tangent bundle TM.

The normal vector to each tangent sphere bundle T,M is given by N, ,, =
(xt,¥*; 0,¥%. We see that J°, J*, F, N are orthogonal, since

oy = (Jy)l(’x,y) > J?;,w = (]y)}‘;,m >
Fioyy = 0w > Ny = Wi -

Therefore, J°, J* and F are tangent to each T, M.
Lemma 3.1. For J°, F,J* we have

(26) [Je, Fl =J*,
(27) [Fa J*] = (xi3 }”; O’ Rirks]fyrysyt) ’
28) U*J1=F,

where (R, ,,0/0x") = R(9/6x*, 9/0x*)d[ox".

Proof. We obtain these equations from direct calculations, using JiJ; =
—d&and V,J; = 0. q.e.d.

A Kihlerian manifold (M, g, J) is of constant holomorphic sectional curva-
ture at x if and only if R(X, JX)X is proportional to JX for any tangent vector
X at x (cf. Tanno [4]). Therefore D = (F, J*, J?) is completely integrable, if
and only if [F, J*] is proportional to J°, that is, (M, g,J) is of constant holo-
morphic sectional curvature at each point. In this case we have

(29) [F,J*] = Hgy, »J" ,

where H = g(R(y, J¥)]y, y)/8(y, y)*.

Proof of Theorem D. Since dim M = 2, the almost complex structure
tensor J (which gives the Ilz-rotation of tangent vectors) and g define a
Kihlerian structure on M. Since (M, g) is of constant curvature K, we have
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Je,Fl=J*, [F,J*]=KuJ*, [J*J]]=F,
where u? = g(y,y). Then
X, =J0u, X, =F|u, X, = J*|u)

is an orthonormal frame on (T, M, g5) and satisfies (2) with a = Ku, b = ¢
= 1/u. Applying Theorem B* we obtain Theorem D.

Corollary 3.2. Let SK) be the Euclidean 2-sphere of constant curvature
K. Then (T, S¥K), G5), u = 1/+/K, is isometric to a real projective 3-space
of constant curvature 1K.

Proof. This follows from Theorem D and the fact that T',S* is topologically
a real projective space (cf. [2]).

Theorem E. Let (M, g,J) be a Kdhlerian manifold of dimension > 4.
Then the canonical distribution D = (F,J*,J%) on TM — (M) is completely
integrable if and only if (M, g,J) is of constant holomorphic sectional curva-
ture H.

Furthermore, g5([F,J*]1,J*) = Hg(y,y)? holds, and hence H is positive if
and only if g5([F, J*],J?) is positive. In this case, if (M, g) is complete, then
(M, g,]) is a complex projective space with the Fubini-Study metric: (CP", g,
J,H) = (CP*, H), m = 2n.

Let L(x,,y,) be the integral submanifold of D passing through a point (x,, y,)
of T(CP*, H) such that g(y,, y,) = u®. Then zL(x,,y,) is a complex projective
line (CP', H), L(x,, y,) is the tangent sphere bundle of (CP', H) (consisting of
tangent vectors of length u), and L(x,, y,) with the induced metric from g5 is
a 3-dimensional real projective space with property (7).

We prepare two lemmas.

Lemma 3.3. The integral curve E,x,,y,) of J° passing through a point
(xy, o) of TM is given by

(30) E (X, ¥0) = (X, COS ty, + sin t]y,) .

Proof. In a local coordinate, we have

@%XQ = (x§, cos ty§ + sin tJiyy; 0, —sin 1y} + cos tJiy}) ,
which is identical with the local expression of J° at E,(x,, y,)-

Lemma 3.4. Let L(x,,y,) be the integral submanifold of D passing through
a point (x,, y,) of T(CP*, H). Then nL(x,,y,) = (CP', H), and L(x,,y,) is the
tangent sphere bundle of (CP!, H).

Proof. Since F is the geodesic flow vector field, the projection of each
integral curve of F is a geodesic in (CP*, H). By Lemma 3.3, L(x,, y,) contains
a circle (30) in the fiber over x,. This means that the tangent space to zL(x,, y,)
at x, is a holomorphic plane (y,, Jy,). All geodesics passing through x, and
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tangent to (,, Jy,) define a complex projective line (CP, H).

Proof of Theorem E. The first part follows from the statement between
the proofs of Lemma 3.1 and Theorem D, and the fact that a Ké#hlerian
manifold is of constant holomorphic sectional curvature if it is of constant
holomorphic sectional curvature at each point for m > 4.

The second part follows from (29) and the well known fact that a Kihlerian
space form of positive holomorphic sectional curvature H is (CP", H).

The last part follows from Lemma 3.4 and Theorem D.

Remark. From Lemma 3.1 we see that if (M, g) is a 2-dimensional locally
flat Riemannian manifold, then (T, M, g5) has a global orthonormal frame
X, =F/u, X, = J*|u, X, = J°/u) satisfying (4) with a = 1/u. In particular,
(T M, g5) is locally flat for each u.
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