GAPS IN THE DIMENSIONS OF ISOMETRY GROUPS OF RIEMANNIAN MANIFOLDS

L. N. MANN

1. Introduction

If M is an n-dimensional Riemannian manifold and G is a closed subgroup of $I(M)$, the group of isometries of M, it is a classical result that

$$
\operatorname{dim} G \leq \frac{1}{2} n(n+1)
$$

H. C. Wang [8] has shown that for $n \neq 4$, the dimension of G cannot be in the range :

$$
\frac{1}{2}(n-1) n+1<\operatorname{dim} G<\frac{1}{2} n(n+1)
$$

and H. Wakakuwa [9] has shown that for n large, the dimension of G cannot be in the range :

$$
\frac{1}{2}(n-2)(n-1)+3<\operatorname{dim} G<\frac{1}{2}(n-1) n
$$

In this paper we generalize the results of Wang and Wakakuwa by showing
Theorem. Let M be an n-dimensional Riemannian manifold with $n \neq 4,6$, 10. Then the group $I(M)$ of isometries contains no closed subgroup G where the dimension of G falls into any of the ranges:

$$
\begin{array}{r}
\frac{1}{2}(n-k)(n-k+1)+\frac{1}{2} k(k+1)<\operatorname{dim} G<\frac{1}{2}(n-k+1)(n-k+2) \\
k=1,2,3, \ldots
\end{array}
$$

The basic tool in the proof is our Theorem 2 of [4], which actually immediately implies the result for the special case where G is compact [2, p. 55].

2. The main results

We follow the terminology and notation of [3]. Let M be an n-dimensional Riemannian manifold and G a closed connected subgroup of $I(M)$, the group of isometries of M. For each $x \in M$ we let G_{x} denote the isotropy subgroup of G at x, and $G(x)$ the G-orbit of x. Then

[^0]$$
\operatorname{dim} G=\operatorname{dim} G_{x}+\operatorname{dim} G(x)
$$

If $G(x)$ is a G-orbit of highest dimension, it is known [3, Lemma 2.1] that G acts essentially effectively on $G(x)$. In other words, if K is the kernel of the action of G on $G(x), \operatorname{dim} G / K=\operatorname{dim} G$ and G / K acts effectively on $G(x)$. This implies that

$$
\operatorname{dim} G \leq \frac{1}{2} t(t+1)
$$

where

$$
t=\text { maximal dimension of the orbits of } G \text { on } M .
$$

We use the notation

$$
\langle m\rangle=\frac{1}{2} m(m+1)
$$

for m a positive integer. Let
$\Phi(m)=$ largest integer j such that $\langle m-j\rangle+\langle j\rangle \leq\langle m-j+1\rangle-2$,
$\Psi(m)=$ largest integer j such that

$$
\langle m-j\rangle+\langle j\rangle \leq\langle m-j+1\rangle+(j-1)-2 .
$$

(The symbol $\Phi(m)$ was introduced in [5].) It is easy to verify that for $m \geq 3$

$$
\begin{array}{ll}
\Phi(m)=\left[\frac{1}{2}(\sqrt{8 m+1}-3)\right], & \Psi(m)=\left[\frac{1}{2}(\sqrt{8 m-15}-1)\right] \\
\Psi(m)=\Phi(m-2)+1, & \Psi(m) \geq \Phi(m) .
\end{array}
$$

A short table of values of Ψ will be helpful later :

m	$\Psi(m)$	$\frac{m}{2}$	$\Psi(m)$
3	1	12	4
5	2	17	5
8	3	23	6

Theorem 1. Let M be an n-dimensional Riemannian manifold, and G a closed connected subgroup of $I(M)$ acting on M with orbits of maximal dimension $n-l, 0 \leq l \leq \Psi(n)-1$. If dim G falls into any of the following ranges :

$$
\begin{aligned}
& \langle n-k\rangle+\langle k\rangle-l<\operatorname{dim} G<\langle n-k+1\rangle+(k-1)-l, \\
& k=l+1, l+2, \cdots, \Psi(n),
\end{aligned}
$$

where $\Psi(n)$ is the largest value of k for which the above inequalities are meaningful, then we must have $n \leq 12$ and exactly one of the possibilities below:
(1) $n=12, l=0$ (i.e., G acts transitively on M), $\operatorname{dim} G=47, G_{x}^{0}=S U(6)$. [Example. $\quad M=R^{12}, G=S U(6) \cdot R^{12}$ where the dot represents the semidirect product.]
(2) $n=10, l=0, \operatorname{dim} G=35, G_{x}^{0}=U(5)$.
[Examples. $\quad M=P_{5}(C), G=S U(6) ; M=R^{10}, G=U(5) \cdot R^{10}$.]
(3) $n=8, l=0, \operatorname{dim} G=22, G_{x}^{0}=G_{2}$.
[Examples. $\quad M=S^{7} \times S^{1}, G=\operatorname{Spin}(7) \times S^{1} ; M=R^{8}, G=G_{2} \cdot R^{8}$.]
(4) $n=8, l=1, \operatorname{dim} G=21, G_{x}^{0}=G_{2}$.
[Examples. $\quad M=S^{7} \times S^{1}, G=\operatorname{Spin}(7) ; M=R^{8}, G=G_{2} \cdot R^{7}$.]
(5) $n=7, l=0, \operatorname{dim} G=21, G_{x}^{0}=G_{2}$.
[Examples. $\quad M=S^{7}, G=\operatorname{Spin}(7) ; M=R^{7}, G=G_{2} \cdot R^{7}$.]
(6) $n=6, l=0, \operatorname{dim} G=15, G_{x}^{0}=U(3)$.
[Examples. $\quad M=P_{3}(C), G=S U(4) ; M=R^{6}, G=U(3) \cdot R^{6}$.]
(7) $n=6, l=0, \operatorname{dim} G=14, G_{x}^{0}=S U(3)$.
[Examples. $\quad M=S^{6}$ or $P_{6}(R), G=G_{2} ; M=R^{6}, G=S U(3) \cdot R^{6}$.]
(8) $n=4, l=0, \operatorname{dim} G=8, G_{x}^{0}=U(2)$.
[Examples. $\quad M=P_{2}(C), G=S U(3) ; M=R^{4}, G=U(2) \cdot R^{4}$.]
Proof. Let $x \in M$ such that $\operatorname{dim} G(x)=n-l$, and suppose $\operatorname{dim} G$ is in the range
(a)

$$
\langle n-k\rangle+\langle k\rangle-l<\operatorname{dim} G<\langle n-k+1\rangle+(k-1)-l
$$

for some fixed $k, l+1 \leq k \leq \Psi(n)$. Now
(b)

$$
\operatorname{dim} G_{x}^{0}=\operatorname{dim} G-(n-l),
$$

and the compact connected Lie group G_{x}^{0} acts effectively on M with a fixed point x. Therefore the maximal dimension t_{1} of the orbits of G_{x}^{0} on M is at most $n-1$.

Case A : $\quad t_{1}=n-1$. It follows that $l=0$ and G acts transitively on M. From (a) we have

$$
\begin{equation*}
\langle n-k\rangle+\langle k\rangle<\operatorname{dim} G<\langle n-k+1\rangle+(k-1) . \tag{c}
\end{equation*}
$$

Now G_{x}^{0} leaves invariant $(n-1)$-spheres in a neighborhood of the fixed point x. Therefore the principal orbit of the action of G_{x}^{0} on M must be an ($n-1$)sphere, and G_{x}^{0} is now determined since the compact connected Lie groups which act transitively and effectively on topological spheres have been completely classified [6], [1], [7]. We have the following cases to consider:
(i) $G_{x}^{0}=S O(n), n \geq 2$,
(ii) $\quad G_{x}^{0}=S U\left(\frac{1}{2} n\right)$ or $U\left(\frac{1}{2} n\right), n$ even and $n \geq 4$,
(iii) $\quad G_{x}^{0}=S p\left(\frac{1}{4} n\right), S p\left(\frac{1}{4} n\right) \times S^{1}$ or $S p\left(\frac{1}{4} n\right) \times S p(1), n$ divisible by $4, n \geq 4$,
(iv) $G_{x}^{0}=G_{2}, n=7$,
(v) $G_{x}^{0}=\operatorname{Spin}(7), n=8$,
(vi) $\quad G_{x}^{0}=\operatorname{Spin}(9), n=16$.

We consider these cases individually:
(i) We have

$$
\operatorname{dim} G=\operatorname{dim} G_{x}^{0}+n=\operatorname{dim} S O(n)+n=\langle n\rangle
$$

Hence $\operatorname{dim} G$ is not in the range (c).
(ii) For n even and $n \geq 14$,

$$
\operatorname{dim} G \leq \operatorname{dim} U\left(\frac{1}{2} n\right)+n=\frac{1}{4} n^{2}+n \leq\langle n-\Psi(n)\rangle+\langle\Psi(n)\rangle
$$

so we need only consider the cases $n \leq 12$. Investigation turns up possibilities (1), (2), (6), (7) and (8) of the theorem.
(iii) For n divisible by 4 and $n \geq 8$,

$$
\begin{aligned}
\operatorname{dim} G & \leq \operatorname{dim} S p\left(\frac{1}{4} n\right)+\operatorname{dim} S p(1)+n=\frac{1}{8} n^{2}+\frac{5}{4} n+3 \\
& \leq\langle n-\Psi(n)\rangle+\langle\Psi(n)\rangle
\end{aligned}
$$

so we need only consider $n=4$. We obtain possibility (8) again.
(iv) Possibility (5) arises here.
(v) Here

$$
\operatorname{dim} G=\operatorname{dim} \operatorname{Spin}(7)+8=29
$$

and 29 does not fall into the range (c) for $n=8,1 \leq k \leq 3$.
(vi) Here

$$
\operatorname{dim} G=\operatorname{dim} \operatorname{Spin}(9)+16=52, \text { but } 52<\langle 16-\Psi(16)\rangle
$$

Case $B: \quad t_{1} \leq n-2$. Let M_{0} be a principal orbit of the action of G_{x}^{0} on M, and let

$$
\operatorname{dim} M_{0}=t_{1}=n-2-u, \quad u \geq 0
$$

If $u>0$, we replace M_{0} by

$$
M_{1}=M_{0} \times S^{u}
$$

so in any case we may assume G_{x}^{0} acts effectively on a manifold of dimension exactly $n-2$.

From (a) and (b), after simplification we obtain

$$
\begin{equation*}
\left\langle n_{1}-k_{1}\right\rangle+\left\langle k_{1}\right\rangle<\operatorname{dim} G_{x}^{0}<\left\langle n_{1}-k_{1}+1\right\rangle \tag{d}
\end{equation*}
$$

where $n_{1}=n-2, k_{1}=k-1$.
Observe

$$
k_{1} \leq \Psi(n)-1=\Phi\left(n_{1}\right)
$$

We may apply [4, Theorem 2] to the action of G_{x}^{0} on M_{1} to arrive at the following possibilities:
(i) $n_{1}=4, G_{x}^{0}=S U(3) / Z, M_{1}=P_{2}(C)$,
(ii) $n_{1}=6, G_{x}^{0}=G_{2}, M_{1}=S^{6}$ or $P_{6}(R)$,
(iiii) $n_{1}=10, G_{x}^{0}=S U(6) / Z, M_{1}=P_{5}(C)$.
(Z denotes the centers of $S U(3)$ and $S U(6)$.) Since $P_{2}(C), S^{6}, P_{6}(R)$ and $P_{5}(C)$ do not split, we have

$$
M_{1}=M_{0} .
$$

But G_{x}^{0} acts linearly in a neighborhood of its fixed point x and therefore cannot have $P_{2}(C), P_{6}(R)$ or $P_{5}(C)$ as a principal orbit. We are left with possibilities (3) and (4) of the theorem.

Theorem 2. Let M be an n-dimensional Riemannian manifold, and G a closed subgroup of $I(M)$. If dim G falls into any of the following ranges:

$$
\begin{aligned}
\langle n-k\rangle+\langle k\rangle\langle\operatorname{dim} G<\langle n-k+1\rangle & \\
& k=1,2, \cdots, \Phi(n),
\end{aligned}
$$

(note that $\Phi(n)$ is the largest integer k for which the above inequalities are meaningful), then we must have $n=4,6$ or $10, G$ acting transitively on M and exactly one of the possibilities below:
(1) $n=10, k=3, \operatorname{dim} G=35, G_{x}^{0}=U(5)$,
(2) $n=6, k=2, \operatorname{dim} G=14, G_{x}^{0}=S U(3)$,
(3) $n=4, k=1, \operatorname{dim} G=8, G_{x}^{0}=U(2)$.

Proof. Suppose

$$
\left\langle n-k_{0}\right\rangle+\left\langle k_{0}\right\rangle<\operatorname{dim} G<\left\langle n-k_{0}+1\right\rangle
$$

for some $k_{0}, 1 \leq k_{0} \leq \Phi(n)$. Let

$$
n-l_{0}=\text { maximum dimension of the orbits of } G \text { on } M .
$$

Since

$$
\left.\left\langle n-l_{0}\right\rangle \geq \operatorname{dim} G\right\rangle\left\langle n-k_{0}\right\rangle \geq\langle n-\Phi(n)\rangle,
$$

we have

$$
l_{0}<k_{0} \leq \Phi(n) \leq \Psi(n)
$$

Clearly

$$
\left\langle n-k_{0}\right\rangle+\left\langle k_{0}\right\rangle-l_{0}<\operatorname{dim} G<\left\langle n-k_{0}+1\right\rangle+\left(k_{0}-1\right)-l_{0} .
$$

But we are now precisely in the situation of Theorem 1. It follows that $n \leq 12$
and that we have one of the eight possibilities of Theorem 1. It is easily checked that only possibilities (2), (7) and (8) of Theorem 1 survive.

Remark. Using [3, § 7] it is possible to obtain much sharper characterizations of the exceptional low-dimensional cases in Theorems 1 and 2. If G is compact, the exceptional cases of Theorem 2 are given precisely by [4, Theorem 2].

References

[1] A. Borel, Le plan projectif des octaves et les spheres commes espaces homogenes, C. R. Acad. Sci. Paris 230 (1960) 1378-1383.
[2] S. Kobayashi, Transformation groups in differential geometry, Springer, Berlin, 1972.
[3] S. Kobayashi \& T. Nagano, Riemannian manifolds with abundant isometries, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 195-220.
[4] L. N. Mann, Gaps in the dimensions of transformation groups, Illinois J. Math. 10 (1966) 532-546.
[5] , Further gaps in the dimensions of transformation groups, Illinois J. Math. 13 (1969) 740-756.
[6] D. Montgomery \& H. Samelson, Transformation groups of spheres, Ann. of Math. 44 (1943) 454-470.
[7] J. Poncet, Groups des Lie compacts de transformations de l'espaces euclidean et les spheres commes espaces homogenes, Comment. Math. Helv. 33 (1959) 109120.
[8] H. C. Wang, Finsler spaces with completely integrable equations of Killing, J. London Math. Soc. 22 (1947) 5-9.
[9] H. Wakakuwa, On n-dimensional Riemannian spaces admitting some groups of motions of order less than $\frac{1}{2} \mathrm{n}(\mathrm{n}-1)$, Tôhoku Math. J. (2) 6 (1954) 121-134.

[^0]: Communicated by S. Kobayashi, August 23, 1974. Partially supported by NSF Grant GP-29664.

