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0. Introduction

The purpose of the present paper is first to establish, for a totally real sub-
manifold of a Kaehlerian manifold, the equations of Gauss and Ricci which
contain the Bochner curvature tensor of the ambient Kaehlerian manifold, the
Weyl conformal curvature tensor and the second fundamental tensors of the
submanifold, and then to prove the following three theorems.

Theorem 1. Let M, n > 4, be a totally umbilical, totally real submanifold
of a Kaehlerian manifold M*™ with vanishing Bochner curvature tensor. Then
M™ is conformally flat.

Theorem 2. Let M? be a totally geodesic, totally real submanifold of a
Kaehlerian manifold with vanishing Bochner curvature tensor. Then M® is con-
formally flat.

Theorem 3. Let M™, n > 4, be a totally real submanifold of a Kaehlerian
manifold M* with vanishing Bochner curvature tensor. If the second funda-
mental tensors of M™ commute, then M™ is conformally flat.

Theorem 1 generalizes a theorem of Blair [1]:

Theorem A. Let M**,n>4, be a Kaehler manifold with vanishing Bochner
curvature tensor, and let M™ be a totally geodesic, totally real submanifold of
M?*, Then M™ is conformally flat.

Theorem 3 generalizes also the theorem of Blair in a different direction.

In § 1 we state some known results on Weyl and Bochner curvature tensors,
which we need in the sequel. In § 2 we establish the equations of Gauss for a
totally real submanifold of a Kaehlerian manifold and prove Theorem 1. In
§ 3 we prove Theorem 2. In § 4 we establish the equations of Ricci for a totally
real submanifold M* of a Kaehlerian manifold M** and prove Theorem 3.

1. Preliminaries

Let M*, n > 3, be an n-dimensional Riemannian manifold of class C* cov-
ered by a system of coordinate neighborhoods {U; x*}, where and in the
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sequel the indices A, i, j, k, - - - run over the range {1,2/, - - -, n’}, and let g,
V;, K", K;; and K be the positive definite metric tensor, the operator of
covariant differentiation with respect to the Christoffel symbols {,*;} formed
with g;;, the curvature tensor, the Ricci tensor and the scalar curvature of M”
respectively.

A change of metric g;;,— p’g;;, Where p is a scalar function such that p* > 0,
is called a conformal change of metric. The Weyl conformal curvature tensor
defined by

1.1 Ciji® = Ky + 04Cy — 05Chs + Ci"85 — C"81s
is invariant under a conformal change of metric, where

12 Cu=——1 K, + 1

Kg,,, Ci*=Cug,
n—2 20— D —2) o e bl

g'* being the contravariant components of the metric tensor. For n = 3, C;;;*
vanishes identically and the curvature tensor defined by

(1.3) ij’i - chj’i - VJC,“;

is invariant under a conformal change of metric.

If the metric of M™ is conformal to that of a locally Euclidean space, then
M" is said to be conformally flat. It is well known that a conformally flat
Riemannian manifold M" is characterized, for n > 3, by the vanishing of the
Weyl conformal curvature tensor C,;;* and, for n = 3, by the vanishing of
the curvature tensor Cy ;.

Bochner [2] (see also Yano and Bochner [12]) proved

Theorem B. If a compact orientable conformally flat Riemannian manifold
M™ has positive definite Ricci curvature, then we have b, = 0 (0 < p < n),
Wwhere b, denotes the p-th Betti number of the manifold.

To obtain a theorem corresponding to Theorem B in a Kaehlerian manifold,
Bochner [3] (see also Yano and Bochner [12]) introduced a Kaehler analogue
of the Weyl conformal curvature tensor.

Let M*™, m > 2, be a real 2m-dimensional Kaehlerian manifold covered by
a system of coordinate neighborhoods {V; y*}, where and in the sequel the
indices &, 4, g, v, - -- run over the range {1,2, ---,2m}, and let g, F*,V,,
K, K, and k be the positive definite Hermitian metric tensor, the complex
structure tensor, the operator of covariant differentiation with respect to the
Christoffel symbols {,;} formed with g,,, the curvature tensor, the Ricci tensor
and the scalar curvature of M*™ respectively. Then the Bochner curvature
tensor is defined by
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(1 4) Bu,ul‘ = Kv/,ll‘ + 5:L,ul - 5;Lul + Lv‘gld - Lp‘gul + Fv‘L:d
' — F/L, + L/F,, — L''F,, — 2(F, L + LF?),
where
Lo=——' K, + 1 ke,i»  Lf=L,g*,
s 2m+2) “ 8m+ Dm+2) "

L:«X = _LpaFla ’ le‘ = L:ag" ’

and F,, = F,°g.;, 8 being the contravariant components of the metric tensor.
Bochner introduced this curvature tensor using a complex coordinate system.
The tensor expression (1.4) of the Bochner curvature tensor in a real coordinate
system has been given by Tachibana [7].
In the sequel, we need the following identity satisfied by the Bochner cur-
vature tensor :

VB, = —Zm[VvLM — 7L,

(1.6) .
+ (
8(m + 1)(m + 2)

FiF,, — FF, — [ZF,,,F;)V,k] ,

which was obtained by Tachibana [7].

Introducing this curvature tensor, Bochner [3] (see also Yano and Bochner
[12]) proved

Theorem C. If a compact Kaehlerian manifold M*™ with vanishing Bochner
curvature tensor has positive definite Ricci tensor, then we have b,,_, = 0,
b,, = 1(0 < p < m), where b, denotes the i-th Betti number of the manifold.

Concerning the analogy between the Weyl conformal curvature tensor and
the Bochner curvature tensor, see Chen and Yano [5], Takagi and Watanabe
[8], Yano [11] and Yano and Ishihara [13].

2. Equations of Gauss and the proof of Theorem 1

We assume that an n-dimensional Riemannian manifold M™ is isometrically
immersed in a real 2m-dimensional Kaehlerian manifold M*™, and represent
the immersion by y* = y“(x*). We then put B;" = 9y*/dx?, and denote by C
2m — n mutually orthogonal unit normals to M”, where and in the sequel the
indices x, y, z run over the range {(n + 1), (n + 2)', - - -, (2m)’}. Thus we have
8 = 8.B%, where B4, = BB/, and the metric tensor in the normal bundle
is given by g,, = g,,C:, where Cij = C,*C/}*.

Now, if the transform of the tangent space at each point of M" by the com-
plex structure tensor F is orthogonal to the tangent space, then the submani-
fold is said to be totally real (Chen and Ogiue [4], Ludden, Okumura and
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Yano [6]). For a totally real submanifold M™ we have equations of the form
Q.1 FfB} = —f7C;f,

2.2) FrC} = fB, + f,°CF,

from which follows

(2.3) F/BB*", =0 or F,B%=0,

where B* = B/jgi"g,..
Equations of Gauss and Weingarten for M"™ of M*™ are respectively

2.4 V;Bf = H;7C;\,
(2.5) V¢, = —H/ By,

where H ;;* are the second fundamental tensors of M™ with respect to the nor-
malS C.’E" Hj’ly = Hjtygti alld Hjtz/ = szzgzy-

From (2.4) and (2.5) we can deduce equations of Gauss for a submanifold
M" of M*™:

(2.6) Kkjih = Kypx‘BZ’})i’: + Hkh:chix - Hjthkiz P
where By: = B,’B;*B/B",. Introduce the notation

2.7 M;” = H;* — H"g;; ,

where H* = lg”Htf. The M,;” are called conformal second fundamental
n

tensors of M™ with respect to the normals C,". Indeed M;;*C," is invariant
under a conformal change of metric of the ambient manifold (cf. Yano [9]).
We notice that M ;;® thus defined satisfies g/*M;;* = 0. A submanifold M" is
totally umbilical if and only if M;;* = 0. Using M;,® we rewrite (2.6) in the
form

K" = K, Bk + M* ;M ;* — M ;" M,;* + &M ;;°H,
(2.8) — 0iM,"H, + Mkh:cHzgji - Mjthxgki
+ Htz(aﬁgji — 5’}gm‘) ’

where M,"; = M;;,8"", M,z = M,,*8,, and H, = HYg,,.
Now transvecting (1.4) with By and using (2.3) for a totally real sub-
manifold, we obtain

Bvﬂl‘By_‘i%i,z = Kv;ll‘B;{‘iIi’: + 52L,ulBgi - 5’;L;.UIB‘I;§ + L,ulBllggthgji - L,ulBI:;/tzgthgki ’
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and consequently we can write (2.8) in the form:

Ky ;" = B,."Biiy — 0iL,.BY, + 0%L,.Bi — L,,Biig' g,
2.9 + L,.Btigttg,, + M ;M ;;* — M ;" ;M,;* + 0tM;;°H,
— M *H, + M " H*g;; — M ;" H*g,; + H H*(378;: — 08x0) -

355

From (2.9), contracting with respect to £ and k£ and remembering M,*, =0,

we find

(2.10)

Kji = val‘B:B‘;;é - (n - 2)L,u1Bgi - LplB#ngi
—Mi M+ (n—2)M,°H, + (n — 1)H, H%g;,; ,

where B: = B/B?, and B* = B#igi®. Transvecting (2.10) with g7* gives

1

1

‘B:B*g;

t
$ :thngi

LB = — K B,,*B’B*
" 20— 2D
(2.11) )
- M¢Mp 4+ MHH
2(n — 1) 2
Substituting (2.11) in (2.10), we find
1 1
LB?=C,+—B, BB3—______ B
w 11t P B 2(n — D(n — 2) ™
1 1
- M, .M,° M
2.12) w2 et e D= 2)

+ M;#H, + %Hxngji .

Substituting (2.12) in (2.9) yields
1

h — 2h
iji - vaZ‘Bllch}'is -

o

i BB — "B

Jvpd

“BiBY;

+mwwm%ﬂ—mﬂw%%4

1

ta—Dn—2"

(2.13) + MM ;* — M M"

1

+n-—2

[BZththix - angtxMtiz

" BB (0%8 i 5’}8 k1)

+ Mkt:cMcngi — Mjlethxgki]

1

— ——————Mstch”(a’zﬁgﬁ — 5’}3”) .

(n—1(n—2)
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These are equations of Gauss for a totally real submanifold M" of a Kaehlerian
manifold M*™ (cf. Yano [9]).

From (2.13) we see that if the Bochner curvature tensor of the ambient
Kaehlerian manifold vanishes, and the totally real submanifold M is totally
umbilical, that is, M;;* = 0, then we have C,;;* = 0, which gives the proof
of Theorem 1.

3. Totally geodesic, totally real submanifold and the proof of Theorem 2
For a totally geodesic, totally real submanifold, from (2.12) we have

1

(. LuBi=Cp+ 1 |B BB —

o BuBBg |
2n— 1) e 8

On the other hand, transvecting (1.6) with By, = B,*B,*B;* and using the fact
that M" is totally geodesic and totally real, we find

(3.2) V.B,.")B: = —2mlV (L,:B%) — V (L,.B)] ,

which, together with (3.1), implies

(7.B,.9B3 = —2m|7.Cys — 7 Cu
1 g 1 B
3.3 + — 2‘7k<va2 B:B% - 2—(’1‘_—1)—3»#; B,Bﬂlgji)
1 1
~ Ly (B, BBy — — L B :BB~ )] :
n—2 J pa k 2(n — 1) 2 8t

Thus for a totally geodesic, totally real submanifold of a Kaehlerian manifold
with vanishing Bochner curvature tensor, we have

chji_VjCkizoa
which proves Theorem 2.

4. Equations of Ricci and the proof of Theorem 3

Let M*, n > 4, be a totally real submanifold of a Kaehlerian manifold M*™.
Then we have (2.1) and (2.2). Since F,, = —F,, and consequently F,,B;*C,*
= —F,C,/B/}, from (2.1) and (2.2) follows
(41) fiy = fyi 5

where fiy = fizgzy and fyi = fngji'
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Applying the complex structure tensor F to (2.1) and (2.2) and using these
equations, we find

“4.2) ff = o,
(4.3) ff,* =0,
(4.4) fif* =0,
4.5) fff = —o5 + "

(4.4) and (4.5) show that if f,® does not vanish, it defines an f-structure in the
normal bundle (see Yano [10]).

Differentiating (2.1) and (2.2) covariantly over M", and using V,F* =
BV ,F; = 0 and the equations of Gauss and Weingarten, we find

(4.6) Hf," — Hof" =0,
4.7 Vif® = —Hu'f,"
(4.8) Vif," = Hj"1,7
(4.9) Vi, = Hjtf® — Hy*f,t

When n = m, which will be assumed in the sequel, we obtain f;°f,* = &%
from (4.2) and comsequently f,*f,* =0 from (4.5). Since f,, = f,’g., =
F,C,C; is skew-symmetric, f,” =0 and therefore (4.2),.-.-,(4.5) are
reduced to

(4'10) fiyfyh = 6? ’ fyifiz = 6; .
f,* = 0 and (4.7) imply that V,f, = O from which follows
(4-11) Kka/wfiy = Kkjihfhz s

where K, ;,” is the curvature tensor of the connection induced in the normal
bundle. Thus

(4~12) Kkjyxfiyfhz = Kkjih s
Whel'e Kkj:l/.‘c = Kkjyzgz.’l: aIld Kkjih = Kkjitgth‘ (4.11) ShOWS that Kkjyz = O
and K, ;;* = 0 are equivalent.
Now the equations of Ricci are
(413) Kkjya: = Ku,,z;BZ’}C% - Tkjya: )

where K,,,, = K,,.°¢.. and
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(4.14) Tkjyz = Hktijt:z: _ Hjtkatz .
Write (1.4) in the form

B

15y B =Ko + 8uLps = 8Lus & Lo — Ly + FuLi,

—F,L; + L,F,, — L,F, — 2(F, L, + L,F,) ,
where B,,,, = B,,;°g.., and transvect (4.15) with By;Cj;. Then using
(4.16) F.B# =0, F,B/C}=—f;,, F,C,/#/C/t=0
and L), = —L,F*, we find

val:Bz;}C;;r = KvplsB‘IJc;}sz‘c + szL,ulB?gfyt - fj.’chZBiifyt
+ L,.Biif:*f 5y — LuBifsfey -

Thus from (4.13) and (4.17) follows

4.17)

Kkjyz = Bupan‘IIcp}C;fx - fka:prB‘;?fyc + szLsz%fyt

(4.18) At 2t
- L;zZBitfz ij + LuzB,J"tfx fky - Tkjyz ’
which and (4.12) imply

(4.19) K jin = B,uBiiCrif "1 — 8xnLluB4 + gnL.Bi:
— L,.Bi38; + L..B5i8ui — Tijyaf¥fa” -
Transvecting (4.19) with g¥* gives
(4.20) K;; = —B,,,,B%Ciaf'f*® — (n — 2)L,,B% — L,;B*g;; + T;5,.f:f*°

where f** = f,”g%*, and transvecting (4.20) with g’¢ gives

1
4.21 LB =—_ - (K+B—-1),
( ) 2 2("— 1)( + )

where
B=B B;’é‘cz';fﬁyf&‘ﬂ ) T= Ttsyzftyfsx .

vpas
Substituting (4.21) in (4.20) we find
(4.22) L,.B5 = Cy — By, — Ty,

where
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1 1

B, = — B, Buefyfte + - Bg..,

! L Tep |
1 1

T = Tsziysz_——T i .

=L = o ey Te

Substituting (4.22) in (4.19) we obtain

Crjin = B,uBeiCrf ¥fn® + 8enBji — 85aBxi + Bin€ji — Bjn8us

(4.23)

+ Tijyalifn” + 8enTji — 8inTri + Tin&ji — T jn8i »
where C,;;, = Cy;:°8:n- These are the equations of Ricci for a totally real sub-
manifold M™ of a Kaehlerian manifold M*".

From the equations of Ricci it follows that if B,,,, = 0 and T;,, = 0, then
C,jin = 0, which proves Theorem 3.
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