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GAPS IN THE DIMENSIONS OF ISOMETRY GROUPS
OF RIEMANNIAN MANIFOLDS

L. N. MANN

1. Introduction

If M is an n-dimensional Riemannian manifold and G is a closed subgroup
of I(M), the group of isometries of M, it is a classical result that

dim G < \n{n + 1) .

H. C. Wang [8] has shown that for n Φ 4, the dimension of G cannot be in

the range:

i(n _ i)n + i < dim G < \n(n + 1) ,

and H. Wakakuwa [9] has shown that for n large, the dimension of G cannot
be in the range:

i(n - 2)(n - 1) + 3 < dim G < $(n - \)n .

In this paper we generalize the results of Wang and Wakakuwa by showing
Theorem. Let M be an n-dimensίonal Riemannian manifold with n Φ 4, 6,

10. Then the group I(M) of isometries contains no closed subgroup G where
the dimension of G falls into any of the ranges:

|(/ι - k)(n - k + 1) + ik(k + 1 ) < dim G < \(n - k + l)(n - k + 2) ,

k= 1 ,2 ,3 ,- . .

The basic tool in the proof is our Theorem 2 of [4], which actually im-
mediately implies the result for the special case where G is compact [2, p. 55].

2. The main results

We follow the terminology and notation of [3]. Let M be an n-dimensional
Riemannian manifold and G a closed connected subgroup of /(M), the group
of isometries of M. For each x e M we let Gx denote the isotropy subgroup of
G at x, and G(x) the G-orbit of x. Then
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dim G = dim Gx + dim G(x) .

If G(x) is a G-orbit of highest dimension, it is known [3, Lemma 2.1] that G
acts essentially effectively on G0) In other words, if K is the kernel of the
action of G on GO), dim G/K = dim G and G/£ acts effectively on GO).
This implies that

dim G < \t(t + 1) ,

where

/ = maximal dimension of the orbits of G on M .

We use the notation

<m> = \m{m + 1)

for m a positive integer. Let

φ(m) = largest integer / such that (m — /> + </>< <m — j + 1> — 2 ,

Ψ(nί) = largest integer / such that

<m - /> + </> < <m - / + 1> + (/ - 1) - 2 .

(The symbol Φ(m) was introduced in [5].) It is easy to verify that for m > 3

φ(m) = [i(V8m + 1 - 3)] , ^(m) = [|(V8m - 15 - 1)] ,

ψ(m) = φ(m - 2) + 1 , r(m) > Φ(m) .

A short table of values of Ψ will be helpful later:

m
3

5

8

Ψ(m)
1

2

3

m
12

17

23

3Γ(m)

4

5

6

Theorem 1. Let M be an n-dimensional Riemannian manifold, and G a
closed connected subgroup of I(M) acting on M with orbits of maximal dimen-
sion n — /, 0 < / < Ψ{ή) — I. If dim G falls into any of the following ranges:

<n - k> + <T> - / < dim G < <n - k + 1> + [k - 1) - / ,

where Ψ(ή) is the largest value of k for which the above inequalities are
meaningful, then we must have n < 12 and exactly one of the possibilities
below:
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(1) n=12,l = 0 (i.e., G acts transitively on M), dim G = 47, G° = SU(6).
[Example. M — R12, G = SU(6)-R12 where the dot represents the semi-

direct product.]
(2) w = 10, Z = 0, dim G = 35, G° = £7(5).
[Examples. M = Pβ(C), G = SU(6) M = # 1 0 , G = C/(5) # 1 0 . ]
(3) w = 8, / = 0, dim G - 22, G° = G2.
[Examples. Λf = S7 X S1, G = Spin (7) X S1 M = # 8 , G = G 2 # 8 . ]
(4) π = 8, / = 1, dim G = 21, G° = G2.
[Examples. M = S 7 χ S 1 , G = Spin (7) M = R\ G = G 2 # 7 . ]
(5) n = Ί, 1 = 0, dim G = 21, G° = G2.
[Examples. M = S\ G = Spin (7) M = R\ G = G2R

7.]
(6) n = 6, / = 0, dim G = 15, GJ = 17(3).
[Examples. M = P3(C), G = S17(4) M = R\ G = U(3) R6.]
(7) n = 6, / = 0, dim G = 14, G° = SE/(3).
[Examples. M = 56 or Pβ(Λ), G = G2 M = R\ G = SU(3) R\]
(8) n = 4, / = 0, dim G = 8, G° = E/(2).
[Examples. M = P2(C), G = SU(3) M = R\ G = U(2).R\]
Proof. Let x e M such that dim G(x) — n — I, and suppose dim G is in

the range

(a) <n - & > + < & > - / < dim G < <n - k + 1> + (ik - 1) - /

for some fixed Jfc, / + 1 < k < Ψ(n). Now

(b) dim G° = dim G - (n - /) ,

and the compact connected Lie group G°x acts effectively on M with a fixed
point x. Therefore the maximal dimension tx of the orbits of G° on M is at
most n — 1.

Ctfs e ^4: ίx = n — 1. It follows that / == 0 and G acts transitively on M.
From (a) we have

(c) <n - k} + <*> < dim G < <π - k + 1> + (k - 1) .

Now G° leaves invariant (n — l)-sρheres in a neighborhood of the fixed point
x. Therefore the principal orbit of the action of G° on M must be an (n — 1)-
sphere, and G° is now determined since the compact connected Lie groups
which act transitively and effectively on topological spheres have been com-
pletely classified [6], [1], [7]. We have the following cases to consider:

( i ) G° - SO(n), n > 2,

(ii) G° = SU(\ή) or t/(Jn), n even and n > 4,
(iii) G° = SpQn), Sp(\ή) X S1 or Sp(Jn) X Sp(l), n divisible by 4, n > 4,
(iv) GS = G2, n = 7,
(v) G° = Spin (7), n = 8,
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(vi) G° = Spin(9), n = 16.
We consider these cases individually:

( i ) We have

dim G = dim G° + n = dim SO(n) + n = <n> .

Hence dim G is not in the range (c).
(ii) For n even and n > 14,

dim G < dim Ό{\ή) + n = \n2 + n < <n - Ψ(rίγ) +

so we need only consider the cases n < 12. Investigation turns up possibilities
(1), (2), (6), (7) and (8) of the theorem,

(iii) For n divisible by 4 and n > 8,

dim G < dim Sp(\n) + dim Sp(l) + n = \n2 + \n + 3

so we need only consider n — 4. We obtain possibility (8) again,
(iv) Possibility (5) arises here,
(v) Here

dim G = dim Spin (7) + 8 = 29 ,

and 29 does not fall into the range (c) for n = 8, 1 < k < 3.
(vi) Here

dim G = dim Spin (9) + 16 = 52, but 52 < <16 - r(16)> .

Case B: tx < n — 2. Let Mo be a principal orbit of the action of G° on
M, and let

dim Mo = t1 = n — 2 — u , u > 0 .

If w > 0, we replace Mo by

Mι = M0 X S w ,

so in any case we may assume G° acts effectively on a manifold of dimension
exactly n — 2.

From (a) and (b), after simplification we obtain

(d) < Λ l - *!> + <*x> < dim GJ

where nλ = n — 2, kλ =. k —• 1.

Observe

Ai < ^(Λ) - 1 -
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We may apply [4, Theorem 2] to the action of G° on Mλ to arrive at the fol-
lowing possibilities:

( i ) nx = 4, GJ = 5C/(3)/Z, Mx = P 2 (Q,
(ii) nx = 6, G° = G2, M, = 56 or P6(R),
(iiii) Λ l = 10, G° = St/(6)/Z, M, = P5(C).

(Z denotes the centers of SU(3) and S£/(6).) Since P2(C), S\ P6(R) and P5(C)
do not split, we have

Af x = Af 0 .

But G° acts linearly in a neighborhood of its fixed point x and therefore cannot
have P2(C), P6(R) or PB(C) as a principal orbit. We are left with possibilities
(3) and (4) of the theorem.

Theorem 2. Let M be an n-dimensional Riemannian manifold, and G a
closed subgroup of I(M). If dim G falls into any of the following ranges:

(n - ky + <Λ> < dim G < <n - k + 1> ,

k= 1,2, . . . , Φ ( n ) ,

(note that Φ(ή) is the largest integer k for which the above inequalities are
meaningful), then we must have n = 4, 6 or 10, G acting transitively on M
and exactly one of the possibilities below:

(1) n = 10, k = 3, dim G = 35, G° = E/(5),
(2) n = 6, Λ = 2, dim G = 14, G£ = SC/(3),
(3) n = 4, Λ = 1, dim G = 8, G°x = 1/(2).
Proof. Suppose

< dim G < <n - k0 + 1>

for some A:o, 1 < k0 < Φ(n). Let

n — l0 = maximum dimension of the orbits of G on M .

Since

<n - h> > dim G > <n - λo> > <n - Φ(n)> ,

we have

/o < *o < ΦW < ^(n) .

Clearly

<n - Λo> + </:0> - /0 < dim G < (n - k0 + 1> + (Λo - 1) - l0 .

But we are now precisely in the situation of Theorem 1. It follows that n < 12
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and that we have one of the eight possibilities of Theorem 1. It is easily

checked that only possibilities (2), (7) and (8) of Theorem 1 survive.

Remark. Using [3, § 7] it is possible to obtain much sharper characteriza-

tions of the exceptional low-dimensional cases in Theorems 1 and 2. If G is

compact, the exceptional cases of Theorem 2 are given precisely by [4, Theo-

rem 2].
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