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GAPS IN THE DIMENSIONS OF ISOMETRY GROUPS
OF RIEMANNIAN MANIFOLDS

L. N. MANN

1. Introduction

If M is an n-dimensional Riemannian manifold and G is a closed subgroup
of I(M), the group of isometries of M, it is a classical result that

dmG < in(n + 1) .

H. C. Wang [8] has shown that for n + 4, the dimension of G cannot be in
the range:

tn—Dn+1<dmG < inn + 1),

and H. Wakakuwa [9] has shown that for »n large, the dimension of G cannot
be in the range:

n—2)(n—1)+3<dmG < in— Dn.

In this paper we generalize the results of Wang and Wakakuwa by showing

Theorem. Let M be an n-dimensional Riemannian manifold with n #+ 4, 6,
10. Then the group I(M) of isometries contains no closed subgroup G where
the dimension of G falls into any of the ranges:

Wn—kn—k+ 1)+ kk+1)<dmG<3n—k+ Dn—k+2),
k=1,2,3,--

The basic tool in the proof is our Theorem 2 of [4], which actually im-
mediately implies the result for the special case where G is compact [2, p. 55].

2. The main results

We follow the terminology and notation of [3]. Let M be an n-dimensional
Riemannian manifold and G a closed connected subgroup of I(M), the group
of isometries of M. For each x ¢ M we let G, denote the isotropy subgroup of
G at x, and G(x) the G-orbit of x. Then
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dim G = dim G, + dim G(x) .

If G(x) is a G-orbit of highest dimension, it is known [3, Lemma 2.1] that G
acts essentially effectively on G(x). In other words, if K is the kernel of the
action of G on G(x), dim G/K = dim G and G/K acts effectively on G(x).
This implies that

dimG < it + 1),
where
t = maximal dimension of the orbits of G on M .
We use the notation
{my = tm(m + 1)
for m a positive integer. Let

@(m) = largest integer j suchthat {m — j> + (> <m —j+ 1> -2,
¥'(m) = largest integer j such that
m—p+H<m—j+1H+G—-1D—-2.

(The symbol @(m) was introduced in [5].) It is easy to verify that for m > 3
O(m) = [}(v8m + 1T —3)],  ¥(im) = [}(v8m — 15 — 1)1,
U(m)=odm —2) + 1, T(m) > O(m) .

A short table of values of ¥ will be helpful later:

_m [ ¥m) _m Yom)
301 12 4
50 2 17 5
8 3 23| 6

Theorem 1. Let M be an n-dimensional Riemannian manifold, and G a
closed connected subgroup of I(M) acting on M with orbits of maximal dimen-
sionn — 1,0 <1 < ¥(n) — 1. If dim G falls into any of the following ranges :

k> + k> —1<dmG<{n—k+ 1>+ k=1 —1,
k:l+lsl+2a"'7w(n)’

where ¥U(n) is the largest value of k for which the above inequalities are
meaningful, then we must have n < 12 and exactly one of the possibilities
below:
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(1) n=12,1=0(.e., G acts transitively on M), dim G = 47, G = SU(6).

[Example. M = R%, G = SU(6)-R" where the dot represents the semi-
direct product.]

2) n=10,1=0, dim G = 35, G5 = U(5).

[Examples. M = P,(C), G = SU(6); M = R", G = U(5)-R".]

B) rn=38,1=0,dimG =22, G’ =G,.

[Examples. M = S8 X 8, G =Spin(7) X $'; M = R’ G = G,-R%.]

@4 n=38,l=1,dimG =21, G° = G,.

[Examples. M = S"X S, G = Spin(7); M = R5, G = G,-R".]

B) n=7,1=0,dimG = 21, G = G,.

[Examples. M =S5, G = Spin(7); M =R, G = G,-R".]

6) n=6,l=0,dimG = 15, G, = UQ3).

[Examples. M = P,(C), G =SU4); M =R, G = U(3)-R".]

(7) n=6,1=0,dimG = 14, G% = SU(3).

[Examples. M = S°or P(R), G = G,; M = R% G = SU(3)-R".]

(8) n = 4, | = O, dim G = 8, G?, = U(Z).

[Examples. M = P,(C), G =SUB3); M =R, G = U(2)-R*.]

Proof. Let x e M such that dim G(x) = n — I, and suppose dim G is in

the range

(a) n—k)+<k—I1<dmG<<n—k+ 1>+ k-1 —1
for some fixed k,1 + 1 < k < ¥(n). Now
(b) dim G, =dimG — (n — 1),

and the compact connected Lie group GY acts effectively on M with a fixed
point x. Therefore the maximal dimension ¢, of the orbits of G% on M is at
most n — 1.

Case A: t, = n — 1. It follows that ] = 0 and G acts transitively on M.
From (a) we have

© M=k + A< dmG<{n—k+ 1>+ (k—1).

Now G, leaves invariant (n — 1)-spheres in a neighborhood of the fixed point
x. Therefore the principal orbit of the action of G% on M must be an (n — 1)-
sphere, and G is now determined since the compact connected Lie groups
which act transitively and effectively on topological spheres have been com-
pletely classified [6], [1], [7]. We have the following cases to consider :

(i) GL=S0(n), n=>2,

(ii) G% = SU@En) or U(in), neven and n > 4,

(i) G = Sp(in), Sp(in) X S* or Sp(in) X Sp(1), n divisible by 4, n > 4,

) G.=G,,n=1, :

(v) G°% = Spin (7), n =8,
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(vi) G% = Spin (9), n = 16.
We consider these cases individually :
(i) We have

dim G = dim G} + n = dim SO(n) + n = <{n) .

Hence dim G is not in the range (c).
(ii) For n even and n > 14,

dmG <dmUGBn) +n=in"+ n<<n —-Tm)> + Tm)),

so we need only consider the cases n < 12. Investigation turns up possibilities
(1), (2), (6), (7) and (8) of the theorem.
(iii) For n divisible by 4 and n > 8,

dim G < dim Sp(in) + dim Sp(1) + n = 4n* + $n + 3
<<n =Ty + T 0,

so we need only consider n = 4. We obtain possibility (8) again.
(iv) Possibility (5) arises here.
(v) Here
dim G = dim Spin (7) + 8 =29,

and 29 does not fall into the range (¢) forn =8, 1 < k < 3.
(vi) Here

dim G = dim Spin (9) + 16 = 52, but 52 < <16 — ¥'(16)> .

Case B: t, < n — 2. Let M, be a principal orbit of the action of G% on
M, and let

dmM,=t,=n—2—u, u>0.
If u > 0, we replace M, by
M, =M, xS,

so in any case we may assume G acts effectively on a manifold of dimension
exactly n — 2.
From (a) and (b), after simplification we obtain

(¢)) <ny — kyy + <k < dim G < (ny — k; + 15,
where n, =n — 2, k, = k — 1.
Observe

k<¥T@m —1=0n) .
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We may apply [4, Theorem 2] to the action of G on M, to arrive at the fol-
lowing possibilities :

(i) nm=4,G,=8SU003)/Z, M, = P,O),

(ii) n, =6, G, =G, M, = S°or P(R),

(iiii) n, = 10, G% = SU(6)/Z, M, = P,C).
(Z denotes the centers of SU(3) and SU(6).) Since P,(C), S° P,(R) and P,(C)
do not split, we have

M, =M,.

But G?, acts linearly in a neighborhood of its fixed point x and therefore cannot
have P,(C), P(R) or P,(C) as a principal orbit. We are left with possibilities
(3) and (4) of the theorem.

Theorem 2. Let M be an n-dimensional Riemannian manifold, and G a
closed subgroup of I(M). If dim G falls into any of the following ranges:

= k> + k> < dmG < (n— k + 1),
k=192>""d)(n)a

(note that @(n) is the largest integer k for which the above inequalities are
meaningful), then we must have n = 4,6 or 10, G acting transitively on M
and exactly one of the possibilities below :

1) n=10, k=3, dim G = 35, G% = U(5),

2) n=6,k=2,dimG = 14, G° = SU(3),

B) n=4,k=1,dmG =8, G = UQ).

Proof. Suppose

<n — kyy + <kpy < dim G < <n — k, + 1)
for some k,, 1 < k, < @(n). Let

n — l, = maximum dimension of the orbits of G on M .

Since
n—lpy>dimG > <{n—kypy ><n— 0n),
we have
I, <k, <O <¥n) .
Clearly

n— k) + ky — 1, <dimG < <(n—ky 4+ 1> + (ky — 1) — I, .

But we are now precisely in the situation of Theorem 1. It follows that n < 12
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and that we have one of the eight possibilities of Theorem 1. It is easily
checked that only possibilities (2), (7) and (8) of Theorem 1 survive.

Remark. Using [3, § 7] it is possible to obtain much sharper characteriza-
tions of the exceptional low-dimensional cases in Theorems 1 and 2. If G is
compact, the exceptional cases of Theorem 2 are given precisely by [4, Theo-
rem 2].
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