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MANIFOLDS WITH PLANAR GEODESICS

JOHN A. LITTLE

Theorem. Let M be a connected submanifold of some Euclidean space
dimension M ϊ>2. If every geodesic of M lies in a 2-plane, then M is either
an open subset of an n-plane or is congruent to a dilatation of an open subset
of Sn, RPn, CPn, QPn or OP2. Here Sn is the unit sphere and the others are
particular submanifolds to be described.

This paper is a continuation and in a sense a completion of the work of
Sing-Long Hong [3]. Lemmas and propositions numbered 2 through 13 are
essentially due to Hong. We have included them in some cases in order to
clarify his work and in other cases to make our paper self-contained.

Denote by F either the real R, complex C, or quaternion Q, fields or the
algebra of Cayley numbers O. On F the Euclidean inner product may be writ-
ten Λ /a = K/1/2 + /2/1), /1, fi e F. Let Mn(F) be the n X n matrices over F.
It is a Euclidean space with inner product Mί M2 = \ trace (MλM

ι

2 + M2M[)
where M\ (i = 1, 2) is the transpose of the matrix Mί. The manifolds FPn listed
in the theorem may be defined as follows: FPn = {M eMn+1(F)\M = M\
M = M2, and rank M = 1}. Note that when F is O we only define OP2.

When F is R, C or Q it is well known that the manifolds given are embedd-
ings of the abstractly defined projective spaces FPn. In the case of the Cayley
plane OP2, one often takes this as the definition. It is also an embedded sub-
manifold of Euclidean space.

Proposition 1. The submanifolds of RPn, CPn, QPn and OP2 given above
all have planar geodesies.

Proof. Let F be R, C or Q. Any Hermitian symmetric matrix over F can
be put in diagonal form by a change of basis. The diagonal form of a rank 1
matrix has a zero everywhere except for one element on the diagonal. Thus
any Hermitian symmetric rank 1 matrix over F can be written (fjj) for ft e F,
l<i<n+l.φ: Fn+ί^Mn+\F), defined by φ(f19 . ,/n + 1) = (/J,), maps
Fn+1 onto the Hermitian symmetric rank 1 matrices. For a matrix M = (fjj)
a simple computation shows that M2 = (trace M)M. Hence M = φ(f19 , fn+1)
satisfies M2 = M if and only if trace (fjj) = 1, which is true if and only if (f19

• , /n+i) lies on the unit sphere in Fn+ι. Thus φ maps the unit sphere in Fn+1

onto the previously defined FPn. Also φ(f19 , fn+ι) = φ(j{w9 , fn+1w) for
any unit vector w in F. Hence φ maybe defined on the abstract projective space
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over F, φ: FPn->Mn+\F). φ is an embedding of the abstract FPn onto the
embedded submanifolds previously defined. If A : Fn+ι —> Fn+ι is a linear trans-
formation such that A A* = .4^4 = / we say ̂ 4 is orthogonal (for F) . We may
check that φ(Av)=Aφ(v)At for v e F n + 1 . The mapping which sends M eM n + 1 (F)
to AM A*, where 4̂ is orthogonal, preserves the inner product in Mn+1(F) and
so is a Euclidean motion. Now the orthogonal transformations on Fn+1 give
projective transformations on FPn. Hence the equation φ(Av) = Aφ(v)Aι shows
that any projective transformation of ψ{FPn) arising from an orthogonal transfor-
mation of Fn+ι can be accomplished by a Euclidean motion of Mn+ι{F). For
this reason φ is said to be equivariant. The identity Σ*,j (/JyX/Jy) = ( Σ € /J*)2

and the fact that ΣifiU — 1 s ^ o w that φ(FPn) lies on the unit sphere about
the origin in M n + 1 (F) .

A projective line in the embedded manifold is a sphere of dimension 1, 2, or
4 according as F is R, C, or Q. It suffices using the equivariance to check
this for just one projective line, say φ(f19 /2, 0, , 0). Let M = (m^ ) be the
c o o r d i n a t e s in Mn+1(F). T h e n mn = \fλ\

2, ml2 = fj2, m2l = fjl9 m22 = |/2|
2, t h e

other mίj = 0 and |/i|2 + |/2|
2 = 1. So within the linear space miά = 0 for z, /

not both 1 or 2, the projective line is the intersection of the sphere

\ml2\
2 + |m21|

2 + \mu - J|2 + |m22 - \f = £

with the linear spaces mn = m π , m22 = m22, m12 — m21, m n — \ — — (m22 — | ).
These linear spaces pass through the center of the above sphere so that the
projective line is a sphere of radius 1/Λ/~2~.

Since any pair of points lie on a projective line, all the projective lines, i.e.,
real spheres, through a given point cover all of φ(FPn).

Geodesies of φ(FPn) are the great circles of the projective lines (i.e., real
spheres). To see this it suffices to show that a line from the center of any sphere
to any point on the sphere meets ψ(FPn) normally at that point. By equivariance
it suffices to show this for one particular point and one particular projective line
through that point.

Let the point be P = φ(l, 0, , 0). Let Lt = φ(f19 0, , 0, ft9 0, . . . , 0),
i = 2, , n + 1, be a set of projective lines through P. Then the tangent
planes of Lt (as rqal spheres) span (and in fact give a direct sum decomposition
of) the tangent space of <p(FPn) at P.

Let span Lt be the plane spanned by Li9 and let T be the tangent to the unit
sphere about the origin (which contains φ(FPn)) at P. It is not difficult to check
that T Π spanZ^ are completely orthogonal spaces meeting just at P. Thus the
line from P to the center of L2 is normal to Γ Π spanL^. (Consider the com-
ponents along T and normal to T.) But T Π spanL t contains the tangent plane
to Lt at P. Hence the line from the center of L2 to P meets each Lt orthogo-
nally at P, and so it meets φ(FPn) orthogonally at P.

As for OP2, the Cayley plane, consider first the 3 X 3 Hermitian matrices
over O. They are of the form
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m21 m22

m3ί m32

where at are real and xt e O. They form a Jordan algebra J with Jordan product
MrM2 = ^(MλM2 + M2M^). The group of automorphisms of / is a real form
of an exceptional Lie group F4. OP2 is the set of rank 1 matrices of / such that
M2 = M. Defining equations are aiό = xkXjc, akxk = xtXj, ax + a2 + a3 = 1,
for (/, /, Jfc) = (l, 2, 3), (2, 3,1) or (3,1, 2). F4 acts transitively on pairs of polar
points. Points M19M2 are polar if trace (MXM2 + M2M^) = 0. For any point
M2 there is a projective line, the polar line, which is the locus of all points M2

such that MλM2 are a polar pair. / has real dimension 27 and OP2 real dimen-
sion 16. For the above material concerning OP2 see Freudenthal [1].

Using the defining equations of OP2 we see that ΣitJ m^m^ = (aλ + a2 + tf3)
2

= 1. Hence OP2 lies on the unit sphere in / about the origin.

For φeF4 we have \(φ(Mύφ(Md + φ(MJφ(Mj) = \{MιM2 + M2MX)
because φ is a Jordan algebra automorphism. Hence it is surely true that
trace (φ(M^φ(M2) + φ{M2)ψ(MJ) = trace {MλM2 + M2M^). Hence F4 preserves
polarity, i.e., sends polar points into polar points. Now /, as a set of Hermitian
symmetric matrices, is a linear subspace of M\O). On / the Euclidean inner
product may be written M1-M2 = ^ trace {MλM2 + M2Mλ) because M = M*
on /. Hence the elements of F4 are Euclidean motions on /.

Because FA is transitive on polar pairs of points, it is also transitive on
"pointed" projective lines. Namely, if L19 L2 are any pair of projective lines,
and ? ! 6 L l 5 P2 e L2 are points on those lines, then there is an element of F 4

sending Pλ to P2 and Lγ to L2. Let P[ be the polar of L l 5 and P'2 the polar of
L2. Then the required element of F 4 is the element sending the polar pair P^
to P2P',.

Using the defining equations of OP2 we see that the polar line of the point

/0 0 0\
I 0 0 01 is the line mn = a19 m12 = x3, mn = x3, m22 — a2, the other m o = 0,
\θ 0 l)
and ax + a2 = 1, ^^2 = Λ:3X3. AS before the projective line is the intersection
of the sphere

l2\
2 + \mn\

2
ml2\

2 + \mn\
2 + \mn - J|2 + |m22 - i | 2 -

with the linear spaces mn = m π , m22 = m22, m12 = m21, m π — j = —(m22 — ̂ ).
Hence the projective line is a real 8-sphere of radius ί/\/~2. Thus because F4

is transitive on projective lines, every projective line is a real 8-sρhere of radius

The geodesies of OP2 are the great circles of its projective lines. As before
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it is enough to show that for any projective line L and any point P on L, the
line from P to the center of L, as a real 8-sphere, is a normal line to OP2 at P.
Because FA is transitive on "pointed" projective lines, it is enough to show this

/I 0 0\ K x, 0\
when? is the point 0 0 0 and L is the line \x3 a2 0 , where aγ + a2 =

\0 0 0/ \0 0 0/
1, axa2 — jc3jc3. Let Pf be the polar of L and U the line joining Pf and P, and
T the tangent to the unit sphere with the origin as center at P. Then it is not
difficult to show that T Γ) span L and T ΓΊ span ΊJ are completely orthogonal
spaces meeting just at P. Thus the line from P to the center of L must be
orthogonal to the tangent planes of L and 1/ (as real 8-spheres) at P and hence
orthogonal to the tangent plane of OP2 at P. This completes the proof.

Let p € M, and let p be a curve on M with tangent vector t at p. Then the
component of the second derivative of γ normal to M at p we call η(t). (It is
well known that this normal component depends only on t and not on the
specific parametrized curve γ.) Thus η: Tp-+Np gives a map from the tangent
space of M at p to the normal space of M at p, and this map is in fact a
quadratic form. We will also use η to denote the associated bilinear form
Ύ]: Tp x Tp-> Np, (so that j?(ί, ί) = 3?(0) We call η (in either sense) the second
fundamental form of M at P.

Proposition 2. // all the geodesies through a point of M are planar, then
all those geodesies have the same curvature at that point. Here curvature means
as a plane curve, not geodesic curvature.

Proof. Let p be the point through which all geodesies are planar. We first
show that η(ld-?)(lι, h) = 0 for any orthonormal pair of tangent vectors l1912

at p. Let γ(s) be a geodesic through p in the direction l19 s the arc length from
p, and let I2(s) be a parallel (in sense of Levi-Civita) tangent field to M along
γ and normal to γ such that Z2(0) = Z2. Then -η(lx) = d2γ/ds\0) and η(l1912) =
dl2/ds(0). Since f is a geodesic, d2γ/ds2 is normal and therefore d2γ/ds2Ί2 = 0.
If d2γ/ds\O) Φ 0, then we may write d^/dj 3 = ad2γ/ds2 + 6 d r/ds. Thus
d3

r/ds* l2 = O. Now 0 = d/ds(d2γ/ds242) = d3

r/ds3Ί2 + d2

r/ds2'dl2/ds. Hence
d2γ/ds2-dl2/ds = 0 so that -ηQd ηiti, k) = 0.

As this is true for any orthonormal pair Z^, we must have

37C/1 cos 0 + Z2 sin θ) - η(lλ cos θ + Z2 sin 0, — Zx sin 0 + Z2 cos 0) = 0

for all θ. From this, using the bilinearity of η and double angle formulas we
obtain

sin 40 + \{η(l2Y - rβtf) sin 20 = 0 .

Hence ,(/„ l2)
2 - K?(Z2) - V{W = 0 and v(hY = v(l2)

2.
Now using the bilinearity and double angle formulas again
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h cos θ + l2 sin θ))2 = (i(V(h) - ?(/2))2 - v(ll9 /2)
2) cos 40

+ Kv(h)2 - V(h)2) cos 2Θ + (i(?tfi

Hence rf is constant for all unit vectors in the plane of IJ2.
Finally given any unit vectors Z15 l2, not necessarily orthogonal, rf is constant

on all unit vectors in their plane, so in particular η2(lλ) = η\l2).
To finish we note that |^(/i)|, h a unit tangent vector, is the curvature of the

geodesic through p in the direction lλ at p.
Proposition 3. Let γ(t) be α curve of M, and γt(s) a 1-parameter family of

geodesies of M passing normally through γ, that is, γt(0) = γ(t) and dγt/ds(0)
dγ/dt(t) = 0. // the geodesies γt are planar, then they all have the same

curvature as they cross γ, that is, if s is the arc length then \d2γt/ds2(O)\ is
constant in t.

Proof. Let X(s, t) = γt{s) be considered as a surface in M. If we prove
the curvature is constant in neighborhoods of points where dγt/ds, d2γt/ds2

are independent, that will suffice because the constant will be nonzero. Hence
the intervals where dγjds, d2γt/ds2 are independent will be both open and
closed and so all of γ. If there is no point on γ where dγjds, d2γt/ds2 are in-
dependent, then of course the result is true.

Now since X(s, t) is a geodesic parametrized by the arc length for fixed t,
we see that Xs is a unit tangent vector, i.e., XSXS = 1. By differentiating with
respect to t we find that Xs Xst = 0. Next (d/ds)(X8 Xt) = Xs-Xst + Xss-Xt.
But since X(s, t) is a geodesic for fixed t, Xss is normal so Xss Xt = 0. Thus
(d/ds)(XrXt) = 0, and since Xs Xt = 0 for s = 0, it holds for all s, t.

Because the t held constant curves are planar, we may write Xsss = aXs +
βXss at a point where Xs, Xss are independent. So using the above we have
Xsss-Xt =z 0. Differentiating Xss-Xt = 0 with respect to s and using Xsss-Xt

= 0 we obtain Xss Xst = 0. Again because Xsss = aXs + βXss we have

Xsss'Xst = oίXs-Xst + βXss-Xst = 0 .

Differentiating Xss Xst with respect to s and using Xsss Xt = 0 w e see that
Xss'XSst = 0. Hence (d/df)(X88 X88) = 2XSS-Xsst = 0. This implies that
(Xss(0, t))2, which is the square of the curvature of γt at the point where it
crosses γ, is constant.

Proposition 4. // all the geodesies of M are planar, then either Mn is con-
tained in an n-plane or else all the geodesies are circles of the same radius.

Proof. Let g(p) be the curvature of any geodesic passing through p at p.
By Proposition 2, g is well defined. By Proposition 3, g is constant along curves
and hence constant on M. Thus each geodesic has constant curvature and so
is either a line or a circle. Furthermore all geodesies have the same curvature,
so they are either all lines or all circles of the same radius.
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We now suppose that Mn is not contained in an π-plane. We perform a
dilatation of the Euclidean space to make all the geodesies circles of radius 1.

We see that for manifolds all of whose geodesies are circles of radius 1,
η\l^ = 1 for any unit tangent vector lλ. From this, using the fact that η(λl^ =

A ( Ί ) w e n a v e 92(0 = (t2y f° r anY tangent vector t.
Lemma 5. η(t)2 = (t2)2 for any tangent vector t has the following impli-

cations. For any orthonormal pair IJ2

V(h) Vdi, h) = 0 , ?(/,) η{l2) + 2iβu 12Y = 1 ,

for any orthonormal triple lj2l2

and for any orthonormal quadruple l^hh

V(!i, h) η(t» h) + η(h, h) η(!29 h) + η(!l9 h) η(l2, ϋ = 0 .

Of course the statements can only be made if the dimension is appropriate
(i.e., dimension > 4 for quadruple, etc.).

Proof. Let t = xxlλ + x2l2 + xsl3 + JC4/4, (JC4 = 0 for dimension < 3, etc.)
Then t2 = x\ + x\ + x\ + x\, and η(t) = Σί,j=ixiχj'Wi^ lj) by the bilinearity.
Hence

( Σ XiXjyihlj))2 = W + χ\ + χl + χί)2.

Equating coefficients gives the result.
Lemma 6. Let l1912 be orthonormal vectors with the property that 7](lλ) η(l2,

/3) = 0 for any unit vector l3 normal to lλ and l2. Then η(lι)-η(l2) — \ or \.
Proof. Since geodesies are circles of radius 1, the manifold may be written

X(r, h) = X(p) + (1 - cos r)rj{k) + I, sin r ,

where r, lλ are geodesic polar coordinates, and lλ e TS^1 is a unit tangent vector
at p. Let l2, , ln be orthonormal vectors, normal to lu defined in some
neighborhood on TSn

v~
ι.

fl) ih cos θ + h sin θ) |,=o
dθ

^ θ)η(k) + 2 (cos θ sin θ)η{lx, lt) + (sin2

dθ

= 2JJ(/1; k) for i. = 2, •, n .
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(Zi C O S θ + '2 s i n # l#-

θ)η{k) + 2(cos0 sin %(/„/,) + (sin2 θ)η(l2)) U

Hence

^ 0 , /x) = (1 - cos r)ηlt(lj + llh sin r

= 2(1 — cos r)^(/1? y + /̂  sin r ,

XιΛh(r, h) = (1 — cos r)-ηι%φd + llhl2 sin r

= 2(1 - cos r)(v(l2) - ^(/j)) - I, sin r ,

-^rfrj h) = (sin r)^^) + /x cos r .

Xu-Xr = 0 for ί = 2, - -,n because ηQJ-ηihJi) = 0 by Lemma 5. So
ϊ W i ^ = 4(1 - c o s r ) ^ ! , W ί^ίϋ - ^(/i)), / = 2, ,n. By Lemma 5,
9(*i) ηϋi, h) = 0 for ί = 2, , n and ^(/1? /2) ^(/2) = 0. Thus, if v(l2) ^(/15 /,)
= 0 for i = 3, ,n we have Xlil2-Xh = 0. Since the conclusion of the
lemma is symmetric in lx and l2, we may interchange the roles of lx and l2

throughout the proof. We then require that η(lι)-η(l2, k) = 0 for i = 3, , n,
which is the hypothesis. Hence Xhh-Xh = 0.

Xhh'Xr = 2 ( 1 - cos r)(sin f)η{l^ 0?(/2) - η(lj) - sin r cos r .

Also Xr >Xr = 1 because r is the arc length. Hence Z ^ 2 = Z ^ ί 2 — (Xuι% -Xr)Xr.
(N means normal component.) Now η(t)2 = (t2)2 for any tangent vector t. When
t = Z,2(r, /,) we see that ,(ί) - JΓ^,. Thus ( Z ^ 2 ) 2 - (Z?2)

2 - 0. But Z ^ 2 =
Xι2ι2 - (Xhh'Xr)Xr, which implies (X»l2)

2 = X\%1% - (Xl2h Xry. From above
computations

Xl2h = 4(1 - cos r)2(^(/2) - ηil,))2 + sin2 r ,

XI = 4(1 - cos rYηih, l2)
2 + sin2 r .

From Lemma 5, η(lι)'η(l2) + 2η(lί, /2)
2 = 1 so

X% = 2(1 - cosr)2(l - ηild-ηQd) + sin2r .

Thus

= 4(1 - cos r)20?(/2) - ηik))2 + sin2 r

— (2(1 — cos r) sin r(j](l2) ^(/^ — 1) — sin r cos r)2

- (2(1 - cosr)2(l - ηdd-vitd) + sin2 r)2 .
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This after some simplification gives

0 - 4(1 - cosr)3(l - 7](lί)'7](l2))(2v(lί)'V(h) - D ,

which must hold for all r. This concludes the proof.
For any unit tangent vector lλ let a(k) = {t e Tp\η(t/\t\) = ηik) or t = 0}.
Proposition 7. a(l^ is a linear subs pace of Tp.
Proof. Suppose Z2 is a unit vector such that lx/\l2φ 0. Let Z3 be a unit

vector in the plane of lλl2 and normal to lx. We may write Z2 = alλ + W3, a2 +
b2 = 1, b φ 0. Then

By Lemma 5, η(h)'V(h,h) = 0 so ^ / ^ ( ϋ = α2 + bYh) η(l3). Because a2

+ Z>2 = 1, b Φ 0 we see that Ύ)(k)-η(l2) = 1 if and only if η(ld-η(Q = 1.
Hence Z2 € ^C/i) if and only if /3 e a(lλ). Thus, if any tangent vector / e a(lλ) then
span (t, lλ) c α:(/i). Hence it suffices to show that the vectors in a(lλ), which are
orthogonal to /1? are a linear subspace of Tp.

So suppose Z2, Z3 € ̂ (Z!) are unit vectors and 12-Iλ = lzΊλ = 0. Since Z2, Z3 e αίZi),
we have (̂Z2) 5y(Z1) = ηil^-ηih) = 1 and therefore ^(/2, Zj) = ^(Z3, Ẑ  = 0 by
Lemma 5. Thus (̂αZ2 + W3, lλ) = aη(l29 lλ) + bη(l39 h) = 0. Let Z4 = (al2

+ bl2)/\al2 + blz\. Then ^(Z4, Zj) = 0 and IJ4 are an orthonormal pair. Thus by
Lemma 5, (̂Z4) -ηil^ = 1 so that Z4 e (̂ (ZJ. Hence αZ2 + bl3 € ĈZi) for any a, b,
which concludes the proof.

Remark. If X is a point of M and lx a unit tangent vector, then the geodesic
through X in the direction lλ is centered at X + ^(Z^. Thus all geodesies through
X tangent to a(lλ) have the same center. Thus all geodesies through a point,
which have the same center, fill out a sphere.

Let S(lλ) be the unit vectors in aity1-, the orthogonal complement of a(Q.
Let ftl: S(k) -+Rbo defined by flχ(ΐ) = η(h) η(l).

Lemma 8. Let Z2 be a critical point of ftl. Then

for all unit vectors Z3 orthogonal to lλ and Z2.
Proof. Suppose Z3 e a(l^), Z3 a unit vector. Then η(lλ) = η(l3), which implies

η(h)-η(h) = 1. Using Lemma 5 we have ηQd-ηQd + 2v(^h)2 = 1 so that
η(l19 Z3) = 0. Again by Lemma 5, ηild'^k'Q + 2η(l19 IJ-ηih, Z3) = 0. Hence

Suppose Z3 e a(l^L. Then the derivative of fh(l2 cos θ + Z3 sin θ) with respect
to θ at θ = 0 is 0 because Z2 is a critical point of ftl.

fh(l2 cos θ + Z3 sin ^) = (̂Zj) (̂Z2 cos θ + Z3 sin ^)

= 5?(Z>((cos2%(Z2) + 2 (cos ^ sin %(Z2,Z3) + (sin2%(Z3)) .
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So 0 = dfJdθ\θ=Q = 2J ? (/ 1 ) . 7 (Z 2 ,Z 3 ) .

Now in general any Z3 may be written Z3 = Z4 cos θ + Z5 sin θ for Z4 e aity,
Z5 € ocil^)1-. Since lrl3 = 0 and /x Z5 = 0, we must have lλΊ^ = 0. Since /2 /3

= /2 /4 = 0, we must have 12Ί5 = 0. Thus by the previous cases η{Q-τ]{l2, ZJ
= 0, i = 4, 5. Hence

(h,h) = (cos0)η(!d η(!i9lj + (sin %(/,)• v(l2Jδ) = 0 .

Lemma 9. Lei Z1? Z2 be orthonormal tangent vectors. Then Z2 e α:^)-1- //

Proof. Suppose Z2 e aih)1. If Z2 is a critical point of fh, then Lemma 6 and
Lemma 8 show that Ύ](1^) ̂ (/2) = j or 1. But ̂ (/^ ^(/2) = 1 implies η(lλ) = ^(/2)
and so Z2 e α(/i). So the assumption l2 e a{l^L shows that ηilj-ηih) = j . But
the critical points of fh include both its maximum and minimum points. Hence
η(lλ) - η(l) = ftl(J) = J for all / in the domain of jlχ which is all unit vectors in

Now suppose ηQd-φd = h Write l2 = al3 + blA, where /3 € a(l^), /4 e ^(/i)1

and a2 + b2 = I. Then ^(/j) = ^(/3) and by the first part η(l^ η(Q = \. Hence

a* + \b2 .

Here ^(/3) ^(/3, /4) = 0 by Lemma 5. So ± = a2 + \b2 and a2 + b2 = 1, which
give α == 0. Thus /2 e ̂ (/x)-1.

We call a linear subspace L of T p closed with respect to a if I e L implies
#(/) C L for any unit vector Z.

Lemma 10. // L w closed with respect to a, then LL, the orthogonal com-
plement, is also closed with respect to a.

Proof. Take lλ € LL and Z2 € #(7i) Then we may write Z2 = al3 + blA, Z3 e L,
Z4 € L-1-, a2 + b2 = 1. ^ (y = 2y(Z2) = α2^(Z3) + 2a^(Z3, Z4) + b2η{Q. Since L is
closed with respect to a, we have a(l3) C L, so that Z1? Z4 € α(Z3)

1. By Lemma 9,
gyCϋ^ίϋ - ^(Z4).^(Z3) = 1. Thus J = Tjild-ηilύ = "* + 2abη(l3) η(l3, Z4) + \b2.
By Lemma 5, (̂Z3) ^(Z3, Z4) = 0. So J = a2 + \b\ which together with a2 + b2

= 1 gives a = 0. Hence l2e L-1-.
Lemma 11. Assume all the orthonormal vectors below satisfy lt e (̂Z )̂ or

Ẑ  € a(Z^)1 /or «ny /, /, i Φ j . Then: for any unit vector

y(h)2 - 1

for any orthonormal pair

f 1 if k € a(
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Ό if I, e a(l2)

if h

/or <2πj orthonormal triple

any orthonormal quadruple

if lx € a(l2) or Z3 e (/4), or // Z€ e a(l3)
L for all i, /, / φ j .

Notice that we have not covered all cases for an orthonormal quadruple of
vectors.

Proof, φ^2 = 1 if /x is a unit vector because geodesies are circles of radius 1.
Let l1912 be orthonormal vectors satisfying the conditions of the lemma. If

A € a(l2), then η(!J = v(l2) so ηdd ηik) = η{k)2 = 1. If Zx e a(l2y, then by
Lemma 9, -ηil^) r](l2) = | . Since ηild-ηίh) + 2η(lλ,l2)

2 = 1 by Lemma 5,
^(Z1? l2γ = 0 or \ according as lλ e a(l2) or lx e a{l2)

L. Also η{l^) η(l1912) = 0 by
Lemma 5.

Let lxl2lz be an orthonormal triple satisfying the conditions of the lemma.
Assume l2 e a(l^L. From Lemma 9 we see that ηil^ ηil) = \ for all unit vectors
/ e a(l^L. Hence the function flχ of Lemma 8 is constant so that every point of
its domain is a critical point. But since l2 e a{l^)L, l2 is in the domain of ftl and
hence a critical point of flχ. Thus by Lemma 8, η(lι)-η(l2, Z3) = 0. Next assume
l2 e or (A). Use Lemma 5 to write

From above if l2 e a(lλ) then η{l^ l2) = 0 so (̂Z1) ^(Z2? h) = 0. Now η(lly l2)
.^(/1? /3) = 0 for any triple satisfying the conditions of the lemma by Lemma 5
and the fact that Ύ)(lλ)>η(l2, Z3) = 0.

Next let lλl2kk be an orthonormal quadruple such that lt e aQj)1 for 1 < /,
< 4. In particular IJ2 are in aiQ1- and ^(/J-1. Hence (/x + Z2)/\A2" is in cKZg)-1

and aiQ1. Using Lemma 9 we see that lt e ailj)1- if and only if lj β aili)1.
Thus (Zx + 12)/\ΓΣ, Z3, Z4 are an orthonormal triple satisfying the conditions of
this lemma. Hence η((lλ + l2)/\f~2)-η(l3, Z4) = 0. Also since IJ^ and l2l3l4 are
triples satisfying the conditions of this lemma, we have ηi^) - η(l3, Z4) = 0 and
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If lx e a(l2) then η(l19l2) = 0, and if /3 e a(l4) then η(l3, Z4) = 0. Hence in these
cases also η{lλ, I2) η(k, Q = 0 This finishes the proof of Lemma 11.

Lemma 12. // Lx and L2 are completely orthogonal subspaces of Tp both
closed with respect to a, then their linear span is also closed with respect to a.

Proof. Let / e span (L1? L2) be a unit vector, and let V be a unit vector in
a(ΐ), V e ail). Then we may write

V = ah + bl2 + c/3 ,

where lx e L19 l2 e L2 and Z3 e span (L1? L2)
L are unit vectors and a2 + b2 + c2

= 1.

η{V) = rjiak + bl2 + c/s)

= a2

v(h) + b2η(l2) + c2η(l3) + 2abη(l1912)

+ 2acη(l1913) + 2bcv(l2, l3) .

Since Lx and L2 are closed with respect to a, h e ^ ( ^ I ) ^ and /3 € a(l2)
L. Thus

^(/3)^(/i) - έ and ηiQ.ηik) = h So

ηin ηdd = \a2 + ψ + & = i + \C2 .

O n the other hand / e span (L 1 ? L2) can be written I = r/4 + ,y/5 where lAe Lly

l5 € L2 are unit vectors and r2 + s2 = 1. Thus

9(0 = ψk + slδ) = r2

η(lA) + 2rsη(!i915) + s2

v(l5) .

Again because Lλ and L2 are closed with respect to a, we must have Z3 € a(QL

and /3 € ̂ ( ϋ 1 . Hence

But η(ΐ) = η(V) so I = i + Jc2 giving c = 0 and Γ = alλ + bl2. Thus V e
span (L1? L2) which concludes the lemma.

Proposition 13. For any unit tangent vector lx at any point p, the dimen-
sion of a(lλ) is the same. We call it a.

Proof. Let a(l^) be the dimension of a(Q. We will show that

where H is the mean curvature vector. The result follows from this because
η(QΉ is continuous on the unit tangent bundle and α(/j) is integer-valued,

Choose orthonormal tangent vectors Zl5 , ln so that l19 - , la span aih).

Then H = (l/n) Σϊ=iV(h) s o that

Σ ϋύUi) + - Σ
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Now η(lλ) = η(li) for / = 1, . . . , a so -ηild-ηih) = 1. For ί = α + 1, • •, n,
/ί e αfC/i)1 we have ηQ^-ηQi) = j by Lemma 9. Hence

π\ zj a i n — a

n 2n

which concludes the proof.

The quadratic form η:Tp-^Np sends a linear space of dimension a, say ail),
into a line, the line through η(ΐ). Hence the rank of the Jacobian of η must
fall by a — 1 at every point of Tp.

Now if L is a linear space of Tp closed with respect to a, then the restriction
7]: L -> iVp of 7] to L also sends linear spaces of dimension 0 into lines. Hence
the Jacobian of the restriction of η to a linear space closed with respect to a
falls by a — 1 in rank.

According to Lemma 10 if l2 e a(QL is a unit vector then a(l2) c aih)-1. We
choose vectors lt € Πy=i αtfj)1 by induction. This decomposes T p into a direct
sum

Γ p = a(h) Θ Θ a(lk) ,

where of course aQi) C aQj)1-, i Φ j .
Since the dimension of α(^) is a, we see that ak = n so that 0 divides n.
Let us choose an orthonormal basis lλ ln of T p in agreement with the

direct sum decomposition of Tp given above, namely, each basis vector is in
one of the summands. Such a basis has the property that either lt e a(lj) or
lι e a(lj)L for any i, j , i Φ ) . Any basis with this property we call a basis which
respects a.

Lemma 14. Suppose a — 2. Let L19 L2 be completely orthogonal a-closed
subspaces of dimension 2. Let lλl2 be a basis of Lλ and l3l4 of L2, both ortho-
normal. Then in this basis or the one obtained by reflection in L2 (sending l3

—» —/3) we have

η(h, h) = Φn h) > η(h> h) = —y(h> h) .

Furthermore, if LUL2,LZ are completely orthogonal a-closed subspaces of
dimension 2, and IJ2, IJ4, lδl6 are respective orthonomal bases such that the
above relations hold on Lλ 0 L2 and Lx 0 L3, then they also hold on L2 0 L3.

Proof. By Lemma 12 and the comment after Proposition 13 the restriction
of the Jacobian of -η to Lx 0 L2 falls in rank by 1. The restriction is

4

ik + - - + xJt) = Σ

with derivatives
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4

= 2 Σ

evaluated at lx + Z3, which are

7 , h)

Because the Jacobian falls in rank by 1, these four vectors must be dependent.
But η(lι),η(ld are orthogonal to ηihJj), iφh and independent. Hence we
must have η(l2, Z3) and φ^ Zj) linearly dependent. Since they are the same
length, we must have J?(Z2, Z3) = ±φi, Z4). We now reverse the sign of Z3 if
necessary to achieve J?(/2, Z3) = — φ19 Z4). Use Lemma 5 to write

?(/i, ϋ v(h, h) + ^tfi, h) - vίh, h) + η(ίi, h) y(L lύ = θ.

Because η(l1912) = 0 we have

y(h, h) - y(h, h) = —yQi, h) yih, h)

But η(li9 Ij), i = 1 or 2, / = 3 or 4, are all the same length and η(l2, Z3) =
—3yĈ i? Z4). Hence η(l19 Z3) = ^(Z2, Z4) and the first part of the lemma is completed.

Now this same argument applied to Lλ 0 L3 shows that (perhaps after send-
ing Z5 to -/ 5 )

When we apply this argument to L2 0 L3 we find that

V(h, h) = tyh, h) , v(h, h) = -

where 2 = ± 1. We must show that λ — + 1.
On Li 0 L2 0 L3 the Jacobian of 37 falls in rank by 1. We evaluate the deriva-

tives ηXt, i = 1, , 6, at the point lx + Z3 + Z6. 37 ,̂ ^ 3 , 3 ^ 5 have respectively
the term ^(/i),^(/3),^(/5). Because these vectors are independent (they are of
length 1 and the inner product of any two is J) and orthogonal to η(lu ld), i φ j ,
we see, much as before, that ηX2, ηXi, ηX6 given by

6, h) + y(h, Z3)) ,

must be dependent. We use the above relations and those on Lx 0 L2 to obtain

l9 Z4) — ^ ( / 3 , Z6)) ,



278 JOHN A. LITTLE

Hence

0 = ηx% A ηx, A Vxβ = - 8 ( 1 - λ)v(h, h) A V(h, h) A yih, k) .

Using Lemma 11 and the fact that η(l3, /6) = — λη(l4, Z5), λ = ± 1 we see that
y(h> ' J J y(h> h) a n d #(Ί> h) a r e orthogonal. Because they are nonzero, they are
independent and so λ = + 1 .

Remark. Quaternion multiplication on a basis l^kh may be defined by
— Ijli = ltlj = lk for i, j , k any cyclic permutation of 2, 3,4 and IJX = lxlt = lt

for all / and l\ = — lx for / = 2, 3, 4. The conjugation is defined by lx = /1? /̂
_ _/ . / — 2 3 4

Lemma 15. Suppose a = 4. Lβί L15 L2 fce ίwo completely orthogonal sub-
spaces of dimension 4, Z?oί/z closed with respect to a. Let lxl2kh be an ortho-
normal basis of Lx. Then for either this basis or its reflection (sending lλ —• — lλ)
there is an orthonormal basis /5/6/7/8 of L2 such that η(lt, lj+i) =. ±η(lk, Zm+4) //
and only if ijj = ±lklm in the quaternion multiplication. Here both signs are
taken as positive or both negative and the indices range from 1 to 4.

Proof. Let lxl2kh be the given basis of Lx, and /5/6/7/8 any orthonormal basis
of L2. We may restrict η to Lx 0 L2 and the Jacobian must still fall in rank by
3. The restriction is

8

Ύ)(Y 7 - 4 _ . . . 4 _ γ M —• Y^ r r γ)(Ί I λ
'/\'ΛΊιΊ I 1 -̂ β 8/ — / 1 "^z J /\ if 3' '

We now compute the Jacobian of η at lk + l6, 1 < k < 4. Since

8

we have, at lk + l5,

ϋ Vxt = 2η(li915) , 1 < / < 4, i

B = 2v(l5) + 2η(lk, lb) ηXi = 2^/*, /,) , / = 6, 7, 8 .

Now 27(/fe) = 3?(/i) and 2y(/5) are independent and both are orthogonal to ηQ^ /5),
i < 4, and η(lk, k), i> 5. The reason for this and for many similar such state-
ments in this proof is Lemma 11. Also η(lu /5), / < 4, are orthogonal to each
other and nonzero. η(lk, lt), i > 5, are orthogonal to each other and nonzero.
Since the rank is 5, the sets {η(li9 /5), / < 4} and {η(lk, lt), i > 5} span the same
space, k — 1, 2, 3,4.

In order to render the remainder of the proof easier to follow we write out
the relations to be proved in the following tableau:
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y(h, h) = η(h> k) = Φv l7) = y(h, h) ,

y(h, l7) = —ηdii k) = —y(h> h) = y(h> h) >

V(h, h) = η(h, IT) = -V(h, h) = -V(h, k) .

We will not keep track of the signs but come back to them at the end.

Now η{lulb), ^(/,,/β), η(l19l7), η(hJ8) are orthogonal and η(l29lj9 η(l2,l6),
rβiτ Z7)j η(h> k) a r e orthogonal and span the same space as the first set. Also
2y(Z1? Z5) is orthogonal to η{l2, l5). We leave lλl2hhh alone and rotate /6/7/8 among
themselves in order to make η(l2, /6) coincide with η(l19 /5). We are still free to
rotate /7, /8 among themselves. From Lemma 5 we obtain

ηίh, Id-ηίh, Id + ?(/i, h)'V(h, Q + η(h, h)'V(h, ϋ = 0 .

Since η(l1912) = 0 and η(l19 /8) ^(/2, /6) = η(ll9 k)2 = h w e h a v e Φι> l*)'y(h, h)
= — \. So η(l2, l5) = ±η(l19 /6). Thus η(l29 /7), η(l29 /8) being orthogonal to η(l2, l5)
and η(l2, IQ) are also orthogonal to η(l19 lδ), η(l^ /6) and hence in the same plane
as η(l19l7),η(l19ld' s i n c e φiJd a n d vίhJi) a r e b ° ώ orthogonal to η(l19l7)9

η(lλ,Q = ±η(l29l7). This leaves η(l19l7) = ±η(l29l8). We have done the first
two columns of the tableau except for signs. We are still free to rotate /7/8 in
their plane.

Now η(l3, l7) is orthogonal to η(l2,17)9 hence to η(l19 /8), and also to η(l19 Z7).
Hence it lies in the plane of η(l19 /5) and η(l19 Z6). Also η(l39 /8) is orthogonal to
η(l29l8), hence to η(ll9l7), and also to η(ll9ld- Hence it lies in the plane of

We now perform a rotation of /7/8 which leaves η(l19 lδ) and η(J19 Z6) alone and
rotates η(l39l7),η(l39ld so that η(l39l7) coincides with ^(/ 1 ? / 5 ) . We then have
gy(/3, Z8) and η{ll9 Z6) in the same direction.

Now 3?(Z4, Z8) is orthogonal to η(l3, Z8) and so to η(ll9 Z6). It is orthogonal to
η(l2, Z8) and so to η(ll9 Z7). Since it is also orthogonal to η(lΊ, Z8), it must lie along
η(l19 Z5). Also Ύj(l^ Z7) is orthogonal to η(l39 Z7) and so to η(ll9 Z5). It is orthogonal
to η(l29 Z7), so to η(l19 Z8), and of course to η(l19 Z7). Hence η(l±, Z7) must lie along
η{lλ, Z6). We have now completed the first two rows of the tableau as well.

F r o m Lemma 5 we know

η(!i,lύ η(h,lύ + v(h,lύ v(h,lύ + ?(U5) ?(U8) = 0 .

Hence using what we have proved so far we have η(ll9 Z8) η(l39 Z5) = 0. So η(lZ9 Z5)
is orthogonal to φ1918), to η(l2jb) and so to ^(Z1?Z6), and to η(lλ, Z5). Hence
φ3, Z5) must lie along η(lλ, Z7). The remainder now fills in easily to obtain the
entire set of relations up to signs.

To compute the signs we use

η(li,lj) η(lt,lm) + η(li9h)'η(lj,L) + φiJ^'φjJu) = 0
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from Lemma 5. The choices of /, /, k, m which are not already zero are 1256,
1278, 3478, 3456,1357,1368, 2468, 2457,1458, 2358,1467, 2367. In addition
we may reflect sending lx -* — lx or l{ -> — lu i = 5, 6, 7, 8, if we wish. In this
way we obtain a basis which satisfies the relations of the lemma exactly.

Lemma 16. Suppose a = 4. Let Lλ,L2,L3 be completely orthogonal sub-
spaces of dimension 4, closed with respect to a. Any basis of Lλ®L2 which
respects a in which the relations of Lemma 15 are satisfied may be extended
to a basis of L r © L2 © L3 so that the relations are satisfied on LX®L3. Further-
more in any basis of Lx φ L2 ® L 3 which respects a, if the relations of Lemma
15 are satisfied on Lx © L2 and Lx 0 L3 they are also satisfied on L2ξ&Lz.

Proof. Let Z9 be a unit vector in L3, IJ2131A a basis for Ll9 and /5/6/7/8 a basis
for L2 chosen so that the relations of Lemma 15 are satisfied on Lλ 0 L2. Since
Z5, Z9 e Lf, Z5 cos θ + Z9 sin 0 e Lj1. Let L(0) = α(Z5 cos 0 + Z9 sin 0). By Lemma
10, L(0) and Lx are completely orthogonal. By Lemma 12, L(β) © L x is closed
with respect to a. By applying Lemma 15 to L(β) © L 1 ? we see that the basis
provided by the lemma is continuous in θ. Hence no reflection in Lλ can occur.
Thus we may find a basis l9ll0lnl12 so that on LX®L3 the relations of Lemma
15 are satisfied in the basis lihhhhhohJu

Now we show that in the basis Z5, , Z12 the relations of Lemma 15 are satis-
fied on LX(B L3. First, as in the proof of Lemma 15, by computing the rank at
h + 4? we see that

V(h, h) Λ η(lΛ, ho) A η(lΛ9 ln) Λ η(lδ, Z12)

= *ηQ» h) Λ η(!» Z9) Λ η(l79 Zβ) Λ η(li9 h)

for λ Φ 0. Then on Lx 0 L2 0 L3 the rank of the Jacobian of η falls by 3. Thus
among ηXt, i = 1, , 12, any ten are dependent. We evaluate the Jacobian
at lλ + Z5 + tl99 t Φ 0. The vectors ηXl, ηX5, ηX9 are independent from each other
and from all the other ηx.. This is because they have, respectively, terms η(lx),
φd> φ*) a n d Vχt9

 i z t lj 5, 9, are sums of terms of the form η(lu l3), i Φ j .
Since η(lι)9η(l^)9η(l9) are orthogonal to all these vectors, they must be inde-
pendent of them. Furthermore, η(lι),η(l6),η(l9) are all unit vectors and the
inner product of any two is | . Since no such triple of vectors can be linearly
dependent, among ηXΛ, τjXz, ηXi, ηX6, ηX7, ηXs, ηXlo9 ηXll9 ηXl2 any seven are
dependent.

Let Λ(t) = τ]X2 A τ)Xi A rjx, A ηx, A ηX7 A ηXa evaluated at lx + Z5 + tl9 and
let

Λ1Q = Λ(t) A τ]Xl0 , Λn = Λ(t) A ηXll , Λ12 = Λ(t) A ηXl2 .

Then Λ109 Λn, Λ12 must be identically zero. Ostensibly they are of sixth degree
in t however by computing the rank at Z5 + Z9 we see that the highest degree
term is 0 because η(l6, Z10), η(l69 Zn), η(l69 Z12) lie in the span of η(lδ9 Z9), η(l7, Z9),
η(lQ, Z9) as was stated above. Then compute the 5th degree terms of Λ10, ΛU9 Λ12
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using the fact that the relations of Lemma 15 are satisfied on LλQ)L2 and
By equating these terms to zero we find that

This does not give us quite enough information, so we now evaluate the
Jacobian at lλ + Z5 + tl10 and proceed as before. This time we may disregard
ηXl, ηX5, ηXlQ and of the remaining, any seven must be dependent. We choose
Vχ2 Λ ηx% A ηx, A ηX6 A yXl A ηXs A ηXχx. We compute the fifth degree term in
/ and equate it to 0 obtaining

y(h, hi) = y(k> ho)

We next use

k) = 0

from Lemma 5 and the fact that if η{liAj)'φkΛm) = ± i then η(li9lj) =
±η(lk> lm), respectively because \η(li9 lj)\ = \η(h, lm)\ = i- This enables us to
complete the proof that all relations of Lemma 15 are satisfied on L2®L3.

As an example of the computations we show that η(l6, Z10) = — η(lQ, /9). Taking
into accocnt that the relations of Lemma 15 are satisfied on Lx 0 L2 and Lx 0 L3

we obtain ηx. evaluated at h + l5 + tl9:

V*2 = — V(h> h) — tη(h, ho) , ηXt = —η(fl9 h) — tη(ll9 ln) ,

Vx* = —y(h, h) — tη(ll9 lu) , Vx6 = η(h> h) + ty(h, h) >

Vχ7 = V(h> h) + tφπ h) , Vχ8 = Φu h) + tη(lS919) ,

^xio = V(h> ho) + y(h, ho)

We write η(l69 Z10) = aη(le, l9) + bη(l79 Z9) + cη(l8, /9). The f term of the wedge
of the above seven vectors after simplification is

y(h, ho) A η(l19 hi) A y(ll9 lu) A y(lβ9 /9) Λ η(l79 /9) Λ η(lS9 /9)

Λ [η(!l9 h) + aV(lu l6) + bη(ll917) + cη(ll9 /8)] .

Now η(l19 /6), η(ll9 Z7), η(l19 Z8), η(ll9 ho), y(k, hι)> v(h, hi), y(h> h)> yQπ ϋ> y(k> h)
are all nonzero and orthogonal to each other. Use Lemma 5 and the relations
of Lemma 15 satisfied on Lλ@L2 and Lι@Lz to show orthogonality. Since
this must be zero we see that l + a = b = c = 0 and η(l5, Z10) = — y(l69 Z9).

Remark. Cayley multiplication on a basis l19 , Z8 of E8 may be defined
as follows. Let Z2, , Z8 be the seven points of a projective plane over Z2 with
cyclic ordering of each line given as in the figure:
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Define —Ijk = ltlά — lk in case y ^ has the given cyclic ordering. Define
further Z = — Z1? iφl, and Z^ = ltlx = Ẑ  for all i. For this definition see
Freudenthal [1]. Conjugation is defined by lλ = Z1? /̂  = — Zί5 ί = 2, , 8.

Lemma 17. Suppose a = 8. Lei L1? L2 foe ίwo completely orthogonal sub-
spaces of dimension 8 closed with respect to a. Then there are bases lλ /8

of Lλ and l9 Z16 o/ L 2 so ί/zαί j ^ , Z^+8) = ±3?(Zfc, / m + 8 ) // and only if in the

Cayley product given above ijj = ±ljm. Here both signs are taken as positive
or both as negative, and the indicies range from 1 to 8.

Proof. Let lλ Z8 be an orthonormal basis of Lx and Z9 Z16 of L2. By
Lemma 12, ̂  falls in rank by 7 on Lx 0 L2. Now

= 2

Fix Λ < 8 and m > 9. At lk + /m

i Φ k ,

7]Xk = 2η(lk) + 2η(lk, lm) ,

ηXm = 2η(lm) + 2η(lkJm) .

Now 7](lk), Ύj(lm) are orthogonal to ηXi, i ψ k, m, and to η(lk, lm). They are unit
vectors and independent since η(lk) η(lm) = ^. Thus ^^A, ̂ ^m are not dependent
on ηxv i ψ k, m, and therefore any 8 of ηxv ί Φ k, m, must be dependent. But
η(k, lm) for / < 8, i Φ k, are orthogonal and hence independent. Thus 7](lt, lk)
for / > 9, iφm depends on {η(lu lm), i < 8, i Φ k). Similarly -ηil^ lm), i < 8,
/ Φ k, depends on {ηik, lk), i > 9, i Φ m). Hence the sets

Wt, U , i < 8} and {v(li9 lk), ί > 9} ,

for any m > 9, k < 8, all span the same space.
We write out the relations to be proved to make it easier to follow the argu-

ments. Because the list is large we abbreviate ηil^ lj) by /, j and — ̂ (Zί? l3) by
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— i, j . We also leave out the equal signs because we understand that the vectors
in each row are equal. The tableau of relation is:

1,9

1,10

1,11

1,12

1,13

1,14

1,15

1,16

\v(h, I,

2,10

- 2 , 9

-2,12

2,11

-2,15

2,16

2,13

-2,14

ί), i = 9,

3,11
3,12

- 3 , 9

-3,10

3,16

3,15

-3,14

-3,13

• ••,16}

4,12

-4,11

4,10

- 4 , 9

-4,14

4,13

-4,16

4,15

and {M

5,13
5,15

-5,16

5,14

- 5 , 9

-5,12

-5,10

5,11

, k), i =

6,14
-6,16

-6,15

-6,13

6,12

- 6 , 9

6,11

6,10

7,15
-7,13

7,14

7,16 -

7,10 -

-7,11 -

- 7 , 9

-7,12 -

9, , 16} are each

8,16
8,14

8,13

-8,15

-8,11

-8,10

8,12

-8,9

sets
orthogonal vectors spanning the same space. Furthermore η(ll719) and η(l2, Z9)
are orthogonal. As Zlo, , /16 rotate among themselves, η(l2, Zlo) is carried into
any vector orthogonal to η(l2, /9). In particular we may rotate so that η(l19 /9) =
φ2, /1 0). Then using Lemma 5 we find η(l19 Zlo) = — η(l2, Z9). During this proof
each use of Lemma 5 refers to the formula:

where we use z, /, k, m = 1, 2, 9,10.
Now {η(l19 li), i = 11, , 16} and {η(l2, lt), i = 11, , 16} are orthogonal

sets spanning the same space. Furthermore φx, Zu) and η(l2, ln) are orthogonal.
Hence by rotating Z12, , Z16 among themselves we may achieve ^(Z1? Zn) =
— η(l29 Z12). By Lemma 5, η(l19 Z12) == η(l29 Zn). Again {η(l19 lt)9 i = 13, , 16}
and {̂ (Z2, li) i = 13, , 16} are orthogonal vectors spanning the same space.
Since η(l19 Z13) and η(l2, Z13) are orthogonal, rotating Z14, Z15, Z16 among themselves
we achieve η(l19 Z13) — —η(l29 Z15). By Lemma 5, η(l19 Z16) = η(l2, Z13). This leaves
Wi, hd> Φi> ϊiβ)} a n d {v(l2> W J y(h, he)} spanning the same plane. But η(l19 Z14)
and η(l2, Z14) are orthogonal. Hence by changing Z16 to — Z16 if necessary we may
achieve ^(Zi, Z14) = ^(Z2, Zlβ) and by Lemma 5, ^(/1? Z16) = —r](l2ju). Thus the
first two columns of the tableau are equal.

Since η(l19112) = η(l2, ln) we see that {η(k, Zn), / = 3, , 8} and {η(ll9 Z<),
/ = 9,10,13,14,15,16} span the same space. We rotate Z3, , Z8 among them-
selves to make η(ll9 Z9) = 3y(Z3,Zn). Apply Lemma 5 to η(ll9 Z9) = 2y(Z2, Z10) = 5?(/3, Zn)
to see that ^(Z2, Zn) = — gy(Z3, Z10) and ^(/1? Zn) = -η(l3, Z9). Hence — ̂ (Z2, Z12) =

— η(l3, Z9) and Lemma 5 applied to this gives — η(l2, Z9) = ^(Z3, Z12).
T h e conditions ^(Z1? Z14) = η(l2, Zlβ) and ^(Zj, Zlβ) = — ̂ (Z2, Z14) are preserved by

a rotation of Z14, Z16 in their plane. Hence we may yet rotate Z14, Z16 and not change
any of the relations so far established. But η(l39 Z14) and ^(/3, Z16) lie in the plane
spanned by η(l19 Z13) and ^(Z1? Z15). Thus performing a rotation of Z14, Z16 we may
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achieve η(l19lw) = η(h,h6). By Lemma 5, η(l19 /16) = - J ? ( / 3 , / 1 3 ) . So the first
three columns of the tableau are equal.

Now {η(k, /12), i = 4, , 8} and {η(l19 h), i = 9,13,14,15,16} both span
the same space. Hence by rotating /4, Z5, , /8 we may achieve η(l19 Z9) =
5?(/4, /12). Using the fact that φ19 /9) = η(l29 l10) = ^(/3, Zπ) = ^(/4, /12) and apply-
ing Lemma 5 we see that η(l19112) = — η(li9 Z9), — J?(/2, /12) = ??(/4, /10) and ^(/3, /12)
= -v(l4, ln). But now {v(h, /,), i = 13, , 16} and {?(/1? /,), / = 13, . . , 16}
span the same space. Because η(l19l^ = — η(l3,lu) and η(ll9 Zlβ) = — η(l2,hd
we see that η(l4, lu) is orthogonal to η(lλ, Z*), i = 14,15,16. Hence η(l19 Z13) =
-A?(Z4, Z14), Λ = ± 1 . By Lemma 5 because η(l19 Z13) = -ψ29 Zlβ) = φZ9 Zlβ) =
- ^ ( / 4 , /14) we see that η(l19 Z14) = λη(lA9 /13), -5?(/2, /14) = λη(lA9 /15) and - ^ ( / 3 , Z14)
= —ληil^ /16). Hence except for the determination of λ, the first four columns
of the tableau are equal.

Now {η(lu /13), ί = 5, 6, 7, 8} lies in the span of {̂ (/1? Z4), i = 9,10,11,12}.
By rotating among /5/6/7/8 we may assume that η(k,Q = ^(/5,/13). We apply
Lemma 5 successively to a list of relations each of which is true by an appli-
cation of Lemma 5 to an earlier member of the list and use of the fact that the
first four columns in the tableau are equal, except for λ. The list is η(l1919) =

rj(k, hz) y(h> hi) = Φ» in) —y(h> Ή) = ?tt» hi) —η(h, k) = y(h, hi) v(h, hd
= η(h, hi) — ?(i3> Ίo) = Φ^ hd ^(ii, ίiβ) = η(h, hi) and η(l19 /15) = —^(/5, /10).
The result is that λ = + 1 and the first five columns of the tableau are equal.

Now {η(li9 / u ) , / = 6, 7, 8} and {η(l19 lt), i = 9,10,11} span the same space.
Hence by rotating /6/7/8 we may make η(lx, Q = η(l6, lu). We apply Lemma 5
to the relations of the first row as far as we know them and then to η(l19 /16) =
η(l^ ll5) = η(lQ, ll0) to conclude that the first six columns of the tableau are equal.

Again {η(li9 /15), i = 7, 8} and {η(l19 /9), η(l19 /12)} span the same plane. Thus
rotating /7/8 we may achieve η(lx,Q = η(lΊ,h5)> Applying Lemma 5 to the
relations of the first row as far as we know them and then to η(l19 /16) =
— y](h> 1̂2) we conclude that the first seven columns of the tableau are equal.

By sending /8 to —/8 if necessary we see that η{h,Q — rj{k,h^. Applying
Lemma 5 to the relations of the first row finishes the proof.

Proof of the theorem. We may assume by Proposition 4 that all the geo-
desies of M are circles of radius 1. The unit tangent sphere TS™'1 is fibred by
great spheres of dimensions a — 1. Namely the point / e TS7^1 lies on the great
sphere ail) Π TSp'1. By Proposition 13 they all have the same dimension
a — 1. But it is a theorem of topology that an (n — l)-sphere can be fibred by
spheres of dimension a — 1 only if a = 1, 2,4, 8, or n. For a = 1, 2 or 4, n
may be any multiple of 1,2, or 4 respectively, a = n may hold for any n and
the only other case is a = 8 and n = 16.

If a = n then M is a unit rc-sphere because all the geodesies through a point
have the same center. (See the remark after Proposition 7.) For the other
cases where a = 1, 2,4 or 8 we use Lemma 11 and Lemmas 14-17 to find a
basis k of Tp such that η(li9 lj)-η(lk9 lm) are known for all /, /, k, m.
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In the cases where a — 1, 2,4 or 8 let V be the given embeddings of RPn,
CPn,LPn,OP2 respectively. Perform a dilatation of the Euclidean space so
that the geodesies of V have radius 1, and assume V and M lie in the same
Euclidean space.

Now V is a manifold with planar geodesies. Hence by our previous calcu-
lations we may find a basis liv of TPV such that the quantities ηv(hv>hv)m

ηv(hv> Imv) have the calculated values.
Perform a translation to make M and V coincide at one point. Then perform

a rotation about that point to make the tangent planes of M and V coincide
at that one point. Let lt be the basis in the common tangent plane in which
y(h> lj)'i]Q>k, lm) were computed, and lίv the corresponding basis for V. Rotate
and reflect about the common point until lt coincides with liv.

Now if two sets of vectors have identical inner products (for corresponding
pairs), we may perform a rotation and reflection about the origin to make them
agree. Using this fact we may perform a rotation and reflection in the normal
space, leaving the common tangent plane pointwise fixed to make ηv(li913) =
ηQi, lj). This implies that η = ηv zi that point. Hence the geodesies of each
manifold through that point coincide so that the manifolds coincide locally. By
analytic continuation M is either an open subset of an rc-plane or congruent to
a dilatation of an open subset of a manifold in the list.
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