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0. Introduction

The purpose of the present paper is first to establish, for a totally real sub-
manifold of a Kaehlerian manifold, the equations of Gauss and Ricci which
contain the Bochner curvature tensor of the ambient Kaehlerian manifold, the
Weyl conformal curvature tensor and the second fundamental tensors of the
submanifold, and then to prove the following three theorems.

Theorem 1. Let Mn, n > 4, be a totally umbilical, totally real submanifold
of a Kaehlerian manifold M2m with vanishing Bochner curvature tensor. Then
Mn is conformally flat.

Theorem 2. Let M3 be a totally geodesic, totally real submanifold of a
Kaehlerian manifold with vanishing Bochner curvature tensor. Then M3 is con-
formally flat.

Theorem 3. Let Mn, n> 4, be a totally real submanifold of a Kaehlerian
manifold M2n with vanishing Bochner curvature tensor. If the second funda-
mental tensors of Mn commute, then Mn is conformally flat.

Theorem 1 generalizes a theorem of Blair [1]:
Theorem A. Let M2n, n>4, be a Kaehler manifold with vanishing Bochner

curvature tensor, and let Mn be a totally geodesic, totally real submanifold of
M2n. Then Mn is conformally flat.

Theorem 3 generalizes also the theorem of Blair in a different direction.
In § 1 we state some known results on Weyl and Bochner curvature tensors,

which we need in the sequel. In § 2 we establish the equations of Gauss for a
totally real submanifold of a Kaehlerian manifold and prove Theorem 1. In
§ 3 we prove Theorem 2. In § 4 we establish the equations of Ricci for a totally
real submanifold Mn of a Kaehlerian manifold M2n and prove Theorem 3.

1. Preliminaries

Let Mn, n > 3, be an n-dimensional Riemannian manifold of class C°° cov-
ered by a system of coordinate neighborhoods {U;xh}, where and in the
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sequel the indices h, i, j , k, run over the range {V, 2', , n'}, and let gjt,
Fj, KkJi

h, Kjt and K be the positive definite metric tensor, the operator of
covariant differentiation with respect to the Christoffel symbols {/J formed
with gji9 the curvature tensor, the Ricci tensor and the scalar curvature of Mn

respectively.
A change of metric gjί—

:>p2gji, where p is a scalar function such that p2 > 0,
is called a conformal change of metric. The Weyl conformal curvature tensor
defined by

(1.1) Ckjί

h = Kkjί

h + δtCjt - δ)Ckί + Ck

h

gjί - Cjhg

is invariant under a conformal change of metric, where

«.2) c , = - _ L ^ , + 2 ( n ^

gth being the contravariant components of the metric tensor. For n = 3, Ckji

h

vanishes identically and the curvature tensor defined by

(1.3) Ckjί = FkCμ - FjCkί

is invariant under a conformal change of metric.
If the metric of Mn is conformal to that of a locally Euclidean space, then

Mn is said to be conformally flat. It is well known that a conformally flat
Riemannian manifold Mn is characterized, for n > 3, by the vanishing of the
Weyl conformal curvature tensor Ckji

h and, for n = 3, by the vanishing of
the curvature tensor Ckjί.

Bochner [2] (see also Yano and Bochner [12]) proved
Theorem B. // a compact orίentable conformally flat Riemannian manifold

Mn has positive definite Ricci curvature, then we have bp = 0 (0 < p < ri),
where bp denotes the p-th Betti number of the manifold.

To obtain a theorem corresponding to Theorem B in a Kaehlerian manifold,
Bochner [3] (see also Yano and Bochner [12]) introduced a Kaehler analogue
of the Weyl conformal curvature tensor.

Let M 2 m , m > 2, be a real 2m-dimensional Kaehlerian manifold covered by
a system of coordinate neighborhoods {V; yκ}, where and in the sequel the
indices K, λ, μ, v, run over the range {1,2, , 2m}, and let gμλ, F/ , Fλ,
Kvμλ% Kμλ and k be the positive definite Hermitian metric tensor, the complex
structure tensor, the operator of covariant differentiation with respect to the
Christoffel symbols {/J formed with gμλ, the curvature tensor, the Ricci tensor
and the scalar curvature of M 2 m respectively. Then the Bochner curvature
tensor is defined by
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B,j = K.j + δ:LM - δ;L,x + L;gμl - Lμ*gvl + F;L'μi

- F;L[X + Li'Fμi - L' F^ - 2(FvμL{' + KμF;) ,

where

L ) K μ l + 8(m + l)(m + 2)**" ' L>" = L - g " '(1.5) Lμλ 2(m + Ί)Kμl + 8(m + l)(m + 2)

and F^; = Fμ

agaX, gaκ being the contravariant components of the metric tensor.
Bochner introduced this curvature tensor using a complex coordinate system.

The tensor expression (1.4) of the Bochner curvature tensor in a real coordinate
system has been given by Tachibana [7].

In the sequel, we need the following identity satisfied by the Bochner cur-
vature tensor:

μ ^ μ - VμLvλ

which was obtained by Tachibana [7].
Introducing this curvature tensor, Bochner [3] (see also Yano and Bochner

[12]) proved
Theorem C. // a compact Kaehlerian manifold M2m with vanishing Bochner

curvature tensor has positive definite Ricci tensor, then we have blv_x = 0,
b2p = 1 (0 < p < m), where bt denotes the i-th Betti number of the manifold.

Concerning the analogy between the Weyl conformal curvature tensor and
the Bochner curvature tensor, see Chen and Yano [5], Takagi and Watanabe
[8], Yano [11] and Yano and Ishihara [13].

2. Equations of Gauss and the proof of Theorem 1

We assume that an n-dimensional Riemannian manifold Mn is isometrically
immersed in a real 2m-dimensional Kaehlerian manifold M2m, and represent
the immersion by y" = yκ(xh). We then put Bf = dyκjdx\ and denote by Cy'
2m — n mutually orthogonal unit normals to Mn, where and in the sequel the
indices x, y, z run over the range {{n + I)7, (n + 2)', , (2m)7}. Thus we have
8ji = fSμβfii where 55} = B/B/, and the metric tensor in the normal bundle
is given by gzy = gμlC& where Cjg = Cz

μCv

λ.
Now, if the transform of the tangent space at each point of Mn by the com-

plex structure tensor F is orthogonal to the tangent space, then the submani-
fold is said to be totally real (Chen and Ogiue [4], Ludden, Okumura and
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Yano [6]). For a totally real submanifold Mn we have equations of the form

(2.1) F2'Bt* = -U*CX ,

(2.2) F/Cy = ffBh' + fy

xCx%

from which follows

(2.3) F^B/B\ = 0 or F^BjJ = 0 ,

where B\ = BiXgihgXK.

Equations of Gauss and Weingarten for Mn of M2m are respectively

(2.4) F,B4

β = fl^C/ ,

(2.5) F,C/ = - f l / r * Λ
where Hjt

x are the second fundamental tensors of Mn with respect to the nor-
mals Cx',H/y = fl,tyg« and Jϊ,tl, = Hjt'g,v.

From (2.4) and (2.5) we can deduce equations of Gauss for a submanifold
Mn of M2m:

(2.6) X4i4* - X ^ ϊ J Ϊ + iϊ*Λχfliix " fl/Aix ,

where BjgX = B^B/B/B11.. Introduce the notation

(2.7) MJt* = HJ - H*gji ,

where # * = —gtsHts

x. The M^ / are called conformal second fundamental
n

tensors of Mn with respect to the normals C/. Indeed Moi

xCx

K is invariant
under a conformal change of metric of the ambient manifold (cf. Yano [9]).
We notice that Mόi

x thus defined satisfies g^Mn

x = 0. A submanifold Mn is
totally umbilical if and only if MH

X = 0. Using Mjt

x we rewrite (2.6) in the
form

Kkjί

h = KvjBlft + MfMii* ~ Mj\Mu

x + 9tMJtΉx

(2.8) - δ)Mki

xHx + Mk\Hx

gji - M5\Hxgki

+ HJl*(ftgμ - δ)gki) ,

where Mk

h

x = Mktxg
th,Mktx = Mk?gyx and Hx = Wgyx.

Now transvecting (1.4) with Blfy and using (2.3) for a totally real sub-
manifold, we obtain

KΌvμλh Ίζ KΈξvμλh I ShT Έ>μλ SΛΓ Έξμλ I
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and consequently we can write (2.8) in the form:

Kkji

h = Bvμλ'B\fκ -

(2.9) + LμλBftg^ ό ^

- δ)Mki

xHx + Mk\H*gji - MfJH'gn + HxH*{δh

kgji - δ)gkι) .

From (2.9), contracting with respect to h and k and remembering Mt

ι

x = 0,
we find

(2 10) K}i

- M/xMti* + (n - 2)MJtΉ,

where B; = Bt"B\ and JB"J = βj g^. Transvecting (2.10) with gjl gives

Lβ"' = l- K + B<,μl'B"β"i

μ 2{n - 1) Kn - 1) '
(2.11)

M^Mt" + — HXH
X .

2(« - 1) s x ' τ 2 *
Substituting (2.11) in (2.10), we find

LM = c ^ 1

H

(2.12) - ; ^ ,

Substituting (2.12) in (2.9) yields

It —

(2.13) + M^x

n - 2
+ Mk

t

xMt

hxgμ - M/xMt

h*gki]

1

(n _ !)(„ _ 2)
MίχMtS
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These are equations of Gauss for a totally real submanifold Mn of a Kaehlerian
manifold M2m (cf. Yano [9]).

From (2.13) we see that if the Bochner curvature tensor of the ambient
Kaehlerian manifold vanishes, and the totally real submanifold Mn is totally
umbilical, that is, Mjt

x = 0, then we have Ckji

h = 0, which gives the proof
of Theorem 1.

3. Totally geodesic, totally real submanifold and the proof of Theorem 2

For a totally geodesic, totally real submanifold, from (2.12) we have

(3.1) LμλB% = Cdi + jΛ-

On the other hand, transvecting (1.6) with Bk)\ = B^B/B/ and using the fact
that Mn is totally geodesic and totally real, we find

(3.2) (PA,/)B# =

which, together with (3.1), implies

(3.3) +

Thus for a totally geodesic, totally real submanifold of a Kaehlerian manifold
with vanishing Bochner curvature tensor, we have

VkCόi - FjCki = 0 ,

which proves Theorem 2.

4. Equations of Ricci and the proof of Theorem 3

Let Mn, n > 4, be a totally real submanifold of a Kaehlerian manifold M2m.
Then we have (2.1) and (2.2). Since Fμλ = —Fiμ and consequently F^BfCy1

= -F^C/B* 2 , from (2.1) and (2.2) follows

(4.1) ίiy = fyi ,

where fίy = Uzgzy and fyi = ίv

jgji.



TOTALLY REAL SUBMANIFOLDS 357

Applying the complex structure tensor F to (2.1) and (2.2) and using these
equations, we find

(4.2) MS = δ\ ,

(4.3) U%* = 0 ,

(4.4) ///,* = 0 ,

(4.5) / / / / = -δ* + jfU* .

(4.4) and (4.5) show that if fv

x does not vanish, it defines an /-structure in the
normal bundle (see Yano [10]).

Differentiating (2.1) and (2.2) covariantly over Mn, and using F όFλ

κ —
B/FμFλ

κ = 0 and the equations of Gauss and Weingarten, we find

(4.6) HjffS - H3\U* = 0 ,

(4.7) FjU* = -HjffS ,

(4.8) F,// - Hj\fv* ,

(4.9) Fjfv* = H/yU* - HjffJ .

When n = m, which will be assumed in the sequel, we obtain / / / / = δ%
from (4.2) and consequently fv*fz

x = 0 from (4.5). Since fyx = fy

zgzx =
FμλCy

μCx

λ is skew-symmetric, jy

x = 0 and therefore (4.2), , (4.5) are
reduced to

(4.10) ftvfyh = S!, ///** = «;.

fv

x = 0 and (4.7) imply that VSU
X = 0 from which follows

(4.H) κkjy%y = κkJi

hfh*,

where KkJv

x is the curvature tensor of the connection induced in the normal
bundle. Thus

(4.12) κkJvxuyfh* = κkJih,

where Kkjyx = Kkjy

zgzx and Kkjih = Kkji

ιgth. (4.11) shows that Kkjy

x = 0
and Kkji

h = 0 are equivalent.
Now the equations of Ricci are

(4.13) Kjcjyx = KVμχβkμjCλyx — Tkjyx ,

where Kvμλκ = Kvμλ

agaκ and
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(4.14) Tkjyx = HkyHjtx — H/yHktx

Write (1.4) in the form

Bvμλκ = X ^ , + g ^ - gμκLvλ + Lvκgμλ - Lμκgvλ + FvκLμλ

- F ^ + L'vκFμλ - L'μκFvλ - 2{FvμL'λκ + L'vμFλκ) ,

where J?v/i^ = Bvμλ

agaκ, and transvect (4.15) with Bv

k

μjCλ

y

κ

x. Then using

(4.16) F,aBj{ = 0 , F ^ / C / = -fjy , FμλC/Cx> = 0

and Lμλ = —LμaFλ% we find

+ LμXB£Ufjy - LμλBftf/fky .

Thus from (4.13) and (4.17) follows

(4 18) Kkjyx = Bv*λβ%σ*x ~ f^Bftv' + hJ-
^μλ"ktfx fjy + *-J

uλB
/jtfx Jky —

which and (4.12) imply

(4 19)

- LμλBfhgjί + LμXBfhgki -

Transvecting (4.19) with gkh gives

(4.20) KJt = -B,μiβγtCϊJsr* - (n - 2)L^Bft

where fsx = /^g", and transvecting (4.20) with gjί gives

(4.21) LμλB^ = --—L—^K + B-T),

where
D — DvμλκDu^yxi J ? •* — λ tsyxJ T

Substituting (4.21) in (4.20) we find

(4.22) LμλB% = C3i-Bjί-Tji,

where
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*» = - i π b * - * 3 ^ * + 2(n - l)(n - 2)*'*

2(n - l)(π - 2)

Substituting (4.22) in (4.19) we obtain

- gjhBki + Bkhgji - BjhgkίiA ™

(4.23)
+ Tkjyxfί

yfh

x + gkhΊn - gjhTkί + Tkhgjt - Tjhgkί ,
where Ckjίh = Ckji

tgth. These are the equations of Ricci for a totally real sub-
manifold Mn of a Kaehlerian manifold M2n.

From the equations of Ricci it follows that if Bvμλκ = 0 and Tkjyx = 0, then
Ckjίh — 0, which proves Theorem 3.
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