ORTHONORMAL FRAMES ON 3-DIMENSIONAL RIEMANNIAN MANIFOLDS

SHÛKICHI TANNO

1. Introduction

Let (M, g) be a Riemannian manifold. An orthonormal frame ($X_{i}, i=1,2$, $\cdots, m=\operatorname{dim} M$) on an open set U of M is called a Killing frame if each X_{i} is a Killing vector field on $U=(U, g=g \mid U)$. D'Atri and Nickerson [1] proved that if (X_{i}) is a Killing frame on (U, g), then (U, g) is locally symmetric. It is also proved that such a space (U, g) is of nonnegative curvature.

In this paper we prove
Theorem A. If a 3-dimensional Riemannian manifold (M, g) admits a Killing frame $\left(X_{i}\right)$ on an open set U, then (U, g) is of nonnegative constant curvature.

Next we study orthonormal frames satisfying some additional conditions.
Theorem B. Let (M, g) be a 3-dimensional Riemannian manifold, and (X_{i}) an orthonormal frame on an open set U of M such that

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=a X_{3}, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=a X_{2} \tag{1}
\end{equation*}
$$

for some constant a. Then $\left(X_{i}\right)$ is a Killing frame, and (U, g) is of constant curvature $\frac{1}{4} a^{2}$.

Theorem B for the case $a \neq 0$ follows from the next more general Theorem B*.

Theorem B*. Let (M, g) be a 3-dimensional Riemannian manifold, and (X_{i}) an orthonormal frame on an open set U of M such that

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=c X_{3}, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=b X_{2} \tag{2}
\end{equation*}
$$

for some positive (or negative) constants a, b, c. Let θ and ψ be the 1 -forms on U which are the duals of X_{1} and X_{2} with respect to g. Then U admits a Riemannian metric \bar{g} of constant curvature 1 such that

$$
\begin{equation*}
g \left\lvert\, U=\frac{4}{a b} \bar{g}+\frac{a-c}{c} \theta \otimes \theta+\frac{b-c}{b} \psi \otimes \psi .\right. \tag{3}
\end{equation*}
$$

Theorem C. Let (M, g) be a 3-dimensional Riemannian manifold, and $\left(X_{i}\right)$

[^0]an orthonormal frame on U such that
\[

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=0, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=a X_{2} \tag{4}
\end{equation*}
$$

\]

for some constant a. Then X_{3} is a Killing vector field on U, and (U, g) is locally flat.

Theorem C*. Let (M, g) be a 3-dimensional Riemannian manifold, and $\left(X_{i}\right)$ an orthonormal frame on U such that

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=0, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=b X_{2} \tag{5}
\end{equation*}
$$

for some positive (or negative) constants a, b. Let θ be the 1 -form dual to X_{1} with respect to g. Then U admits a flat metric \bar{g} such that

$$
\begin{equation*}
g \left\lvert\, U=\bar{g}+\frac{a-b}{a} \theta \otimes \theta\right. \tag{6}
\end{equation*}
$$

An interesting application of Theorem B^{*} is given on the tangent sphere bundles of a 2-dimensional Riemannian manifold of constant curvature.

Theorem D. Let (M, g) be a 2-dimensional oriented Riemannian manifold of constant curvature $K>0$, and $\left(T_{u} M, g^{S}\right)$ the tangent sphere bundle (consisting of tangent vectors of length u) with the induced metric from the Sasaki metric g^{S} of the tangent bundle TM. Let J be the natural almost complex structure tensor on M. Then J^{*} and J^{v} (defined by (24) and (25)) are vector fields on TM which are tangent to each tangent sphere bundle $T_{u} M$. Let F be the geodesic flow vector field, which is also tangent to $T_{u} M$. Then on $\left(T_{u} M, g^{S}\right)$ we have the global orthonormal frame ($X_{1}=J^{v} / u, X_{2}=F / u, X_{3}=J^{*} / u$) which satisfies (2) with $a=K u, b=c=1 / u$. Therefore $T_{u} M$ admits a Riemannian metric \bar{g} of constant curvature 1 such that

$$
\begin{equation*}
g^{s} \left\lvert\, T_{u} M=\frac{4}{K} \bar{g}+\frac{K u^{2}-1}{K u^{2}} \theta \otimes \theta\right., \tag{7}
\end{equation*}
$$

where θ is the 1-form dual to J^{v} / u on $\left(T_{u} M, g^{S}\right)$.
In particular, $\left(T_{u} M, g^{S}\right)$ with $u^{2}=1 / K$ is of constant curvature $\frac{1}{4} K$.
As a corollary, if we put $K=1$ and $u=1$, we have a theorem of Klingenberg and Sasaki [2] that the tangent unit sphere bundle of a 2-dimensional sphere of constant curvature 1 is a real projective 3 -space of constant curvature $\frac{1}{4}$.

2. Proofs of Theorems $\mathbf{A}, \mathbf{B}, \mathbf{B}^{*}, \mathbf{C}$ and \mathbf{C}^{*}

Denote by ∇ the Riemannian connection of (M, g), and by R the Riemannian curvature tensor

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z,
$$

where X, Y, Z are vector fields on M. For our purpose the following lemma is useful.

Lemma 2.1 (D'Atri and Nickerson [1, proof of Lemma 3.4]). For a Killing frame $\left(X_{i}\right)$ on U we have

$$
\begin{equation*}
4 R\left(X_{k}, X_{l}\right) X_{j}=-\left[\left[X_{k}, X_{l}\right], X_{j}\right] \tag{8}
\end{equation*}
$$

From now on in this section we assume that (M, g) is a 3-dimensional Riemannian manifold and ($U, g=g \mid U$) is an open set where an orthonormal frame ($X_{i}, i=1,2,3$) is defined.

Lemma 2.2. Assume that $\left[X_{1}, X_{2}\right]=c X_{3},\left[X_{2}, X_{3}\right]=a X_{1},\left[X_{3}, X_{1}\right]=b X_{2}$ hold for some positive (or negative) constants a, b, c. Let θ and ψ be the duals of X_{1} and X_{2} with respect to g. If we put $s=a /|a|= \pm 1$ and

$$
\begin{gather*}
\bar{X}_{1}=\frac{2 s}{\sqrt{b c}} X_{1}, \quad \bar{X}_{2}=\frac{2 s}{\sqrt{a c}} X_{2}, \quad \bar{X}_{3}=\frac{2 s}{\sqrt{a b}} X_{3}, \tag{9}\\
4 \bar{g}=a b g+b(c-a) \theta \otimes \theta+a(c-b) \psi \otimes \psi, \tag{10}
\end{gather*}
$$

then we have a new orthonormal frame (\bar{X}_{i}) with respect to \bar{g} such that

$$
\begin{equation*}
\left[\bar{X}_{1}, \bar{X}_{2}\right]=2 \bar{X}_{3}, \quad\left[\bar{X}_{2}, \bar{X}_{3}\right]=2 \bar{X}_{1}, \quad\left[\bar{X}_{3}, \bar{X}_{1}\right]=2 \bar{X}_{2} . \tag{11}
\end{equation*}
$$

Proof. By the assumption on a, b, c, the tensor \bar{g} defined by (10) is a Riemannian metric on U. Then it is easy to verify the required relations.

Lemma 2.3. If the relations

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=a X_{3}, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=a X_{2} \tag{12}
\end{equation*}
$$

hold on U for some constant a, then each X_{i} is a Killing vector field on U.
Proof. It is easy to verify that $L_{X_{i}} g=0$ by the following relations:

$$
\begin{aligned}
0 & =L_{X_{i}}\left(g\left(X_{j}, X_{k}\right)\right) \\
& =\left(L_{X_{i}} g\right)\left(X_{j}, X_{k}\right)+g\left(\left[X_{i}, X_{j}\right], X_{k}\right)+g\left(X_{j},\left[X_{i}, X_{k}\right]\right),
\end{aligned}
$$

where $L_{X_{i}}$ denotes the Lie derivation with respect to X_{i}.
Lemma 2.4. Let $\left(X_{i}\right)$ be a Killing frame on U. Then we have a constant a such that (12) holds.

Proof. Since $X_{i}, i=1,2,3$, are orthonormal Killing vector fields, we have $g\left(L_{X_{1}} X_{2}, X_{1}\right)=0=g\left(L_{X_{1}} X_{2}, X_{2}\right)$, that is, $\left[X_{1}, X_{2}\right]=c X_{3}$ for some function c on U. However, since X_{3} and $c X_{3}$ are both Killing vector fields, c must be constant by a classical result. Similarly, $\left[X_{2}, X_{3}\right]=a X_{1}$ and $\left[X_{3}, X_{1}\right]=b X_{2}$ hold for some constants a and b. By

$$
0=\left(L_{X_{1}} g\right)\left(X_{2}, X_{3}\right)=g\left(\left[X_{1}, X_{2}\right], X_{3}\right)+g\left(X_{2},\left[X_{1}, X_{3}\right]\right),
$$

we have $b=c$. Similarly, $a=b$. Hence Lemma 2.4 is proved.
Proof of Theorem A. Let (X_{i}) be a Killing frame on U. Then (X_{i}) satisfies (12) by Lemma 2.4. Using Lemma 2.1 we get

$$
4 g\left(R\left(X_{1}, X_{2}\right) X_{2}, X_{1}\right)=-g\left(\left[a X_{3}, X_{2}\right], X_{1}\right)=a^{2}
$$

Changing indices we see that (U, g) is of constant curvature $\frac{1}{4} a^{2}$. Here we note that (1) is invariant under the rotation $\left(X_{i}\right) \rightarrow\left(\alpha_{i}^{r} X_{r}\right), \alpha \in S O$ (3).

Proof of Theorem B. This follows from Lemma 2.3 and Theorem A.
Proof of Theorem B^{*}. For a given orthonormal frame (X_{i}) on U, we define a new metric \bar{g} and a new orthonormal frame (\bar{X}_{i}) with respect to \bar{g} by (10) and (9) in Lemma 2.2. Then the relations (11) hold. By Theorem B, \bar{g} is of constant curvature 1 . Hence (3) and (10) are equivalent.

Lemma 2.5. Assume that $\left(X_{i}\right)$ satisfies

$$
\left[X_{1}, X_{2}\right]=0, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=b X_{2}
$$

for some positive(or negative) constants a, b. Let θ be the dual of X_{1} with respect to g. If we put $s=a /|a|= \pm 1$ and

$$
\begin{gather*}
\bar{X}_{1}=s \sqrt{a / b} X_{1}, \quad \bar{X}_{2}=s X_{2}, \quad \bar{X}_{3}=s X_{3}, \tag{13}\\
\bar{g}=g+\frac{b-a}{a} \theta \otimes \theta, \tag{14}
\end{gather*}
$$

then $\left(\bar{X}_{i}\right)$ is an orthonormal frame such that

$$
\begin{equation*}
\left[\bar{X}_{1}, \bar{X}_{2}\right]=0, \quad\left[\bar{X}_{2}, \bar{X}_{3}\right]=\sqrt{a b} \bar{X}_{1}, \quad\left[\bar{X}_{3}, \bar{X}_{1}\right]=\sqrt{a b} \bar{X}_{2} . \tag{15}
\end{equation*}
$$

Proof. It can be proved by a simple calculation.
Lemma 2.6. Assume that $\left(X_{i}\right)$ satisfies

$$
\begin{equation*}
\left[X_{1}, X_{2}\right]=0, \quad\left[X_{2}, X_{3}\right]=a X_{1}, \quad\left[X_{3}, X_{1}\right]=a X_{2} \tag{16}
\end{equation*}
$$

for some constant $a \neq 0$.
(i) $\quad X_{3}$ is a Killing vector field on U. By ϕ_{t} we denote the local 1-parameter group of local isometries generated by X_{3}.
(ii) The distribution defined by X_{1} and X_{2} is completely integrable. Let N be an integral submanifold such that $W=\left(\phi_{t} N,|t|<\varepsilon\right) \subset U$, and define vector fields X_{1}^{*} and X_{2}^{*} on W by

$$
\begin{align*}
\left(X_{1}^{*}\right)_{\phi_{t} x} & =\cos a t\left(X_{1}\right)_{\phi_{t} x}-\sin a t\left(X_{2}\right)_{\phi_{t} x} \tag{17}\\
\left(X_{2}^{*}\right)_{\phi_{t} x} & =\sin a t\left(X_{1}\right)_{\phi_{t} x}+\cos a t\left(X_{2}\right)_{\phi_{t} x} \tag{18}
\end{align*}
$$

for $x \in N$ and $\phi_{t} x \in W$. Then $\left(X_{1}^{*}, X_{2}^{*}, X_{3}^{*}=X_{3}\right)$ is an orthonormal frame with respect to g such that

$$
\begin{equation*}
\left[X_{i}^{*}, X_{j}^{*}\right]=0, \quad i, j=1,2,3 . \tag{19}
\end{equation*}
$$

Proof. By (16) we can verify that $\left(L_{X_{3}} g\right)\left(X_{i}, X_{j}\right)=g\left(\left[X_{3}, X_{i}\right], X_{j}\right)+$ $g\left(X_{i},\left[X_{3}, X_{j}\right]\right)=0$, so that X_{3} is a Killing vector field. From $\left[X_{1}, X_{2}\right]=0$ it follows that the distribution (X_{1}, X_{2}) is completely integrable. Therefore we can choose an integral submanifold N and a positive number ε so that $W \subset U$. Rewrite (17) and (18) as

$$
\begin{align*}
& X_{1}^{*}=f X_{1}-h X_{2}, \tag{17}\\
& X_{2}^{*}=h X_{1}+f X_{2} . \tag{18}
\end{align*}
$$

Then $X_{1} f=X_{1} h=X_{2} f=X_{2} h=0$. Next we have $X_{3} f=-a h$, because $\left(X_{3} f\right)_{\phi_{t} x}=d(\cos a t) / d t=-a \sin a t=-a h_{\phi_{t} x}$. Similarly $X_{3} h=a f$. Then by (16) we can prove (19).

Proof of Theorem C. By Lemma 2.6 the given orthonormal frame (X_{i}) on U can be changed to an orthonormal frame (X_{i}^{*}) satisfying (19) with respect to g on W. By Theorem $\mathrm{B},(W, g)$ is locally flat. Since for each point p of U we can choose $W(p),(U, g)$ is locally flat.

Proof of Theorem C*. Lemma 2.5 and Theorem C give a proof of Theorem C*.

3. Tangent bundles of Kählerian manifolds and proof of Theorem D

Let (M, g) be an m-dimensional Riemannian manifold, and $T M$ its tangent bundle $(\pi: T M \rightarrow M)$. For a coordinate neighborhood ($U, x^{i}, i=1, \cdots$, $\operatorname{dim} M=m)$ in M we have the corresponding natural coordinate neighborhood $\left(\pi^{-1} U, x^{i}, y^{i}\right)$ in $T M$, where $\left(x^{i}, y^{i}\right)=y^{r} \partial / \partial x^{r}$. By ($x^{i}, y^{i} ; V^{i}, W^{i}$) we denote the vector field on $T M$ (or the tangent vector) such that $V^{r} \partial / \partial x^{r}+W^{r} \partial / \partial y^{r}$. Let $\Gamma_{j k}^{i}$ be the Christoffel symbols of (M, g). Then the geodesic flow vector field F is given by

$$
\begin{equation*}
F=\left(x^{i}, y^{i} ; y^{i},-\Gamma_{r s}^{i} y^{r} y^{s}\right) . \tag{20}
\end{equation*}
$$

Let $X=\left(X^{i}\right)$ be a vector field on M (or a tangent vector). Then we define vector fields on $T M$ (or tangent vectors at $(x, y)) X^{*}$ and X^{v} by

$$
\begin{gather*}
X^{*}=\left(x^{i}, y^{i} ; X^{i},-\Gamma_{r s}^{i} y^{r} y^{s}\right), \tag{21}\\
X^{v}=\left(x^{i}, y^{i} ; 0, X^{i}\right) \tag{22}
\end{gather*}
$$

The Sasaki metric g^{S} on $T M$ is characterized by

$$
\begin{gather*}
g^{S}\left(X^{*}, Y^{*}\right)=g(X, Y) \cdot \pi, \quad g^{S}\left(X^{*}, Y^{v}\right)=0 \\
g^{S}\left(X^{v}, Y^{v}\right)=g(X, Y) \cdot \pi \tag{23}
\end{gather*}
$$

for all vector fields X, Y on M (or tangent vectors at each point). Let $A=$ (A_{j}^{i}) be a (1,1)-tensor field on M, and define vector fields A^{*} and A^{v} on $T M$ by (cf. [5], [6])

$$
\begin{gather*}
A^{*}=\left(x^{i}, y^{i} ; A_{r}^{i} y^{r},-\Gamma_{r u}^{i} A_{s}^{u} y^{r} y^{s}\right) \tag{24}\\
A^{v}=\left(x^{i}, y^{i} ; 0, A_{r}^{i} y^{r}\right) \tag{25}
\end{gather*}
$$

Denote the 0 -section in $T M$ by (M). Let (M, g, J) be a Kählerian manifold with an almost complex structure tensor J and a Kählerian metric g. Then $T M-(M)$ admits a 3-dimensional distribution $D=\left(F, J^{*}, J^{v}\right) . F$ depends on g, J^{v} on J, and J^{*} on g and J. Therefore D reflects geometric property of (M, g, J) in the tangent bundle $T M$.

The normal vector to each tangent sphere bundle $T_{u} M$ is given by $N_{(x, y)}=$ ($x^{i}, y^{i} ; 0, y^{i}$). We see that J^{v}, J^{*}, F, N are orthogonal, since

$$
\begin{aligned}
J_{(x, y)}^{v} & =(J y)_{(x, y)}^{v}, & J_{(x, y)}^{*}=(J y)_{(x, y)}^{*}, \\
F_{(x, y)}^{*} & =(y)_{(x, y)}^{*}, & N_{(x, y)}^{*}=(y)_{(x, y)}^{v}
\end{aligned}
$$

Therefore, J^{v}, J^{*} and F are tangent to each $T_{u} M$.
Lemma 3.1. For J^{v}, F, J^{*} we have

$$
\begin{align*}
& {\left[J^{v}, F\right]=J^{*} } \tag{26}\\
{\left[F, J^{*}\right]=} & \left(x^{i}, y^{i} ; 0, R_{r k s}^{i}{ }_{t}^{k} y^{r} y^{r} y^{s} y^{t}\right) \tag{27}\\
& {\left[J^{*}, J^{v}\right]=F } \tag{28}
\end{align*}
$$

where $\left(R_{r k s}^{i} \partial / \partial x^{i}\right)=R\left(\partial / \partial x^{k}, \partial / \partial x^{s}\right) \partial / \partial x^{r}$.
Proof. We obtain these equations from direct calculations, using $J_{r}^{i} J_{j}^{r}=$ $-\delta_{j}^{i}$ and $\nabla_{r} J_{j}^{i}=0 . \quad$ q.e.d.

A Kählerian manifold (M, g, J) is of constant holomorphic sectional curvature at x if and only if $R(X, J X) X$ is proportional to $J X$ for any tangent vector X at x (cf. Tanno [4]). Therefore $D=\left(F, J^{*}, J^{v}\right)$ is completely integrable, if and only if $\left[F, J^{*}\right]$ is proportional to J^{v}, that is, (M, g, J) is of constant holomorphic sectional curvature at each point. In this case we have

$$
\begin{equation*}
\left[F, J^{*}\right]=H g(y, y) J^{v} \tag{29}
\end{equation*}
$$

where $H=g(R(y, J y) J y, y) / g(y, y)^{2}$.
Proof of Theorem D. Since $\operatorname{dim} M=2$, the almost complex structure tensor J (which gives the $\frac{1}{2} \pi$-rotation of tangent vectors) and g define a Kählerian structure on M. Since (M, g) is of constant curvature K, we have

$$
\left[J^{v}, F\right]=J^{*}, \quad\left[F, J^{*}\right]=K u^{2} J^{v}, \quad\left[J^{*}, J^{v}\right]=F,
$$

where $u^{2}=g(y, y)$. Then

$$
\left(X_{1}=J^{v} / u, X_{2}=F / u, X_{3}=J^{*} / u\right)
$$

is an orthonormal frame on ($T_{u} M, g^{S}$) and satisfies (2) with $a=K u, b=c$ $=1 / u$. Applying Theorem B* we obtain Theorem D.

Corollary 3.2. Let $S^{2}(K)$ be the Euclidean 2-sphere of constant curvature K. Then $\left(T_{u} S^{2}(K), G^{s}\right), u=1 / \sqrt{K}$, is isometric to a real projective 3-space of constant curvature $\frac{1}{4} K$.

Proof. This follows from Theorem D and the fact that $T_{\psi} S^{2}$ is topologically a real projective space (cf. [2]).

Theorem E. Let (M, g, J) be a Kählerian manifold of dimension ≥ 4. Then the canonical distribution $D=\left(F, J^{*}, J^{v}\right)$ on $T M-(M)$ is completely integrable if and only if (M, g, J) is of constant holomorphic sectional curvature H.

Furthermore, $g^{S}\left(\left[F, J^{*}\right], J^{v}\right)=H g(y, y)^{2}$ holds, and hence H is positive if and only if $g^{S}\left(\left[F, J^{*}\right], J^{v}\right)$ is positive. In this case, if (M, g) is complete, then (M, g, J) is a complex projective space with the Fubini-Study metric: $\left(C P^{n}, g\right.$, $J, H)=\left(C P^{n}, H\right), m=2 n$.

Let $L\left(x_{0}, y_{0}\right)$ be the integral submanifold of D passing through a point $\left(x_{0}, y_{0}\right)$ of $T\left(C P^{n}, H\right)$ such that $g\left(y_{0}, y_{0}\right)=u^{2}$. Then $\pi L\left(x_{0}, y_{0}\right)$ is a complex projective line $\left(C P^{1}, H\right), L\left(x_{0}, y_{0}\right)$ is the tangent sphere bundle of $\left(C P^{1}, H\right)$ (consisting of tangent vectors of length u), and $L\left(x_{0}, y_{0}\right)$ with the induced metric from g^{s} is a 3-dimensional real projective space with property (7).

We prepare two lemmas.
Lemma 3.3. The integral curve $E_{t}\left(x_{0}, y_{0}\right)$ of J^{v} passing through a point $\left(x_{0}, y_{0}\right)$ of TM is given by

$$
\begin{equation*}
E_{t}\left(x_{0}, y_{0}\right)=\left(x_{0}, \cos t y_{0}+\sin t J y_{0}\right) . \tag{30}
\end{equation*}
$$

Proof. In a local coordinate, we have

$$
\frac{d E_{t}\left(x_{0}, y_{0}\right)}{d t}=\left(x_{0}^{i}, \cos t y_{0}^{i}+\sin t J_{r}^{i} y_{0}^{r} ; 0,-\sin t y_{0}^{i}+\cos t J_{r}^{i} y_{0}^{r}\right)
$$

which is identical with the local expression of J^{v} at $E_{t}\left(x_{0}, y_{0}\right)$.
Lemma 3.4. Let $L\left(x_{0}, y_{0}\right)$ be the integral submanifold of D passing through a point $\left(x_{0}, y_{0}\right)$ of $T\left(C P^{n}, H\right)$. Then $\pi L\left(x_{0}, y_{0}\right)=\left(C P^{1}, H\right)$, and $L\left(x_{0}, y_{0}\right)$ is the tangent sphere bundle of $\left(C P^{1}, H\right)$.

Proof. Since F is the geodesic flow vector field, the projection of each integral curve of F is a geodesic in $\left(C P^{n}, H\right)$. By Lemma 3.3, $L\left(x_{0}, y_{0}\right)$ contains a circle (30) in the fiber over x_{0}. This means that the tangent space to $\pi L\left(x_{0}, y_{0}\right)$ at x_{0} is a holomorphic plane $\left(y_{0}, J y_{0}\right)$. All geodesics passing through x_{0} and
tangent to $\left(y_{0}, J y_{0}\right)$ define a complex projective line $\left(C P^{1}, H\right)$.
Proof of Theorem E. The first part follows from the statement between the proofs of Lemma 3.1 and Theorem D, and the fact that a Kählerian manifold is of constant holomorphic sectional curvature if it is of constant holomorphic sectional curvature at each point for $m \geq 4$.

The second part follows from (29) and the well known fact that a Kählerian space form of positive holomorphic sectional curvature H is $\left(C P^{n}, H\right)$.

The last part follows from Lemma 3.4 and Theorem D.
Remark. From Lemma 3.1 we see that if (M, g) is a 2-dimensional locally flat Riemannian manifold, then $\left(T_{u} M, g^{S}\right)$ has a global orthonormal frame ($X_{1}=F / u, X_{2}=J^{*} / u, X_{3}=J^{v} / u$) satisfying (4) with $a=1 / u$. In particular, ($T_{u} M, g^{S}$) is locally flat for each u.

References

[1] J. E. D'Atri \& H. K. Nickerson, The existence of spetial orthonormal frames, J. Differential Geometry 2 (1968) 393-409.
[2] W. Klingenberg \& S. Sasaki, On the tangent sphere bundle of a 2-sphere, Tôhoku Math. J. 27 (1975) 49-56.
[3] S. Sasaki, Differential geometry of tangent bundles. I, II, Tôhoku Math. J. 10 (1958) 338-354, 14 (1962) 146-155.
[4] S. Tanno, Constancy of holomorphic sectional curvature in almost Hermitian manifolds, Kōdai Math. Sem. Rep. 25 (1973) 190-201.
[5] - Infinitesimal isometries on the tangent bundles with complete lift metric, Tensor 28 (1974) 139-144.
[6] -, Killing vectors and geodesic flow vectors on tangent bundles, J. Reine Angew. Math 282 (1976) 162-171.

[^0]: Communicated by K. Yano, December 27, 1974.

