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THE HOLONOMY RING ON THE LEAVES
OF FOLIATED MANIFOLDS

RONALD GOLDMAN

Introduction

Let F be a foliation on a manifold M, and let vF denote the normal bundle
of F. In [1] and [2], Bott exploited the existence of certain special foliation
connections on vF to prove the following results:

Theorem 1 (The vanishing theorem for foliations). If F is a q-codimen-
sional foliation, then the real Pontryagin ring of vF is trivial in dimensions
greater than 2q.

Theorem 2 (The obstruction theorem for foliations). Let M be an m-di-
mensional manifold, and let E be a subbundle of the tangent bundle T(M) of
dimension m — q. Then a necessary condition for E to be isomorphic to a
q-codimensional foliation on M is that the real Pontryagin ring of the quotient
bundle T(M)/E must be trivial in dimensions greater than 2q.

Now let L be a leaf of the foliation F, and let vL denote the normal bundle
of L in M. By pulling back the foliation connections of the bundle vF to the
bundle vL, we obtain a unique natural connection on vL, which we shall call
the leaf connection on vL. It can be shown that if KL is the curvature of the
leaf connection on vL, then KL = 0. Therefore parallel to Bott's theorems for
foliations, we have the following results for the leaves of foliated manifolds:

Theorem 3 (The vanishing theorem for leaves). If L is a leaf of a foliation,
then the real Pontryagin ring of vL is trivial.

Theorem 4 (The obstruction theorem for leaves). Let N be a connected
manifold and let j : N —• M be a 1-1 immersion. Then a necessary condition
for N to be an integral manifold of a foliation on M is that the real Pontryagin
ring of the normal vN of N in M must be trivial. In particular, a necessary
condition for N to be a leaf of a foliation on M is that the real Pontryagin ring
of the normal bundle vN must be trivial.

The vanishing of the real Pontryagin ring of vF in high dimensions led to
the construction of certain secondary characteristic classes for foliations [2,
p. 68]. Similarly, the vanishing of the real Pontryagin ring of vL leads to the
construction of certain secondary characteristic classes, called the holonomy
ring, on the leaves of foliations. In fact, a unified construction for both types
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of secondary characteristic classes is given by Kamber and Tondeur in [15],
[16] by using the more general concept of a foliated bundle.

Nevertheless, there is one very important difference between the secondary
foliation classes and the holonomy classes. The secondary foliation classes of
a foliation F are invariants of the homotopy class of F [2, p. 69]. However
even though the holonomy classes depend only on the choice of a foliation F
and a leaf L of F, these classes are not invariants of the homotopy class of F
because the leaves of F themselves are not homotopy invariants. Hence the
holonomy classes are often more sensitive than the secondary foliation classes
since they can distinguish between homotopic foliations.

Still, the holonomy ring and the secondary foliation classes are quite inti-
mately related as is shown by Shulman and Tischler in [23]. Moreover let Tq
denote the pseudogroup of all local diffeomorphisms of Rq, and a(Tq) the Lie
algebra of formal Tq vector fields. If F is a g-codimensional foliation with a
trivialized normal bundle on a manifold M, then there is a natural homomor-
phism λ$: H*(a(Tq)) —• H*(M), and the secondary foliation classes of F are
just the classes in the image of λf, [3], [9]. Similarly, if L is a leaf of F, then
there is a natural homomorphism φ*,L: H*(gl(q,R)) —> H*(L), and the holo-
nomy ring of L is just the image of φ$ίL in H*(L). Moreover, gl(q, R) can be
naturally embedded as a Lie algebra in a(Tq), and the diagram

H*(a(Tq))

commutes. Since the homomorphism H*(a(Tq)) —> H*(gl(q, R)) is actually the
zero homomorphism, all of the secondary foliation classes vanish when re-
stricted to a leaf.

In general, characteristic classes on the leaves of foliations resemble charac-
teristic classes on foliations in yet another way. Let Γq denote the groupoid of
all the germs of all the local diffeomorphisms of RQ. Put the sheaf topology on
Γq. Then since Γq is a topological groupoid, there is a space BΓq(FΓq) which
classifies /"^-structures (with trivialized normal bundles) [4], [8]. Now every
g-codimensional foliation on a manifold M induces a /^-structure on M.
Moreover in [3] Bott and Haefliger state the following result.

Theorem 5. There is a 1-1 correspondence between H*{BΓq){H*(FΓq))
and the collection of characteristic classes on foliations {with trivialized normal
bundles).

Similarly, let fq denote the groupoid Γq with the discrete topology. Again
since Γq is a topological groupoid, there is a space BΓq(FΓq) which classifies
/^-structures (with trivialized normal bundles). Moreover, if L is a leaf of a
foliation F, then F induces a /^-structure on L. Now in [6], [7] the following
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theorems are proved.
Theorem 6 The universal restructure on the classifying space BΓq(FΓq)

has only one leaf and this leaf is homeomorphίc to BΓq(FΓq).
Theorem 7. There is a 1-1 correspondence between H*(BΓq)(H*(FΓq))

and the collection of characteristic classes on the leaves of foliations {with
trivialized normal bundles).

In [6] and [7] we study H*(FΓq) directly and show by a spectral sequence
argument that there are many nonzero classes in H*(FΓq). Thus we are able
to conclude that there are many nontrivial characteristic classes on the leaves
of foliations with trivialized normal bundles.

There are still many unsolved problems concerning characteristic classes on
the leaves of foliated manifolds. First, it is not yet known whether the holonomy
ring exhausts the collection of these characteristic classes. Second, the topo-
logical significance of the holonomy classes is not well understood. Finally,
the algebraic relationship between H*(BΓq) and H*{BΓq) has not yet been
completely explored.

The primary purpose of this paper is to give several equivalent constructions
of the holonomy ring on the leaves of foliated manifolds. These constructions
though different are nevertheless equivalent to the construction of characteristic
classes for flat bundles given by Kamber and Tondeur in [15] and [16]. In §§ 1
and 2 we present most of the basic concepts and notation used throughout this
paper. In § 3 we introduce the leaf connection and derive some of its intrinsic
properties. Next, in §4, we make use of the leaf connection to prove the
vanishing and obstruction theorems for the leaves of foliations.

With these preliminaries accomplished, we are in a position to begin our
investigation of the holonomy ring. We shall give three distinct constructions
of this ring. Indeed, let F be a g-codimensional foliation and let L be a leaf of
F with trivialized normal bundle vL. In § 5 we construct a natural homomor-
phism φf^L: E(hu h2, , hq) —> H*(L) by comparing leaf connections to flat
connections. The homomorphism 0 | L is called the holonomy homomorphism,
and the image of 0$>L in H*(L) is called the holonomy ring of the leaf L with
respect to the foliation F. Unfortunately, even though this construction is easy
to develop, it adds little to our intuitive understanding of the holonomy classes.
However as we show in § 6, this construction does lead to a better understand-
ing of the secondary foliation classes.

In §7 we use the connection form of the leaf connection to construct a
natural homomorphism φ$iL: H*(gl(q, R)) -• H*(L). Moreover, we prove that
the image of this homomorphism is actually the same as the image of the
holonomy homomorphism constructed in §5 . The appearance of the Lie
algebra gl(q, R) hints at the essentially linear nature of the holonomy classes.
Furthermore in § 8 we are able to use this homomorphism to construct several
elementary examples of foliations which have leaves with nontrivial holonomy
rings. In addition, in § 9 we use this homomorphism to derive a product for-
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mula for the holonomy classes. This product formula leads to certain necessary
conditions, in terms of leaf invariants, for a (qx + g2)-codimensional foliation
to be the intersection of a c^-codimensional foliation and a g2-codimensional
foliation.

The theory of characteristic classes on the leaves of foliations is related to
the theory of characteristic classes for vector bundles with discrete structure
group. Indeed, if L is a leaf of a foliation, then the normal bundle vL has a
discrete structure group. Hence to construct characteristic classes on the leaves
of foliations, one need only construct characteristic classes for vector bundles
with discrete structure group. A construction of characteristic classes for these
bundles is given by Kamber and Tondeur in [15] and [16]. However, we shall
adopt a somewhat different approach which ties in more readily with our other
constructions.

In § 10 we discuss the relationship between the category of vector bundles
with discrete structure group and the category of the leaves of foliations. Then
in § 11 we construct a holonomy ring for all vector bundles with discrete
structure group and show that when a vector bundle is the normal bundle of
a leaf, this holonomy ring coincides with the holonomy ring of the leaf. Thus,
since the holonomy classes of a leaf depend only on the structure of the normal
bundle of the leaf, we can conclude that the holonomy classes are essentially
linear invariants.

Throughout this paper all manifolds are differentiable C°°-manifolds, all
maps are smooth C°°-maps, and all cohomology is understood to have real
coefficients.

Some of the results in this paper first appeared in the author's thesis which
was written while the author was attending the University of Maryland on a
leave of absence from Johns Hopkins University. The author would like to
express his thanks to the people at the University of Maryland for granting
sanctuary to an exile from the house of the philistines, and would also espe-
cially like to thank his advisor Bruce Reinhart for rescuing him from silence
and the void.

1. Foliation categories

To begin, we recall some basic conceepts associated with foliations. Let M
be an ra-dimensional manifold, and let T(M) denote the tangent bundle of M.
A subbundle E of T(M) is said to be integrable if [X, Y] is a vector field in E
whenever both X and Y are vector fields in E*

Definition. A #-codimensional foliation on M is an integrable subbundle
of T(M) of dimension m — q.

Let E be a subbundle, not necessarily integrable, of Γ(M). The normal
bundle vE is the quotient bundle T(M)/E. In particular, if E is a g-codimen-
sional foliation on M, then vE is a g-dimensional vector bundle over M. When
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the normal bundle vE is isomorphic to the trivial vector bundle over M, we
shall say that E has a trivial normal bundle. However, if a specific trivializa-
tion of the normal bundle has been selected, then we shall say that E has a
trivialized normal bundle.

To construct foliation categories, we must introduce the notion of foliation
maps. Let F be a g-codimensional foliation on M, and N an n-dimensional
manifold. A map g: N —> M is said to be transverse to F if (dg)~\F) is an
in — <?)-dimensional subbundle of T(N). In this case we shall denote (dg)~\F)
by g*(F). The bundle g*(F) is a g-codimensional foliation on N.

Definition. Let Fi be a g-codimensional foliation on a manifold Mu i =
1, 2. A map g: Mλ —> M2 is said to be a foliation map from F x to F2 if and only
if g is transverse to F2 and F x = g*(F2). We shall write g\Fι-*F2 to denote
that g is a foliation map from F1 to F2.

Now we shall adopt the following notation:
1. CFq will denote the category whose objects are g-codimensional folia-

tions and whose morphisms are foliation maps.
2. CF°q will denote the category whose objects are g-codimensional folia-

tions with trivialized normal bundles and whose morphisms are foliation maps
compatible with the given trivializations.

Characteristic classes have been constructed on these foliation categories by
Bott in [2], by Haefliger in [9], and by Kamber and Tondeur in a series of
papers [11], [12], [13], [14], [15], and [16]. In §6 of this paper we shall
briefly review Bott's construction of these secondary foliation classes.

2. Leaf categories

Now we are going to introduce three categories associated with the leaves
of foliations. Let F be a g-codimensional foliation on an ra-dimensional mani-
fold M. An (ra — ̂ -dimensional manifold L is said to be an integral manifold
of F if there is a 1-1 immersion j : L-+M such that dj(T(L)) is contained
in F. That is, L is an integral manifold of F if F coincides with the tangent
space of L at every point in the image of /.

Definition. Let F be a foliation. A leaf of F is a maximal connected integral
manifold of F.

Let / : L — > M be a 1-1 immersion. The normal bundle vL is the quotient
bundle T(M)/dj(T(L)) restricted to L. If F is a foliation on M, and L is a leaf
of F, then vL = vF\L by construction. Again we shall adopt the distinction
made in § 1 between a trivial normal bundle and a trivialized normal bundle.

The objects of the leaf categories will be pairs (F, L), where F is a foliation
and L is a leaf of F. In order to describe the morphisms of these categories,
we must introduce the notion of a map of pairs.

Definition. Let Ft be a g-codimensional foliation on a manifold Mi9 i =
1,2. In addition, let Lt be a leaf of Ft and let )i \Li-^Mi be the immersion
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of Lt in Mi9 i = 1,2. A map g: Mλ —• M2 is called a map of pairs from (F19 LJ
to (F29 L2) if and only if for a map g: Fx —• F 2, g /Ί(Xi) is contained in /2(L2).
We shall write g: (F l 5 Lx) -> (F2, L2) to denote that g is a map of pairs from
(F^LJ to (F2,L2).

Note that if g: (F19 Lλ) -> (F2, L2) is a map of pairs, then Fλ = g*(F2).
Moreover, there is a map g: Lx -> L2 induced by g such that the diagram

-I
commutes.

We shall adopt the following notation:
1. CFqL will denote the category whose objects are pairs (F, L) and whose

morphisms are maps of pairs, where F is a g-codimensional foliation and L
is a leaf of F.

2. CFqL° will denote the category whose objects are pairs (F, L) and whose
morphisms are maps of pairs compatible with the given trivializations, where
F is a g-codimensional foliation, L is a leaf of F, and vL is a trivialized bundle.

3. CF\L will denote the category whose objects are pairs (F, L), and whose
morphisms are maps of pairs compatible with the given trivializations, where
F is a g-codimensional foliation, L is a leaf of F, and vF is a trivialized bundle.

Much of this paper is devoted to techniques for constructing characteristic
classes on these three categories.

3. The leaf connection

There are special connections associated with the normal bundle of a folia-
tion and the normal bundle of a leaf. By examining the curvature forms of
these connections, we can extract information about the real Pontryagin rings
of these vector bundles. In fact, the vanishing and obstruction theorems, both
for foliations and leaves, are a consequence of the existence of these special
connections. For a detailed discussion of connections and the Pontryagin ring,
the reader is referred to [2, § 5] and [17, Vol. II, Chap. 12].

In this section we shall introduce an especially useful connection on the
normal bundle of a leaf. This connection is rather intimately related to the
foliation connections investigated by Bott in [2, p. 33]. Therefore we shall
begin our discussion by recalling the definition of a foliation connection.

Let η: E -^ Mbc 2i vector bundle over a manifold M. We shall write Γ(E)
to denote the collection of cross sections of η. In particular, Γ(T(M)) is the
collection of all vector fields on M.

Definition. Let F be a foliation on a manifold M, and Π: T(M) —> vF the
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projection map. A connection F on the normal bundle vF is called a foliation
connection if and only if VX(Z) = Π([X, Z]) for every X in Γ(F), where Z is
any vector field on M for which Π(Z) = Z.

Let F be a foliation on a manifold M. In general there exist many foliation
connections on vF, [2, p. 33], [25]. However, if F is a foliation connection
on vF, and g: N —> M is a map transverse to F, then the pullback g*(F) is a
foliation connection on vg*(F), [2, p. 69]. Moreover, all foliation connections
share the following properties:

Lemma 3.1. Let V1 be a foliation connection on vF with local connection
form θίa, i = 1, 2. // X is in Γ(F), then θla(X) = θ2a(X).

Proof. Let sΐ, -,sa

q be a basis for the sections of vF over t/α, and let
Π: T(M) —• F be the projection map. If X is in Γ(F), then by the definition
of a foliation connection

where j j is any vector field on M such that Πiβi) = .srj. Hence 0JJCJO = 0J;CX).
Lemma 3.2. Let V1 be a foliation connection on vF with local connection

form θίa, i = 1, 2. // L w a leaf of F, then θla\L = θ2a\L.
Proof. This result is an immediate consequence of Lemma 3.1.
Definition. Let F be a foliation on M, L a leaf of F, and /: L —> M the

immersion of L in M. A connection F on yL is called a leaf connection if and
only if there is a foliation connection F on vF such that F = ;*(F).

Theorem 3.3. Lei F be a foliation on M, and L a leaf of F. Then there
is one and only one leaf connection on vL.

Proof. The existence of leaf connections follows immediately from the ex-
istence of foliation connections. To prove uniqueness, suppose that F1 and F2

are two leaf connections on vL and that j : L —> M is the immersion of L in
M. Then there are foliation connections F1 and F2 on vF such that F1 = i*^1)
and F2 = /*(F2). Let θia be the local connection form of V1 over Ua, i = 1, 2.
Then j*(θίa) = θίa\L is the local connection form of Γ* over j~\Ua), i = 1,2.
However by Lemma 3.2, 0 l β |L = 02α|£,. Since this equality holds on every
neighborhood Γ\Ua), we can conclude that F1 = F2. Therefore there is one
and only one leaf connection on vL. q.e.d.

Let L be a leaf of a foliation. Since the leaf connection on vL is unique, we
will always denote this connection by FL and the curvature of VL by KL. Now
the leaf connection satisfies the following naturality property.

Proposition 3.4. Let Ft be a q-codimensional foliation on a manifold Mi9

and Li a leaf of Fi9 i = 1,2. In addition, let g: (F19 Lλ) —> (F2, L2) be a map
of pairs, and g: Lx —> L2 the map induced by g. Then VLl = g*(FLz).

Proof. Let F be a foliation connection on ι>F2. Since g: (F1 ? Lx) -> (F2, L2) is
a map of pairs, Fx — g*(F2). Therefore g*(F) is a foliation connection on Fλ. Now
let at\ Lt -> M€ be the immersion of L^ in Mi9 i = 1, 2. Then the diagram
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^ 2

Oil I I «2

commutes. Hence FLl = afg*(P) = g*af(F) = g*(FZ2). q.e.d.
While the uniqueness of the leaf connection will help to simplify many of

the proofs in this paper, the existence and naturality of the leaf connection are
really the crucial points in most of our arguments.

We shall close this section by deriving an important alternate expression for
the local connection form of the leaf connection. Let F be a <?-codimensional
foliation on a manifold M, and L a leaf of F. Since the normal bundle vF is
locally trivial, there is a local basis Zj, . , Z\ of sections for vF. Let Π: T(M)
—• vF be the projection map, and let Zj, , Z\ be local vector fields on M
such that Π(Z«) = Zj, 1 < ί < q. Finally, let ωί, , ω\ be the local 1-forms
on M dual to the local vector fields Z?, , Za

q, that is, the local 1-forms such
that <y?(Z«) = δtj. Then the 1-forms ωί, , ωa

q are annihilated by F. If X, Y
are in Γ(F), then by the integrability condition

dωΐ(X, Y) =: ϊ(Xω«(Y) - Yω«(X) - ω«[Z, Y]) = 0 .

Therefore there exist local 1-forms τa

μ on M such that

da)? = Σ ofj A τaji .

Let r: L —> M be the immersion of L in M, and let τfia = r*(r^). In addition,
let rα denote the q X q matrix (r^), and τL>α the q X <? matrix (τ^'α). We shall
show that τL'a is actually the local connection form of the leaf connection on
vL with respect to the local basis of sections Z" o r, , Z\ o r.

Proposition 3.5. L^ί V be a foliation connection on vF, and θa the local
connection form of V with respect to the local basis Zj, , Zj. // X is a
vector field in Γ(F), then τa(X) = Θ\X).

Proof. Let F* denote the dual of F, and let 77* : T*(M) -> T*(M)/F* ^
(î F)* be the projection map. Then for any vector field Z on M

If X is a vector field in Γ(F), then

= (ωj Λ r J ^ Z ; , ^ ) = ( Σ ωj Λ
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Hence τα(Z) = θa(X).
Proposition 3.6. Let θL'a denote the local connection form of the leaf con-

nection on vL with respect to the local basis of sections Z\ o r, , Z\ o r. Then

Proof. This result is an immediate consequence of Proposition 3.5.
If the normal bundle vF is a trivialized bundle, then the forms τj t are global

forms on M. Therefore in this case we shall write τόi in place of τ" {, τ in place
of τa, τ% in place of τjϊβ, and τL in place of τL'a.

Proposition 3.7. Lei F be a q-codimensional foliation with a trivialized
normal bundle vF, and L a leaf of F. Then τL is the global connection form
of the leaf connection on vL with respect to the given trivialization.

Proof. This result follows immediately from Proposition 3.6.

4. The vanishing and obstruction theorems

We shall now take a close look at the curvatures of the foliation and leaf
connections, and shall use the special properties of these curvature forms to
prove the vanishing and obstruction theorems.

Let F be a g-codimensional foliation on M, L a leaf of F, and /: L —» M
the immersion of L in M.

Lemma 4.1. // K is the curvature of a foliation connection on vF, and
X, Y are vector fields in Γ(F), then K(X, Y) = 0.

Proof. Let Π: T{M) —> vF be the projection map, Z a section of vF, and
Z a vector field such that Π(Z) = Z. If K is the curvature of the foliation
connection V on vF, and X, Y are vector fields in Γ(F), then

K(X, Y){Z) = FXFY(Z) - VYVX(Z) - Vιx F ](Z)

= Fχ(/7([Y,Z])) - FY(Π([X,Z])) - Π([[X, Y],Z])

= Π([X, [Y, Z]]) - /7([Y, [X, Z]]) - 77([Z, Y], Z])

= -77([[Y,Z],Z] + [[Z,Z], Y] + [[Z, Y],Z]) = 0

by the Jacobi identity,
Lemma 4.2. // Ka = (K^) is the local curvature form over Ua of a folia-

tion connection on vF, then there is an ideal Ia of forms on Ua such that lq

a

+ι

= 0 and K'i is in Ia for all /, /.

Proof. Let Zf, , Z ^ _ β be a basis for the sections of F over Ua. Then
this basis can be extended to a basis X\, , Z^_ α , Yf, , Γ; for all vector
fields over Ua. Let ω" be the 1-form dual to Ya

s, and θa

t the 1-form dual to Xa

t.
If /α denotes the ideal of forms over Ua generated by ω", , ωa

q, then certainly
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/«+1 = 0. Moreover, since Ka

jt is a 2-form over Ua,

for some Ψ" in Ia. However, by Lemma 4.1, apr = K^iXp, X") = 0. Therefore
K% is in Ia for all j , i.

Lemma 4.3. // KL is the curvature of the leaf connection on vL, then KL

= 0.
Proof. This result is an immediate consequence of Lemma 4.1.
Theorem 4.4 (The vanishing theorem for foliations). If F is a q-codimen-

sional foliation, then the real Pontryagin ring of vF is trivial in dimensions
greater then 2q.

Proof. Let K be the curvature of a foliation connection on vF. If γ is a
class in the real Pontryagin ring of vF such that degree γ > 2q, then γ is
cohomologous to a form of the type Σ Γύ yΛi^O cjt(K) where rH...h is
in R, Cj is the y'th chern polynomial, and Σ js > q. Let Ka = (K^) be the local
curvature form of K over Ua. By Lemma 4.2 there is an ideal Ia of forms on
Ua such that 7«+1 = 0, and X^ is in Zβ for all /, /. Hence ch(K") ch(Ka)
is in /J ̂  . However Σ /, > ς therefore /J ̂  = 0 so ch(Ka) . . ch(Ka) = 0.
Hence ^^α = 0. Since this last equality holds on every neighborhood Ua, we
can conclude that γ = 0.

Theorem 4.5 (The vanishing theorem for leaves). If L is a leaf of a folia-
tion, then the real Pontryagin ring of vL is trivial.

Proof. This result follows immediately from Lemma 4.3.
Theorem 4.6 (The obstruction theorem for foliations). Let M be an m-

dimensional manifold, and E a subbundle of the tangent bundle T(M) of
dimension m — q. Then a necessary condition for E to be isomorphic to a
q-codimensional foliation on M is that the real Pontryagin ring of the quotient
bundle T(M)/E must be trivial in dimensions greater than 2q.

Proof. This result is an immediate consequence of Theorem 4.4.
Theorem 4.7 (The obstruction theorem for leaves). Let N be a connected

manifold and let j : N —> M be a 1-1 immersion. Then a necessary condition
for N to be an integral manifold of a foliation on M is that the real Pontryagin
ring of the normal bundle vN must be trivial. In particular, a necessary con-
dition for N to be a leaf of a foliation on M is that the real Pontryagin ring
of vN must be trivial.

Proof. This result is an immediate consequence of Theorem 4.5.
The vanishing and obstruction theorems for foliations were first proved by

Bott in [1] and [2]. We have added nothing new to his techniques. Rather we
have included these theorems here in order to stress the similarities between
these theorems for foliations and the corresponding theorems for the leaves of
foliations. Two general principles emerge when we examine these similarities.
First, given a theorem pertaining to foliations, one can often find an analogous



HOLONOMY RING 421

theorem pertaining to the leaves of foliations. Second, the propositions referring
to leaves are usually simpler than the corresponding propositions referring to
foliations. This second principle is to be expected because foliations are much
more complex than their individual leaves. We shall see the second principle
in operation again in § 6 when we discuss secondary characteristic classes.
Indeed, the secondary leaf classes form only one algebraic component of the
secondary foliation classes.

5. The holonomy homomorphism and special connections

A characteristic class on the category CFJL (CFqL°, CF\L) is a natural trans-
formation which assigns to each pair (F, L) in CFqL (CFqL°, CF°qL) a class in
H*(L). In this section we shall use the leaf connection along with other special
connections to construct a collection of characteristic classes, called the
holonomy ring, on the category CFqL (CFqL°9 CF\L). We begin by recalling a
technique used by Bott in [2] for comparing connections.

Let M be a manifold, and let A*(M) denote the collection of differential
forms on M. In addition, let η: E —> M be a vector bundle over M and let
P , , Vn be connections on E. Finally, let cj denote the yth Chern polynomial
and define

\ . . , Fn)(cj) = Π *

where

is the standard π-simplex, K is the curvature of the connection (1 — tx —
— tn) P + tγV

ι + + tnV
n on the vector bundle E x Rn -* M x Rn,

Π*: Ap(M x Δn) -+ Ap~n(M) denotes integration along Δn.
In particular, if K° is the curvature of P , then λ(F°)(cj) = Cj(K°). Moreover

λ has the following useful properties.

Lemma 5.1. dλ(V\ , Vn)(c3) = Σ ( - 1 W ° , •••,?*,•••, Vn)(c3).
Proof. See [2, p. 65].

Lemma 5.2. Iff:N-*M, then f*λ(F\ , Vn)(c3) = Λ(/*(P), , /*(FW))

(^)
Proof. Let aN: N X Δn -> N X Rn and aM: M X Δn -> M X Rn be the

inclusion maps. Then the diagram

N x Δn / X l d > M x Δn

N X Rn / X l d > M x Rn
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commutes. Let V denote the connection (1 — tx — — tn)F° + tλV
ι +

+ tnV
n on the vector bundle E x Rn -> M X Rn, and let K be the curvature

of Γ. Then (f x id)*(F) = (1 - ίx O/*(P) + *i/*(P) + • +
*J*(F W ), and the curvature of (/ X id)*(F) is (/ x id)*(X). Now directly from
the definition of Λ we have

- tfJαfoK/ X id
= Π*[a*o(fχid)*cj(K)]

= /*/7 Jαfo
= /*J(P, •• , F n ) ( c , ) . q.e.d.

Call a connection on a trivial vector bundle flat if its connection form is zero
with respect to some trivialization of the vector bundle. Let V be a connection
on a trivial vector bundle with connection form Θ and curvature form K. Then
by [2, p. 25], K = dθ — θ2. Thus, if V is a flat connection, then the curvature
of V is also zero.

Two flat connections on the same trivial vector bundle will be said to be
homo topic if the trivializations to which they correspond are homo topic. Since
the collection of all homotopic trivializations forms a convex set, the collection
of all homotopic flat connections also forms a convex set. Therefore we have

Lemma 5.3. // P , , Fn are homotopic flat connections, then λ(F°, ,
Vn)(c3) = 0.

Proof. If P , , Vn are homotopic flat connections, then V = (1 — tx —
• — tn)F° + tiF1 + + tnF

n is also a flat connection.
If K denotes the curvature of F, then K = 0. Hence λ(F\ , Fn)(cj) =

ΠJCJUOIMX*] = 0. q.e.d.
With these preliminary results in hand, we are about ready to construct

characteristic classes on the leaves of foliated manifolds.
Definition. A characteristic class on the category CFqL (CFqL\ CF°qL) is

a transformation γ which associates to each pair (F, L) in CFJL (CFqL\ CF\L)
a class γ(F, L) in H*(L) such that if g: (F19 LJ —> (F, L) is a map of pairs
(compatible with the given trivializations), and g: Lλ —> L is the map induced
by g, then r(F19 Lλ) - g* r (F, L).

The collection of characteristic classes on the category CFJL forms a ring
which we shall denote by R(CFqL). If (F,L) is a pair in the category CFJL,
then there is a ring homomorphism RFL : R{CFJL) -* H*(L) given by RFtL(γ)
= γ(F,L). Similarly, there are rings R(CFqL°) and R{CFqL) with analogous
homomorphisms. Moreover, it is known that the ring R(CFqL°), is isomorphic
to the ring R(CF°qL), [17]. However we shall not attempt to prove this result
in this paper.

Now let F be a g-codimensional foliation, and L a leaf of F with a trivialized
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normal bundle vL. As usual, FL will denote the leaf connection on vL. In
addition, P will denote the flat connection on vL corresponding to the given
trivialization. By construction, the form λ(F°, FL)(c3) is a (2/ — l)-form on L.
Moreover we have

Proposition 5.4. The form λ(F°, FL)(c3) has the following properties:
1. λ(F\ FL){c3) is a closed form,
2. the cohomology class of λ(F°, FL)(cj) depends only on the homotopy

class of the original trivialization.
Proof. 1. Let KL denote the curvature of FL, and K° the curvature of P .

Since P is a flat connection, K° = 0. Moreover by Lemma 4.3, KL = 0.
Hence by Lemma 5.1

dλ(F\ FL)(c3) = λ(FL)(cj) - λ(F°)(cj) = Cj(KL) - Cj(KQ) = 0 .

2. Let P be a flat connection on vL homo topic to P . Then by Lemma
5.3, λ(F°, F°)(cj) = 0. Therefore by Lemma 5.1, dλψ\ P , FL){c3) = λ(F\ FL)
(Cj) _ λ(po,PL)(cj). Thus λ(F°,FL)(cj) is cohomologous to λ(F°, FL)(Cj), and
hence the cohomology class of λ(F\ FL)(c3) depends only on the homotopy class
of the original trivialization. q.e.d.

Let E(hu h2, , hq) denote the exterior algebra on generators h19 h2, , hq.
Define a ring homomorphism

by letting

Then by Proposition 5,4 the homomorphism φ%^L is well-defined and depends
only on the homotopy class of the original trivialization. The homomorphism
0f ?L is called the holonomy homomorphism, and the image of φ$yL in H*(L)
is called the holonomy ring of the leaf L with respect to the foliation F. Let

The class h3(F, L) is called the /th holonomy class of the leaf L with respect
to the foliation F. By construction, the degree of the class hj(F, L) is 2/ — 1.
Now to show that the holonomy classes are indeed characteristic classes on
the category CFqL°, we must demonstrate that they satisfy the required natu-
rality property.

Proposition 5.5. Let Fi be a q-codimensional foliation, and Lt a leaf of
Ft with a trivialized normal bundle vLi9 i = 1, 2. In addition, let g: (F^Lj)
—> (F2, L2) be a map of pairs compatible with the given trivializations, and
g: Lλ-*L2 the map induced by g. Then the diagram
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commutes.
Proof. If P is the flat connection corresponding to the given trivialization

on uL2, then the connection g(P) is the flat connection corresponding to the
given trivialization on vLx since the map g is compatible with the given triviali-
zations. Moreover by Proposition 3.4 if F L 2 is the leaf connection on uL2, then
g*(PL*) is the leaf connection on vLx. Therefore by Lemma 5.2

φ*uLl(hj) = {λ(g*(F°\

= {g*λ(y\VL*){Cj)} = g*φ$2,L2(hj)

Theorem 5.6 There is a homomorphism φ* : E(h19 h2, , hq) -> R(CFqL°)
such that if (F, L) is a pair in the category CFqL°, then the diagram

commutes.
Proof. This result is an immediate consequence of Proposition 5.5.
The image of the homomorphism φ* : E(hl9 h2, , hq) —> R(CFqL°) is called

the holonomy ring of R(CFqL°). The holonomy ring on the category CF°qL can
be constructed in much the same manner. However to construct the holonomy
ring on the category CFJL we must modify our procedure somewhat.

Let η: E -^Mbε a. vector bundle, and < , > a smooth inner product on the
fibres of E. Call a connection VR on a vector bundle η: E —> M a Riemannian
connection if and only if for every X in Γ(T(M)) and all s19 s2 in Γ(E)

If KR is the curvature of a Riemannian connection, then c2j_ι{KR) = 0 [2,
p. 28]. Therefore the construction in this section remains valid if we replace
flat connections by Riemannian connections, the ring E(hu h2, , hq) by the
ring E(h19 h3, - , AaC(ff+i)/2]_i), and the category CFqL° by the category CFJL.
Moreover, the proofs are essentially the same.

Now if the pair (F, L) is in the category CFqL, then the class h2j_λ(F,L)
depends only on the foliation F and the leaf L because the collection of all
Riemannian connections forms a convex set (see Lemmas 5.3, 5.4). Therefore
even when the pair (F, L) is in the category CFqL°, the characteristic class
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h2j-i(F, L) is completely independent of the choice of the trivialization of vL.
Thus, if (F, L) is a pair in CFqL\ then h2j(F, L) depends on F, L and the
homotopy class of the trivialization of vL, but h2j_λ(F, L) depends only on F
and L.

The characteristic classes in the holonomy ring of a leaf L are called the
secondary leaf classes or the secondary leaf invariants because they exist due
to the vanishing of the real Pontryagin ring of vL. In § 11 we shall show that
the homomorphism φ* is a monomorphism. Thus every characteristic class in
the holonomy ring is a nontrivial characteristic class. However, it is not yet
known whether the holonomy ring actually exhausts the collection of charac-
teristic classes on the leaves of foliations.

The construction of characteristic classes which we have just developed is
actually valid for the category whose objects are the (trivialized) vector bundles
with a connection whose curvature is zero. We shall not attempt to pursue this
subject any further at this time. However a detailed discussion of characteristic
classes for these vector bundles is given in [15] and [16].

6. The secondary foliation classes

A characteristic class on the category CF\ is a transformation γ which
associates, to each ςr-codimensional foliation F with a trivialized normal bundle
on a manifold M, a class γ(F) in H*(M) such that if g is a map transverse to
F, then γ(g*(F)) = g*γ(F). We shall denote the ring of characteristic classes
on the category CF\ by R{CF\). If F is a g-codimensional foliation with a
trivialized normal bundle on a manifold M, then there is a ring homomorphism
RF: R(CF°q) -+ #*(M) given by RF(γ) = γ(F). In [2] Bott constructed a col-
lection of characteristic classes in R(CF°q) by comparing foliation connections
to flat connections. We shall briefly review this construction.

Let F be a g-codimensional foliation with a trivialized normal bundle on a
manifold M. Let VB be a foliation connection on vF with curvature KB, and
F° the flat connection on vF corresponding to the given trivialization. Define
Wq to be the cochain complex

E(h19 h2, , hq) (x) R[c19 c2, , cj/degree p > 2q ,

where degree Cj = 2/, dcj = 0, and dh3 = c3. Then there is a ring homo-
morphism λF: Wq^> A*(M) given by

λF(h3) = λ{V\ FB)(cj) , λF(Cj) = Cj(KB) .

Using Lemma 5.1, one can easily show that λF is a cochain map. Now the
cochain map λF depends on the original choices of the foliation connection
and the trivialization. However by employing the techniques used in § 5, one
can show that the homomorphism



426 RONALD GOLDMAN

λ* : H*(Wq) -> I

induced by the cochain map λF depends only on the homotopy class of the
original trivialization. Moreoever, if g\ N —• M is a map transverse to F, then
by Lemma 5.2 the diagram

λ* >H*(M)

Ή*(N)

commutes.
Therefore to summarize, we have the following theorem.
Theorem 6.1. There is a homomorphism λ* : H*(Wq) -> R(CF°q) such that

if F is a q-codimensional foliation with a trivialized normal bundle on a mani-
fold M, then the diagram

commutes.
The classes in the image of the homomorphism λ$ : H*(Wq) —> H*(M) are

called the secondary foliation classes of F. Similarly, the classes in the image
of the homomorphism λ* : H*(Wq) —> R(CF°q) are called the secondary classes
of CF°q, because their existence is due to the vanishing of the real Pontryagin
ring of vF in high dimensions.

Now make E(h19 , hq) into a cochain complex by letting dhj = 0. Then
the ring homomorphism

μ q : Wq-+E(h19 - >9hq)

given by

μq(hj) = hj , μq(cj) = 0

is a cochain map. Let L be a leaf of the foliation F and let a: L —• M be the
immersion of L in M. Then the trivialization on the normal bundle vF induces
a trivialization on the normal bundle υL. Now the ring homomorphism

φF.L:E(h19...9hq)-*A*(L)

given by
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is a cochain map. Moreover, since a*(F°) is the flat connection on vL with
respect to the induced trivialization, the homomorphism 0f } L induced by the
cochain map φF>L is exactly the same as the homomorphism ψ$^L defined in § 5.

Proposition 6.2. The diagram

7 v ΦF,L
' , hq) >

Proof. It is enough to verify this result on the generators of Wq. First we

have

= λ(a*(P°), PL)(Cj) — φF,Lihj) = φFf

Moreover we also have

a*λF(Cj) = a*Cj(KB) = Cj(a*(KB)) = Cj(KL) = 0 = φF,Lμq(cj) .

Therefore a*λF = φF,Lμq

Corollary 6.3. The diagram

H*(Wq) —
λ ^ —

"*1 * Γ*
...,hq)-^>H*(L)

commutes.
Proof. This result follows immediately from Proposition 6,2.
Corollary 6.4. ή / F , L) = {λF(h3) \L).
Proof. This result follows immediately from Proposition 6.2.
Lemma 6.5. The homomorphism μ* : H*(Wq) —> E(hx, , hq) is the zero

homomorphism.
Proof. Every cocycle in Wq is the sum of elements of the form hjCj where

hj is an element in the ring E(h19 , hq) and Cj is a nonconstant element in
the ring R[c19 , cα]/degree p > 2q. However μq(cj) = 0. Thus μ*(hjCj) =
0, and hence μ* is the zero homomorphism.

Corollary 6.6. The homomorphism a*λf : H*(Wq) -• H*(L) is the zero
homomorphism. Therefore, if γ is a secondary foliation class, then γ(F)\L = 0.

Proof. This result follows immediately from Corollary 6.3 and Lemma 6.5.
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To construct the secondary classes on the category CFq, one proceeds ex-
actly as for the category CF°q except that flat connections are replaced by
Riemannian connections and the co.chain complex Wq is replaced by the
cochain complex

WOq = E(h19 ft3, , Λ2[cβ+i)/2]-i) ® R[c19 , cβ]/degree p > 2q ,

where degree Cj = 2/, dcy = 0, and dA2i_i = c2j_λ. Therefore the results in
this section remain valid if we replace the category CF\ by the category CFq,
the cochain complex Wq by the cochain complex WOq, and the ring E(h19 ,
hq) by the ring E(h19h39 - ,h2ίiq+1)/2-ϊ_1). Moreover the proofs are essentially
the same. Now Corollary 6.6 can be interpreted as a generalization of the
vanishing theorem for leaves. Indeed this result states that not only the
Pontryagin classes but also all of the other secondary classes of a foliation
vanish on the leaves.

In light of Proposition 6.2 we can give the following analysis of the cochain
complex Wq(WOq). The ring R[c19 , cq] represents the ring of Chern classes
on the normal bundle of a foliation the truncation represents the vanishing
theorem for foliations and the ring E(hl9 , hq) (EQιl9 hZ9 , h2ί(q+1)/21_J)
represents the holonomy ring on the category CF\L(CFqL). In fact by Corol-
lary 6.4, hj(F,L) = {λF(h3)\L}. Hence the holonomy classes of the leaves can
be represented by the pullback of forms on the manifold in which they are
immersed. Thus the secondary foliation classes on CF\(CFq) and the secondary
leaf classes on CF\L (CFqL) are intimately related.

We close this section with a warning. Two foliations F09 F1 on M are said
to be homotopic if there is a foliation F on M X / such that the inclusion
maps i0: M X 0 —> M x / and ix: M x 1 —» M x / are transverse to F and
Fo = if(F) and Fλ = ίf(F). The secondary foliation classes are homotopy in-
variants [2, p. 69]. That is, if γ is a secondary foliation class and F09F1 are
homotopic foliations, then γ(F0) = γiFJ. However, even though the secondary
leaf invariants depend only on the foliation and the choice of leaf, these classes
are not homotopy invariants of the foliation. This is true because the leaves
themselves are not homotopy invariants indeed, even if FQ and Fx are homo-
topic foliations, the leaves of FQ and the leaves of Fλ may be quite different
spaces.

7. The holonomy homomorphism and special differential forms

In this section we shall give an alternate construction of the holonomy homo-
morphism. Let F be a #-codimensional foliation, and let L be a leaf of F with
a trivialized normal bundle vL. In addition, let ΘL denote the connection form
of the leaf connection with respect to the given trivialization on vL. We shall
show that the holonomy ring of L consists of the cohomology classes of certain
polynomials in ΘL.
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Recall that by [2, p. 25] the local curvature form Ka and the local connec-
tion form θa are related by the matrix equation

(7.1) Ka = dθa -

However by Lemma 4.3, KL = 0. Therefore

(7.2) dθL = (ΘLY ,

or in terms of the coordinates of the matrix ΘL

(7.3) dθ% =ΣΘ%A θL

ki

Let A*(gl(q, R)) denote the collection of left-invariant forms on GL(q, R), and
let σ = (σji) be the q X q matrix whose entries are the canonical generators
of A*(gl(q, R)). Since the equations represented by (7.3) have the same form
as the Maurer-Cartan equations for GL(q, R), we can define a cochain map

by letting

(7.4) ΦF.L(°H) = Oϊi

We shall show that the image of the homomorphism

is the holonomy ring of L with respect to the foliation F. This result is
reasonable since H*(gl(q, R)) is isomorphic to the ring EQι19 , hq).

To begin, let A be a q x q matrix and let cό denote the /th Chern poly-
nomial. Define the polynomials ejι89 0 < /, s < q, by the equation

Cj(xA + A2) = Σ *eJtt(A)
s

In addition, let

and let

etί_M) = NfiUA) .

Then the degree of e2j_λ is 2/ — 1. Moreover the ring homomorphism

e:E{hu •• ,hq)-*H*{gl(q,R))
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defined by

is an isomorphism.
Proposition 7.1. Let Zl9 -,Zqbe a global basis of sections for vL. If ΘL

is the connection form of VL with respect to Z 1 ? , ZQ, and P is the flat con-
nection on vL with respect to Z19 , Zq, then λ(F°, FL)(c3) = e2j_x(θL).

Proof. Consider the connection V — (1 — t)F° + tVL on the trivial bundle
vL x R—>L x R. Let K be the curvature form of V with respect to the global
basis of sections Zl9 , Zq, d/dt, and let θ be the connection form of V with
respect to this same global basis of sections. If θ° is the connection form of P
with respect to the basis Z19 , Zq, then θ = (1 — t)θ° + tθL. However P
is the flat connection on vL with respect to the basis Z19 , Z β . Therefore
θ° = 0 and θ = tθL. Now by [2, p. 25]

K = dθ -θ2 = d(tθL) - {tθL)2 = dtβL + t dθL - t\θL)2

= dtθL + t dβL - t(θLy + t(βLy - t\θLy

= dtθL + tκL + (t-t2)(θLy

= dtθL + t{\ - t)(θLy,

since KL = 0 by Lemma 4.3. Therefore

c3(K) = c/Λ ^ L + t(\ - t)(θL)2)

— p-\\ — t)j~ι dt ej^iθ1) + terms not involving dt .

Now integrating by parts, we get

Γ v~\\ - ty-1 dt = N, .
Jo

Therefore integrating along /, we obtain

λ(F°9F
L)(cj) = Π*[cj(K)LxI] = N3ejΛ(θL) = e2j_x(θL) .

Theorem 7.2. The diagram

fl*(L)

commutes.
Proof. Let Z 1 ? , Z β , 0Z/, and P be as in Proposition 7.1 then
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= φtL{e2j_x{σ)} = {e%j_x{θL)}

\ FL)(Cj)} = φlL(hj) .

Thus φ$,L o e = 0 £ L . q.e.d.
We shall call the homomorphism φ$L: H*(gl(q, R)) —> H*(L) the holonomy

homomorphism. By Theorem 7.2 there is no substantial ambiguity in this
terminology. However the appearance of H*(gl(q, R)) in place of the abstract
ring E(hλ, , hq) suggests that the holonomy classes are essentially linear
invariants. In § 11 we will show that this suggestion is in fact true.

If the normal bundle vF is a trivialized bundle, then by Proposition 3.7,
ΘL = τL. Since the form τL is easily accessible, the holonomy classes were
first studied by other authors in the case of foliations with trivialized normal
bundles. For codimension 1, the class hx(F,L) = {rf^} was first introduced
and studied by Reeb in [19, p. 115]. Sacksteder then generalized this class to
arbitrary codimensions by examining the forms Σj τfJ9 [21], [22]. Finally the
entire holonomy ring on the category CF°qL was constructed by Reinhart in
[20]. However in order to simplify his computations, Reinhart considered the
polynomials

P2J_X{TL) = trace [(r^)2 '"1]

rather than the polynomials e2j_1(τL).
It has long been known that the characteristic class hλ on the category CF\L

is related to the holonomy of the leaves, [19]. Moreover, the following theorem
of Reeb demonstrates that the nonvanishing of hx{F, L) has topological implica-
tions concerning the structure of the foliation F near the leaf L.

Theorem 7.3. Let F be a 1-codίmensional foliation with a trivial normal
bundle vF on a manifold M. Suppose further that L is a compact leaf of F
and that hλ(F, L) Φ 0. Then there exists a neighborhood U of the leaf L in
the manifold M such that if Lx is any leaf of F which intersects [7, then the
closure of Lx contains L.

Proof. See [19, p. 117].
The topological significance of the other holonomy classes is still an open

problem.
The holonomy classes on the category CFJL can be constructed in a similar

manner. Let F be a ςr-codimensional foliation, and let L be a leaf of F. In
addition, let A*(gl(q, R), 0(q)) denote the collection of all left-invariant 0(g)-
basic forms on GL(q,R). That is, a form ω in A*(gl(q,R)) belongs to
A*(gKq,R),0(q)) if and only if ω is 0((7)-invariant and ω\Q(q) = 0. We shall
construct a ring homomorphism φ$^L: H*(gl(q, R), 0(q)) —> /Z*(L).

Lemma 7.6. Let (gβa) denote the transition functions of the normal bundle
vL, and let θ« denote the local connection form of the leaf connection on ι>L.
Then
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θβ = dgβa'gjϊ + gβaθa8ja

Proof. Let jj, •••,$? be a local basis of sections for vL, and let st =

9 i = a, β. Then locally, ^ = gβa-sa. Now let Γ^ denote the leaf connec-

l̂ ϊ

Si J
tion on vL. Again locally we have

a = ιχ(gβa)

and therefore θL

β = dgβa-gj^ + gβa-θi-gjϊ since s\, -,sq

a is a local basis of
sections, q.e.d.

Now since every ^-dimensional vector bundle is reducible to an 0(<y)-bundle,
we can assume that the normal bundle vL is already an 0(g)-bundle. Hence
the transition functions (gβa) map open sets in L into 0(g). Let x denote the
q x q matrix whose entries are the coordinate functions of GL(q, R), and let
σ denote the q X q matrix whose entries are the canonical generators of
A*(gKq,R)). Then

(7.5) σ = dx x~1 .

Moreover, A*(gl(q, R), 0(q)) is generated by linear O(gHnvariant polynomials
in σ which vanish on 0(q). Let p be such a polynomial. Then by Lemma 7.4
and (7.5)

P(θβ)

= pfe* (σ)) + p(βi) = gfap(σ) + pffl = pffl .

Let φF,L(p(σ)) denote the form in A*(L) which is given locally by p(θ%). Then
by (7.6), φF>L(p(σ)) is a well-defined form on L. Hence there is a cochain map
ΦF,L A*(gl(q, R), 0(q)) —> A*(L). Now all of the results in this section remain
valid if we replace H*(gl(q, R)) by H*(gl(q, R), 0(q)), E(hly . . , hq) by E(h19

h3, - ,Λ2C(β+D/2]-i)j and flat connections by Riemannian connections. Moreover
the proofs are essentially the same.

8. Examples

In this section we shall use the holonomy homomorphism φfiL: H*(gl(q, R))
—> H*(L) to construct foliations which have leaves with nontrivial holonomy
rings. Moreover we shall actually compute the holonomy rings of these leaves
with respect to these foliations.

To begin, suppose that ω19 *-,ωq are q global independent 1-forms on a
manifold M. Suppose further that there exist 1-forms τ^ such that
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dθ)i = Σ ωj A Tji .

Let F be the subbundle of T(M) which consists of all the tangent vectors of
M which are annihilated by ω19 , ωq. If X, Y are in Γ(F), then

, Y] = Xω^Y) - Yω<pΓ) - idω^X, Y)

Hence [X, Y] is also in Γ(F). Therefore F is a foliation on M. We shall call
F the foliation defined by the 1-forms ω19 , ωq. Let Z19 , Zq be the vector
fields on M dual to the 1-forms ω19 , ωq. Then Z 1 ? , Zq are a global basis
of sections for the normal bundle uF. Thus the normal bundle of F is trivialized.
We shall use this construction in the proof of the following theorem.

Theorem 8.1. Let L be a connected manifold and let φ: A*(gl(q, R)) ->
A*(L) be a cochain map. Then there is a q-codimensional foliation F(φ) with
a trivialized normal bundle on the manifold L x Rq such that:

a. L is a leaf of F(φ)

b. ΦFW,L = Φ\

c. the holonomy ring of L with respect to F(φ) is the image of φ* in H*(L).
Proof. Let a — (ajt) be the q X q matrix whose entries are the canonical

generators of A*(gl(q,R)). Then the Maurer-Cartan equations are expressed
by the matrix equation

(8.1) dσ = σ2.

Let Tji = φiσji) and τ = (TJI). Then

(8.2) dτ = τ2 .

Now for 1 < i < q let ωt be the 1-form on L x Rq given by

(8.3) ω< = dx<+Σ x^ki

We shall show that

(8.4) da>i = Σ ωj A τji .

Indeed to prove (8.4) let ω = (ωl5 - , ωq) and x = (x19 , xq). Then we can
express (8.3) by the matrix equation

(8.5) ω = d x + X ' T .

Now by differentiating (8.5) and applying (8.2) we obtain

(8.6) dω = dx-τ + x dτ = dx*τ + x τ2 = (dx + x-τ)-τ = ω r ,
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or equivalently for 1 < / < q

(8.7) dωt = Σ ^ Λ τji .

Hence the 1-forms ω19 , ωq define a g-codimensional foliation F(φ) with a
trivialized normal bundle on the manifold L x Rq. Moreover ω19 , ωq vanish
on L, so that L is a leaf of F(φ). Now by Proposition 3.7, τ is the connection
form of the leaf connection of vL with respect to the given trivialization. Thus
by construction the cochain map φF(φhL: A*(gl(q, R)) —> A*(L) is defined by

which implies that φFWiL = 0. Hence the holonomy ring of L with respect to
F(φ) is the image of φ* in H*(L). q.e.d.

Thus to create examples of foliations which have leaves with nontrivial
holonomy rings, we need only construct cochain maps φ: A*(gl(q, R)) —• A*(L)
such that the image of the homomorphism φ* : H*(gl(q, R)) —• H*(L) is non-
trivial.

Example 8.2. Let μ be a closed 1-form in A*(Sι) which is a representative
of a nonzero class in H\Sι), and let σ be the canonical generator of
A*(gl(l,R)). Define a cochain map φ: A*(gl(l,R))-* A*^1) by letting φ(σ)
= μ. Then the homomorphism φ* : H*(gl(l,R)) —> H*^1) is an isomorphism.
Hence F(^) is a 1-codimensional foliation on S1 x R, Sι is a leaf of F(φ), and
the holonomy ring of S1 with respect to the foliation F(φ) is isomorphic to

EQύ.
Example 8.3. Let GL+(q,R) denote the subgroup of GL(q,R) which

consists of all the matrices which have positive determinants. Then

H*(GL+(q, R)) = E(h2, hi9 , hq_29 eq) for even q

= E(h2, A4, , hq^) for odd q ,

where degree h2j = 4/ — 1 and degree eq = q — 1. Let ψ : A*(gl(q, R)) —>
A*(GL+(q, R)) be the inclusion map, and let e: £(/*!, , hq) -> H*(gl(q, R))
be the isomorphism described in § 7. Then ψ* o e: E(h2, h4, , h2ί(q_1)/21) —>
H*(GL+(q,R)) is a monomorphism and ψ* oe: E ^ , A3, , A2[(g+i)/2]-i) ~^
H*(GL+(q,R)) is the zero map. Hence F(ψ) is a g-codimensional foliation
with a trivialized normal bundle on GL+(q, R) x Rq, GL+(q, R) is a leaf of
F(ψ), and the holonomy ring of GL+(q, R) with Tespect to the foliation F(ψ)
is isomorphic to the subring E(h2, h4, - , A2[(β-i)/2]) We shall denote the folia-
tion F(ψ) by F(GL+(q, R)).

Theorem 8.4. Let G be a connected Lie subgroup of GL+(q, R) and let
i: G —• GL+(q,R) be the inclusion map. Then there is a q-codimensional
foliation F(G) with a trivialized normal bundle on the manifold G X Rq such
that G is a leaf of F(G), and the holonomy ring of G with mspect to the



HOLONOMY RING 435

foliation F(G) is equal to the image of the homomorphism i*: H*(GL+(q, R))
—> H*(G) restricted to the subring E(h2, A4, , A2C(α_1)/2]).

Proof. The inclusion i X id: G X Rq —> GL+(q,R) x /?« is transverse to
the foliation F(GL+(q,R)). Let F(G) = (ΐ X id)* [F(GL+far, Λ))]. Then by
construction F(G) is a g-codimensional foliation with a trivialized normal
bundle on G x Rq, and G is a leaf of F(G). Now by Proposition 5.5 the
holonomy ring of G with respect to the foliation F(G) is equal to the image of
the homomorphism /*: H*(GL+(q, R)) -> JΪ*(G) restricted to the holonomy
ring of GL+(q,R) with respect to the foliation F(GL+(<?,/?))• Moreover by
Example 8.3 the holonomy ring of GL+(q,R) with respect to the foliation
F(GL+(q,R)) is isomorphic to the subring E(A2, Λ4, , A2[(g_1)/2]) of
H*(GL+(q,R)). Therefore the holonomy ring of G with respect to the folia-
tion F(G) is equal to the image of the homomorphism /* : H*(GL+(q, R)) —>
H*(G) restricted to the subring E(h29 A4, , A2[(e_1)/2-1).

Example 8.5. The inclusion i: SOq-^> GL+(q,R) is a homotopy equi-
valence. Hence the image of the homomorphism /* : ί/*(GL+(^, R))-+H*(SOq)
restricted to the subring E(h2, A4, , A2[(β_1)/2]) of H*(GL+(q, R)) is isomorphic
to the subring E(h2, A4, , A2[(β_1)/2]) of H*(SOq). Therefore by Theorem 8.4,
F(SOq) is a g-codimensional foliation with a trivialized normal bundle on SOq

X i? 9,5Oα is a leaf of F(SOq), and the holonomy ring of SO^ with respect to
the foliation F(SOq) is isomorphic to the subring E(h2,hA, , A2[(g_1)/2]) of

Example 8.6. There is an inclusion• /: U(q) —> GL+(2q,R). Moreover
H*(U(q)) is isomorphic to the ring E(hu , hq), and the image of the homo-
morphism ί* : H*(GL+(2q, R)) -> H*(U(q)) restricted to the subring E(h2, A4,
• > A2̂ _2) of H*(GL+(2ςr, I?)) is isomorphic to the subring E(h2, A4, . ., A2[g/a])
of H*(U(q)). Therefore by Theorem 8.4, F(U(q)) is a 2^-codimensional folia-
tion with a trivialized normal bundle on U(q) x i?2Qf, C/(<?) is a leaf of F(U(q)),
and the holonomy ring of L/(g) with respect to the foliation F(U(q)) is iso-
morphic to the subring E(h2, A4, , A2[g/2]) of H*(U(q)).

By Examples 8.3 and 8.5, the homomorphism φ*: E(hl9 , hq)-*R(CF\L)
restricted to the subring E(h2, A4, , A2[(β_1)/2]) is a monomorphism. Thus
every class in the ring E(h2,h^ , A2[(β_1)/2]) represents a nontrivial charac-
teristic class on the category CF\L. In § 11 we shall prove that the homomor-
phism φ* is actually a monomorphism. Hence we shall be able to conclude
that every characteristic class in the holonomy ring of CF°qL is a nontrivial
characteristic class.

9. The product formula

Let Fi be a g rcodimensional foliation on a manifold Mi9 i = 1, 2. In addi-
tion, let L^ be a leaf of F€ with a trivialized normal bundle vLi9 i = 1,2. Then
Fj x F2 is a (#! + g2)-codimensional foliation on the manifold Mx X ,M2.
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Moreover Lx x L2 is a leaf of Fx x F2, and the normal bundle v(Lx x L2) =
vLx x vL2 is also a trivialized bundle. The product formula for holonomy
classes asserts that

hjiF, X F2, Lγ X L2) = hj(F19 Ld <8> 1 + 1 <8> λ/F2, W

Here it is tacitly understood that hn(F, L) = 0 whenever the codimension of
F is less than n.

To prove the product formula, we need a few preparatory lemmas. Let A
be a p x p matrix, and B a q x q matrix. Define A X B to be the (p + q)

X(p + q) matrix |jj °].

Lemma 9.1. cn(4 X 5) = Σ

Let /m denote the m X m identity matrix. Then directly from the
definition of the polynomial cn9 we have

1 + Σ tncn(A X B) = det [Ip+q + t(A x B)]
n

= det [(/„ + tA) x (/, + tB)]

= det [([/, + tA] x /,).(/, x [/, + tB])

= det (Ip + ί^) ί/eί (7g + tB)

TO i+j=n

Hence cre04 X B) = Σ ^(A^jiB).

Lemma 9.2. en>t(A x 5) = Σ eitr(A)eJt8(B).
ί + j=n
r + s=t

Proof. Directly from the definition of enΛ we have

Σ y'enM XB) = cn[y(Λ x B) + (A xΣ
ί

f- A2)] X (yB + B2)]

= Σ ΦΛ + A2)cj(yB + B2)

= Σ if Σ yret.M))(Σ yejJ

= Σ v
_ Z J J

r+s=t

Hence en%t{A X B) = Σ eitr(A)eJtS(B). q.e.d.
i + j=n
r + s=t

Now suppose that Ft is a ^rcodimensional foliation on Mi9 and that Lt is
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a leaf of F 4 with a trivialized normal bundle vLt, i = 1, 2. If Ff is a foliation
connection on yF ί ? j = 1,2, then it is not hard to show that Ff X Ff is a
foliation connection on v{Fι X F2), [5]. Let ai\Li-^ Mt be the immersion of
L^ in M4 then

F * x * = (a, X ^2)*(Ff X Ff) = α*(Ff) X α*(Γf) = F*1 X F*2 .

Therefore, if θLl, ΘL2 and θLlXL2 are the global connection forms of the leaf
connections on the bundles vLl9 vL2, and v(Lλ x L2) with respect to the given
trivializations, then θLlXL* = θLχ X ΘL\

Proposition 9.3. etn_x{βL^L*) = e2n_1(βLί) ® 1 + 1 ® e^θ1*)
+ coboundary.

Proof. Recall from § 7 that

dθLi = (θLy , i = 1,2 .

Therefore

Now by Lemma 9.2 we have

etn-i(βz**z*) = e^iθ^ X &*) = NnenΛ{θLχ X

= NnenΛ(θLχ) ® 1 + 1 ® NnenΛ{θL

+ Σ [
i + j=n

= eln_λ(βL

+ Σ

However by Propositions 5.4 and 7.1, e2j_1(θLί) is a closed form. Moreover,
Cj(dθLi) is exact. Therefore e2ί_1(6Ll) ® Cj(dθL2) is a coboundary. Similarly,
c*(d0Ll) ® e2j_λ(θLi) is a coboundary. Hence e ^ C f l 2 ^ " ) = e2n_1((9Ll) ® 1 +
1 ® ^2n-i(θL2) + coboundary.

Theorem 9.4. hj(Fι x F2, Lx x L2) = /ι/F 1 5 Lx) ® 1 + 1 ® A/F2, L2).
Proof. By Theorem 7.2 and Proposition 9.3 we have

Λ / ^ X F2, L, X L2) = ί ^ . ^ 1 ^ ) }

- fei-lί**1) ® 1 + 1 ® ^2,-l(^2)}

= Λ/Fx, A) ® 1 + 1 ® Λ/F2, L2) . q.e.d.
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Now let Ft be a grcodimensional foliation on a manifold M, i = 1,2. In
addition, let L^ be a leaf of Ft with a trivialized normal bundle vLi9 and let
α^: Li —> M be the immersion of L$ in M, / = 1, 2. If the diagonal map Δ: M
—> M X M is transverse to the foliation F1 X F 2, then J*(/<\ x F2) is a (q1 +
#2)-codimensional foliation on M. We shall call the foliation Δ*(F1 X F2) the
intersection or the sum of Fx and F29 and we shall denote this foliation by F1

0 F2. A leaf L of F x 0 F 2 is mapped by J into Lx x L2 if and only if L is
immersed in a^L^) ΓΊ αf2(^2) We shall denote a leaf of Fx 0 F 2 which is
immersed in ax(L^) Π αr2(£2) by L t Π „ L2. Let Δλ: Lx Π j L2 —> L t x L2 denote
the map induced by J and let / :̂ Lx ΠjL2^> Lt denote the map induced by
the immersion of Lx ΓΊ Δ L2 in M. If Πi: Lλ x L2 —> L* is the projection map,
then ΠiOΔx — lί9 i = 1,2.

Corollary 9.5. h^F, © F2, Lλ Π, L2) - /*A/F1? Lx) + /fA/F,, L2).
Proof. By the naturality of the class hp we have

A/F, 0 F 2, U Π, L2) = A i(J*(F 1 X F2), L, Π , L2)

, x F 2, Lx x L2)

^ , A) ® 1 + 1 <g> A/F2, L2)]

F^ Ld + J * o 77*/z/F2, L2)

Corollary 9.6. L^ί Ft be a qccodimensional foliation with a trivialized
normal bundle i = 1,2, and let q = max (q19 q2). If L is a leaf of Fx (x) F 2 and
if j > ?̂ Â̂ n A^(Fi 0 F 2, L) = 0, so that the holonomy ring of each leaf of
F : 0 F 2 vanishes in dimensions greater than q2.

Proof. If L is a leaf of Fλ 0 F 2, then there are leaves Lt of Fi9 i = 1, 2
such that L = Lλ Γ\ΔL2. Therefore this result follows immediately from
Corollary 9.5.

Corollary 9.7. Let F be a (qλ + q2)-codimensional foliation with a trivial-
ized normal bundle, and let q = max (q19 q2). If there exist a leaf L of F and
an integer j > q for which hj(F, L) Φ 0, then F is not the intersection of a
qx-codimensional foliation with a trivialized normal bundle and a q2-codimen-
sional foliation with a trivialized normal bundle.

Proof. This result follows immediately from Corollary 9.5.
The results in this section remain valid if we replace the holonomy classes

hj on the category CFJLP (CF°qL) by the holonomy classes h2j_λ on the category
CFqL. Moreover the proofs are essentially the same.

Corollaries 9.6 and 9.7 provide necessary conditions in terms of the holo-
nomy invariants of the leaves for a foliation to be the intersection of two other
foliations of lesser codimensions. However it must be stressed that these results
apply only to the specific foliation and not necessarily to its homotopy class.
Indeed it may happen that F is homotopic to a foliation which is the intersec-
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tion of a gΓcodimensional foliation and a <?2-codimensional foliation even
though F itself cannot be formed by such an intersections. Such a foliation
may exist because the holonomy classes are invariants of a foliation but not
not of its homotopy class (see the closing remark of § 6).

10. Vector bundles with discrete structure group

A ^-dimensional vector bundle η over a manifold L is a pair (Ui9 h^ such
that:

1. (Ui) is an open cover of L.
2. hji: Ut Π Uj —> GL(q, R) are smooth maps.
3. hki(x) = hkJix) hji(x) for every x in Ut Π C/, Π ί/fc.

The total space E(^) is the space IJ* U{ X Rq X i\ ~ where (JC, ί, 0 ~ Oc', *', /)
if and only if xr = x and f = /z (̂X) ί.

Let GL(^, R) denote GL(q, R) with the discrete topology. A vector bundle
(Ui9 hji) is said to have discrete structure group if the functions h^: Ut Π Us

—> GL(<gr, R) induced by the maps hjt: JJt Π C/̂  —* GL(q, R) are continuous.
We shall adopt the following notation:

a. VBMq will denote the category whose objects are ^-dimensional vector
bundles with discrete structure group over connected manifolds and whose
morphisms are bundle maps.

b. VBM°q will denote the category whose objects are the g-dimensional
vector bundles with discrete structure group over connected manifolds which
are trivialized as vector bundles (but are not necessarily trivialized as vector
bundles with discrete structure group) and whose morphisms are bundle maps
compatible with the given trivializations. Presently, we shall show that the

categories VBMq and CFqL are intimately related.
Let F be a g-codimensional foliation on a manifold M. By Frobenius'

theorem [5, pp. 88-94], [19, pp. 132-135] there is an indexed triple
(I/, fu, Hvu) with the following properties:

(a) (U) is an open cover of M,
(b) fv: U -> Rq and the rank of dfΌ is q,
(c) Hvu is a local difϊeomorphism of Rq,
(d) fv = HruofuOnU ΓiV,
(e) fu\L is locally constant on each leaf of F,

(f) dHvulf are the transition functions of the normal bundle vF.

Conversely, given an indexed triple ([/, fϋ9 Hvu) which satisfies properties

(a)-(d), there exists a unique g-codimensional foliation F on the manifold M
with respect to which properties (e) and (f) are valid. If the foliation F cor-
responds to the indexed triple (U, fσ,Hvu), then we shall often abuse notation
and write F = (U9 fU9 Hvu). Now let Rq denote Rq with the discrete topology,
and let F = ([/, fϋ9 Hvu) be a ςr-codimensional foliation on a manifold M. The
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leaf topology on M with respect to F is the coarsest topology on M which con-
tains the original topology on M and which also satisfies the condition that
each function j Ό \ U —>Rq is continuous. Let M denote M with the leaf
topology with respect to F. Then the leaves of F are the connected components
of M [5, p. 92].

Now let F = (U, fjj, Hvu) be a g-codimensional foliation on a manifold M,
and let L be a leaf of F. Then by properties (e) and (f) above, the transition
functions of the normal bundle vL are locally constant. Hence the normal
bundle vL has discrete structure group. Therefore there is a natural transfor-
mation

vq:CFqL->VBMp

given by

On the other hand, if η = (Ui9 hjt) is a vector bundle with discrete structure
group over a connected manifold L, then there is a natural foliation on the
total space E(η). Indeed, let Wi denote the image of Utx Rq X / in £0?) and
define pi: W^ —> i?5' by p^jt, /, 0 = t. In addition since the map hjt is locally
constant, we can define a linear map Hdi: i?^ —• Rq by letting H^(ί) = hjt-t.
Now the indexed triple (Wi9 pίy Hόi) satisfies properties (a)-(d) above. We shall
call the foliation which corresponds to this triple the horizontal foliation on
E(jj) and we shall denote this foliation by H(E{η)). The foliation H(E{η)) has
the following properties:

1. the zero section immerses L in E(ή) as a leaf of H(E(η)),
2. the normal bundle of L in E(τj) is isomorphic to η,
3. if /:!•!—»L is a smooth map, and f:E(f*(η))-+E(ij) is the map

induced by /, then H(E(f*(η))) = j*H(E(η)).
Hence there is a natural embedding

Tq: VBMq-+CFqL

given by

Moreover the diagram

VBMq

commutes.
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Theorem 10.1. // η is a vector bundle with discrete structure group over
a connected manifold, then the real Pontryagin ring is η is trivial.

Proof. Let η be a vector bundle with discrete structure group over a con-
nected manifold L, and let vL denote the normal bundle of L in the total space
E(jj). If pj is the /th Pontryagin class, then Pj(vL) = 0 by the vanishing
theorem for leaves. However, η is isomorphic to vL hence Pjiη) = 0. q.e.d.

Of course, the preceding result is well-known see Milnor [18] and Kamber
and Tondeur [10]. Since the normal bundle of a leaf has discrete structure
group, Theorem 10.1 is actually equivalent to the vanishing theorem for leaves.
In § 11 we shall see that the vanishing of the real Pontryagin ring leads
directly to a construction of secondary characteristic classes on the category

VBMq(VBMq).

Definition. A characteristic class on the category VBMq (VBMq) is a trans-
formation γ which associates to each ^-dimensional vector bundle η with
discrete structure group (which is trivialized as a vector bundle) over a con-
nected manifold L a class γ(rj) in H*(L) such that if Lx is a connected manifold
and if /: Lx —> L is a smooth map, then γ(j*(jj)) = f*γ(η).

As usual, the ring of characteristic classes on the category VBMq (VBM°q)

will be denoted by R(VBMq) (R{VBMq)). If η is a (̂ -dimensional vector bundle
with discrete structure group over a connected manifold L, then there is a ring

homomorphism Rη: R(VBMq) -* H*(L) given by Rfy) = γ(η).

Theorem 10.2. The homomorphism v* : R(VBMq) -> R(CFqL) is a mono-
morphism.

Proof. The diagram

R(VBMq)

commutes. Therefore v* must be a monomorphism. q.e.d.

Of course, Theorem 10.2 remains valid if we replace VBMq by VBM\ and
CFqL by CFqL°. Hence to construct characteristic classes on the category
CFqL (CFqL°), we need only construct characteristic classes on the category

VBMq (VBM°q). In the following section we shall give an explicit construction
of such classes.
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11. The holonomy homomorphism for vector bundles

with discrete structure group

In this section we shall construct characteristic classes on the categories

VBM\ and VBMq. In addition, we shall show that when a vector bundle is
the normal bundle of a leaf these classes coincide with the holonomy classes
of the leaf. Thus, since the holonomy classes of a leaf depend only on its
normal bundle, we can conclude that the holonomy classes of a leaf are
essentially linear invariants. The technique which we shall employ here is similar
to the method used by Haefliger in [9] to construct characteristic classes for a
X-fibre G-feuillete, Another equivalent construction of characteristic classes
for vector bundles with discrete structure group is given by Kamber and
Tondeur in [15] and [16].

Let η = (Ui, hji) be a ^-dimensional vector bundle with discrete structure
group over a connected manifold L. Suppose further that η is a trivialized
vector bundle. Then there exist maps ft: Ut —• GL(q, R) such that

(11.1) fj(x) = hjί(x).fί(x)

for every x in Ut Π Uj. The collection of functions (/̂ ) is also called a triviali-
zation of the vector bundle η. Now the transition functions (hji) of η are
locally constant that is, there is an element hόi of GL(q, R) such that locally
hjiix) = hji. Therefore, if lg: GL(q, R) —> GL(q, R) denotes left multiplication
by an element g of GL(q,R), then locally

(11.2) /, = /Λy<°/,.

Let A*(gl(q, R)) denote the collection of all left-invariant forms of GL(q, R),
and let ω be a form in A*(gl(q, R)). Then by (11.2) we have

(11.3) ff(ω) = ff(ω)

on Ui Π Uj. Let φη(ω) denote the form in A*(L) which is given locally by
ff(ω). By (11.3), φv(ω) is a well-defined form on L. Therefore there is a cochain
map φη: A*(gl(q,R)) —• A*(L). We shall show that the image of the homo-
morphism

induced by the cochain map φv is actually the holonomy ring of L with respect
to the horizontal foliation on E(η) and the trivialization (/^).

Proposition 11.1. Let σ be the q X q matrix whose entries are the canoni-
cal generators of A*(gl(q, R)). Then the matrix φη(σ) is the connection form
of the leaf connection on vL with respect to the horizontal foliation on E(jj)
and the trivialization (fi).



HOLONOMY RING 443

Proof. Since η = (£/*, h^ and since (/̂ ) is a trivialization of η, we have

(11.4) ί3 = hjVU.

Moreover by construction

(11.5) Φ,(σ)\Ut = ffiσ) .

Now as in § 1, let H(E(η)) = (W ,̂ /?*, //^) be the horizontal foliation on E(η).

Then

(11.6) PJ = HJioPi.

Define Ui\Wi--> Ut by letting /7<(JC, t, i) = JC then

(11.7) dH^^h^oΠ,.

Let rA: Rq -* R be the projection on the fcth factor. In addition, let pf = rfc o /^
and dpi = (dpj, 9dpf), and let ιA denote the transpose of the matrix A.
Then applying the chain rule to (11.6) and substituting into (11.7), we obtain

(11.8) dPj = (dPi) '(dHjt \p) = (dPί) \hsi o Π,) .

Let ω = (ω15 , ωq) be the row vector of 1-forms given locally by

(11.9) ωlu^idpJ'WtoΠt)-1] .

Then from (11.4), (11.8), and (11.9) we have

(l 110) ωlϋj = (dPj) t{{ίj °Π j ) 1 ] = {dPί) t{hjί °Π i ) t[(ίj ° i 7 j ) " 1 ]

- (dPί) % oΠj)-1 -(hJt o77,)] = (dPi)«[(/, o77,)"1] = ω | ^

on Vt Π ί/,. Hence ω is indeed well-defined globally. Moreover, since pt is
locally constant on the leaves of H(E(η))9 ω vanishes on the leaves of H(E(η)).
Hence the foliation H(E(η)) is defined by the 1-forms ω19 -,ωq. Now dif-
ferentiating (11.9), locally we have

i l l 11)

Let ΘL denote the connection form of the leaf connection on vL with respect
to the horizontal foliation on E(jj) and the trivialization (ft). The by (11.11)
and Proposition 3.6,



444 RONALD GOLDMAN

(11.12) θL\Ut = '{-(fioΠd-' ddtoΠ^L = K-f^'dft) ,

since L is identified with the zero section in E(η). Finally, let x denote the
q x q matrix whose entries are the coordinate functions of GL(q, R). Then

(11.13) σ = '(-χ-1dx) .

Therefore from (11.2), (11.12) and (10), we get

(11.14) φn{σ)\Όi = ff(σ) = /?[ '(-JΓ 1 **)] = K-f-'dU) = θL\Vi .

Hence φη(σ) is the connection form of the leaf connection on vL with respect
to the horizontal foliation on E(η) and the trivialization (/^).

Theorem 11.2. Let η be a vector bundle with discrete structure group over
a connected manifold L, and let (fi) be a trivialization of η. Then φ* =

Proof. This result follows immediately from Proposition 11.1 and the con-

struction of the homomorphism φ%{E{η)),L given in § 7.

The homomorphism φ* : H*(gl(q, R)) —• H*(L) is called the holonomy

homomorphism, and the image of φf in H*(L) is called the holonomy ring of

7]. If γ is a class in H*(gl(q, R)), then we shall let γ(τj) = φf (γ). Now it is easy

to show either directly from the definition of γ(rj) or from Theorem 11.2 that

y(E*(?j)) = g*γ(η) Therefore the holonomy classes actually represent charac-

teristic classes on the category VBM\. To summarize, we have the following

theorem.

Theorem 11.3. There is a homomorphism φf : H*(gl(q, R)) -* R(VBM\)

such that if η is a vector bundle over L in the category VBM\ then the diagram

commutes.
Let η — (Ui9 hji) be a vector bundle with discrete structure group over a

connected manifold L, and let (fi) be a trivialization of η. In addition, let
H(E(η)) = (Wi9 Pi, Hji) be the horizontal foliation on E(η), and define
Πi'.Wi-* Ui by Πi(x,t,i) = x. Then dH^. = h^oll^ hence the maps
(hji o Πi) are the transition functions of the normal bundle vH(E(η)). Therefore
(fioΠi) is a trivialization of vH(E(η)). Thus the natural transformation

Tq: VBMq -> CFqL defined by Tq(τj) = (H(E(η)\ L) induces a natural trans-

formation Tq: VBM\ -> CF°qL. Moreover by Theorem 11.2, φ* =

Proposition 11.4. The diagram
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H*(gl(Q,R))

f
commutes.

Proof. Let γ be a class in H*(gl(q, R)), and let 37 be a vector bundle in the

category VBM\. Then

Hence Γ*0* - φ*. q.e.d

The homomorphism ^* : H*(gl(q, R)) -> R(VBMq) is called the holonomy

homomorphism, and the image of φ* in R(VBM°q) is called the holonomy ring

of R(VBM°q). By Proposition 11.4 the homomorphism T* : ^(CF°,L)-^^(F5M°a)

maps the holonomy ring of R(CF\L) into the holonomy ring of R(VBM°q).

Theorem 11.5. The homomorphism φ* : H*(gl(q, R)) -> R(VBMq) is a
monomorphism. Hence every characteristic class in the holonomy ring of

R(VBM°q) is a nontrivίal characteristic class.
Proof. See [9].
Theorem 11.6. The homomorphism φ* : H*(gl(q, R)) -> R(CF\L) is a

monomorphism, so that every characteristic class in the holonomy ring of
R(CF°qL) is a nontrίvial characteristic class.

Proof. This result follows immediately from Proposition 11.4 and Theorem
11.5.

Finally, we shall close our discussion of the holonomy ring by showing that
the holonomy classes in R(CFqL) are essentially linear invariants.

Theorem 11.7. Let F be a q-codimensional foliation with a trivialized
normal bundle vF, and let L be a leaf of F. Then φ%^L = φ*L.

Proof. The proof of this theorem is similar to that of Proposition 11.1.
Indeed, let F = (£/, fU9 Hvu), and let (G^) be the trivialization of the normal
bundle vF. Then

(11.15) Gv = dHVΌ\fu.GΌ ,

(11.16) fv = Hvuofu

on U ΓΊ V. Now let σ = (σ^) be the q X q matrix whose entries are the
canonical generators of A*(gl(q,R)), and let GuπL = GJJ\L. Then (GUC]L) is
the trivialization of the normal bundle vL. Hence by the construction given at
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the start of this section, we can define a cochain map φ: A*(gl(q, R)) —> A*(L)
by letting 0(σ^) be the 1-form in A*(L) which is given locally by GUΓ[L(σji)9

that is,

(11.17) W L L = G$nL(σjJ .

The form φiσ^ is globally well-defined, and by construction

(11.18) Φ*L = Φ*

Now we shall show that φ$,L = φ*. Let Πj: Rq -> 7? be the projection on the
/th factor. In addition, let % = Πjofu and dfΌ = {dfm ,dfl), and let *A
denote the transpose of the matrix A. Applying the chain rule to (11.16), we
obtain

(11.19) fu

Let ω = (ω19 , ωq) be the row vector of 1-forms given locally by

(11.20) ω\ϋ = (dfϋ)
 t(G^) .

Then from (11.15), (11.19), and (11.20) we have

ω\v = (dfr).<(p?) = {duyKdHyjj^yip?)

= Wu)ΛGr

1.dHru\fu) = (dfu) '(G?) = ω\u

on U Π V. Hence ω is indeed well-defined globally. Moreover, since ]υ is
locally constant on the leaves of F, ω vanishes on the leaves of F. Hence the
foliation F is defined by the 1-forms ωi9 , ωq. Now differentiating (11.20),
locally we have

dω\υ =

Let ΘL denote the connection form of the leaf connection on vL with respect
to the trivialization GUf]L Then by (11.23) and Proposition 3.6

(11.23) θL\ϋf)L = ' ( - G ^ . d G ^ U - ' ( - G ^ ^ . r f G ^ J .

Finally, let JC denote the q X q matrix whose entries are the coordinate func-
tions of GL(q, R). Then

(11.24) σ = t(-x~1dx) .

Therefore from (11.17), (11.23), and (11.24) we get
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φ(σ)lϋc]L =25)

Hence φ(σ) is the connection form of the leaf connection on vL with respect
to the trivialization GUΓiL. Therefore by the construction given in § 7

(11.26) ΦIL = Φ*

Hence from (11.18) and (11.26) it follows that

(11.27) ΦIL = ΦΪL' q-e.d.

Let F = (U, fu, Hyu) be a g-codimensional foliation with a trivialized normal
bundle vF, and let L be a leaf of F. If γ is a class in H*(gl(q, R)), then γ(F, L)
= γ(vL) by Theorem 11.7, so that all of the information about the holonomy
ring of L with respect to the foliation F is contained in the normal bundle vL.
Thus the holonomy invariants of the leaves of F depend only on dHvϋ, that
is, on the linear part of Hvu. Hence the holonomy invariants of the leaves of
F are essentially linear invariants of the foliation F.

Corollary 11.8. The diagram

H*(gKq,R))

*t/ \*t

commutes. Hence £* is an isomorphism from the holonomy ring of R(VBM°q)
to the holonomy ring of R(CF°qL).

Proof. Let F be a <?-codimensional foliation with a trivialized normal bundle
vF, and let L be a leaf of F. Then for any class γ in H*(gl(q, R)), we have

- φ*(r)l*q(F,L)] = φ*(φL) = RvLφ*(γ)

= ΦUr) = ΦFΛΪ) = RF.LΦΪW -

Hence ΰ*φ* = φ*.
Corollary 11.9. The diagram

H*(gl(q,R))

commutes, so that (Tq o ρ?)* is the identity homomorphism on the holonomy
ring of RiCP.L).
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Proof. By Proposition 11.4 and Corollary 11.8,

(Tq o ΰq)*φ* = ΰ*τ*φ* = f>*φ* = # . q.e.d.

Characteristic classes can be constructed on the category VBMq by a
technique similar to that used to construct the holonomy ring on the category

VBM\. In fact, let η = (Ui9 hjt) be a ^-dimensional vector bundle with discrete
structure group over a connected manifold L. Then η is reducible to an 0(#)-
bundle τ = (Va9 gβa). Hence there are functions fiβ: Ut Π V β —> GL(q, R) such
that

(H.28) fjXx) = hji{x)fiβ{x)gβa{x)

for every x in Ut Π t/, ΓΊ F α Π J^. Let A*(gl(q, R), 0(q)) denote the collec-
tion of all left-invariant 0(#)-basic forms on GL(q, R), and let ω be a form in
A*(gl(q, R), 0(9)). Then from (11.28) it follows that

(H.29) f%(ω) = ffβ(ω)

on t/i Π C/̂  Π Va Γ\ Vβ. Let ^(ω) be the form in A*(L) which is given locally
by ffβ(ω). Then by (11.29), φv(ω) is a well-defined form on L. Therefore there
is a cochain map φη: A*(gl(q, R), 0(q)) —> ^4*(L). As before, the homo-
morphism ^* is called the holonomy homomorphism, and the image of φ* in
//*(L) is called the holonomy ring of η. Now all of the results proved in this

section remain valid if we replace H*(gl(q, R)) by H*(gl(q, R), 0(q)), VBM\ by

VBMq, and CF°qL by CFJL. Moreover the proofs are essentially the same.
Finally since φ* = φ$iη), the results in §§ 8 and 9 remain valid if we replace

pairs in CFJL (CFqL°) by vector bundles in VBMq (VBM°q). In particular,

hjiη, Θ η2) = hj(Vl) 0 1 + 1® A/%) .
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