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THE HIGHER HOMOTOPY GROUPS OF LINKS

W. A. MCCALLUM

1. Introduction

In this paper we generalize the result of Andrews and Lomonaco [2] and
McCallum [7] in which the second homotopy group of a 1-spun classical knot
and link respectively were calculated to obtain results about k-spinning higher
dimensional links. We take the approach of Lomonaco [6] using Reidemeister
homotopy chains [9].

In particular we prove the following theorem.

Theorem 1.1. If L»**is an (n + k)-dimensional link of multiplicity p
obtained by k-spinning an n-dimensional ball configuration K» C B"** about
the sphere S**' = 9B"** with B*** — K% aspherical, and

(xuxz, PP 2 STR P "'srp)

is a presentation of II,(S"**** — L3**) with X, X5, +++, X,, (0 < gy < m) the
images of the generators of II,(S**' — K?%) under the inclusion map, then

II,(S™+E+2 — L2*%) =0 1<i<h,

and

m
(x:zH, Xy xEn 30 (ari/ax,.)xjf)

J=p1+1

is a presentation of II,,(S"**** — L7**) as a left ZII,-module. We then apply
this algorithm to particular well known links and, in fact, obtain yet another
proof of the main result found in [1].

2. Preliminary results
Definition 2.1. A ball configuration
Kz:ByUB; U ... UB;C B;*?

is a piecewise-linear proper embedding of the disjoint union of x copies of B®
in Bn+2.
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Lemma 2.2. In Y = B"** — K% there exists an (n + 1)-dimensional C.
W. complex K consisting of

O-cell: X%,

l-cells: X, X3+« Xn, »
(n + 1)-cells:  xp*, x3*%, -, X002

such that (y,0Y) deformation retracts onto (k,0K) where 0K = K N 9Y,
which consists of

O-cell: X%,

1

1-cells: xi,x3, ++, %5, ,

(n + 1-cells:  x3,xg,---,x2

Proof. Let T be a triangulation of R"** which has K? as a subcomplex
and has 9B"*? as a subcomplex of its dual triangulation 7% where B"*? is an
(n 4 2)-simplex. Adjoin to K7 any edge of T, which lies within B"** and meets
K% at one end point only. Continue this process as long as possible which is
only a finite number of times, always adjoining an edge of T within B"*Z which
meets the previously constructed complex at one end point only. There results.
an n-dimensional subcomplex K”, which meets dB"** at K% N dB"** and has
K? as a deformation retract. Let K’ be the subcomplex of 7% made up of cells
which lie in B**? and do not meet K””. Then K’ is a complex of dimension
< n + 1, and K’ is a deformation retract of B**? — K’ and hence of B**%? —
K. Furthermore, K’ N dB"** is 9B™** minus several of its open faces. There-
fore a cell complex K of the required type is obtained by shrinking to a point
the remaining cells plus a suitable maximal tree of K”.

It now follows that I7,(Y) = (x}, x}, - - -, x4, x3, x3, - - -, x%,) where we are
identifying the elements of /7,(Y) with their carriers in K.

Let K be the universal cover of K. In K we have

O-cells: gx?, gell(Y),
1-cells: gXxi a<i<m),
(n + .1)-.cel.ls; .g);c;”‘l - ‘(1. g i'g. n;,,;l) .
We consider the Reidemeister homotopy chain complex
0— Cppy(B) — -+ — Cy(R)

with boundary homorphisms given by
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0,(8%}) = 80,(X9) ,

O<i<n+1,1<Lj< my), (see [9)).

3. k-spinning

Definition 3.1. One obtains the (n + k)-dimensional link L7** of multi-
plicity p by k-spinning K7 as follows:

Srrktz — (§k x B"*%) U (D¥*! X B**?)
identified along
S* X 9B"** = gD**! x gB"*?,
and
§7*F = (§* X BY) U (D**! X 6B}
identified along
S* X 9B? = 8D**' X 3B

(see [4] and [11]).

If n =k =1, then this definition is equivalent to the classical spinning
technique of Artin [3]. We have the following lemma due to Artin [3] and
Summers [11].

Lemma 3.2. Suppose L"** is obtained by k-spinning K. Let X = §"*k+?
— L%, and Y = B*** — K}. Then

II(X) = II(Y) .

Proof. See [11].
We now k-spin Y to obtain X as follows:

X = (§* X Y) U (D**' X 9Y)
identified along
S* X 9Y = oD**' x 9Y .
Lemma 3.3. X will deformation retract onto an (n + k 4+ 1)-dimensional

C. W. complex K* with the following cells:
Type I.  Cells obtained from the deformation of Y .
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O-cell: x3,
l-cells: X}, X3+ Xmy »

............

(n 4 1-cells: x3+, xp*, ... a7t

> mp 41 *
Type II.  Cells obtained by k-spinning cells of type 1:
k-cells x,
k + 1)-cells:  xi*,x3*, -+, x5,

...............

(n 4+ k 4+ De-cells: xP+¥, xp+v, ..o x2HY
Type III.  Cells obtained by the deformation of the “plug”, D¥** X 9Y :

k + D-cells: xT*,
(k + 2)-cells: x¥™,xi™, -, x

...............

(n+ k + D-cells:  x7™,x3™, -« ., xm" .

The proof of Lemma 3.3 follows from the definition of k-spinning and
Lemma 2.2. .
Let K* be the universal cover of K*. Then the cell structure of K* is given
by the following three types:
Type I’ O-cells: gi!, gell(X) = II(Y),
l-cells: g#t l<i<m),

(n + 1)-cells: gxz+* 1<i<m,,,).

Type II’:  k-cells: gxe | gell,(X),
(k + D)-cells: g%} 1<i<m),

(n + k 4 1)-cells: gx»*** I<i<m,,,).

Type III’. (k + 1)-cells: gxy™, gell(X),
(k + 2)-cells: gi;™ 1<i<m,

(n+ k + 1)-cells: gx™™ I<i<py).

We now observe that the boundary homorphisms of the Reidemeister
homotopy chain complex of K*,
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0= Cpppn(B¥) — -+ — C(K¥)
are given by
Type I': 0¥ (g%") = go¥(®) = £0,(%Y) ,
Type 1I': 9 (g%") = g0F(¥*) = g(3.;%)* ,
where if

9,% = mflgjig_l ’
j=1
then
. mi—1 ~i 1%
@.X9* + _Zl g;X ",
=
(see Fig. 3.1),

XY

.i-l £ .
¥ aory \'

¥t

D

Fig. 3.1
Type III": 3 (g%™) = gy (¥*™) = g,
as
*(X*™) = 9(D**! X Xf) = (S* X %) = 3,
H,(K*) =01 <i<k), and
Hyy (K%)= (X q Xy - - oy x5, 0FRF, -+, 3542

In particular, 0¥ is given by the Fox free derivatives [5]. Hence by the Hurewiz
theorem

I,X) = I,(K*) = (K" =H, (K  (1<n<k+1)

as a ZJI,-module, and our theorem is proved for one particular presentation
of I7,(X). The general theorem will follow from the following two lemmas
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which show that the Tietze I and II operations on the presentation of 77,(X)
induce Tietze I and II operations on I7,.,(X) as a ZI/,-module.
Lemma 4.3. If a relation s is a consequence of
F = (r13r29 v '7r'm,) ’
then ds/0x is a consequence of

oF [ox = (or,/0x, or,/0x, - - -,0r,[/0x) ,

where s is the relation.
Proof. In ZF we have

0s/ox = 6([2[ ukr;.‘:u,;l)/ax
k=1 Y
= o(urdury) [ox + (uriuroirizu;") [ox

+ .-+ ﬁ (uprFuy Do(uyrizu,®) [0x
k=1
but as r; — 1 in Z/I, and identifying ds/ox with its image in Z//, we obtain

dsjox = 37 o(ugriupt)/ox .
k=1

Since
and
-/, — 1) =a;,
we have
O(uprdFu; ") [0x = azu,ory,[ox ,
so that

0s/ox = i‘ ayu0ry, [ox .
k=1

Lemma 4.4. The Tietze 11 operation on I1,(Y) induces a Tietze I1 or the
iedntity operation on II,,(X) as a left ZII,-module depending on whether e
is in the interior of Y or on its boundary.

Proof. Consider the Tietze I operation
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II: - EUy:7FUye?",

where y is a member of the underlying set of generators not contained in X.
Suppose that e is not on the boundary of Y, then it remains to show that

4 — * k k * .
Hk+1 - (xm-x-l’ x,ul+2’ ceey Xy YT L

or; (4 o = dye' ., , dye’! *)
—LxF + ¥, xF +
jsm+1 axj( 7Ty j=§+1 ox; ay Y

is obtained from
< *
oo = (XonXhon x5 B @rifoxay)
J=pm+

by a Tietze II operation. But as r and e do not contain any factor equal to y
as a member of the free group on elements of X, we have that or;/dx; = 0
(i=1,2,...,p) and further that

m -1 -1 m -1
3 oye x;“raye Y=y 3 oe

xF 4y,
j=m+1  0X; oy v=m+1 0X;

and the result follows. If, on the other hand, e were on the boundary, then
(@e7'/8x,;) = O for all j, and hence II} ., has the same presentation as I7,, .

5. Application

In particular we note that if we k-spin a 1-dimensional ball configuration,
which is geometrically unsplittable and intersects dB®, then the complex K is
always aspherical (see [8]), and further the 2-dimensional C. W. complex K
will have one vertex p, n edges x, X,, -+ -, X, and n — pfacesr,,, 7,5 -+, 7,
as dY is a surface of genus y, so that

x(K) = x($* — K}l = 4y(0(S® — K}‘)) =1—p.

Application 5.1. Two linked knotted two-spheres in the four-sphere.

We obtain yet a third proof (the first given in Van Kampen [13] and the
second given in Shinohara and Sumners [10]) that the two unknotted 2-spheres
obtained by 1-spinning the ball configuration in Fig. 5.1 are not isotopically
splittable as

II,(B* — KY) = (a,b, x: xax~'b~'axa b 'ax~'a~'b) .
Also

I, —LY)=X: (1 — b'a — xax™! + xax~b~'a)X) ,
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and IT,(S* — Lj) is nontrivial as it can be mapped onto the integers. However,
if 57 and S; were isotopically splittable, then $* — L2 would deformation retract
to 'V §' V 8% and hence I7,(S* — L?) = 0.

B;

b a X

B,

Fig. 5.1

Application 5.2. An Unknotted two-sphere linked with a knotted two-
sphere in the four-sphere.

We give a proof that k-spinning the ball configuration as given in Fig. 5.2
is not isotopically splittable. Artin [3] originally showed this to be true for

a b

Fig. 5.2

1-spinning, and later Andrews and Curtis [1] showed that the 2-spheres obtained
by 1-spinning K} were not homotopically splittable. We note that if the two
(k + 1)-spheres obtained by k-spinning were isotopically splittable, then

Hk“(SkH _ L;c+1) =0.
However,

Iy —> 31, @z, ZI0) = (X2 (t 4 7% — 7HX)
=X: (¢ —1t—DX)
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=ZI/(f —1+1)
=ZQRZRZ (seell2]),

where

[1]
[2]
[31]
[4]
[51

[6]
[71
[81]
[91
[10]
[11]
[12]
[13]

II,(B* — KY) = (a,b, x: x"'b~'xbaxa™'b7") ,
I, . (S** — LY = (X: (bax™t + x7b7! — x7DX) .
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