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THE HOLONOMY RING ON THE LEAVES
OF FOLIATED MANIFOLDS

RONALD GOLDMAN

Introduction

Let F be a foliation on a manifold M, and let vF denote the normal bundle
of F. In [1] and [2], Bott exploited the existence of certain special foliation
connections on vF to prove the following results:

Theorem 1 (The vanishing theorem for foliations). If F is a g-codimen-
sional foliation, then the real Pontryagin ring of vF is trivial in dimensions
greater than 2q.

Theorem 2 (The obstruction theorem for foliations). Let M be an m-di-
mensional manifold, and let E be a subbundle of the tangent bundle T(M) of
dimension m — q. Then a necessary condition for E to be isomorphic to a
g-codimensional foliation on M is that the real Pontryagin ring of the quotient
bundle T(M)|E must be trivial in dimensions greater than 2q.

Now let L be a leaf of the foliation F, and let vL denote the normal bundle
of L in M. By pulling back the foliation connections of the bundle vF to the
bundle vL, we obtain a unique natural connection on vL, which we shall call
the leaf connection on yL. It can be shown that if K* is the curvature of the
leaf connection on vL, then KX = 0. Therefore parallel to Bott’s theorems for
foliations, we have the following results for the leaves of foliated manifolds:

Theorem 3 (The vanishing theorem for leaves). If L is a leaf of a foliation,
then the real Pontryagin ring of vL is trivial.

Theorem 4 (The obstruction theorem for leaves). Let N be a connected
manifold and let j: N — M be a 1-1 immersion. Then a necessary condition
for N to be an integral manifold of a foliation on M is that the real Pontryagin
ring of the normal yN of N in M must be trivial. In particular, a necessary
condition for N to be a leaf of a foliation on M is that the real Pontryagin ring
of the normal bundle vN must be trivial.

The vanishing of the real Pontryagin ring of vF in high dimensions led to
the construction of certain secondary characteristic classes for foliations [2,
p. 68]. Similarly, the vanishing of the real Pontryagin ring of vL leads to the
construction of certain secondary characteristic classes, called the holonomy
ring, on the leaves of foliations. In fact, a unified construction for both types
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of secondary characteristic classes is given by Kamber and Tondeur in [15],
[16] by using the more general concept of a foliated bundle.

Nevertheless, there is one very important difference between the secondary
foliation classes and the holonomy classes. The secondary foliation classes of
a foliation F are invariants of the homotopy class of F [2, p. 69]. However
even though the holonomy classes depend only on the choice of a foliation F
and a leaf L of F, these classes are not invariants of the homotopy class of F
because the leaves of F themselves are not homotopy invariants. Hence the
holonomy classes are often more sensitive than the secondary foliation classes
since they can distinguish between homotopic foliations.

Still, the holonomy ring and the secondary foliation classes are quite inti-
mately related as is shown by Shulman and Tischler in [23]. Moreover let Tq
denote the pseudogroup of all local diffeomorphisms of R?, and a(Tq) the Lie
algebra of formal Tq vector fields. If F is a g-codimensional foliation with a
trivialized normal bundle on a manifold M, then there is a natural homomor-
phism 2} : H*(a(Tq)) — H*(M), and the secondary foliation classes of F are
just the classes in the image of A}, [3], [9]. Similarly, if L is a leaf of F, then
there is a natural homomorphism ¢% ;: H*(gl(q, R)) — H*(L), and the holo-
nomy ring of L is just the image of ¢} , in H*(L). Moreover, gl(g, R) can be
naturally embedded as a Lie algebra in a(Tq), and the diagram

*
H*(Tq) —*—> H*(M)

b

H*(sl(q, R)) "> H(L)

commutes. Since the homomorphism H*(a(Tq)) — H*(gl(g, R)) is actually the
zero homomorphism, all of the secondary foliation classes vanish when re-
stricted to a leaf.

In general, characteristic classes on the leaves of foliations resemble charac-
teristic classes on foliations in yet another way. Let I", denote the groupoid of
all the germs of all the local diffeomorphisms of R?. Put the sheaf topology on
I',. Then since I', is a topological groupoid, there is a space BI"(FI',) which
classifies I",-structures (with trivialized normal bundles) [4], [8]. Now every
g-codimensional foliation on a manifold M induces a I',-structure on M.
Moreover in [3] Bott and Haefliger state the following result.

Theorem 5. There is a 1-1 correspondence between H*(BI' )(H*(FI,))
and the collection of characteristic classes on foliations (with trivialized normal
bundles).

Similarly, let I, denote the groupoid I', with the discrete topology. Again
since F isa topologlcal groupoid, there is a space BFq(FFq) which classifies
F -structures (with trivialized normal bundles). Moreover, if L is a leaf of a
fOllathIl F, then F induces a I’ g-structure on L. Now in [6], [7] the following
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theorems are proved.

Theorem 6. The universal I' -structure on the classifying space BI" (FI",)
has only one leaf and this leaf is homeomorphic to qu(F fq).

Theorem 7. There is a 1-1 correspondence between H *(Bf’q)(H*(F fq))
and the collection of characteristic classes on the leaves of foliations (with
trivialized normal bundles).

In [6] and [7] we study H*(FI,) directly and show by a spectral sequence
argument that there are many nonzero classes in H*(F fq). Thus we are able
to conclude that there are many nontrivial characteristic classes on the leaves
of foliations with trivialized normal bundles.

There are still many unsolved problems concerning characteristic classes on
the leaves of foliated manifolds. First, it is not yet known whether the holonomy
ring exhausts the collection of these characteristic classes. Second, the topo-
logical significance of the holonomy classes is not well understood. Finally,
the algebraic relationship between H*(BI",) and H*(qu) has not yet been
completely explored. '

The primary purpose of this paper is to give several equivalent constructions
of the holonomy ring on the leaves of foliated manifolds. These constructions
though different are nevertheless equivalent to the construction of characteristic
classes for flat bundles given by Kamber and Tondeur in [15] and [16]. In §§ 1
and 2 we present most of the basic concepts and notation used throughout this
paper. In § 3 we introduce the leaf connection and derive some of its intrinsic
properties. Next, in §4, we make use of the leaf connection to prove the
vanishing and obstruction theorems for the leaves of foliations.

With these preliminaries accomplished, we are in a position to begin our
investigation of the holonomy ring. We shall give three distinct constructions
of this ring. Indeed, let F be a g-codimensional foliation and let L be a leaf of
F with trivialized normal bundle vL. In § 5 we construct a natural homomor-
phism ¢F , : E(hy, hy, - - -, hy) — H*(L) by comparing leaf connections to flat
connections. The homomorphism ¢% ; is called the holonomy homomorphism,
and the image of ¢¥ , in H*(L) is called the holonomy ring of the leaf L with
respect to the foliation F. Unfortunately, even though this construction is easy
to develop, it adds little to our intuitive understanding of the holonomy classes.
However as we show in § 6, this construction does lead to a better understand-
ing of the secondary foliation classes.

In §7 we use the connection form of the leaf connection to construct a
natural homomorphism ¢F ; : H*(gl(g, R)) — H*(L). Moreover, we prove that
the image of this homomorphism is actually the same as the image of the
holonomy homomorphism constructed in §5. The appearance of the Lie
algebra gl(g, R) hints at the essentially linear nature of the holonomy classes.
Furthermore in § 8 we are able to use this homomorphism to construct several
elementary examples of foliations which have leaves with nontrivial holonomy
rings. In addition, in § 9 we use this homomorphism to derive a product for-
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mula for the holonomy classes. This product formula leads to certain necessary
conditions, in terms of leaf invariants, for a (q, + g,)-codimensional foliation
to be the intersection of a g,-codimensional foliation and a g,-codimensional
foliation.

The theory of characteristic classes on the leaves of foliations is related to
the theory of characteristic classes for vector bundles with discrete structure
group. Indeed, if L is a leaf of a foliation, then the normal bundle vL has a
discrete structure group. Hence to construct characteristic classes on the leaves
of foliations, one need only construct characteristic classes for vector bundles
with discrete structure group. A construction of characteristic classes for these
bundles is given by Kamber and Tondeur in [15] and [16]. However, we shall
adopt a somewhat different approach which ties in more readily with our other
constructions.

In § 10 we discuss the relationship between the category of vector bundles
with discrete structure group and the category of the leaves of foliations. Then
in §11 we construct a holonomy ring for all vector bundles with discrete
structure group and show that when a vector bundle is the normal bundle of
a leaf, this holonomy ring coincides with the holonomy ring of the leaf. Thus,
since the holonomy classes of a leaf depend only on the structure of the normal
bundle of the leaf, we can conclude that the holonomy classes are essentially
linear invariants.

Throughout this paper all manifolds are differentiable C~-manifolds, all
maps are smooth C>-maps, and-all cohomology is understood to have real
coefficients.

Some of the results in this paper first appeared in the author’s thesis which
was written while the author was attending the University of Maryland on a
leave of absence from Johns Hopkins University. The author would like to
express his thanks to the people at the University of Maryland for granting
sanctuary to an exile from the house of the philistines, and would also espe-
cially like to thank his advisor Bruce Reinhart for rescuing him from silence
and the void.

1. Foliation categories

To begin, we recall some basic conceepts associated with foliations. Let M
be an m-dimensional manifold, and let T(M) denote the tangent bundle of M.
A subbundle E of T(M) is said to be integrable if [X, Y] is a vector field in E
whenever both X and Y are vector fields in E.

Definition. A g-codimensional foliation on M is an integrable subbundle
of T(M) of dimension m — q.

Let E be a subbundle, not necessarily integrable, of T'(M). The normal
bundle vE is the quotient bundle T(M)/E. In particular, if E is a g-codimen-
sional foliation on M, then vE is a g-dimensional vector bundle over M. When
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the normal bundle vE is isomorphic to the trivial vector bundle over M, we
shall say that E has a trivial normal bundle. However, if a specific trivializa-
tion of the normal bundle has been selected, then we shall say that E has a
trivialized normal bundle.

To construct foliation categories, we must introduce the notion of foliation
maps. Let F be a g-codimensional foliation on M, and N an n-dimensional
manifold. A map g: N — M is said to be transverse to F if (dg)~*(F) is an
(n — g)-dimensional subbundle of T(N). In this case we shall denote (dg)~*(F)
by g*(F). The bundle g*(F) is a g-codimensional foliation on N.

Definition. Let F, be a g-codimensional foliation on a manifold M;, i =
1,2. A map g: M, — M, is said to be a foliation map from F, to F, if and only
if g is transverse to F, and F, = g*(F,). We shall write g: F, — F, to denote
that g is a foliation map from F, to F,.

Now we shall adopt the following notation :

1. CF, will denote the category whose objects are g-codimensional folia-
tions and whose morphisms are foliation maps.

2. CF} will denote the category whose objects are g-codimensional folia-
tions with trivialized normal bundles and whose morphisms are foliation maps
compatible with the given trivializations.

Characteristic classes have been constructed on these foliation categories by
Bott in [2], by Haefliger in [9], and by Kamber and Tondeur in a series of
papers [11], [12], [13], [14], [15], and [16]. In § 6 of this paper we shall
briefly review Bott’s construction of these secondary foliation classes.

2. Leaf categories

Now we are going to introduce three categories associated with the leaves
of foliations. Let F be a g-codimensional foliation on an m-dimensional mani-
fold M. An (m — g)-dimensional manifold L is said to be an integral manifold
of F if there is a 1-1 immersion j: L — M such that dj(T(L)) is contained
in F. That is, L is an integral manifold of F if F coincides with the tangent
space of L at every point in the image of j.

Definition. Let F be a foliation. A leaf of F is a maximal connected integral
manifold of F.

Letj: L - M be a 1-1 immersion. The normal bundle vL is the quotient
bundle T(M)/dj(T(L)) restricted to L. If F is a foliation on M, and L is a leaf
of F, then vL = vF|; by construction. Again we shall adopt the distinction
made in § 1 between a trivial normal bundle and a trivialized normal bundle.

The objects of the leaf categories will be pairs (F, L), where F is a foliation
and L is a leaf of F. In order to describe the morphisms of these categories,
we must introduce the notion of a map of pairs.

Definition. Let F, be a g-codimensional foliation on a manifold M,, i =
1, 2. In addition, let L, be a leaf of F; and let j;: L, — M, be the immersion
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of L,in M,, i = 1,2. A map g: M, — M, is called a map of pairs from (F,, L,)
to (F,, L,) if and only if for a map g: F, — F,, g-ji(L,) is contained in j,(L,).
We shall write g: (F,, L,) — (F,, L,) to denote that g is a map of pairs from
(Fy, L) to (Fp, Ly).

Note that if g: (F,L,) — (F,,L,) is a map of pairs, then F, = g*(F,).
Moreover, there is a map g: L, — L, induced by g such that the diagram

Ll—g>L2

fll liz

M, %5 M,

commutes.

We shall adopt the following notation :

1. CF,L will denote the category whose objects are pairs (F, L) and whose
morphisms are maps of pairs, where F is a g-codimensional foliation and L
is a leaf of F.

2. CF,L°® will denote the category whose objects are pairs (F, L) and whose
morphisms are maps of pairs compatible with the given trivializations, where
F is a g-codimensional foliation, L is a leaf of F, and yL is a trivialized bundle.

3. CFiL will denote the category whose objects are pairs (F, L), and whose
morphisms are maps of pairs compatible with the given trivializations, where
F is a g-codimensional foliation, L is a leaf of F, and vF is a trivialized bundle.

Much of this paper is devoted to techniques for constructing characteristic
classes on these three categories.

3. The leaf connection

There are special connections associated with the normal bundle of a folia-
tion and the normal bundle of a leaf. By examining the curvature forms of
these connections, we can extract information about the real Pontryagin rings
of these vector bundles. In fact, the vanishing and obstruction theorems, both
for foliations and leaves, are a consequence of the existence of these special
connections. For a detailed discussion of connections and the Pontryagin ring,
the reader is referred to [2, § 5] and [17, Vol. II, Chap. 12].

In this section we shall introduce an especially useful connection on the
normal bundle of a leaf. This connection is rather intimately related to the
foliation connections investigated by Bott in [2, p. 33]. Therefore we shall
begin our discussion by recalling the definition of a foliation connection.

Let »: E — M be a vector bundle over a manifold M. We shall write /'(E)
to denote the collection of cross sections of 7. In particular, I'(T(M)) is the
collection of all vector fields on M.

Definition. Let F be a foliation on a manifold M, and /7: T(M) — vF the



HOLONOMY RING 417

projection map. A connection / on the normal bundle vF is called a foliation
connection if and only if Vx(Z) = II([X, 7)) for every X in I'(F), where Zis
any vector field on M for which /7(Z) = Z.

Let F be a foliation on a manifold M. In general there exist many foliation
connections on vF, [2, p. 33], [25]. However, if I is a foliation connection
on vF, and g: N — M is a map transverse to F, then the pullback g*(/) is a
foliation connection on vg*(F), [2, p. 69]. Moreover, all foliation connections
share the following properties:

Lemma 3.1. Let I? be a foliation connection on vF with local connection
form @, i = 1,2. If X is in I'(F), then §*(X) = 6*(X).

Proof. Letsg, ---,s55 be a basis for the sections of vF over U®, and let
II: T(M) — F be the projection map. If X is in I'(F), then by the definition
of a foliation connection

% 05085 = Px(s9) = X, ) = Pils) = 3 650053
J
where 3¢ is any vector field on M such that /7(37) = s7. Hence 6;5(X) = 623(X).

Lemma 3.2. Let I’? be a foliation connection on vF with local connection
form 6%, i = 1,2. If L is a leaf of F, then 6|, = 6*|,.

Proof. This result is an immediate consequence of Lemma 3.1.

Definition. Let F be a foliation on M, L a leaf of F, and j: L — M the
immersion of L in M. A connection // on yL is called a leaf connection if and
only if there is a foliation connection ¥ on vF such that V' = j*(7).

Theorem 3.3. Let F be a foliation on M, and L a leaf of F. Then there
is one and only one leaf connection on yL.

Proof. The existence of leaf connections follows immediately from the ex-
istence of foliation connections. To prove uniqueness, suppose that I’* and F?
are two leaf connections on vL and that j: L — M is the immersion of L in
M. Then there are foliation connections 7! and 72 on vF such that ! = j*(I?)
and P2 = j*(F?). Let 6% be the local connection form of F’¢ over U, i = 1, 2.
Then j*(§**) = |, is the local connection form of I’* over j~Y(U%), i = 1, 2.
However by Lemma 3.2, §'*|, = 6*|;. Since this equality holds on every
neighborhood j~!(U*), we can conclude that /' = P2, Therefore there is one
and only one leaf connection on vL. q.e.d.

Let L be a leaf of a foliation. Since the leaf connection on vL is unique, we
will always denote this connection by /> and the curvature of '~ by KZ. Now
the leaf connection satisfies the following naturality property.

Proposition 3.4. Let F; be a g-codimensional foliation on a manifold M,,
and L; a leaf of F;, i = 1,2. In addition, let g: (F,,L,) — (F,,L,) be a map
of pairs, and g: L, — L, the map induced by g. Then V'** = g*(F*3),

Proof. LetV be a foliation connection on vF,. Since g: (Fy, L,) — (F,, L,) is
amap of pairs, F, = g*(F,). Therefore g*(V) is a foliation connection on F,. Now
let oo;: L; — M, be the immersion of L; in M,;, i = 1,2. Then the diagram
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L-%>1,

all laz

M1i>M2

commutes. Hence V'X* = afg*(V) = g*af(V) = g*(F*). q.e.d.

While the uniqueness of the leaf connection will help to simplify many of
the proofs in this paper, the existence and naturality of the leaf connection are
really the crucial points in most of our arguments.

We shall close this section by deriving an important alternate expression for
the local connection form of the leaf connection. Let F be a g-codimensional
foliation on a manifold M, and L a leaf of F. Since the normal bundle vF is
locally trivial, there is a local basis Z, - - -, Z2 of sections for vF. Let IT: T(M)
— vF be the projection map, and let Zs, - - -,Z‘; be local vector fields on M
such that /1(Z;) = Z;, 1 < i < q. Finally, let of, - - -, @2 be the local 1-forms
on M dual to the local vector fields Z‘;, cee, Z;, that is, the local 1-forms such
that co‘;(Z;‘-) = d;;. Then the 1-forms wf, - - -, ©% are annihilated by F. If X,Y
are in I'(F), then by the integrability condition

doi(X,Y) = $(Xi(Y) — Yoi(X) — o{[X,Y]) = 0.
Therefore there exist local 1-forms z%; on M such that

do; = 2 oF N\ 75 .
J

Let r: L — M be the immersion of L in M, and let z};* = r*(¢5,). In addition,
let == denote the g X g matrix (%), and ™ the g X g matrix (z%;*). We shall
show that 7% is actually the local connection form of the leaf connection on
vL with respect to the local basis of sections Z;or, -+ -, Zor.

Proposition 3.5. Let IV be a foliation connection on vF, and 0* the local
connection form of V with respect to the local basis Z5, - -+, Z5. If X is a
vector field in I'(F), then t%(X) = 6%(X).

Proof. Let F* denote the dual of F, and let II*: T*(M) —» T*(M)/F* =
(vF)* be the projection map. Then for any vector field ZonM

w:(2) = I*)U(Z)) .
If X is a vector field in I'(F), then
e (X) = (@5 A t5)(Fs, X) = ( = ot A rzi)(Z;, X)

= dot(Z5, X) = ¥ Zwi(X) — Xoi(Z9) — oflZ2, X))
= H—XG;;) — oflZ2, X]) = JotlX, Z2]
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= {TI*(e)HUIX, Z‘;]) = 1[T*(0)lV x(Z%)
= %ﬂ*(w:)(@ a;k(X)Z;) = 165(X) .

Hence *(X) = 6*(X).

Proposition 3.6. Let 6% denote the local connection form of the leaf con-
nection on vL with respect to the local basis of sections Z5 or, - - -, Z5or. Then
,L.L,a — aL,a.

Proof. This result is an immediate consequence of Proposition 3.5.

If the normal bundle vF is a trivialized bundle, then the forms 5, are global
forms on M. Therefore in this case we shall write z;; in place of ¢3;, z in place
of =%, ¢%; in place of ¢%;*, and ¢ in place of z*=.

Proposition 3.7. Let F be a g-codimensional foliation with a trivialized
normal bundle vF, and L a leaf of F. Then t* is the global connection form
of the leaf connection on vL with respect to the given trivialization.

Proof. This result follows immediately from Proposition 3.6.

4. The vanishing and obstruction theorems

We shall now take a close look at the curvatures of the foliation and leaf
connections, and shall use the special properties of these curvature forms to
prove the vanishing and obstruction theorems.

Let F be a g-codimensional foliation on M, L a leaf of F, and j: L - M
the immersion of L in M.

Lemma 4.1. If K is the curvature of a foliation connection on vF, and
X, Y are vector fields in I'(F), then K(X,Y) = 0.

Proof. Let Il : T(M) — vF be the projection map, Z a section of vF, and
Z a vector field such that 77(Z) = Z. If K is the curvature of the foliation
connection V on vF, and X, Y are vector fields in I'(F), then

KX, Y)Z) = Vil (Z) — Vil x(Z) — Vix 11(2)
= Vx(I(Y, 2]) — Vy(I1(X, ZD) — (X, Y1, Z])
= I(X,[Y,Z1) — O(Y,[X,Z]]) — (X, Y1,Z])
= —I([Y,Z], X] + [[Z,X], Y] + [[X,Y],Z) = 0

by the Jacobi identity,

Lemma 4.2. If K* = (K¢,) is the local curvature form over U* of a folia-
tion connection on vF, then there is an ideal I, of forms on U* such that 1¢*!
= 0and K3, is in I, for all j, i.

Proof. Let X%, ---, Xz,_, be a basis for the sections of F over U. Then
this basis can be extended to a basis X3, ---, X5 _,, Y5, ---, Y2 for all vector
fields over U®. Let w® be the 1-form dual to Y%, and 67 the 1-form dual to X¢.
If I, denotes the ideal of forms over U* generated by o, - - -, g, then certainly
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I%*' = 0. Moreover, since K9, is a 2-form over U-,
K= X a,0; \6; + ¥

for some ¥ in 1,. However, by Lemma 4.1, a,, = K5,(X3, X;) = 0. Therefore
K3, isin I, for all j,i.

Lemma 4.3. If K~ is the curvature of the leaf connection on yL, then K-
=0.

Proof. This result is an immediate consequence of Lemma 4.1.

Theorem 4.4 (The vanishing theorem for foliations). If F is a q-codimen-
sional foliation, then the real Pontryagin ring of vF is trivial in dimensions
greater then 2q.

Proof. Let K be the curvature of a foliation connection on vF. If 7 is a
class in the real Pontryagin ring of vF such that degree y > 2g, then 7 is
cohomologous to a form of the type }; 7;,...;,c;,(K) - - - ¢;(K) where r;,...;, is
in R, c, is the jth chern polynomial, and }] j, > gq. Let K* = (K¢,) be the local
curvature form of K over U*. By Lemma 4.2 there is an ideal I, of forms on
U such that I?*! = 0, and K3; is in I, for all j,i. Hence c;(K®) - - - ¢; (K%
is in IZ/s. However }; j, > q; therefore IZ/+ = 0 so ¢;(K®) --- ¢;(K*) = 0.
Hence 7|y. = 0. Since this last equality holds on every neighborhood U<, we
can conclude that y = 0.

Theorem 4.5 (The vanishing theorem for leaves). If L is a leaf of a folia-
tion, then the real Pontryagin ring of vL is trivial.

Proof. 'This result follows immediately from Lemma 4.3.

Theorem 4.6 (The obstruction theorem for foliations). Let M be an m-
dimensional manifold, and E a subbundle of the tangent bundle T(M) of
dimension m — q. Then a necessary condition for E to be isomorphic to a
g-codimensional foliation on M is that the real Pontryagin ring of the quotient
bundle T(M)|E must be trivial in dimensions greater than 2q.

Proof. This result is an immediate consequence of Theorem 4.4.

Theorem 4.7 (The obstruction theorem for leaves). Let N be a connected
manifold and let j: N — M be a 1-1 immersion. Then a necessary condition
for N to be an integral manifold of a foliation on M is that the real Pontryagin
ring of the normal bundle vN must be trivial. In particular, a necessary con-
dition for N to be a leaf of a foliation on M is that the real Pontryagin ring
of vN must be trivial.

Proof. This result is an immediate consequence of Theorem 4.5.

The vanishing and obstruction theorems for foliations were first proved by
Bott in [1] and [2]. We have added nothing new to his techniques. Rather we
have included these theorems here in order to stress the similarities between
these theorems for foliations and the corresponding theorems for the leaves of
foliations. Two general principles emerge when we examine these similarities.
First, given a theorem pertaining to foliations, one can often find an analogous
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theorem pertaining to the leaves of foliations. Second, the propositions referring
to leaves are usually simpler than the corresponding propositions referring to
foliations. This second principle is to be expected because foliations are much
more complex than their individual leaves. We shall see the second principle
in operation again in § 6 when we discuss secondary characteristic classes.
Indeed, the secondary leaf classes form only one algebraic component of the
secondary foliation classes.

5. The holonomy homomorphism and special connections

A characteristic class on the category CF,L (CF,L’, CF}L) is a natural trans-
formation which assigns to each pair (F, L) in CF,L (CF,L°, CF.L) a class in
H*(L). In this section we shall use the leaf connection along with other special
connections to construct a collection of characteristic classes, called the
holonomy ring, on the category CF,L (CF,L°, CFL). We begin by recalling a
technique used by Bott in [2] for comparing connections.

Let M be a manifold, and let 4*(M) denote the collection of differential
forms on M. In addition, let »: E — M be a vector bundle over M and let

p°, ..., F™ be connections on E. Finally, let ¢; denote the jth Chern polynomial
and define

AP, - 7™ (ey) = Hyle,(K) irxan] »
where
4" = {(ty, -+ +»t)|t; > O and 3 1, = 1}

is the standard n-simplex, K is the curvature of the connection (1 — ¢, — - - -
—t) V" + 4+ - 4+t V" on the vector bundle E X R* - M X R*,
I : A*(M X 4™) — A?~"(M) denotes integration along 4".

In particular, if K° is the curvature of I’°, then 2(F°)(c;) = c;(K"). Moreover
2 has the following useful properties.

Lemma 5.1. di(P°, ---,/™)(c;) = X (=Da@e, ---, v, .-, ™ (c,).

Proof. See [2, p. 65].

Lemma 5.2. Iff: N—M, thenf*a(V°, - - -, F™)(c,;) = 2(f*P", - - -, f*(F™))
(cy).

Proof. Let ay: N X 4" - N X R* and ay;: M X 4* — M X R" be the
inclusion maps. Then the diagram

id
N x an 2259 o gm

aNl laM
fxid

Nx RIS M % pe
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commutes. Let // denote the connection (1 — ¢, — «-+- — V" + /' + - .-
+ ¢,/ on the vector bundle E X R®* — M X R", and let K be the curvature
of /. Then (f X id)*(") =(1A —¢t, — --- — )Y + Y + -+ +

t,f*(F™), and the curvature of (f X id)*() is (f X id)*(K). Now directly from
the definition of 2 we have

AW, -« -, Iy = I lage,[(f X id)*(K)]]
= Il Jay o (f X id)*c,(K)]
= I [(f X id)* o ajc,(K)]
= 1 [, (K)]
= Al -, F")(cy) . q.e.d.

Call a connection on a trivial vector bundle flat if its connection form is zero
with respect to some trivialization of the vector bundle. Let / be a connection
on a trivial vector bundle with connection form # and curvature form K. Then
by [2, p. 25], K = df — 6. Thus, if [ is a flat connection, then the curvature
of I is also zero.

Two flat connections on the same trivial vector bundle will be said to be
homotopic if the trivializations to which they correspond are homotopic. Since
the collection of all homotopic trivializations forms a convex set, the collection
of all homotopic flat connections also forms a convex set. Therefore we have

Lemma 5.3. IfV°, ..., V™ are homotopic flat connections, then A(P°, - - -,
F(c;) = 0.

Proof. IfP° ..., FV™ are homotopic flat connections, then V = (1 — ¢, —
oo —t W+t + -+« + 1, /" is also a flat connection.

If K denotes the curvature of V, then K = 0. Hence 2(F°, - - -, V") (c;) =
I [c;(K)|yxsm] = 0. q.e.d.

With these preliminary results in hand, we are about ready to construct
characteristic classes on the leaves of foliated manifolds.

Definition. A characteristic class on the category CF,L (CF,L’, CF)L) is
a transformation 7 which associates to each pair (F, L) in CF,L (CF,L’, CFL)
a class y(F,L) in H*(L) such that if g: (F,,L,) — (F,L) is a map of pairs
(compatible with the given trivializations), and g: L, — L is the map induced
by g, then y(F,, L) = g*y(F, L).

The collection of characteristic classes on the category CF,L forms a ring
which we shall denote by R(CF,L). If (F, L) is a pair in the category CF L,
then there is a ring homomorphism Ry ; : R(CF,L) — H*(L) given by Ry ;(7)
= y(F, L). Similarly, there are rings R(CF,L°) and R(CF{L) with analogous
homomorphisms. Moreover, it is known that the ring R(CF L"), is isomorphic
to the ring R(CFL), [17]. However we shall not attempt to prove this result
in this paper.

Now let F be a g-codimensional foliation, and L a leaf of F with a trivialized
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normal bundle vL. As usual, F'Z will denote the leaf connection on yL. In
addition, J° will denote the flat connection on vL corresponding to the given
trivialization. By construction, the form 2(F°, F*)(c,) is a (2j — 1)-form on L.
Moreover we have

Proposition 5.4. The form A(V°, V*)(c;) has the following properties :

1. 2P, VE)(c;) is a closed form,

2. the cohomology class of 2W°, V'*)(c;) depends only on the homotopy
class of the original trivialization.

Proof. 1. Let K* denote the curvature of I’Z, and K° the curvature of /°.
Since P° is a flat connection, K° = 0. Moreover by Lemma 4.3, K* = 0.
Hence by Lemma 5.1

dal°, 7*)(cy) = AF*)(c;) — AP (c;) = c(KF) — cy(K) = 0.

2. Let 7° be a flat connection on yL homotopic to F°. Then by Lemma
5.3, 2(7°, °)(c;) = 0. Therefore by Lemma 5.1, da(P°, P°, F%)(c,) = (", V")
(c;) — AP°, L) (cy). Thus A(F°, V*)(c,) is cohomologous to A(P°, F*)(c,), and
hence the cohomology class of A(F°, F*)(c;) depends only on the homotopy class
of the original trivialization. q.e.d.

Let E(hy, h,, - - -, h,) denote the exterior algebra on generators A, hy, - - -, h,.
Define a ring homomorphism

¢F. E(hy, by, - -+, ) — H*(L)
by letting
¢F..(hy) = {20, F5)(cy} .

Then by Proposition 5,4 the homomorphism ¢7 , is well-defined and depends
only on the homotopy class of the original trivialization. The homomorphism
¢% 1 is called the holonomy homomorphism, and the image of ¢¥ , in H*(L)
is called the holonomy ring of the leaf L with respect to the foliation F. Let

hy(F,L) = (a7, P1)(c,)} .

The class h;(F, L) is called the jth holonomy class of the leaf L with respect
to the foliation F. By construction, the degree of the class A,(F, L) is 2j — 1.
Now to show that the holonomy classes are indeed characteristic classes on
the category CF,L°, we must demonstrate that they satisfy the required natu-
rality property.

Proposition 5.5. Let F; be a g-codimensional foliation, and L, a leaf of
F; with a trivialized normal bundle vL;, i = 1,2. In addition, let g: (F,, L,
— (F,, L,) be a map of pairs compatible with the given trivializations, and
g: L, — L, the map induced by g. Then the diagram
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0,10
E(hn hza ) hq) F—’L’H*(Lz)
g'*
H*(L))

*
¢F1»L1

commutes.

Proof. 1If I is the flat connection corresponding to the given trivialization
on yL,, then the connection g(/°) is the flat connection corresponding to the
given trivialization on vL, since the map g is compatible with the given triviali-
zations. Moreover by Proposition 3.4 if F'Z# is the leaf connection on vL,, then
g*(P™) is the leaf connection on vL,. Therefore by Lemma 5.2

o1, (hy) = {AG*W"), g*(7E)(c )}
= {g* A", V') (cp} = g%¢F, 1.(hy)
Theorem 5.6. There is a homomorphism ¢¥ : E(h,, h,, - - -, hy) — R(CF L")
such that if (F, L) is a pair in the category CF L, then the diagram
¢*
E(hl’ h2$ ) hq)'_q’R(CFqLo)
Rr,1

H*(L)

*
$5L

commutes.

Proof. This result is an immediate consequence of Proposition 5.5.

The image of the homomorphism ¢¥ : E(hy, h,, - - -, h;) — R(CF L) is called
the holonomy ring of R(CF,L"). The holonomy ring on the category CF}L can
be constructed in much the same manner. However to construct the holonomy
ring on the category CF,L we must modify our procedure somewhat.

Let : E — M be a vector bundle, and { , > a smooth inner product on the
fibres of E. Call a connection /% on a vector bundle : E — M a Riemannian
connection if and only if for every X in I'(T(M)) and all s,, s, in I'(E)

X8y, 800 = VEsy, 80 + (51, VEsyy .

If K% is the curvature of a Riemannian connection, then c,;_;(K¥) = 0 [2,
p- 28]. Therefore the construction in this section remains valid if we replace
flat connections by Riemannian connections, the ring E(h,, h,, - - -, h,) by the
ring E(hy, hy, - -+, hy(g41y/5-1)> and the category CF,L° by the category CF,L.
Moreover, the proofs are essentially the same.

Now if the pair (F, L) is in the category CF,L, then the class h,;_,(F, L)
depends only on the foliation F and the leaf L because the collection of all
Riemannian connections forms a convex set (see Lemmas 5.3, 5.4). Therefore
even when the pair (F, L) is in the category CF,L’, the characteristic class
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hy;_,(F, L) is completely independent of the choice of the trivialization of vL.
Thus, if (F,L) is a pair in CF,L’ then h,;,(F,L) depends on F,L and the
homotopy class of the trivialization of vL, but h,;_,(F, L) depends only on F
and L.

The characteristic classes in the holonomy ring of a leaf L are called the
secondary leaf classes or the secondary leaf invariants because they exist due
to the vanishing of the real Pontryagin ring of vL. In § 11 we shall show that
the homomorphism ¢¥ is a monomorphism. Thus every characteristic class in
the holonomy ring is a nontrivial characteristic class. However, it is not yet
known whether the holonomy ring actually exhausts the collection of charac-
teristic classes on the leaves of foliations.

The construction of characteristic classes which we have just developed is
actually valid for the category whose objects are the (trivialized) vector bundles
with a connection whose curvature is zero. We shall not attempt to pursue this
subject any further at this time. However a detailed discussion of characteristic
classes for these vector bundles is given in [15] and [16].

6. The secondary foliation classes

A characteristic class on the category CFj is a transformation y which
associates, to each g-codimensional foliation F with a trivialized normal bundle
on a manifold M, a class y(F) in H*(M) such that if g is a map transverse to
F, then y(g*(F)) = g*r(F). We shall denote the ring of characteristic classes
on the category CFy by R(CF}). If F is a g-codimensional foliation with a
trivialized normal bundle on a manifold M, then there is a ring homomorphism
Ry: R(CF}) — H*(M) given by Ry(y) = y(F). In [2] Bott constructed a col-
lection of characteristic classes in R(CF}) by comparing foliation connections
to flat connections. We shall briefly review this construction.

Let F be a g-codimensional foliation with a trivialized normal bundle on a
manifold M. Let /'Z be a foliation connection on vF with curvature K2, and

P° the flat connection on vF corresponding to the given trivialization. Define
W, to be the cochain complex

E(hl, hza ] hq) ® R[cla Cy 0y Cq]/dEgree p > 2q >

where degree ¢; = 2j, dc; = 0, and dh; = c;. Then there is a ring homo-
morphism Ay: W, — A*(M) given by

Ap(hy) = AW, VE)(cy) ,  Ze(cy) = c,(KP) .

Using Lemma 5.1, one can easily show that 4, is a cochain map. Now the
cochain map 1 depends on the original choices of the foliation connection
and the trivialization. However by employing the techniques used in § 5, one
can show that the homomorphism
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25 H*(W,) — H*(M)

induced by the cochain map 2, depends only on the homotopy class of the
original trivialization. Moreoever, if g: N — M is a map transverse to F, then
by Lemma 5.2 the diagram

ax
H*(W ) ——=H*(M)

N 18*
¥ (F)

H*(N)
commutes.

Therefore to summarize, we have the following theorem.

Theorem 6.1. There is a homomorphism 2} : H*(W,) — R(CF?) such that
if F is a g-codimensional foliation with a trivialized normal bundle on a mani-
fold M, then the diagram

a*
H*(W)—<~R(CF?)
-
2
H*(M)

commutes.

The classes in the image of the homomorphism 2} : H*(W,) — H*(M) are
called the secondary foliation classes of F. Similarly, the classes in the image
of the homomorphism 2} : H*(W,) — R(CF;) are called the secondary classes
of CF}, because their existence is due to the vanishing of the real Pontryagin

ring of vF in high dimensions.
Now make E(h,, - -, h,) into a cochain complex by letting dh; = 0. Then

the ring homomorphism
U Wy — E(hy, - -, hy)
given by
tohy) = hy, Uq(c) =0

is a cochain map. Let L be a leaf of the foliation F and let «: L — M be the
immersion of L in M. Then the trivialization on the normal bundle vF induces
a trivialization on the normal bundle vL. Now the ring homomorphism

¢F,L: E(hl, DR} hq) - A*(L)

given by
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$r,1(hy) = Aa*(P), FH)(c))

is a cochain map. Moreover, since a*(P°) is the flat connection on yvL with

respect to the induced trivialization, the homomorphism ¢ , induced by the

cochain map ¢y, is exactly the same as the homomorphism ¢ , defined in § 5.
Proposition 6.2. The diagram

2
W, ———> A*(M)

va) |

E(hy, - -, hy) 255 4*(L)

commutes.
Proof. It is enough to verify this result on the generators of W,. First we
have

a*ap(hy) = a*2W°, VP)(cy) = Ha* (7)), a*(FP))(cy)
= Aa*7), V)(cy) = ¢r,2(hy) = br,Lpg(hy) -

Moreover we also have
a*ZF(Cj) = “*Cj(KB) = Cj(a*(KB)) = Cj(KL) =0= ¢F,L,uq(cj) .

Therefore a*Ar = ¢r, rpty-
Corollary 6.3. The diagram

H*(W,) —2}‘—> H*(M)

A b
95,1

E(h,, - - -, hy) ——> H*(L)

commutes.

Proof. This result follows immediately from Proposition 6,2.

Corollary 6.4. h;(F,L) = {2z(h))|.}.

Proof. This result follows immediately from Proposition 6.2.

Lemma 6.5. The homomorphism y¥: H*(W,) — E(hy, - - -, h,) is the zero
homomorphism.

Proof. Every cocycle in W, is the sum of elements of the form 4;c; where
h; is an element in the ring E(h,, - - -, h,) and ¢, is a nonconstant element in
the ring Rlc,, - - -, c,]/degree p > 2q. However p,(c;) = 0. Thus pf(hc;) =
0, and hence g is the zero homomorphism.

Corollary 6.6. The homomorphism a*3%: H*(W,) — H*(L) is the zero
homomorphism. Therefore, if y is a secondary foliation class, then y(F)|, = 0.

Proof. This result follows immediately from Corollary 6.3 and Lemma 6.5.
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To construct the secondary classes on the category CF,, one proceeds ex-
actly as for the category CFY except that flat connections are replaced by
Riemannian connections and the cochain complex W, is replaced by the
cochain complex

WO, = E(h,, hy, - - -, h2[(q+1)/2]—1) & Rlc,, - -+, c,]/degree p > 2q ,

where degree ¢; = 2j, dc; = 0, and dh,;_, = c,;_,. Therefore the results in
this section remain valid if we replace the category CF; by the category CF,,
the cochain complex W, by the cochain complex WO, and the ring E(h,, - - -,
h,) by the ring E(h,, hs, - -, By (g11)5-1). Moreover the proofs are essentially
the same. Now Corollary 6.6 can be interpreted as a generalization of the
vanishing theorem for leaves. Indeed this result states that not only the
Pontryagin classes but also all of the other secondary classes of a foliation
vanish on the leaves.

In light of Proposition 6.2 we can give the following analysis of the cochain
complex W (WO,). The ring R[c,, - - -, c,] represents the ring of Chern classes
on the normal bundle of a foliation; the truncation represents the vanishing
theorem for foliations; and the ring E(h,, - - -, hy) (E(hy, hy, - -+, Byp(gi1y21-1)
represents the holonomy ring on the category CF,L(CFL). In fact by Corol-
lary 6.4, h;(F, L) = {2z(h,)|.}. Hence the holonomy classes of the leaves can
be represented by the pullback of forms on the manifold in which they are
immersed. Thus the secondary foliation classes on CF3(CF,) and the secondary
leaf classes on CFyL (CF L) are intimately related.

We close this section with a warning. Two foliations F,, F, on M are said
to be homotopic if there is a foliation F on M X I such that the inclusion
maps i,j: M X 0 - M X Iand i;: M X 1 > M X I are transverse to F and
F, = i}(F) and F, = i¥(F). The secondary foliation classes are homotopy in-
variants [2, p. 69]. That is, if y is a secondary foliation class and F,, F, are
homotopic foliations, then y(F,) = y(F,). However, even though the secondary
leaf invariants depend only on the foliation and the choice of leaf, these classes
are not homotopy invariants of the foliation. This is true because the leaves
themselves are not homotopy invariants ; indeed, even if F, and F; are homo-
topic foliations, the leaves of F, and the leaves of F, may be quite different
spaces.

7. The holonomy homomorphism and special differential forms

In this section we shall give an alternate construction of the holonomy homo-
morphism. Let F be a g-codimensional foliation, and let L be a leaf of F with
a trivialized normal bundle yL. In addition, let % denote the connection form
of the leaf connection with respect to the given trivialization on yL. We shall
show that the holonomy ring of L consists of the cohomology classes of certain
polynomials in 6.
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Recall that by [2, p. 25] the local curvature form K= and the local connec-
tion form 4« are related by the matrix equation

7.1 K* = do* — (69)* .

However by Lemma 4.3, KX = 0. Therefore

7.2 dor = (6*)?,

or in terms of the oﬁordinates of the matrix 6~

1.3 dot, = Zk] 0% N 0% .

Let A*(gl(q, R)) denote the collection of left-invariant forms on GL(q, R), and
let ¢ = (0;;) be the g X g matrix whose entries are the canonical generators

of A*(gl(g, R)). Since the equations represented by (7.3) have the same form
as the Maurer-Cartan equations for GL(g, R), we can define a cochain map

¢r,.: A*(gl(q, R)) — A*(L)
by letting
(7.4) $r,1(05) = 05 -
We shall show that the image of the homomorphism
¢, H*(gl(q, R)) — H*(L)

is the holonomy ring of L with respect to the foliation F. This result is
reasonable since H*(gl(g, R)) is isomorphic to the ring E(h,, - - -, k).

To begin, let A be a g X g matrix and let c¢; denote the jth Chern poly-
nomial. Define the polynomials e; ,, 0 < j, s < g, by the equation

c;(xA + A% = 3 x%e; [(A) .

In addition, let
7\% =@ - 1)(2;:‘?) ,
and let
e,;_1(A) = Nye; ,(4) .
Then the degree of e,;_, is 2j — 1. Moreover the ring homomorphism

e: E(hy, -+, h,) — H*(gl(g, R))
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defined by
e(hj) = {ezj—l(a')}

is an isomorphism.

Proposition 7.1. Let Z,, - - -, Z, be a global basis of sections for vL. If 6*
is the connection form of V'L with respect to Z,, - - -, Z,, and V" is the flat con-
nection on yL with respect to Z,, - - -, Z,, then 2AW°, V*)(c;) = e,;_,(6%).

Proof. Consider the connection V' = (1 — #)I’° + tV/'~ on the trivial bundle
vL X R— L X R. Let K be the curvature form of /' with respect to the global
basis of sections Z,, - - -, Z,, d/dt, and let § be the connection form of V' with
respect to this same global basis of sections. If §° is the connection form of /°
with respect to the basis Z,, ---,Z,, then § = (1 — 16" + 19~. However /°
is the flat connection on vL with respect to the basis Z,, - - -, Z,. Therefore
¢° = 0 and 6 = t6*. Now by [2, p. 25]

K = df — 6* = d(t6F) — (t0*)* = dt 6* + t do* — t*(6%)*
= dt 0% + tdo* — t(6F)* + 1(6")* — r(6*)
=dt 6" + tK* + (t — 1))
=dt6* + t(1 — H(")*,

since K* = 0 by Lemma 4.3. Therefore

c;(K) = c;(dt 6* + t(1 — 1)(6%)*
=711 — )i 'dte;,(6") + terms not involving dt .

Now integrating by parts, we get
Jl Y1 — 1) tdt = N; .
0

Therefore integrating along I, we obtain
AW VE)(ey) = I le (K)pxil = Nje;,(67) = ey;1(6) .
Theorem 7.2. The diagram
E(hy, - -+, hy) —4—H*(gl(q, R))
$F L

H*(L)

$F.2

commutes.
Proof. LetZ, ---,Z,, 6%, and I’ be as in Proposition 7.1; then
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oF poe(hy) = ¢F {ey;_1(0)} = {e;;_.(67)}
= {207, 7")(c,)} = ¢¥,u(hy) -

Thus ¢¥ ,0e = ¢F .. q.e.d.

We shall call the homomorphism ¢ ,: H*(gl(g, R)) — H*(L) the holonomy
homomorphism. By Theorem 7.2 there is no substantial ambiguity in this
terminology. However the appearance of H*(gl(g, R)) in place of the abstract
ring E(hy, - -, h,) suggests that the holonomy classes are essentially linear
invariants. In § 11 we will show that this suggestion is in fact true.

If the normal bundle vF is a trivialized bundle, then by Proposition 3.7,
6* = 7L. Since the form 7’ is easily accessible, the holonomy classes were
first studied by other authors in the case of foliations with trivialized normal
bundles. For codimension 1, the class A,(F, L) = {¢f;} was first introduced
and studied by Reeb in [19, p. 115]. Sacksteder then generalized this class to
arbitrary codimensions by examining the forms };, <%, [21], [22]. Finally the
entire holonomy ring on the category CF)L was constructed by Reinhart in
[20]. However in order to simplify his computations, Reinhart considered the
polynomials

P,;_i(z%) = trace [(1)¥]

rather than the polynomials e,;_,(z%).

It has long been known that the characteristic class 4, on the category CFyL
is related to the holonomy of the leaves, [19]. Moreover, the following theorem
of Reeb demonstrates that the nonvanishing of 4,(F, L) has topological implica-
tions concerning the structure of the foliation F near the leaf L.

Theorem 7.3. Let F be a 1-codimensional foliation with a trivial normal
bundle vF on a manifold M. Suppose further that L is a compact leaf of F
and that h(F, L) #+ 0. Then there exists a neighborhood U of the leaf L in
the manifold M such that if L, is any leaf of F which intersects U, then the
closure of L, contains L.

Proof. See [19, p. 117].

The topological significance of the other holonomy classes is still an open
problem.

The holonomy classes on the category CF,L can be constructed in a similar
manner. Let F be a g-codimensional foliation, and let L be a leaf of F. In
addition, let A*(gl(g, R), 0(g)) denote the collection of all left-invariant 0(g)-
basic forms on GL(g,R). That is, a form o in A*(gl(g, R)) belongs to
A*(gl(q, R), 0(q)) if and only if w is 0(g)-invariant and |y, = 0. We shall
construct a ring homomorphism ¢ , : H*(gl(g, R), 0(q)) — H*(L).

Lemma 7.6. Let (g;,) denote the transition. functions of the normal bundle
yL, and let 6F denote the local connection form of the leaf connection on yL.
Then
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0,19; = dgﬁa'g;al + gﬂaafgﬁ_al .

Proof. Let si, --.,s? be a local basis of sections for vL, and let s; =

s}
[ ], i = a, B. Then locally, s, = g;,-5,. Now let '~ denote the leaf connec-
s{

tion on yL. Again locally we have

[dgs(X) + 84.-02(X)] 5, = [X(8p.) + 85 02(X)]-s5,
= Vf{’(gpa'sa) = Vfi’(s,s)
= 05(X) s, = (05(X)-85.) 5, »

and therefore 07 = dg;, -85 + 8s.-0%-g;a since s, - - -, s¢ is a local basis of
sections. q.e.d.

Now since every g-dimensional vector bundle is reducible to an 0(g)-bundle,
we can assume that the normal bundle yL is already an O(g)-bundle. Hence
the transition functions (g,,) map open sets in L into 0(q). Let x denote the
g X q matrix whose entries are the coordinate functions of GL(g, R), and let
¢ denote the g X g matrix whose entries are the canonical generators of
A*(gl(g, R)). Then

(17.5) g=dx-x"'.

Moreover, A*(gl(g, R), 0(q)) is generated by linear 0(g)-invariant polynomials
in ¢ which vanish on 0(g). Let p be such a polynomial. Then by Lemma 7.4
and (7.5)

p(0%) = p(dg,. 85 + 8s.0585) = P(A8;.-85) + P(8,.05850)
= p(g%(0)) + p2) = gkp(e) + p6F) = p6%) .

Let ¢z,.(p(0)) denote the form in 4*(L) which is given locally by p(6%). Then
by (7.6), ¢r,.(p(0)) is a well-defined form on L. Hence there is a cochain map
ér.: A*(gl(g, R), 0(q)) — A*(L). Now all of the results in this section remain
valid if we replace H*(gl(g, R)) by H*(gl(g, R), 0(9)), E(h,, - - -, h,) by E(h,,
Ry, + + +, Ry giny/2-1)»> and flat connections by Riemannian connections. Moreover
the proofs are essentially the same.

(7.6)

8. Examples

In this section we shall use the holonomy homomorphism ¢¥ . : H*(gl(g, R))
— H*(L) to construct foliations which have leaves with nontrivial holonomy
rings. Moreover we shall actually compute the holonomy rings of these leaves
with respect to these foliations.

To begin, suppose that @,, - --, w, are g global independent 1-forms on a
manifold M. Suppose further that there exist 1-forms z;; such that
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d(l)i: ij/\fﬁ .
J

Let F be the subbundle of T(M) which consists of all the tangent vectors of
M which are annihilated by o,, - - -, 0,. If X, Y are in I'(F), then

@[ X, Y] = X, (Y) — Yo,(X) — 2dw(X,Y)
= =2 o; Nt;)X,Y)=0.

Hence [X, Y] is also in I'(F). Therefore F is a foliation on M. We shall call
F the foliation defined by the 1-forms e, - - -, »,. Let A Zq be the vector
fields on M dual to the 1-forms @, - - -, ®,. Then Zl, ceey Zq are a global basis
of sections for the normal bundle yF. Thus the normal bundle of F is trivialized.
We shall use this construction in the proof of the following theorem.

Theorem 8.1. Let L be a connected manifold and let ¢: A*(gl(q, R)) —
A*(L) be a cochain map. Then there is a g-codimensional foliation F(¢$) with
a trivialized normal bundle on the manifold L X R such that:

a. L is aleaf of F(¢);

b brpy = ¢

c. the¢holon0my ring of L with respect to F(¢) is the image of ¢* in H*(L).

Proof. Let ¢ = (g;;) be the g X g matrix whose entries are the canonical
generators of A*(gl(g, R)). Then the Maurer-Cartan equations are expressed
by the matrix equation

8.1) do = d*.

Let 7;; = ¢(o;;) and r = (z;;). Then

(8.2) de = *.

Now for 1 < i < g let w; be the 1-form on L X R? given by
(8.3) w; = dx; + ; XyThg -

We shall show that
(8'4) dwz = Z O)j /\ Tj’i .
7

Indeed to prove (8.4) let w = (@, - -, ®,) and x = (x,, - - -, x,). Then we can
express (8.3) by the matrix equation

(8.5) o=dx + x-7.
Now by differentiating (8.5) and applying (8.2) we obtain
8.6) dw=dxt+xdr=dxc+x'=Wdx+x17)t=07,
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or equivalently for 1 <i < ¢g
(8.7) dwi = Z @; VAN Tji »

Hence the 1-forms o, - - -, w0, define a g-codimensional foliation F(¢) with a
trivialized normal bundle on the manifold L X R?. Moreover a, - - -, w, vanish
on L, so that L is a leaf of F(g). Now by Proposition 3.7, ¢ is the connection
form of the leaf connection of yL with respect to the given trivialization. Thus
by construction the cochain map ¢, .: A*(gl(g, R)) — A*(L) is defined by

(8.8) - brp,(05) = 754 -

which implies that ¢r, , = ¢. Hence the holonomy ring of L with respect to
F(¢) is the image of ¢* in H*(L). q.e.d.

Thus to create examples of foliations which have leaves with nontrivial
holonomy rings, we need only construct cochain maps ¢ : A*(gl(g, R)) — A*(L)
such that the image of the homomorphism ¢*: H*(gl(q, R)) — H*(L) is non-
trivial.

Example 8.2. Let x be a closed 1-form in 4*(S") which is a representative
of a nonzero class in H!(S'), and let ¢ be the canonical generator of
A*(gl(1, R)). Define a cochain map ¢: A*(gl(1, R)) — A*(S") by letting ¢(c)
= p. Then the homomorphism ¢* : H*(gl(1, R)) — H*(S") is an isomorphism.
Hence F(¢) is a 1-codimensional foliation on S* X R, $* is a leaf of F(¢), and
the holonomy ring of S* with respect to the foliation F(¢) is isomorphic to
E(h).

Example 8.3. Let GL*(g, R) denote the subgroup of GL(g, R) which
consists of all the matrices which have positive determinants. Then

H*(GL+(‘1, R)) - E(hzs h49 ) hq_z, eq) for even q
=E(hy hy, - -+, hg_y) for odd ¢q ,

where degree h,; = 4j — 1 and degreé e, =q — 1. Let 4: A*(gl(q, R)) —
A*(GL*(q, R)) be the inclusion map, and let e: E(h,, - - -, b)) — H*(gl(q, R))
be the isomorphism described in § 7. Then *oe: E(hy, Ay, - -+, Bypg_1y 1) —
H*(GL*(q, R)) is a monomorphism and *oe: E(hy, hs, - - -, Rypginy-1) —
H*(GL*(q, R)) is the zero map. Hence F(y) is a g-codimensional foliation
with a trivialized normal bundle on GL*(q, R) X R?, GL*(q, R) is a leaf of
F(y), and the holonomy ring of GL*(q, R) with respect to the foliation F(v)
is isomorphic to the subring E(h,, Ay, - - -, By, 1)) We shall denote the folia-
tion F(+) by F(GL*(q, R)).

Theorem 8.4. Let G be a connected Lie subgroup of GL*(q, R) and let
i: G— GL*(q, R) be the inclusion map. Then there is a q-codimensional
foliation F(G) with a trivialized normal bundle on the manifold G X R? such
that G is a. leaf of F(G), and:the holonomy ring of G with respect to the
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foliation F(G) is equal to the image of the homomorphism i* : H*(GL*(q, R))
— H*(G) restricted to the subring E(h,, hy, - - -, Py q_1y27)-

Proof. The inclusion i X id: G X R? — GL*(q, R) X RY is transverse to
the foliation F(GL*(q, R)). Let F(G) = (i X id)*[F(GL*(q, R))]. Then by
construction F(G) is a g-codimensional foliation with a trivialized normal
bundle on G X R?, and G is a leaf of F(G). Now by Proposition 5.5 the
holonomy ring of G with respect to the foliation F(G) is equal to the image of
the homomorphism #*: H*(GL*(g, R)) — H*(G) restricted to the holonomy
ring of GL*(q, R) with respect to the foliation F(GL*(q, R)). Moreover by
Example 8.3 the holonomy ring of GL*(g, R) with respect to the foliation
F(GL*(q,R)) is isomorphic to the subring E(h, Ay, - -+, By 1) Of
H*(GL*(q, R)). Therefore the holonomy ring of G with respect to the folia-
tion F(G) is equal to the image of the homomorphism i*: H*(GL*(q, R)) —
H*(G) restricted to the subring E(h,, Ay, « -+, Bypg-1y27)-

Example 8.5. The inclusion i: SO, — GL*(q, R) is a homotopy equi-
valence. Hence the image of the homomorphism i* : H*(GL*(q, R)) — H*(SO?)
restricted to the subring E(h,, A, - - -, Ay (g1 ,2) Of H¥*(GL*(g, R)) is isomorphic
to the subring E(h,, h,, - - -, Ay (g_1y27) Of H*(SO,). Therefore by Theorem 8.4,
F(SO,)) is a g-codimensional foliation with a trivialized normal bundle on SO,
X R?, S0, is a leaf of F(SO,), and the holonomy ring of SO, with respect to
the foliation F(SO,) is isomorphic to the subring E(h,, Ay, - - -, Ayrg_1y27) Of
H*(S0,)).

Example 8.6. There is an inclusion i: U(q) — GL*(2q, R). Moreover
H*(U(q)) is isomorphic to the ring E(h,, - - -, h,), and the image of the homo-
morphism i* : H*(GL*(2q, R)) — H*(U(q)) restricted to the subring E(h,, h,,
<+, hyey) of H*(GL*(2q, R)) is isomorphic to the subring E(h,, A, - - -, hyrgs7)
of H*(U(g)). Therefore by Theorem 8.4, F(U(g)) is a 2g-codimensional folia-
tion with a trivialized normal bundle on U(q) X R*, U(q) is a leaf of F(U(qg)),
and the holonomy ring of U(g) with respect to the foliation F(U(g)) is iso-
morphic to the subring E(h,, h,, - - -, hyys;) of H*(U(q)).

By Examples 8.3 and 8.5, the homomorphism ¢¥ : E(h,, - - -, h,) — R(CF}L)
restricted to the subring E(h,, Ay, - - -, Byr(g_1y7) 1S @ monomorphism. Thus
every class in the ring E(hy, hy, - - -, hy(y_1,27) Tepresents a nontrivial charac-
teristic class on the category CFIL. In § 11 we shall prove that the homomor-
phism ¢¥ is actually a monomorphism. Hence we shall be able to conclude
that every characteristic class in the holonomy ring of CF,L is a nontrivial
characteristic class.

9. The product formula

Let F; be a g;-codimensional foliation on a manifold M;, i = 1, 2. In addi-
tion, let L, be a leaf of F, with a trivialized normal bundle vL,, i = 1, 2. Then
F, X F, is a (g, + g,)-codimensional foliation on the manifold M, X M,.
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Moreover L, X L, is a leaf of F, X F,, and the normal bundle »(L, X L,) =
vL, X vL, is also a trivialized bundle. The product formula for holonomy
classes asserts that

hj(Fl X Fy, Ly X Ly) =hj(F1,L1)®1 + 1®hj(F2,L2) .

Here it is tacitly understood that A,(F, L) = O whenever the codimension of
F is less than n.

To prove the product formula, we need a few preparatory lemmas. Let 4
be a p X p matrix, and B a ¢ X g matrix. Define 4 X B to be the (p + q)
X (p + g) matrix [61 g]

Lemma 9.1. c¢,(4 X B) = }; c;(A)c,(B).

i+j=n

Proof. Let I, denote the m X m identity matrix. Then directly from the

definition of the polynomial c,, we have

14 X cy(Ad X B) = det[l,,, + A X B)]

=det[(I, + tA) X U, + tB)]
=det [([1, + t4] X I)-U, X [I, + tB])
= det (I, + tA)-det (I, + tB)

— [1 + 3 tici(A)] [1 +3 ﬂc,(B)]
=1+ X hX t"c,(A)c,(B) .

n t+j=n
Hence c,(4 X B) = ) c,(A)c;(B).
i+j=n
Lemma 9.2. ¢, .4 X B) = 3 ¢;.(A)e; (B).
i+j=n

r+8=t

Proof. Directly from the definition of e,,, we have
Y Ven, (A X B) = c,[y(4 X B) + (4 X B)]
t

clv4 + 4%)] X OB + B)]
= ¥ ¢;(yA + ADc;(0B + BY)

i+j=n

= 2 [(zven)(zye.®)|

i+j=n

= Z Z ytei,'r(A)ej,s(B) .

t i+j=n
r+8=t

Hence e, (4 X B) = ) e;.(A)e;(B). q.e.d.
i+j=n
r+s=t

Now suppose that F; is a g;-codimensional foliation on M;, and that L, is
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a leaf of F, with a trivialized normal bundle vL;, i = 1,2. If 2 is a foliation
connection on vF,;, i = 1,2, then it is not hard to show that 'Z x FZ is a
foliation connection on v(F, X F,), [5]. Let a;: L, — M, be the immersion of
L, in M;; then

Prc = (a4, X a)* (P2 X VB) = af(PF) X af(PF) = P& X PP .

Therefore, if g%, 6% and %*% are the global connection forms of the leaf
connections on the bundles vL,, vL,, and v(L, X L,) with respect to the given
trivializations, then %> = g% x @§*=.
Proposition 9.3. e, ,(67%1) = €, ,(6*) @ 1 + 1 Q e,,_,(6™)
+ coboundary.
Proof. Recall from § 7 that

dot = (6™, i=1,2.
Therefore
e;,((0%) = c;[(6%)*] = c,(do™) , i=1,2.
Now by Lemma 9.2 we have

€31 (07717) = e, (6™ X 0™) = N,e, (0™ X 6™)
= Nnen,l(ald) ®14+1 ® Nnen,l(aLz)
+ 23 [Nne;,:(6") ® ej,o(ah) + €,0™ & Nnej,1(0L2)]

i+j=n

= ey, (" X1 + 1R e,,_,(6")
N,

+ i+§:=n [TeZi_l(aLl) ® Cj(dﬁLz)

N
idﬂl‘l n
+ c,(do™) ® N

ezj_l(joh)] .

7

However by Propositions 5.4 and 7.1, e,;_,(6*) is a closed form. Moreover,
c;(d6™) is exact. Therefore e,;_,(6*) ® c,(d6™) is a coboundary. Similarly,
c,(d6™) ® e,;_,(6™) is a coboundary. Hence e,, ,(#**%2) = e,, (6*) Q1 +
1® e,,_,(6%) + coboundary.
Theorem 9.4. h;(F, X F,, L, X L;) = hy(F,,L,) ® 1 + 1 ® hy(F,, L,).
Proof. By Theorem 7.2 and Proposition 9.3 we have

hy(Fy X Fp, Ly X Ly) = {ezj_1(0L1XL2)}
= {ezj—l(aLl) ®1+1Q ezj-l(ﬁLz)}
= h](FU Ll) ® 1 + 1 ® h](Fg, Lz) . q.e.d.
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Now let F, be a g;-codimensional foliation on a manifold M, i = 1,2. In
addition, let L, be a leaf of F, with a trivialized normal bundle vL,, and let
a;: L; — M be the immersion of L; in M, i = 1, 2. If the diagonal map 4: M
— M X M is transverse to the foliation F, X F,, then 4*(F, X F,) is a (q, +
g,)-codimensional foliation on M. We shall call the foliation 4*(F, X F,) the
intersection or the sum of F, and F,, and we shall denote this foliation by F,
@ F,. Aleaf L of F,® F, is mapped by 4 into L, X L, if and only if L is
immersed in «,(L,) N a,(L,). We shall denote a leaf of F, ® F, which is
immersed in «,(L,) N a,(L,) by L, N,L,. Let 4,: L, N,L,— L, X L, denote
the map induced by 4 and let ;: L, N, L, — L, denote the map induced by
the immersion of L, N,L,in M. If [1,: L, X L, — L; is the projection map,
then I1,04, =1,,i =1,2.

Corollary 9.5. h,(F,®F,, L, N,L,) = lfhy(F,, L)) + Ifh;(F,, L,).

Proof. By the naturality of the class 4;, we have

hy(F,® F,, L, N,Ly) = h,(4*(F, X F), L, N, Ly
= Afh,(F, X F,, L, X L,
= A¥[hy(F,, L) ® 1 + 1 Q hy(F,, L,)]
= d¥ o lI¥hy(F,, L)) + AF o II¥h(F,, L,)
= lfhy(F,, L)) + lFh(F,, L,) .

Corollary 9.6. Let F; be a q;-codimensional foliation with a trivialized
normal bundle i = 1,2, and let ¢ = max (q,, q,). If L is a leaf of F,&® F, and
if j > q, then hy(F, ® F,, L) = 0, so that the holonomy ring of each leaf of
F, @ F, vanishes in dimensions greater than q.

Proof. 1If L is a leaf of F, @ F,, then there are leaves L, of F,, i = 1,2
such that L = L, N, L,. Therefore this result follows immediately from
Corollary 9.5.

Corollary 9.7. Let F be a (q, + q,)-codimensional foliation with a trivial-
ized normal bundle, and let ¢ = max (q,, q,). If there exist a leaf L of F and
an integer j > q for which hy(F,L) # 0, then F is not the intersection of a
q,-codimensional foliation with a trivialized normal bundle and a q,-codimen-
sional foliation with a trivialized normal bundle.

Proof. This result follows immediately from Corollary 9.5.

The results in this section remain valid if we replace the holonomy classes
h; on the category CF,L® (CFJL) by the holonomy classes 4,;_; on the category
CF,L. Moreover the proofs are essentially the same.

Corollaries 9.6 and 9.7 provide necessary conditions in terms of the holo-
nomy invariants of the leaves for a foliation to be the intersection of two other
foliations of lesser codimensions. However it must be stressed that these results
apply only to the specific foliation and not necessarily to its homotopy class.
Indeed it may happen that F is homotopic to a foliation which is the intersec-
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tion of a g,-codimensional foliation and a g,-codimensional foliation even
though F itself cannot be formed by such an intersections. Such a foliation
may exist because the holonomy classes are invariants of a foliation but not
not of its homotopy class (see the closing remark of § 6).

10. Vector bundles with discrete structure group

A g-dimensional vector bundle 7 over a manifold L is a pair (U,, k;;) such
that:

1. (U,) is an open cover of L.

2. hj:U; N U; — GL(q, R) are smooth maps.

3. hp(x) = hyy(x)-hy(x) for every x in U, N U; N U,.

The total space E(y) is the space |_J; U; X R? X i/ ~ where (x,t,i) ~ (X', ¥, )
if and only if ' = x and ¢’ = h;(x)-t.

Let GL(q, R) denote GL(g, R) with the discrete topology. A vector bundle
(U;, hy,) is said to have discrete structure group if the functions h .U NU;
— GL(g, R) induced by the maps h;;: U; N U; — GL(g, R) are continuous.
We shall adopt the following notation :

a. Vf'l?ﬁ/lq will denote the category whose objects are g-dimensional vector
bundles with discrete structure group over connected manifolds and whose
morphisms are bundle maps.

b. 1751'\//1‘; will denote the category whose objects are the g-dimensional
vector bundles with discrete structure group over connected manifolds which
are trivialized as vector bundles (but are not necessarily trivialized as vector
bundles with discrete structure group) and whose morphisms are bundle maps
compatible with the given trivializations. Presently, we shall show that the

categories @\/lq and CF L are intimately related.

Let F be a g-codimensional foliation on a manifold M. By Frobenius’
theorem [5, pp. 88-94], [19, pp. 132-135] there is an indexed triple
(U, fy, Hyy) with the following properties :

(a) (U) is an open cover of M, '

(b) fy: U— R? and the rank of dfy is g,

(c) Hyy is a local diffeomorphism of R,

d) fp=HyyofyonUNYV,

(¢) fyz is locally constant on each leaf of F,

® dH,, 7p 2T€ the transition functions of the normal bundle vF.

Conversely, given an indexed triple (U, fy, Hyy) which satisfies properties
(a)-(d), there exists a unique g-codimensional foliation F on the manifold M
with respect to which properties (e) and (f) are valid. If the foliation F cor-
responds to the indexed triple (U, fy, Hy ), then we shall often abuse notation
and write F = (U, fy, Hyy). Now let R? denote R? with the discrete topology,
and let F = (U, fy, Hyy) be a g-codimensional foliation on a manifold M. The
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leaf topology on M with respect to F is the coarsest topology on M which con-
tains the original topology on M and which also satisfies the condition that
each function f,: U — R? is continuous. Let M denote M with the leaf
topology with respect to F. Then the leaves of F are the connected components
of M [5, p. 92].

Now let F = (U, fy, Hyy) be a g-codimensional foliation on a manifold M,
and let L be a leaf of F. Then by properties (e) and (f) above, the transition
functions of the normal bundle yL are locally constant. Hence the normal
bundle vL has discrete structure group. Therefore there is a natural transfor-
mation

5,: CF,L — VBM,
given by
pF,L) =L .

On the other hand, if y = (U,, h;,) is a vector bundle with discrete structure
group over a connected manifold L, then there is a natural foliation on the
total space E(y). Indeed, let W, denote the image of U; X R? X i in E(p) and
define p;: W; — R? by p,(x, t,i) = t. In addition since the map 4, is locally
constant, we can define a linear map H;: R? — R? by letting H;, (1) = hy;-t.
Now the indexed triple (W,, p;, H;,) satisfies properties (a)-(d) above. We shall
call the foliation which corresponds to this triple the horizontal foliation on
E(p) and we shall denote this foliation by H(E(3)). The foliation H(E(3)) has
the following properties :

1. the zero section immerses L in E(y) as a leaf of H(E(y)),

2. the normal bundle of L in E(y) is isomorphic to 7,

3. if f:L,— L is a smooth map, and f: E(f*(y)) — E(3) is the map
induced by f, then H(E(f*(3))) = f*H(E(y)).

Hence there is a natural embedding

T,: VBM, — CF L
given by
T (p) = (HE®@®), L) .

Moreover the diagram

commutes.
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Theorem 10.1. If y is a vector bundle with discrete structure group over
a connected manifold, then the real Pontryagin ring is y is trivial.

Proof. Let 7 be a vector bundle with discrete structure group over a con-
nected manifold L, and let vL denote the normal bundle of L in the total space
E(p). If p; is the jth Pontryagin class, then p,(uL) = O by the vanishing
theorem for leaves. However, 7 is isomorphic to vL ; hence p,(5) = 0. q.e.d.

Of course, the preceding result is well-known ; see Milnor [18] and Kamber
and Tondeur [10]. Since the normal bundle of a leaf has discrete structure
group, Theorem 10.1 is actually equivalent to the vanishing theorem for leaves.
In §11 we shall see that the vanishing of the real Pontryagin ring leads
directly to a construction of secondary characteristic classes on the category

T T~~~
VBM, (VBMY).

Definition. A characteristic class on the category fﬁdq (@\/42) is a trans-
formation y which associates to each g-dimensional vector bundle 7 with
discrete structure group (which is trivialized as a vector bundle) over a con-
nected manifold L a class y(y) in H*(L) such that if L, is a connected manifold
and if f: L, — L is a smooth map, then y(f*(y)) = f*r(y).

. r~ Y~
As usual, the ring of characteristic classes on the category VBM, (VBMY)

will be denoted by R(I,/Eﬁ/lq) (R(%g)). If 5 is a g-dimensional vector bundle
with discrete structure group over a connected manifold L, then there is a ring
homomorphism R, : R(I,/E\//Iq) — H*(L) given by R,(7) = r(n).

Theorem 10.2. The homomorphism 5} : R(%q) — R(CF,L) is a mono-
morphism.
Proof. The diagram

—~ B
R(VBM,))——R(CF,L)
T*
id ‘
T~
R(VBM,)

commutes. Therefore 5 must be a monomorphism. q.e.d.

Of course, Theorem 10.2 remains valid if we replace I,/-E\/lq by 1752(43 and
CF,L by CF,L’. Hence to construct characteristic classes on the category
CF,L (CF,L"), we need only construct characteristic classes on the category

T~ T~ . . .
VBM, (VBM)). In the following section we shall give an explicit construction
of such classes.
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11. The holonomy homomorphism for vector bundles
with discrete structure group

In this section we shall construct characteristic classes on the categories

171?11’43 and 171?1/\44. In addition, we shall show that when a vector bundle is
the normal bundle of a leaf these classes coincide with the holonomy classes
of the leaf. Thus, since the holonomy classes of a leaf depend only on its
normal bundle, we can conclude that the holonomy classes of a leaf are
essentially linear invariants. The technique which we shall employ here is similar
to the method used by Haefliger in [9] to construct characteristic classes for a
K-fibré G-feuilleté, Another equivalent construction of characteristic classes
for vector bundles with discrete structure group is given by Kamber and
Tondeur in [15] and [16].

Let » = (U,, h;;) be a g-dimensional vector bundle with discrete structure
group over a connected manifold L. Suppose further that 5 is a trivialized
vector bundle. Then there exist maps f,: U; — GL(q, R) such that

(11.1) 13(%) = hy(x)-f:(x)

for every x in U, N U;. The collection of functions (f,) is also called a triviali-
zation of the vector bundle 7. Now the transition functions (h;;) of 7 are
locally constant ; that is, there is an element %;; of GL(g, R) such that locally
hy(x) = hy;. Therefore, if [, : GL(q, R) — GL(g, R) denotes left multiplication
by an element g of GL(q, R), then locally

(11.2) f3=lnuofi -

Let A*(gl(q, R)) denote the collection of all left-invariant forms of GL(g, R),
and let » be a form in A*(gl(g, R)). Then by (11.2) we have

(11.3) (o) = f¥(o)

on U, N U;. Let ¢,(w) denote the form in A*(L) which is given locally by
f¥(0). By (11.3), ¢,() is a well-defined form on L. Therefore there is a cochain
map ¢,: A*(gl(q, R)) — A*(L). We shall show that the image of the homo-
morphism

¢« H*(gl(g, R)) — H*(L)

induced by the cochain map ¢, is actually the holonomy ring of L with respect
to the horizontal foliation on E(y») and the trivialization (f,).

Proposition 11.1. Let ¢ be the q X q matrix whose entries are the canoni-
cal generators of A*(gl(q, R)). Then the matrix $,(c) is the connection form
of the leaf connection on vL with respect to the horizontal foliation on E(y)
and the trivialization (f,).
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Proof. Since 5 = (U,, h;;) and since (f;) is a trivialization of », we have

(11.4) fy="hjfi.
Moreover by construction
(1L.5) $,(0) |y, = f¥(o) .

Now as in § 1, let H(E(p)) = (W, p;, H;;) be the horizontal foliation on E(y).
Then

(11.6) p; =Hjop; .
Define I1,: W; — U, by letting I7,(x, t,i) = x; then
(11-7) dHJ’L[ZJL = h]ZOHZ .

Let r,: R? — R be the projection on the kth factor. In addition, let p¥ = r o p;
and dp;, = (dp}, - - -, dp?), and let ‘A denote the transpose of the matrix A.
Then applying the chain rule to (11.6) and substituting into (11.7), we obtain

(11.8) dp; = (dp,) “(dHl,) = (dpy) “(hyio 11))

Let o = (v, - - -, 0y) be the row vector of 1-forms given locally by
(11.9) oly, = (dpy) [(fi 11)7] .

Then from (11.4), (11.8), and (11.9) we have

oly, = (dpy) ‘[(f;o 11 )71 = (dpy) “(hyio I1) *[(f;0 11 )7']

(11.10)
= (dp)) '[f;o L )7 (hyi 0 11 )] = (dpy) *[(fs o 11)7'] = ]y,

on U; N U,. Hence w is indeed well-defined globally. Moreover, since p; is
locally constant on the leaves of H(E(z)), » vanishes on the leaves of H(E()).
Hence the foliation H(E(yp)) is defined by the 1-forms w,, - - -, w,. Now dif-
ferentiating (11.9), locally we have

doly, = (dpy) 'ld(f; > I11,)™"]
= (dpy) [—(fso )7 -d(fyo I1) - (f; 0 IT,)7']
= [(@py) - [(fs o )™ [—(fso LT )" d(f; 0 I1,)]
= w!m't[—(fiOHi)_l'd(inHi)] .

(11.11)

Let 6% denote the connection form of the leaf connection on yL with respect
to the horizontal foliation on E(y) and the trivialization (f;). The by (11.11)
and Proposition 3.6,
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(11.12) 0%y, = U—(fio )7 -d(fy o )] = H—f7*-df) »

since L is identified with the zero section in E(3). Finally, let x denote the
g X q matrix whose entries are the coordinate functions of GL(q, R). Then

(11.13) g = *(—x"dx) .
Therefore from (11.2), (11.12) and (10), we get
(11.14)  ¢,(0) |y, = f¥(@) = f¥[[(—x7dx)] = (—f;'df;) = 0"y, .

Hence ¢,(0) is the connection form of the leaf connection on vL with respect
to the horizontal foliation on E(y) and the trivialization (f,).

Theorem 11.2. Let 5 be a vector bundle with discrete structure group over
a connected manifold L, and let (f;) be a trivialization of 5. Then ¢¥ =
SEwe, L

Proof. This result follows immediately from Proposition 11.1 and the con-
struction of the homomorphism ¢% z,,,,. given in § 7.

The homomorphism ¢} : H*(gl(q, R)) — H*(L) is called the holonomy
homomorphism, and the image of ¢} in H*(L) is called the holonomy ring of
. If 7 is a class in H*(gl(q, R)), then we shall let y() = ¢7(y). Now it is easy
to show either directly from the definition of y() or from Theorem 11.2 that
7(g*(y)) = g*y(y). Therefore the holonomy classes actually represent charac-

r~—
teristic classes on the category VBM). To summarize, we have the following
theorem.

Theorem 11.3. There is a homomorphism ¢¥: H*(gl(q, R)) — R(f/—FI(lg)

such that if y is a vector bundle over L in the category 171\31743 then the diagram

* Y~/
H*(gl(q, R)—~R(7BMY)

$¥ 'R”
H*(L)

commultes.

Let » = (U;, h;;) be a vector bundle with discrete structure group over a
connected manifold L, and let (f;) be a trivialization of ». In addition, let
H(E(p)) = (W, p; H;;) be the horizontal foliation on E(y), and define
II;: W, — U; by II(x,t,i) = x. Then dHj;|,, = h;;oIl;; hence the maps
(hj; 0 IT,) are the transition functions of the normal bundle vH(E(5)). Therefore
(f;oI1;) is a trivialization of vH(E(p)). Thus the natural transformation

T,: I;'E\/lq — CF,L defined by T,(3) = (H(E(p)), L) induces a natural trans-

formation T, : 171?1\/4?1 — CFyL. Moreover by Theorem 11.2, g5 = ¢, ,,.
Proposition 11.4. The diagram



HOLONOMY RING 445

H*(gl(q, R))

oy b5
Ty =y
R(CFL)——R(VBM")

commutes.
Proof. Let y be a class in H*(gl(q, R)), and let » be a vector bundle in the

category VBM. Then

T = 5T ()] = Reyy$7 ()
= @) = ¢5() = R,9¥() = ¢5 () .
Hence T¥¢F = ¢¥. q.e.d
The homomorphism ¢} : H*(gl(g, R)) — R(%g) is called the holonomy
homomorphism, and the image of ¢} in R(I,/'-E\/lg) is called the holonomy ring
of R(If/ﬁlg). By Proposition 11.4 the homomorphism T : R(CF}L) aR(f/.FIflg)
maps the holonomy ring of R(CFJL) into the holonomy ring of R(@\/dg).

Theorem 11.5. The homomorphism ¢F: H*(gl(q, R))—>R(I;EI(4‘;) is a
monomorphism. Hence every characteristic class in the holonomy ring of

R(@\/dg) is a nontrivial characteristic class.

Proof. See [9].

Theorem 11.6. The homomorphism ¢¥: H*(gl(q, R)) — R(CF}L) is a
monomorphism, so that every characteristic class in the holonomy ring of
R(CF3L) is a nontrivial characteristic class.

Proof. This result follows immediately from Proposition 11.4 and Theorem
11.5.

Finally, we shall close our discussion of the holonomy ring by showing that
the holonomy classes in R(CF}L) are essentially linear invariants.

Theorem 11.7. Let F be a g-codimensional foliation with a trivialized
normal bundle vF, and let L be a leaf of F. Then ¢} ;, = ¢%.

Proof. The proof of this theorem is similar to that of Proposition 11.1.

Indeed, let F = (U, fy, Hyy), and let (Gy) be the trivialization of the normal
bundle vF. Then

(11.15) Gy = dHyyl;,-Gy
(11.16) fr = Hyyofy

on U N V. Now let ¢ = (g;;) be the g X g matrix whose entries are the
canonical generators of 4*(gl(q, R)), and let Gy, = Gyl.. Then (Gy,y) is
the trivialization of the normal bundle vL. Hence by the construction given at
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the start of this section, we can define a cochain map ¢: A*(gl(g, R)) — A*(L)
by letting ¢(s,;) be the 1-form in A*(L) which is given locally by Gy 1(d;s),
that is,

(11.17) ¢(0'ji)|UnL = GﬁnL(aji) .
The form ¢(c;,) is globally well-defined, and by construction
(11.18) ok = o* .

Now we shall show that ¢¥ ;, = ¢*. Let I7;: R? — R be the projection on the
jth factor. In addition, let f; = 1,0 f, and df, = (dfY, - - -, df%), and let ‘4
denote the transpose of the matrix 4. Applying the chain rule to (11.16), we
obtain

(11.19) dfy = (de)'t(dHVUIfU) .
Let w = (o, - - -, ®,) be the row vector of 1-forms given locally by
(11.20) oly = (dfy)-“(G7)

Then from (11.15), (11.19), and (11.20) we have

oly = (dfy)-A(G7") = (fy)-YdHyyl;, ) (G7)

(11.21)
= (dfy)-"(Gy'-dHyyl,) = (dfy)-"(Gy) = oly

on U N V. Hence o is indeed well-defined globally. Moreover, since fy is
locally constant on the leaves of F, » vanishes on the leaves of F. Hence the
foliation F is defined by the 1-forms w,, - - -, ,. Now differentiating (11.20),
locally we have

doly = (dfp)-'1d(G7)] = ([df)(—G7'-dGy-Gy')

11.22
(122 = [@fy) - YG)]-*[—GF'-dGy] = wly-(—G7'-dGy) .

Let 6% denote the connection form of the leaf connection on vL with respect
to the trivialization Gy z. Then by (11.23) and Proposition 3.6
(11.23) 0t lynr = (—G7+dGy) |, = (—Gyhr-dGynyL) -

Finally, let x denote the g X g matrix whose entries are the coordinate func-
tions of GL(g, R). Then

(11.24) g = Y—x"dx) .
Therefore from (11.17), (11.23), and (11.24) we get
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3@ lvnz = Gnrlo) = G [((—x7"dx)]

(11.25) e
( untL UnL) - IUOL .

Hence ¢(o) is the connection form of the leaf connection on yL with respect
to the trivialization Gy . Therefore by the construction given in § 7

(11.26) oF L = o* .
Hence from (11.18) and (11.26) it follows that
(11.27) oL = ¢k . q.e.d.

Let F = (U, fy, Hyy) be a g-codimensional foliation with a trivialized normal
bundle vF, and let L be a leaf of F. If y is a class in H*(gl(g, R)), then y(F, L)
= y(vL) by Theorem 11.7, so that all of the information about the holonomy
ring of L with respect to the foliation F is contained in the normal bundle vL.
Thus the holonomy invariants of the leaves of F depend only on dHyy, that
is, on the linear part of Hy ;. Hence the holonomy invariants of the leaves of
F are essentially linear invariants of the foliation F.

Corollary 11.8. The diagram

H*(gl(q, R))

9 e
§*
R(VBM3) ——R(CFIL)

commutes. Hence 5 is an isomorphism from the holonomy ring of R(I//'F]\/l‘;)
to the holonomy ring of R(CFL).

Proof. LetF be a g-codimensional foliation with a trivialized normal bundle
vF, and let L be a leaf of F. Then for any class y in H*(gl(g, R)), we have

519 (N, L) = ¢5(pI5(F, D] = ¢¥()L) = R,.$%(7)
= ¢ = ¢£..(r) = Rp,185() = $¥(IF, L) .

Hence pf¢F = ¢F.
Corollary 11.9. The diagram

H*(gl(g, R))
9 #%
(T q °§q)*

R(CFL) R(CF3L)

commutes, so that (T, 5,)* is the identity homomorphism on the holonomy
ring of R(CFL).
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Proof. By Proposition 11.4 and Corollary 11.8,
(Tyo8)*05 = Ui Tody = ﬁzzkﬁbq = s . q.e.d.

.. T~
Characteristic classes can be constructed on the category VBM, by a
technique similar to that used to construct the holonomy ring on the category

I,/-B\I\//.Ig. In fact, let y = (U,, h;;) be a g-dimensional vector bundle with discrete
structure group over a connected manifold L. Then 7 is reducible to an 0(qg)-
bundle = = (V,, g,.). Hence there are functions f;,: U; N ¥V, — GL(g, R) such
that

(11.28) F3a(®) = ;i (0)f;5(X)8a(x)

forevery xin U, N U; N V, N V,. Let A*(gl(q, R), 0(g)) denote the collec-
tion of all left-invariant 0(g)-basic forms on GL(q, R), and let » be a form in
A*(gl(qg, R), 0(g)). Then from (11.28) it follows that

(11.29) fi(w) = fi(0)

onU,NU; NV, NV, Let ¢,(w) be the form in A*(L) which is given locally
by f#(w). Then by (11.29), ¢,(w) is a well-defined form on L. Therefore there
is a cochain map ¢,: A*(gl(q, R), 0(q)) — A*(L). As before, the homo-
morphism ¢ is called the holonomy homomorphism, and the image of ¢ in
H*(L) is called the holonomy ring of 5. Now all of the results proved in this

section remain valid if we replace H*(gl(g, R)) by H*(gl(g, R), 0(q)), 171?114:; by

I?FI_\//.I,,, and CF}L by CF,L. Moreover the proofs are essentially the same.
Finally since ¢¥ = ¢%,,, the results in §§ 8 and 9 remain valid if we replace

pairs in CF,L (CF,L°) by vector bundles in I;'-E]-t/dq (171?1\/43). In particular,
hj(771 @ 772) = hj(771) ®1+1R hj(ﬂz) .

References

[1] R. Bott, On a topological obstruction to integrability, Global analysis (Proc.
Sympos. Pure Math. Vol. XVI, Berkeley, Calif., 1968), Amer. Math. Soc.,
1970, 127-131.

, Lectures on characteristic classes and foliations, Lectures on algebraic and
differential topology, Lecture Notes in Math. Vol. 279, Springer, Berlin, 1970,
1-94.

[3]1 R. Bott & A. Haefliger, On characteristic classes of I'-foliations, Bull. Amer.
Math. Soc. 78 (1972) 1039-1044.

[4]1 J. Buffet & J. Lor, Une construction d’un universal pour une classe assez large
de [-structures, C. R. Acad. Sci. Paris 270 (1970) 640-642.

[5]1 C. Chevalley, Theory of Lie groups, Princeton University Press, Princeton, 1946.

[6]1 R. Goldman, Characteristic classes on the leaves of foliated manifolds, Ph.D.
Thesis, Johns Hopkins University, 1973.

[7]1 ——, The cohomology of the universal leaf.

[2]




[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]

[16]
[17]

[18]
[19]
[20]
[21]

[22]
[23]

[24]
[25]

HOLONOMY RING 449

A. Haefliger, Homotopy and integrability, Manifolds—Amsterdam 1970, Lecture
Notes in Math. Vol. 197, Springer, Berlin, 1971, 133-166.

, Sur les classes characteristiques des feuilletages, Séminaire Bourbaki, 24e
année 1971/72, Exp. 412.

F. Kamber & P. Tondeur, Flat manifolds, Lecture Notes in Math. Vol. 67,
Springer, Berlin, 1968, 1-53.

, Cohomologie des algébres de Weil relative tronquées, C. R. Acad. Sci.

Paris 276 (1973) 459-462.

, Algébres de Weil semisimpliciales, C. R. Acad. Sci. Paris 276 (1973)

1177-1179.

, Homomorphisms caracteristique d’un fibre principal feuilleté, C. R. Acad.

Sci. Paris 276 (1973) 1407-1410.

, Classes caracteristiques derivées d’'un fibre principal feuilleté, C. R. Acad.

Sci. Paris 276 (1973) 1449-1452.

, Characteristic invariants of foliated bundles, Manuscripta Math. 11 (1974)
51-89.

——, Non-trivial characteristic invariants of homogeneous foliated bundles.

S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vols. 1, 1I,
Interscience, New York, 1963, 1969.

J. Milnor, On the existence of a connection with curvature zero, Comment. Math.
Helv. 32 (1957) 215-223.

G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, Herman,
Paris, 1952.

B. Reinhart, Holonomy invariants for framed foliations, Technical Report, No.
32, University of Maryland, 1972.

R. Sacksteder, Some properties of foliations, Ann. Inst. Fourier (Grenoble) 14
(1964) 31-35.

——, Foliations and pseudogroups, Amer. J. Math. 87 (1965) 79-102.

H. Shulman & D. Tischler, Leaf invariants for foliations and the Van Est iso-
morphism.

S. Sternberg, Lectures on differential geometry, Prentice Hall, Englewood Cliffs,
New Jersey, 1964.

A. G. Walker, Connections for parallel distributions in the large, Quart. J. Math.
Oxford (2) 6 (1955) 301-308.

UNIVERSITY OF WISCONSIN CENTER, WAUKESHA








