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THE STRUCTURE OF SOLUTIONS TO PLATEAU'S
PROBLEM IN THE n-SPHERE

JOHN E. BROTHERS

1. Introduction

Let T be a / -dimensional rectifiable current in the unit sphere Sn which is
absolutely area minimizing with respect to Sn and is such that dT lies in a
closed ra-dimensional geodesic hemisphere Q. We will present results concern-
ing the location of T (Theorems 3.5 and 4.4) and, in case k = ra, the structure
of T (Theorem 4.5). The primary difficulty arises from the assumption that Q
is closed simple examples using lines of longitude on S2 show that not only
is T not uniquely determined by dT, but there may be a continum of solutions
to the Plateau problem for a fixed boundary lying in Q.

Our results are relevant to the study of the structure of oriented tangent
cones at points on the boundary of an area minimizing current in Rn (see [3,
5.2]), and this was our principal motivation for undertaking this study. An
application to this problem is given in § 5.

In order to obtain our main results we first prove a k'location theorem" for
minimizing and minimal (or stationary) currents of arbitrary dimension in Sn

which is a formulation for currents in the sphere of the classical idea that a
bounded minimal submanifold of Rn must lie in the convex hull of its boundary
(a simple proof of which is also given). Such results were first obtained by
Blaine Lawson [7] for smooth minimal immersions of manifolds of arbitrary
dimension, and for pseudo-immersions in the two dimensional case. We will
use his formulation of the notion of convex hull of a subset of Sn. The minimal
"surfaces" which we consider include Lawson's as special cases; however,
because his proofs are centered around use of a maximal principle, his results
are stronger than ours.

The author is indebted to his colleague Benjamin Halpern for several stimu-
lating discussions which lead to the use of the function F in the proof of
Sheeting lemma 4.4 and Theorem 4.5. This construction has also been recently
applied by Sandra Paur in her study of boundary behavior of integral currents
[8].
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supported in part by NSF grants GP-36418X1 and GP-33547.
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2. Preliminaries

The purpose of this section is to fix basic notation and terminology, and
discuss general concepts which will be used in the paper. Notations which are
not explained below may be found in [4, pp. 669-671] and [1].

2.1. Throughout the paper, k and n will be integers with 1 < k <n.
Denote by Rn the n-dimensional Euclidean space with the standard inner
product

χ.y = jt1/ + . . . + χnyn for x, y <=. Rn ,

standard orthonormal basis e19 , en and norm

|JC| = O Λ;)1/2 for x e Rn .

Denote Sn = Rn+1 Π {x: \x\ = 1}.
Whenever X is a set, 1Σ denotes the identity map of X.
Whenever M is a diίferentiable manifold and x e M, one denotes the tangent

space of M at x by TX(M).
2.2. Currents. Let M be a Riemannian manifold of class oo. &k(M) is

the group of A -dimensional rectifiable currents with (compact) support in M.
ffi^iM) is the group of locally rectifiable currents in M.

Let iV be a proper submanifold of class 1 of M. The second corollary on
[4, p. 373] implies that

&k(N) = 3ek(M) Π {T: spt T C N} .

If T is a ^-dimensional current in M, then M(T) is the mass of T. In case
T € ^J.0C(M), the variation measure \\ T\\ of T is defined and one has the repre-
sentation

T(φ)=l<T,φ>d\\T\\

whenever ψ is a continuous differential &-form with compact support in M,

where f(x) is a unit simple k-vectoτ for || Γ|| almost all x e M.
2.3. Varifolds. Let ^(n, A:) denote the Grassmann manifold of k-dimen-

sional linear subspaces of Rn. Suppose S <= G(n, k). We will also use S to denote
orthogonal projection of Rn on S. With M as in § 2.2 we denote by ^ ( M ) the
bundle of k-dimensional linear subspaces of tangent spaces of M.

A k-dimensional varifold in M is a Radon measure V on Gk(M). Vk(M) is
the weakly topologized space of ^-dimensional varifolds in M. Whenever
V e Vk(M), let

\\V\\ (A) = V(Gk(M) Π { ( * , S ) : x e A , S < z TX(M)}) for ^ c M .

Clearly || F | | is a Radon measure on M.
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Whenever V e Vk(M) and X is a Borel subset of M, let

Clearly Vx e Vk(M) and \\VX\\ = \\V\\L X.

Finally, we observe that T e &k

0C(M) can be identified with a varifold, also
denoted Γ, whose value on a subset 5 of Gk{M) is

|| Γ|| {x : (x, S) e B and S is associated with ?(*)} .

2.4. Minimizing currents. Let /4 be a subset of Rn. A current T € £%k(R
n)

is called (absolutely) area minimizing with respect to A it sptT C. A and

M(Γ) < M(T + Z)

whenever Z e &k{.Rn), sptX d A, dX = 0.
In case A is a compact Lipschitz neighborhood retract, the existence of

certain minimizing currents was obtained in [4, 5.1.6].
These concepts are extended to the case where S is locally rectifiable by

requiring that T |_ K be absolutely area minimizing with respect to A for all
compact subsets K of A.

2.5. First variation. Let M be a proper submanifold of i?n of class oo.
One denotes by &(M) the vector space of functions g: M —> Rn of class oo
with compact support such that g(x) e TX(M) for x e M.

Assuming V € Vk(M) we define a continuous linear function

called the first variation of V, by letting

trace [S o Dg(x) o 5*] dF(je, S) .SF(g) = J

Here, for S e G(n, k), S* denotes the adjoint of S, that is, the inclusion of this
subspace in Rn. (See [1, 4.2].)

One says that V is stationary if δV = 0. V is stationary in U if £/ is an open
subset of M and dF(g) = 0 whenever g e &(U).

This definition is motivated by the following (compare [1, 4.1]): Suppose
ε > 0, / = (—ε, ε), U is an open subset of M,

h: I x M —> M is of class oo ,

/Z^JC) = Λ(ί, x) for (ί, JC) € / X M, ΛQW = Λ: for Λ: e M ,

and

{Λ: : Λ^^) Φ x for some ί € /} has compact closure in U .
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Let g(x) = dht(x)/dt\t=a. If \\V\\ (£/) < oo, then

dt

The left side of this equation is classically referred to as the first variation of
V associated with the isotopic deformation h.

If T € ̂ 0 C(M) is area minimizing with respect to M, then T is stationary in
M ~ spt dT. See [4, p. 525].

Finally, we remark that if T — i$N where N is an oriented manifold with
boundary and i: N —> M is a minimal immersion of class oo (in the sense of
differential geometry), then T is stationary in M ^ / (spt dN); see [1, 4.2].
Furthermore, it follows from the result mentioned in the preceding paragraph
that in case k = 2 and / is a minimal pseudo-immersion in the sense of Lawson
[7, p. 226], Ί is stationary in M ~ f (spt dN).

2.6. Assuming C e ^lλ{Rn+ι) we recall that C is an oriented cone if and
only if

unC = C whenever r > 1 ,

where »r(x) = rx for x <= Λn + 1.
Denoting

r(x) = \x\ tor xεRn+1 ,

h(t, x) = tx for (t, x) e R X i?TO+1 ,

we also recall from [4, p. 452] and 2.2 that

c n sn = <c, r, i> 6 ̂ fcCS"1), c = /^[(^ 1 1_ # + ) x ( c n s w ) ] .

Finally, we recall from [4, p. 454] that x Λ C(*) = 0 for | |C | | almost all x
and use [4, 4.3.8] to conclude that

C(x) = x A (C Π SnΓ(x/\x\) for | |C | | almost all x .

Lemma. Lei C e ^+1(Rn+1) be an oriented cone such that CDS71 mini-
mizes area with respect to Sn. Then C minimizes area.

Proof. Suppose s > 0 and T e &k+ι(Rn+1) with dT = 0. Then for if1 almost
all t > 0, d<7\ r, t} = —{dT, r, t) = 0, whence using [4, 4.3.2 (2)] we infer
that

M[C L B(0,s) + T] > [ M<C L B(0,s) + T,r,t>dt
Jo

> f M<C,r, ί)d<eH = M[C L B(0,s)] ,
Jo



SOLUTIONS TO PLATEAU'S PROBLEM 391

and conclude from application of [4, 5.4.2] with Qi — C\_ B(0, i) that C mini-
mizes area. (Here, B(0,s) = Rn+1 Π {x: \x\ < s}.)

3. Location theorems

The purpose of this section is to obtain geometric bounds for minimizing and
stationary currents in Sn entirely in terms of the boundary of the current.
(Corresponding results are obtained for varifolds, where appropriate.) For
currents in Rn the analogous problem is quite simple however, the existence
of compact (closed) minimal submanifolds of Sn complicates the situation for
stationary currents in Sn. Major difficulties arise when the current is not con-
tained in some open hemisphere of Sn. Indeed, even if the boundary of the
current lies in a hemisphere, quite clearly the current itself may not. (See [7,
Examples, pp. 228-229].)

3.1. Lemma. Suppose a <= Sn, a > 0 and V e Vk(Sn) with

s p t | | F | | C Rn+1 Π {x: x a > 0} .

// V is stationary in Sn Γ\ {x: x-a < a], then

s p t | | F | | C Rn+1 Π {x:x-a> a} U {x: x a = 0} ) .

Proof. We can assume a = ex. Denote

go(jc) = ex - xιx for x = {x\ , xn+ι) z Rn+ι ,

and fix ψ e δ\R) with ψ > 0, ψ' < 0, spt ψ c R Π {t: t < a}. Denote

g(x) = ψOOgoU) for x € Rn+1 .

Then g\Sn e &(Sn Π {x: x1 < a}), hence δV(g) = 0.
On the other hand, fixing x, v € Sn~ι such that v x = 0 one computes

<v,Dgo(x)y-v = -x1 ,

<v,Dg(x)> =

trace [SoDgCjcJoS*] < -kψ(xι)xι

for S β G(n + 1, /:) such that S(x) = 0, hence concludes that

= 0 .

3.2. Corollary. Suppose T e 3tk(Sn) absolutely minimizes area with
respect to Sn and
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s p t S Γ C Rn+1 Π {x:x a > a} .

Then

s p t Γ C Rn+1 Π {x: x-a > a) .

Proof, Assuming a = e1 we denote

C + = Sn Π {* : x1 > a} , C_ = S"1 Π {*: xι < -a} ,

C = £"> - (C+ U C_) ,

and define σ: Sn -> ^ w so that

σ( c) = (IJC1!, Λ:2, , xn+ι) for JC 6 /? n + 1 .

Set To = σ#Γ. Inasmuch as dTQ = 5Γ, we see that M(Γ0) = M(T) and thus
infer from Lemma 3.1 the existence of T'9 T" € @k(S

n) such that To = T7

+ Γ" and

spt r C Sn Π {Λ:: X1 = 0} , spt Ί" C C + .

Thus 3Γ7/ = 3Γ. Hence r = 0, and we conclude that σ#(T |_ C) = 0. It then
follows that

(T L C J ]

L C_) + M(Γ L C+) < M(Γ) ,

which implies that T L C = 0. Hence Γ [_ C_ = 0 because sptdT C C + .
3.3. Remark. The result for varifolds in Rn which corresponds to the

lemma is proved in much the same way:
Suppose a € Sn~\ aεR, V <= Vk(Rn), and spt \\V\\ is compact. If V is sta-

tionary in Rn ΓΊ {x: x-a < a}, then

s p t | | F | | C Rn Π {x'.x a > a} .

For the proof one assumes a = ex and chooses ψ as before. Then

0 = δViψed = [ ψ'Ot1) \S(ei)\2 dV(x, S) ,

whence it follows that

V L ίRn Π {Λ Λ1 < α} X G(n,fc)]

= F L [ « n n { r ί ' < 4 χ <F(B, Λ) Π {5: 5(e,) = 0}] .

One uses this to verify that

0 = ίK(ψla.) = A f
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3.4. Convexity. Following the ideas of Lawson [7, § 3] we will discuss
the concept of convex hull of a set in Sn. Let Jf denote the set of closed
hemispheres of Sn. To each H e $? one corresponds the unique vector a(H) e
Sn such that

H = S» Π {x:a(H) x>0} .

a is clearly one-to-one onto Sn one introduces on 2/f the unique difϊerentiable
and Riemannian structures making a an isometry.

Whenever X c Sn denote

j^x = ^ Π {H:X czH} , / j z z / Π ^ I C intfl} ,

Z* = Sn Π {a: a x > 0 for x e X) .

Clearly ^f x is closed. Moreover, the function ψx on #P defined by

ψx{H) = dist (X, - i ϊ )

is continuous (where —H = Sn Π {—JC: ̂ efl}). Thus, when Z is closed,
jpz = 3tf Π {//: 9X(fl) > 0}, and ^P x is open.

The convex hull oi X d Sn is

One says that X is geodesically convex if, whenever Λ J G Z and x Φ —y,
the shortest geodesic arc joining x and y lies in Z.

We will apply the following propositions which are proved in [7, § 3]: Let
X a Sn.

3.4.1. Proposition. 3?x is pathwise connected.
3.4.2. Proposition. &(X) is the smallest closed, geodesically convex set

containing X.
3.4.3. Proposition. // X is closed and Jfx ψ 0 , then

3.5. Theorem. Suppose T e &k(Sn) absolutely minimizes area with re-
spect to Sn and spt9Γ lies in an open hemisphere. Then

spt T C # (spt dT) .

Proof. Since <2fspt9Γ Φ 0, one has

sptΓC n

by Corollary 3.2 and Proposition 3.4.3.
3.6. Theorem. Suppose V e Vk(Sn) is stationary in an open subset U of

Sn with spt || 71| C closure U. If spt | |F | | lies in an open hemisphere, then
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spt | |F | |C^[(spt | |F | | ) Π (bdry [/)] .

Proof. The proof is essentially the same as that for [7, Theorem 1]. Denote
Σ = spt | |F | | , Γ = Σ Π (bdry U). Suppose Σ C int # 0 , HQ € ̂ . We see from
Lemma 3.1 that we can assume that Σ is connected and Γ Φ 0. Fix Hλ e <#Γ,
and choose a continuous function p: [0,1] —• & Γ with f(ί) = ^ for 0 < t <
1. Then Φ = φΣoγ \& continuous on [0,1] and Φ(0) > 0. Assuming Φ(l) = 0
we set τ = inf φ-^O}; clearly Σ C Hτ and Σ Π (bdry#Γ) ^ 0 . But this is
impossible by Lemma 3.1 since Σ is connected and 0 Φ Γ C int# Γ . Thus
Φ(l) > 0, and using Proposition 3.4.1 we conclude that ί c f ] <#V

3.7. Corollary. Suppose T e &k(Sn) is stationary in Sn — spt dT, and
spt T lies in an open hemisphere. Then

spt Γ C ^ (spt dT) .

3.8. Remark. The propositions corresponding to Theorem 3.6 and
Corollary 3.7 for varifolds and currents in Rn are immediate consequences of
Remark 3.3:

Suppose V € Vk{Rn) is stationary in an open set U with spt ||F|| compact
and spt \\V\\ C closure U. Then spt \\V\\ lies in the convex hull of (spt \\V\\) Π
(bdry U).

Suppose T e &k(Rn) is stationary in Rn — spt dT. Then spt T lies in the
convex hull of spt dT.

3.9. Corollary. Suppose 0 Φ V e Vk(Sn) is stationary, and let S be a
totally geodesic embedding of Sn~ι in Sn.

(i) Then S Π spt | |F | | Φ 0, and spt | |F | | is not a subset of any open
hemisphere of S.

(ii) Assume spt || V\\ — S Φ 0, and let 3) be a component of spt || K|| ~ S.
Then 38 = (closure ^) — Q) is a closed subset of S which is not contained in
any open hemisphere of S.

Proof, (i) If S Π spt \\V\\ = 0, and D is a component of spt \\V\\, then
Lemma 3.1 applied to VD implies that D — 0.

(ii) Choose Ho € Jf so that S = bdry Ho and 3f C int Ho, and assume there
exists Hλ e JP with 39 c int Hλ. Clearly 3S c S, and hence S9 = (closure ^ )
Π £ is closed and there exists an open neighborhood W of 39 such that closure W

We now apply Theorem 3.6 with

£/ = Sn ~ (0 Π bdry W)

and F replaced by VB^W. Accordingly, inasmuch as closure U = Sn, spt || V^w \\
= & ~ W aintH0 since S - W is closed, and (spt || F^^H) Π (bdry £7) =
Si Γl bdry f̂ , we infer using Proposition 3.4.3 that

spt || F ^ H C <€{β Π bdry W) C int H, .
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Thus s ρ t | | F J C s p t l l F ^ H U (closured) c intH,.
Next we apply Theorem 3.6 to V9 with U = Sn ~ Si to infer that

closured = s p t | | F J c

Finally, <€{SS) (Z Sby Proposition 3.4.2, which is a contradiction.

4. Structure theorems

Identify Rn+1 with Rk X Rn'k+\ denote

PQ = Rk X {0} c #w + 1 , # + = R Π {r: r > 0} , Qo = Rk X R+ ,

orient Po and β 0 , and define

F:Rn+ί^Rk X # , F(w,v) = (w,|v|) ,

φ : i ? n + i ^ p o _ ^ β o x 5w- f c , Φ(u,v) = (μ,\v\, v/\v\) .

It is easy to see that Φ~\u, r, y) = (u, ry) for (M, r, y) e Qo X 5w" f c, so that Φ
is a diffeomorphism of class oo onto QQ X S7'"^. Further, for y eSn~k we
denote

β y = Rn+1 Π {(M, ry): u e Rk, r > 0} = φ-^βo X {y}) .

Orient Qy so that dQy = Po

4.1. Lemma. DF(z) w an orthogonal projection whenever z e Rn+1 — Po.
Proof. Denoting the standard orthonormal basis of Rk by e19 , efe and

setting φ(z) = w = (u, r, y) e QQ X Sn~k we have z € β y , F(Qy) = β 0 ,

0,0) = (e 1 ,0) , / = 1, --.,Ar,

, 0, w) = (0, rw) for w € Γy(Sn"*) .

Accordingly, DΦ~\w) \ Γ(w,r)(β0) Θ {0} is an isometry onto Tz(Qy), and Tz(Qy)
is orthogonal to

DΦ~\z)[{0} 0 Γy(Sn"*)] = ker DF(z) .

4.2. Theorem. Suppose ϊ < I < k, T e 0tt{Sn) absolutely minimizes
area with respect to Sn, and P is a k-dimensional linear sub space of Rn+1 such
that spt 3Γ C P. Then there exist (k + lydimensional linear subspaces
L1? , Ly containing P such that

spt T C Lx U U Lυ .

Proo/. We can assumeP = Po. Defining^: RkχR-*Rn+1 = RkχRχRn~k
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so that

c(u, r) = (u, r, 0) for («, r) e Rk X R

we denote β = closure ί ( β 0 ) . Set / = c o F . Denote by C e ̂ ^ ( Λ " ) the oriented
cone such that C Π Sn = Γ (see § 2.6.)

We will first show that for | | C | | almost all z e Rn+1 ~ P,

C(z)e Aι+ιTz(Qy) where Φ(z) = (x,y) .

Whenever zεSn ~ P, f(z) is simple, and \f(z)\ = 1, we denote

Referring to §2.6 and Lemma 4.1 we see that h(z) < 1, and equality is
equivalent to our assertion concerning f(z) holding. In case zeP, denote h(z)
= 1. Since f\Rn+1 ~ P is smooth, it is clear that

fj(ω)< f Ad| |Γ| |

whenever ω € @ι(Rn+ι — P) with Λf(ω) < 1, hence

II/.ΓH (Rn+1 - P) < ί Λ d | | Γ | | .

Moreover, recalling § 2.2 we infer that TIP and (/tΓ) L ̂  belong to
and hence are equal. Consequently,

M(UT)<jhd\\T\\.

On the other hand, f^T e ^t{Sn) and 3/#Γ = 3T. Thus since T is area mini-
mizing,

ίhd\\T\\<M(T)<M(UT),

and it follows that h(z) = 1 for | |Γ | | almost all z.
Next consider Wo € Gin + 1 , 2 ) such that Wo c {0} X Rn~k+1. Referring to

[2, 5.1] we see that the measure T defined there is equal to zero, and hence
WQ (spt C) Π Sn is finite. Thus there exists a finite set s/0 of (n — ̂ -dimen-
sional linear subspaces oi Rn~k+1 such that

Assuming n — k>2 and fixing ^40 € jtf0, we choose Ŵ  e G(n + 1 , 2 ) such
that W1 (Z Ao and infer the existence of s/ι as before. Since dim^4 Π Ao =
n — k — 1 for A € j ^ and



SOLUTIONS TO PLATEAU'S PROBLEM 397

(sptC) Π Ao d [J {P x (A f) Ao): A e s/x) ,

we infer the existence of a finite set @tλ of (n — k — l)-dimensional linear
subspaces ot Rn~k+1 such that

Proceeding inductively we obtain for each i = 1, , w — k — l a finite set
B&i of (n — k — /)-dimensional linear subspaces ot Rn~k+1 such that

spt C C U {P X B: B e ^ }

the requirements of our theorem are fulfilled by

{P X B: B e^n_u_^

4.3. Remark. In Theorem 4.5 we will give a complete description of the
structure of T for the case where I = k. In case / = k — 1, one can use the
regularity results of Almgren, Federer, Fleming and Simons (see [4, 5.4.15]
and [5]) to obtain the following:

(i) If 2 < k <Ί, then spt T ~ P is a proper (k — \)-dimensional sub-
manifold of class oo of Sn.

(ii) If k>8, then there exists Z C spt T ~ P such that spt T ~ (Z U P)
z's <z proper (k — l)-dimensίonal sub manifold of class oo o/ S^ and ί/ie
Hausdorff dimension of Z is not greater than k — 8.

4.4. Sheeting lemma. Let M and N be Riemannίan manifolds of class 1
with M connected and oriented, dim M = m. Suppose T e &}™{M x N), dT
= 0, and M(T \_ K X N) < oo whenever K is a compact subset of M.
Further, assume that

T(x, y) e Am TX(M) 0 {0} for \\T\\ almost all (x,y)eM X N .

Then there exist yte N and integers at, i = 1, , v, such that

T = ΣoctM X {yj .

Here M x {y^ is also used to denote the current obtained by integration over
M X {y,}.

Robert Hardt has recently devised a proof of this proposition, which is much
more elegant than the proof we had planned for presentation here. We
therefore omit our proof and refer the reader to [6].

4.5. Theorem. Suppose T e £%k(Sn) absolutely minimizes area with re-
spect to Sn, and there exists a closed oriented (k + l)-dimensional half-plane
Q with sptaΓ C Q. Denote P = dQ. Then there exist oriented (k + l)-dimen-
sional half-planes Q19 , Qv and nonnegative integers a19 , av such that the
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following are true:

(i) Qj Φ QanddQj = Pforj = 1, . ,v, and

T = β(a1Q1 + - + avQv) n ^ + T L β ^ = ± l .

(ii) // spt dT C P, then T [_ Q = βaQ Π S7* where a is a nonnegative
integer. Moreover,

dT = 03(β n sn) = -ΘP n sn, M(T) = j(* + i)«(* + 1)0,

where θ = a + aλ + + av and β = sign ̂ .
(iii) If P f) Sn (£ spt 9Γ, ίΛ̂ w spt T C Q.
Proof. Define *, /, C as in the proof of Theorem 4.2 we can assume P =

PQ and Q = closure ^(β0). Note that Φoc(Q0) = QQ X {ej. Denote by Co €
«i°?1(Λn+1 - 0 the restriction of C to &k+\Rn+1 - β ) . Then 9C0 = 0 and,
recalling the first paragraph of the proof of Theorem 4.2, we can apply Sheet-
ing lemma 4.4 with M = β 0 , N = Sn'k - {eλ} = Sn~k - Φ(Q) and Γ replaced
by Φ%CQ. Consequently, there exist yt € S71"* — { Ĵ and integers at Φ 0, / =
1, , v, such that

Co = a,Qλ + + avQv , Q, = QVi ,

and using [4, 4.1.21] we conclude that

C = C I (Rn+ι ~ P) = C L Q + aλQx + + ^ α

Inasmuch as Γ L OS" — Q) minimizes area with respect to Sn, C [_ (Rn+1

— Q) minimizes area by § 2.6, and the methods of the last paragraph of the
proof of [3, 5.1] can be used to show that either a19 , av are of the same
sign or v — 2 and closure (Qx U Q2) is a linear subspace of Rn+ι. But this
cannot be the case because T [_ (Sn ~ Q) — ipciQi + a2Q2) Π 5^ minimizes
area with respect to Sn

This proves (i) the first part of (ii) follows upon replacing Q by P in the
above argument. Since T = C Π £ " , the formula for Λf(Γ) is the last state-
ment in [3, 5.2] (which also contains a different proof of our theorem for the
case where spt dT c P).

With regard to (iii) we use the second corollary on [4, p. 373] and [4,
4.1.28] to obtain an Jfk summable, integer valued function ψ on Qf = Q Π
Sn such that

T L Q = Qf Λ Ψ .

Let £/ be a connected open subset of Sn — sptdΓ such that U Γi P Φ 0.
Denote ff = aλ + + av. Since /§Γ = Q! A \ψ + βθ') and df*T = fβT, the
constancy theorem [4, p. 357] applied on

U Π ( R k χ { v : v 2 = •-• = v n ~ k + 1 = 0 } )
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(the intersection of U with the (k + l)-plane containing Q) implies that
(φ + βθ') IQ! Π U may be taken to be zero. On the other hand,

f \φ + βθ'\ d^k = M(UT) = M(T)

= M(T L β') +

= ί \φ\
JQ'

Therefore, if θf were positive, then we would have sign φ(z) = β for J«fk almost
all z e Q! which is a contradiction.

5. Application to tangent cones

It is well-known (and not difficult to verify) that an oriented cone C is sta-
tionary in Rn ~ spt dC if and only if C Π Sn~ι is stationary in Sn~ι — spt dC.
The corresponding proposition for area minimizing cones is, however, not true
(but recall § 2.6), and this is the major obstacle to the determination of the
structure of those oriented tangent cones which occur at points on the boundary
of an area minimizing current with smooth boundary. At present the only
result known in this direction follows from [2, 5.1] (see also [3, 5.2]) and
employs the additional assumption that spt C ~ spt dC lies in an open half-
space of Rn. In this section we will give, under a similar assumption, a result
concerning the structure of certain oriented tangent cones which occur at
"corners" of the boundary of an area minimizing current in Rn.

For an example of an area minimizing cone C such that C ΓΊ Sn~ι does not
minimize area, let C = f^E2 |_ A) where f:R2-+Rnis one-to-one and linear,
and

A = R2 Π {(*, y): x < 0 or y < 0} .

5.1. Theorem. Let C e ^c(Rn) be an oriented cone such that C is sta-
tionary in Rn — spt3C. {This holds in particular if C absolutely minimizes
area.) If there exists a e Sn~λ such that

spt C ~ {0} C Rn Π {x: x-a > 0} ,

then spt C lies in the convex hull of spt 9C.
Proof. Apply Corollary 3.7 to C Π Sn~ι.
5.2. Corollary. Assume in addition that spt dC is contained in a k-

dimensional linear sub space L. Then spt C C L, and C is the unique area
minimizing oriented cone in Rn with boundary dC which lies in the half-space
Rn Π {x: x a> 0}.

Proof. C e ^ 0 C ( L ) and is the unique member of 3Pf(L) with boundary dC
which lies in the half-space L Π {*: x-a > 0}.
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5.3. Let γ: [a, b] —> Rn be a simple closed curve, and suppose a = x0 <

x1 < < xn = b are such that for each i,γ\[Xi,Xi-i\ has a nonvanishing

derivative which satisfies a Holder condition with exponent not greater than

one. Fix i so that 0 < i < n and f'(* f—) =£ p/0ci + ).

5.4. Corollary. Let S e I2(Rn) be absolutely area minimizing and such that

dS = θγ$[a, b~\ where θ is a positive integer. Suppose there exist ε > 0, a e iS71"1

α neighborhood U of γ(xt) such that

(sptS) Π C / ^ { r fe)} C i?- Π {x: [x - KjcJl α > ε} .

has a unique oriented tangent cone C at γ(Xi). Moreover, θ~ιC is the

current represented by integration over the {suitably oriented) smaller of the

sectors determined by y\x%—) and f(xt + ) in the 2-dimensional plane spanned

by these vectors.

Proof. The existence of C follows from [3, 3.3, 3.6] and the proposition

in [3, 2.6].
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