MANIFOLDS WITH PLANAR GEODESICS

JOHN A. LITTLE

Abstract

Theorem. Let M be a connected submanifold of some Euclidean space; dimension $M \geq 2$. If every geodesic of M lies in a 2-plane, then M is either an open subset of an n-plane or is congruent to a dilatation of an open subset of $S^{n}, \boldsymbol{R} P^{n}, \boldsymbol{C P} P^{n}, \boldsymbol{Q P}^{n}$ or $\boldsymbol{O P} P^{2}$. Here S^{n} is the unit sphere and the others are particular submanifolds to be described.

This paper is a continuation and in a sense a completion of the work of Sing-Long Hong [3]. Lemmas and propositions numbered 2 through 13 are essentially due to Hong. We have included them in some cases in order to clarify his work and in other cases to make our paper self-contained.

Denote by \boldsymbol{F} either the real \boldsymbol{R}, complex \boldsymbol{C}, or quaternion \boldsymbol{Q}, fields or the algebra of Cayley numbers \boldsymbol{O}. On \boldsymbol{F} the Euclidean inner product may be written $f_{1} \cdot f_{2}=\frac{1}{2}\left(f_{1} \bar{f}_{2}+f_{2} \bar{f}_{1}\right), f_{1}, f_{2} \in \boldsymbol{F}$. Let $M^{n}(\boldsymbol{F})$ be the $n \times n$ matrices over F. It is a Euclidean space with inner product $M_{1} \cdot M_{2}=\frac{1}{2}$ trace $\left(M_{1} \bar{M}_{2}^{t}+M_{2} \bar{M}_{1}^{t}\right)$ where $\boldsymbol{M}_{i}^{t}(i=1,2)$ is the transpose of the matrix M_{i}. The manifolds $\boldsymbol{F} \boldsymbol{P}^{n}$ listed in the theorem may be defined as follows: $\boldsymbol{F P}{ }^{n}=\left\{M \in M^{n+1}(\boldsymbol{F}) \mid M=\bar{M}^{t}\right.$, $M=M^{2}$, and $\left.\operatorname{rank} M=1\right\}$. Note that when \boldsymbol{F} is \boldsymbol{O} we only define $\boldsymbol{O} \boldsymbol{P}^{2}$.

When \boldsymbol{F} is $\boldsymbol{R}, \boldsymbol{C}$ or \boldsymbol{Q} it is well known that the manifolds given are embeddings of the abstractly defined projective spaces $\boldsymbol{F} \boldsymbol{P}^{n}$. In the case of the Cayley plane $\boldsymbol{O} \boldsymbol{P}^{2}$, one often takes this as the definition. It is also an embedded submanifold of Euclidean space.

Proposition 1. The submanifolds of $\boldsymbol{R} P^{n}, \boldsymbol{C P}, \boldsymbol{Q} P^{n}$ and $\boldsymbol{O P} P^{2}$ given above all have planar geodesics.

Proof. Let \boldsymbol{F} be $\boldsymbol{R}, \boldsymbol{C}$ or \boldsymbol{Q}. Any Hermitian symmetric matrix over \boldsymbol{F} can be put in diagonal form by a change of basis. The diagonal form of a rank 1 matrix has a zero everywhere except for one element on the diagonal. Thus any Hermitian symmetric rank 1 matrix over \boldsymbol{F} can be written $\left(f_{i} \bar{f}_{j}\right)$ for $f_{i} \in \boldsymbol{F}$, $1 \leq i \leq n+1 . \phi: \boldsymbol{F}^{n+1} \rightarrow M^{n+1}(\boldsymbol{F})$, defined by $\phi\left(f_{1}, \cdots, f_{n+1}\right)=\left(f_{i} \bar{f}_{j}\right)$, maps \boldsymbol{F}^{n+1} onto the Hermitian symmetric rank 1 matrices. For a matrix $M=\left(f_{i} \bar{f}_{j}\right)$ a simple computation shows that $M^{2}=($ trace $M) M$. Hence $M=\phi\left(f_{1}, \cdots, f_{n+1}\right)$ satisfies $M^{2}=M$ if and only if trace $\left(f_{i} \bar{f}_{j}\right)=1$, which is true if and only if $\left(f_{1}\right.$, \cdots, f_{n+1}) lies on the unit sphere in \boldsymbol{F}^{n+1}. Thus ϕ maps the unit sphere in \boldsymbol{F}^{n+1} onto the previously defined $\boldsymbol{F} \boldsymbol{P}^{n}$. Also $\phi\left(f_{1}, \cdots, f_{n+1}\right)=\phi\left(f_{1} w, \cdots, f_{n+1} w\right)$ for any unit vector w in \boldsymbol{F}. Hence ϕ maybe defined on the abstract projective space

[^0]over $\boldsymbol{F}, \phi: \boldsymbol{F} \boldsymbol{P}^{n} \rightarrow \boldsymbol{M}^{n+1}(\boldsymbol{F}) . \phi$ is an embedding of the abstract $\boldsymbol{F} \boldsymbol{P}^{n}$ onto the embedded submanifolds previously defined. If $A: \boldsymbol{F}^{n+1} \rightarrow \boldsymbol{F}^{n+1}$ is a linear transformation such that $A \bar{A}^{t}=\bar{A}^{t} A=I$ we say A is orthogonal (for F). We may check that $\varphi(A v)=A \varphi(v) \bar{A}^{t}$ for $v \in F^{n+1}$. The mapping which sends $M \in M^{n+1}(\boldsymbol{F})$ to $A M \bar{A}^{t}$, where A is orthogonal, preserves the inner product in $M^{n+1}(F)$ and so is a Euclidean motion. Now the orthogonal transformations on \boldsymbol{F}^{n+1} give projective transformations on $\boldsymbol{F} P^{n}$. Hence the equation $\varphi(A v)=A \varphi(v) \bar{A}^{t}$ shows that any projective transformation of $\varphi\left(\boldsymbol{F} P^{n}\right)$ arising from an orthogonal transformation of \boldsymbol{F}^{n+1} can be accomplished by a Euclidean motion of $\boldsymbol{M}^{n+1}(\boldsymbol{F})$. For this reason φ is said to be equivariant. The identity $\sum_{i, j}\left(f_{i} \bar{f}_{j}\right) \overline{\left(f_{i} \bar{f}_{j}\right)}=\left(\sum_{i} f_{i} \bar{f}_{i}\right)^{2}$ and the fact that $\sum_{i} f_{i} \bar{f}_{i}=1$ show that $\varphi\left(\boldsymbol{F} P^{n}\right)$ lies on the unit sphere about the origin in $M^{n+1}(F)$.

A projective line in the embedded manifold is a sphere of dimension 1,2 , or 4 according as \boldsymbol{F} is $\boldsymbol{R}, \boldsymbol{C}$, or \boldsymbol{Q}. It suffices using the equivariance to check this for just one projective line, say $\varphi\left(f_{1}, f_{2}, 0, \cdots, 0\right)$. Let $M=\left(m_{i j}\right)$ be the coordinates in $M^{n+1}(\boldsymbol{F})$. Then $m_{11}=\left|f_{1}\right|^{2}, m_{12}=f_{1} \bar{f}_{2}, m_{21}=f_{2} \bar{f}_{1}, m_{22}=\left|f_{2}\right|^{2}$, the other $m_{i j}=0$ and $\left|f_{1}\right|^{2}+\left|f_{2}\right|^{2}=1$. So within the linear space $m_{i j}=0$ for i, j not both 1 or 2 , the projective line is the intersection of the sphere

$$
\left|m_{12}\right|^{2}+\left|m_{21}\right|^{2}+\left|m_{11}-\frac{1}{2}\right|^{2}+\left|m_{22}-\frac{1}{2}\right|^{2}=\frac{1}{2}
$$

with the linear spaces $m_{11}=\bar{m}_{11}, m_{22}=\bar{m}_{22}, m_{12}=\bar{m}_{21}, m_{11}-\frac{1}{2}=-\left(m_{22}-\frac{1}{2}\right)$. These linear spaces pass through the center of the above sphere so that the projective line is a sphere of radius $1 / \sqrt{2}$.

Since any pair of points lie on a projective line, all the projective lines, i.e., real spheres, through a given point cover all of $\varphi\left(\boldsymbol{F} \boldsymbol{P}^{n}\right)$.

Geodesics of $\varphi\left(\boldsymbol{F} \boldsymbol{P}^{n}\right)$ are the great circles of the projective lines (i.e., real spheres). To see this it suffices to show that a line from the center of any sphere to any point on the sphere meets $\varphi\left(\boldsymbol{F P}^{n}\right)$ normally at that point. By equivariance it suffices to show this for one particular point and one particular projective line through that point.

Let the point be $P=\varphi(1,0, \cdots, 0)$. Let $L_{i}=\varphi\left(f_{1}, 0, \cdots, 0, f_{i}, 0, \cdots, 0\right)$, $i=2, \cdots, n+1$, be a set of projective lines through P. Then the tangent planes of L_{i} (as real spheres) span (and in fact give a direct sum decomposition of) the tangent space of $\varphi\left(\boldsymbol{F} P^{n}\right)$ at P.

Let span L_{i} be the plane spanned by L_{i}, and let T be the tangent to the unit sphere about the origin (which contains $\varphi\left(\boldsymbol{F P}^{n}\right)$) at P. It is not difficult to check that $T \cap \operatorname{span} L_{i}$ are completely orthogonal spaces meeting just at P. Thus the line from P to the center of L_{2} is normal to $T \cap \operatorname{span} L_{i}$. (Consider the components along T and normal to T.) But $T \cap \operatorname{span} L_{i}$ contains the tangent plane to L_{i} at P. Hence the line from the center of L_{2} to P meets each L_{i} orthogonally at P, and so it meets $\varphi\left(F P^{n}\right)$ orthogonally at P.

As for $\boldsymbol{O} \boldsymbol{P}^{2}$, the Cayley plane, consider first the 3×3 Hermitian matrices over \boldsymbol{O}. They are of the form

$$
M=\bar{M}^{t}=\left(\begin{array}{lll}
m_{11} & m_{12} & m_{13} \\
m_{21} & m_{22} & m_{23} \\
m_{31} & m_{32} & m_{33}
\end{array}\right)=\left(\begin{array}{ccc}
a_{1} & x_{3} & \bar{x}_{2} \\
\bar{x}_{3} & a_{2} & x_{1} \\
x_{2} & \bar{x}_{1} & a_{3}
\end{array}\right)
$$

where a_{i} are real and $x_{i} \in \boldsymbol{O}$. They form a Jordan algebra \boldsymbol{J} with Jordan product $M_{1} \cdot M_{2}=\frac{1}{2}\left(M_{1} M_{2}+M_{2} M_{1}\right)$. The group of automorphisms of J is a real form of an exceptional Lie group $F_{4} . \boldsymbol{O} P^{2}$ is the set of rank 1 matrices of J such that $M^{2}=M$. Defining equations are $a_{i j}=x_{k} \bar{x}_{k}, a_{k} \bar{x}_{k}=x_{i} x_{j}, a_{1}+a_{2}+a_{3}=1$, for $(i, j, k)=(1,2,3),(2,3,1)$ or $(3,1,2) . F_{4}$ acts transitively on pairs of polar points. Points M_{1}, M_{2} are polar if trace $\left(M_{1} M_{2}+M_{2} M_{1}\right)=0$. For any point M_{1} there is a projective line, the polar line, which is the locus of all points M_{2} such that $M_{1} M_{2}$ are a polar pair. J has real dimension 27 and $O P^{2}$ real dimension 16. For the above material concerning $\boldsymbol{O} \boldsymbol{P}^{2}$ see Freudenthal [1].

Using the defining equations of $\boldsymbol{O} P^{2}$ we see that $\sum_{i, j} m_{i j} \bar{m}_{i j}=\left(a_{1}+a_{2}+a_{3}\right)^{2}$ $=1$. Hence $\boldsymbol{O} P^{2}$ lies on the unit sphere in J about the origin.

For $\varphi \in F_{4}$ we have $\frac{1}{2}\left(\varphi\left(M_{1}\right) \varphi\left(M_{2}\right)+\varphi\left(M_{2}\right) \varphi\left(M_{1}\right)\right)=\frac{1}{2}\left(M_{1} M_{2}+M_{2} M_{1}\right)$ because φ is a Jordan algebra automorphism. Hence it is surely true that $\operatorname{trace}\left(\varphi\left(M_{1}\right) \varphi\left(M_{2}\right)+\varphi\left(M_{2}\right) \varphi\left(M_{1}\right)\right)=\operatorname{trace}\left(M_{1} M_{2}+M_{2} M_{1}\right)$. Hence F_{4} preserves polarity, i.e., sends polar points into polar points. Now J, as a set of Hermitian symmetric matrices, is a linear subspace of $M^{3}(\boldsymbol{O})$. On J the Euclidean inner product may be written $M_{1} \cdot M_{2}=\frac{1}{2}$ trace $\left(M_{1} M_{2}+M_{2} M_{1}\right)$ because $M=\bar{M}^{t}$ on J. Hence the elements of F_{4} are Euclidean motions on J.

Because F_{4} is transitive on polar pairs of points, it is also transitive on "pointed" projective lines. Namely, if L_{1}, L_{2} are any pair of projective lines, and $P_{1} \in L_{1}, P_{2} \in L_{2}$ are points on those lines, then there is an element of F_{4} sending P_{1} to P_{2} and L_{1} to L_{2}. Let P_{1}^{\prime} be the polar of L_{1}, and P_{2}^{\prime} the polar of L_{2}. Then the required element of F_{4} is the element sending the polar pair $P_{1} P_{1}^{\prime}$ to $P_{2} P_{2}^{\prime}$.

Using the defining equations of $O P^{2}$ we see that the polar line of the point $\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ is the line $m_{11}=a_{1}, m_{12}=x_{3}, m_{21}=\bar{x}_{3}, m_{22}=a_{2}$, the other $m_{i j}=0$, and $a_{1}+a_{2}=1, a_{1} a_{2}=x_{3} \bar{x}_{3}$. As before the projective line is the intersection of the sphere

$$
\left|m_{12}\right|^{2}+\left|m_{21}\right|^{2}+\left|m_{11}-\frac{1}{2}\right|^{2}+\left|m_{22}-\frac{1}{2}\right|^{2}=\frac{1}{2}
$$

with the linear spaces $m_{11}=\bar{m}_{11}, m_{22}=\bar{m}_{22}, m_{12}=\bar{m}_{21}, m_{11}-\frac{1}{2}=-\left(m_{22}-\frac{1}{2}\right)$. Hence the projective line is a real 8 -sphere of radius $1 / \sqrt{2}$. Thus because F_{4} is transitive on projective lines, every projective line is a real 8 -sphere of radius $1 / \sqrt{2}$.

The geodesics of $\boldsymbol{O P}{ }^{2}$ are the great circles of its projective lines. As before
it is enough to show that for any projective line L and any point P on L, the line from P to the center of L, as a real 8 -sphere, is a normal line to $O P^{2}$ at P. Because F_{4} is transitive on "pointed" projective lines, it is enough to show this when P is the point $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and L is the line $\left(\begin{array}{ccc}a_{1} & x_{3} & 0 \\ \bar{x}_{3} & a_{2} & 0 \\ 0 & 0 & 0\end{array}\right)$, where $a_{1}+a_{2}=$ $1, a_{1} a_{2}=x_{3} \bar{x}_{3}$. Let P^{\prime} be the polar of L and L^{\prime} the line joining P^{\prime} and P, and T the tangent to the unit sphere with the origin as center at P. Then it is not difficult to show that $T \cap \operatorname{span} L$ and $T \cap \operatorname{span} L^{\prime}$ are completely orthogonal spaces meeting just at P. Thus the line from P to the center of L must be orthogonal to the tangent planes of L and L^{\prime} (as real 8 -spheres) at P and hence orthogonal to the tangent plane of $\boldsymbol{O} P^{2}$ at P. This completes the proof.

Let $p \in M$, and let γ be a curve on M with tangent vector t at p. Then the component of the second derivative of γ normal to M at p we call $\eta(t)$. (It is well known that this normal component depends only on t and not on the specific parametrized curve γ.) Thus $\eta: T_{p} \rightarrow N_{p}$ gives a map from the tangent space of M at p to the normal space of M at p, and this map is in fact a quadratic form. We will also use η to denote the associated bilinear form $\eta: T_{p} \times T_{p} \rightarrow N_{p}$, (so that $\eta(t, t)=\eta(t)$). We call η (in either sense) the second fundamental form of M at P.

Proposition 2. If all the geodesics through a point of M are planar, then all those geodesics have the same curvature at that point. Here curvature means as a plane curve, not geodesic curvature.

Proof. Let p be the point through which all geodesics are planar. We first show that $\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{2}\right)=0$ for any orthonormal pair of tangent vectors l_{1}, l_{2} at p. Let $\gamma(s)$ be a geodesic through p in the direction l_{1}, s the arc length from p, and let $l_{2}(s)$ be a parallel (in sense of Levi-Civita) tangent field to M along γ and normal to γ such that $l_{2}(0)=l_{2}$. Then $\eta\left(l_{1}\right)=d^{2} \gamma / d s^{2}(0)$ and $\eta\left(l_{1}, l_{2}\right)=$ $d l_{2} / d s(0)$. Since γ is a geodesic, $d^{2} \gamma / d s^{2}$ is normal and therefore $d^{2} \gamma / d s^{2} \cdot l_{2}=0$. If $d^{2} \gamma / d s^{2}(0) \neq 0$, then we may write $d^{3} \gamma / d s^{3}=a d^{2} \gamma / d s^{2}+b d \gamma / d s$. Thus $d^{3} \gamma / d s^{3} \cdot l_{2}=0$. Now $0=d / d s\left(d^{2} \gamma / d s^{2} \cdot l_{2}\right)=d^{3} \gamma / d s^{3} \cdot l_{2}+d^{2} \gamma / d s^{2} \cdot d l_{2} / d s$. Hence $d^{2} \gamma / d s^{2} \cdot d l_{2} / d s=0$ so that $\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{2}\right)=0$.

As this is true for any orthonormal pair $l_{1} l_{2}$, we must have

$$
\eta\left(l_{1} \cos \theta+l_{2} \sin \theta\right) \cdot \eta\left(l_{1} \cos \theta+l_{2} \sin \theta,-l_{1} \sin \theta+l_{2} \cos \theta\right)=0
$$

for all θ. From this, using the bilinearity of η and double angle formulas we obtain

$$
\frac{1}{2}\left(\eta\left(l_{1}, l_{2}\right)^{2}-\frac{1}{4}\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right)^{2}\right) \sin 4 \theta+\frac{1}{4}\left(\eta\left(l_{2}\right)^{2}-\eta\left(l_{1}\right)^{2}\right) \sin 2 \theta=0 .
$$

Hence $\eta\left(l_{1}, l_{2}\right)^{2}-\frac{1}{4}\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right)^{2}=0$ and $\eta\left(l_{1}\right)^{2}=\eta\left(l_{2}\right)^{2}$.
Now using the bilinearity and double angle formulas again

$$
\begin{aligned}
\left(\eta\left(l_{1} \cos \theta+l_{2} \sin \theta\right)\right)^{2}= & \left(\frac{1}{4}\left(\eta\left(l_{1}\right)-\eta\left(l_{2}\right)\right)^{2}-\eta\left(l_{1}, l_{2}\right)^{2}\right) \cos 4 \theta \\
& +\frac{1}{4}\left(\eta\left(l_{1}\right)^{2}-\eta\left(l_{2}\right)^{2}\right) \cos 2 \theta+\left(\frac{1}{2}\left(\eta\left(l_{1}\right)+\eta\left(l_{2}\right)\right)\right)^{2} \\
& +\frac{1}{2}\left(\frac{1}{4}\left(\eta\left(l_{1}\right)-\eta\left(l_{2}\right)\right)^{2}+\eta\left(l_{1}, l_{2}\right)^{2}\right)
\end{aligned}
$$

Hence η^{2} is constant for all unit vectors in the plane of $l_{1} l_{2}$.
Finally given any unit vectors l_{1}, l_{2}, not necessarily orthogonal, η^{2} is constant on all unit vectors in their plane, so in particular $\eta^{2}\left(l_{1}\right)=\eta^{2}\left(l_{2}\right)$.

To finish we note that $\left|\eta\left(l_{1}\right)\right|, l_{1}$ a unit tangent vector, is the curvature of the geodesic through p in the direction l_{1} at p.

Proposition 3. Let $\gamma(t)$ be a curve of M, and $\gamma_{t}(s)$ a 1-parameter family of geodesics of M passing normally through γ, that is, $\gamma_{t}(0)=\gamma(t)$ and $d \gamma_{t} / d s(0)$ $\cdot d \gamma / d t(t)=0$. If the geodesics γ_{t} are planar, then they all have the same curvature as they cross γ, that is, if s is the arc length then $\left|d^{2} \gamma_{t} / d s^{2}(0)\right|$ is constant in t.

Proof. Let $X(s, t)=\gamma_{t}(s)$ be considered as a surface in M. If we prove the curvature is constant in neighborhoods of points where $d \gamma_{t} / d s, d^{2} \gamma_{t} / d s^{2}$ are independent, that will suffice because the constant will be nonzero. Hence the intervals where $d \gamma_{t} / d s, d^{2} \gamma_{t} / d s^{2}$ are independent will be both open and closed and so all of γ. If there is no point on γ where $d \gamma_{t} / d s, d^{2} \gamma_{t} / d s^{2}$ are independent, then of course the result is true.

Now since $X(s, t)$ is a geodesic parametrized by the arc length for fixed t, we see that X_{s} is a unit tangent vector, i.e., $X_{s} \cdot X_{s}=1$. By differentiating with respect to t we find that $X_{s} \cdot X_{s t}=0$. Next $(\partial / \partial s)\left(X_{s} \cdot X_{t}\right)=X_{s} \cdot X_{s t}+X_{s s} \cdot X_{t}$. But since $X(s, t)$ is a geodesic for fixed $t, X_{s s}$ is normal so $X_{s s} \cdot X_{t}=0$. Thus $(\partial / \partial s)\left(X_{s} \cdot X_{t}\right)=0$, and since $X_{s} \cdot X_{t}=0$ for $s=0$, it holds for all s, t.

Because the t held constant curves are planar, we may write $X_{s s s}=\alpha X_{s}+$ $\beta X_{s s}$ at a point where $X_{s}, X_{s s}$ are independent. So using the above we have $X_{s s s} \cdot X_{t}=0$. Differentiating $X_{s s} \cdot X_{t}=0$ with respect to s and using $X_{s s s} \cdot X_{t}$ $=0$ we obtain $X_{s s} \cdot X_{s t}=0$. Again because $X_{s s s}=\alpha X_{s}+\beta X_{s s}$ we have

$$
X_{s s s} \cdot X_{s t}=\alpha X_{s} \cdot X_{s t}+\beta X_{s s} \cdot X_{s t}=0
$$

Differentiating $X_{s s} \cdot X_{s t}$ with respect to s and using $X_{s s s} \cdot X_{t}=0$ we see that $X_{s s} \cdot X_{s s t}=0$. Hence $(\partial / \partial t)\left(X_{s s} \cdot X_{s s}\right)=2 X_{s s} \cdot X_{s s t}=0$. This implies that $\left(X_{s s}(0, t)\right)^{2}$, which is the square of the curvature of γ_{t} at the point where it crosses γ, is constant.

Proposition 4. If all the geodesics of M are planar, then either M^{n} is contained in an n-plane or else all the geodesics are circles of the same radius.

Proof. Let $g(p)$ be the curvature of any geodesic passing through p at p. By Proposition 2, g is well defined. By Proposition 3, g is constant along curves and hence constant on M. Thus each geodesic has constant curvature and so is either a line or a circle. Furthermore all geodesics have the same curvature, so they are either all lines or all circles of the same radius.

We now suppose that M^{n} is not contained in an n-plane. We perform a dilatation of the Euclidean space to make all the geodesics circles of radius 1.

We see that for manifolds all of whose geodesics are circles of radius 1 , $\eta^{2}\left(l_{1}\right)=1$ for any unit tangent vector l_{1}. From this, using the fact that $\eta\left(\lambda l_{1}\right)=$ $\lambda^{2} \eta\left(l_{1}\right)$ we have $\eta^{2}(t)=\left(t^{2}\right)^{2}$ for any tangent vector t.

Lemma 5. $\eta(t)^{2}=\left(t^{2}\right)^{2}$ for any tangent vector t has the following implications. For any orthonormal pair $l_{1} l_{2}$

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{2}\right)=0, \quad \eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)+2 \eta\left(l_{1}, l_{2}\right)^{2}=1,
$$

for any orthonormal triple $l_{1} l_{2} l_{3}$

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)+2 \eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{1}, l_{3}\right)=0,
$$

and for any orthonormal quadruple $l_{1} l_{2} l_{3} l_{4}$

$$
\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{3}, l_{4}\right)+\eta\left(l_{1}, l_{3}\right) \cdot \eta\left(l_{2}, l_{4}\right)+\eta\left(l_{1}, l_{4}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0 .
$$

Of course the statements can only be made if the dimension is appropriate (i.e., dimension ≥ 4 for quadruple, etc.).

Proof. Let $t=x_{1} l_{1}+x_{2} l_{2}+x_{3} l_{3}+x_{4} l_{4},\left(x_{4}=0\right.$ for dimension ≤ 3, etc.) Then $t^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}$, and $\eta(t)=\sum_{i, j=1}^{4} x_{i} x_{j} \cdot \eta\left(l_{i}, l_{j}\right)$ by the bilinearity. Hence

$$
\left(\sum_{i, j=1}^{4} x_{i} x_{j} \eta\left(l_{i} l_{j}\right)\right)^{2}=\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}\right)^{2} .
$$

Equating coefficients gives the result.
Lemma 6. Let l_{1}, l_{2} be orthonormal vectors with the property that $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right.$, $\left.l_{3}\right)=0$ for any unit vector l_{3} normal to l_{1} and l_{2}. Then $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$ or 1 .

Proof. Since geodesics are circles of radius 1, the manifold may be written

$$
X\left(r, l_{1}\right)=X(p)+(1-\cos r) \eta\left(l_{1}\right)+l_{1} \sin r,
$$

where r, l_{1} are geodesic polar coordinates, and $l_{1} \in T S_{p}^{n-1}$ is a unit tangent vector at p. Let l_{2}, \cdots, l_{n} be orthonormal vectors, normal to l_{1}, defined in some neighborhood on $T S_{p}^{n-1}$.

$$
\begin{aligned}
\eta_{l_{i}}\left(l_{1}\right) & =\left.\frac{d}{d \theta} \eta\left(l_{1} \cos \theta+l_{i} \sin \theta\right)\right|_{\theta=0} \\
& =\left.\frac{d}{d \theta}\left(\left(\cos ^{2} \theta\right) \eta\left(l_{1}\right)+2(\cos \theta \sin \theta) \eta\left(l_{1}, l_{i}\right)+\left(\sin ^{2} \theta\right) \eta\left(l_{i}\right)\right)\right|_{\theta=0} \\
& =2 \eta\left(l_{1}, l_{i}\right) \quad \text { for } i=2, \cdots, n
\end{aligned}
$$

$$
\begin{aligned}
\eta_{l_{2} l_{2}}\left(l_{1}\right) & =\left.\frac{d^{2}}{d \theta^{2}} \eta\left(l_{1} \cos \theta+l_{2} \sin \theta\right)\right|_{\theta=0} \\
& =\left.\frac{d^{2}}{d \theta^{2}}\left(\left(\cos ^{2} \theta\right) \eta\left(l_{1}\right)+2(\cos \theta \sin \theta) \eta\left(l_{1}, l_{2}\right)+\left(\sin ^{2} \theta\right) \eta\left(l_{2}\right)\right)\right|_{\theta=0} \\
& =2\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
X_{l_{i}}\left(r, l_{1}\right) & =(1-\cos r) \eta_{l_{i}}\left(l_{1}\right)+l_{1 l_{i}} \sin r \\
& =2(1-\cos r) \eta\left(l_{1}, l_{i}\right)+l_{i} \sin r \\
X_{l_{2} l_{2}}\left(r, l_{1}\right) & =(1-\cos r) \eta_{l_{2} l_{2}}\left(l_{1}\right)+l_{1 l_{2} l_{2}} \sin r \\
& =2(1-\cos r)\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right)-l_{1} \sin r \\
X_{r}\left(r, l_{1}\right) & =(\sin r) \eta\left(l_{1}\right)+l_{1} \cos r .
\end{aligned}
$$

$X_{l_{i}} \cdot X_{r}=0$ for $i=2, \cdots, n$ because $\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{i}\right)=0$ by Lemma 5 . So $X_{l_{2} l_{2}} \cdot X_{l_{i}}=4(1-\cos r)^{2} \eta\left(l_{1}, l_{i}\right) \cdot\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right), i=2, \cdots, n$. By Lemma 5, $\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{i}\right)=0$ for $i=2, \cdots, n$ and $\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{2}\right)=0$. Thus, if $\eta\left(l_{2}\right) \cdot \eta\left(l_{1}, l_{i}\right)$ $=0$ for $i=3, \cdots, n$ we have $X_{l_{2} l_{2}} \cdot X_{l_{i}}=0$. Since the conclusion of the lemma is symmetric in l_{1} and l_{2}, we may interchange the roles of l_{1} and l_{2} throughout the proof. We then require that $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{i}\right)=0$ for $i=3, \cdots, n$, which is the hypothesis. Hence $X_{l_{2} l_{2}} \cdot X_{l_{i}}=0$.

$$
X_{l_{2} l_{2}} \cdot X_{r}=2(1-\cos r)(\sin r) \eta\left(l_{1}\right) \cdot\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right)-\sin r \cos r .
$$

Also $X_{r} \cdot X_{r}=1$ because r is the arc length. Hence $X_{l_{2} l_{2}}^{N}=X_{l_{2} l_{2}}-\left(X_{l_{2} l_{2}} \cdot X_{r}\right) X_{r}$. (N means normal component.) Now $\eta(t)^{2}=\left(t^{2}\right)^{2}$ for any tangent vector t. When $t=X_{l_{2}}\left(r, l_{1}\right)$ we see that $\eta(t)=X_{l_{2} l_{2}}^{N}$. Thus $\left(X_{l_{2} l_{2}}^{N}\right)^{2}-\left(X_{l_{2}}^{2}\right)^{2}=0$. But $X_{l_{2} l_{2}}^{N}=$ $X_{l_{2} l_{2}}-\left(X_{l_{2} l_{2}} \cdot X_{r}\right) X_{r}$, which implies $\left(X_{l_{2} l_{2}}^{N}\right)^{2}=X_{l_{2} l_{2}}^{2}-\left(X_{l_{2} l_{2}} \cdot X_{r}\right)^{2}$. From above computations

$$
\begin{aligned}
X_{l_{2} l_{2}}^{2} & =4(1-\cos r)^{2}\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right)^{2}+\sin ^{2} r \\
X_{l_{2}}^{2} & =4(1-\cos r)^{2} \eta\left(l_{1}, l_{2}\right)^{2}+\sin ^{2} r
\end{aligned}
$$

From Lemma 5, $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)+2 \eta\left(l_{1}, l_{2}\right)^{2}=1$ so

$$
X_{l_{2}}^{2}=2(1-\cos r)^{2}\left(1-\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)\right)+\sin ^{2} r
$$

Thus

$$
\begin{aligned}
0= & X_{l_{2} l_{2}}^{2}-\left(X_{l_{2} l_{2}} \cdot X_{r}\right)^{2}-\left(X_{l_{2}}^{2}\right)^{2} \\
= & 4(1-\cos r)^{2}\left(\eta\left(l_{2}\right)-\eta\left(l_{1}\right)\right)^{2}+\sin ^{2} r \\
& -\left(2(1-\cos r) \sin r\left(\eta\left(l_{2}\right) \cdot \eta\left(l_{1}\right)-1\right)-\sin r \cos r\right)^{2} \\
& -\left(2(1-\cos r)^{2}\left(1-\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)\right)+\sin ^{2} r\right)^{2} .
\end{aligned}
$$

This after some simplification gives

$$
0=4(1-\cos r)^{3}\left(1-\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)\right)\left(2 \eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)-1\right)
$$

which must hold for all r. This concludes the proof.
For any unit tangent vector l_{1} let $\alpha\left(l_{1}\right)=\left\{t \in T_{p} \mid \eta(t /|t|)=\eta\left(l_{1}\right)\right.$ or $\left.t=0\right\}$.
Proposition 7. $\alpha\left(l_{1}\right)$ is a linear subspace of T_{p}.
Proof. Suppose l_{2} is a unit vector such that $l_{1} \wedge l_{2} \neq 0$. Let l_{3} be a unit vector in the plane of $l_{1} l_{2}$ and normal to l_{1}. We may write $l_{2}=a l_{1}+b l_{3}, a^{2}+$ $b^{2}=1, b \neq 0$. Then

$$
\eta\left(l_{2}\right)=a^{2} \eta\left(l_{1}\right)+2 a b \eta\left(l_{1}, l_{3}\right)+b^{2} \eta\left(l_{3}\right) .
$$

By Lemma 5, $\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{3}\right)=0$ so $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=a^{2}+b^{2} \eta\left(l_{1}\right) \cdot \eta\left(l_{3}\right)$. Because a^{2} $+b^{2}=1, b \neq 0$ we see that $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=1$ if and only if $\eta\left(l_{1}\right) \cdot \eta\left(l_{3}\right)=1$. Hence $l_{2} \in \alpha\left(l_{1}\right)$ if and only if $l_{3} \in \alpha\left(l_{1}\right)$. Thus, if any tangent vector $t \in \alpha\left(l_{1}\right)$ then $\operatorname{span}\left(t, l_{1}\right) \subset \alpha\left(l_{1}\right)$. Hence it suffices to show that the vectors in $\alpha\left(l_{1}\right)$, which are orthogonal to l_{1}, are a linear subspace of T_{p}.

So suppose $l_{2}, l_{3} \in \alpha\left(l_{1}\right)$ are unit vectors and $l_{2} \cdot l_{1}=l_{3} \cdot l_{1}=0$. Since $l_{2}, l_{3} \in \alpha\left(l_{1}\right)$, we have $\eta\left(l_{2}\right) \cdot \eta\left(l_{1}\right)=\eta\left(l_{3}\right) \cdot \eta\left(l_{1}\right)=1$ and therefore $\eta\left(l_{2}, l_{1}\right)=\eta\left(l_{3}, l_{1}\right)=0$ by Lemma 5. Thus $\eta\left(a l_{2}+b l_{3}, l_{1}\right)=a \eta\left(l_{2}, l_{1}\right)+b \eta\left(l_{3}, l_{1}\right)=0$. Let $l_{4}=\left(a l_{2}\right.$ $\left.+b l_{3}\right) /\left|a l_{2}+b l_{3}\right|$. Then $\eta\left(l_{4}, l_{1}\right)=0$ and $l_{1} l_{4}$ are an orthonormal pair. Thus by Lemma 5, $\eta\left(l_{4}\right) \cdot \eta\left(l_{1}\right)=1$ so that $l_{4} \in \alpha\left(l_{1}\right)$. Hence $a l_{2}+b l_{3} \in \alpha\left(l_{1}\right)$ for any a, b, which concludes the proof.

Remark. If X is a point of M and l_{1} a unit tangent vector, then the geodesic through X in the direction l_{1} is centered at $X+\eta\left(l_{1}\right)$. Thus all geodesics through X tangent to $\alpha\left(l_{1}\right)$ have the same center. Thus all geodesics through a point, which have the same center, fill out a sphere.

Let $S\left(l_{1}\right)$ be the unit vectors in $\alpha\left(l_{1}\right)^{\perp}$, the orthogonal complement of $\alpha\left(l_{1}\right)$. Let $f_{l_{1}}: S\left(l_{1}\right) \rightarrow \boldsymbol{R}$ be defined by $f_{l_{1}}(l)=\eta\left(l_{1}\right) \cdot \eta(l)$.

Lemma 8. Let l_{2} be a critical point of $f_{l_{1}}$. Then

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0
$$

for all unit vectors l_{3} orthogonal to l_{1} and l_{2}.
Proof. Suppose $l_{3} \in \alpha\left(l_{1}\right), l_{3}$ a unit vector. Then $\eta\left(l_{1}\right)=\eta\left(l_{3}\right)$, which implies $\eta\left(l_{1}\right) \cdot \eta\left(l_{3}\right)=1$. Using Lemma 5 we have $\eta\left(l_{1}\right) \cdot \eta\left(l_{3}\right)+2 \eta\left(l_{1}, l_{3}\right)^{2}=1$ so that $\eta\left(l_{1}, l_{3}\right)=0$. Again by Lemma 5, $\eta\left(l_{1}\right) \cdot \eta\left(l_{2} \cdot l_{3}\right)+2 \eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{1}, l_{3}\right)=0$. Hence $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0$.

Suppose $l_{3} \in \alpha\left(l_{1}\right)^{\perp}$. Then the derivative of $f_{l_{1}}\left(l_{2} \cos \theta+l_{3} \sin \theta\right)$ with respect to θ at $\theta=0$ is 0 because l_{2} is a critical point of $f_{l_{1}}$.

$$
\begin{aligned}
& f_{l_{1}}\left(l_{2} \cos \theta+l_{3} \sin \theta\right)=\eta\left(l_{1}\right) \cdot \eta\left(l_{2} \cos \theta+l_{3} \sin \theta\right) \\
& \quad=\eta\left(l_{1}\right) \cdot\left(\left(\cos ^{2} \theta\right) \eta\left(l_{2}\right)+2(\cos \theta \sin \theta) \eta\left(l_{2}, l_{3}\right)+\left(\sin ^{2} \theta\right) \eta\left(l_{3}\right)\right) .
\end{aligned}
$$

So $0=d f_{l_{1}} /\left.d \theta\right|_{\theta=0}=2 \eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)$.
Now in general any l_{3} may be written $l_{3}=l_{4} \cos \theta+l_{5} \sin \theta$ for $l_{4} \in \alpha\left(l_{1}\right)$, $l_{5} \in \alpha\left(l_{1}\right)^{\perp}$. Since $l_{1} \cdot l_{3}=0$ and $l_{1} \cdot l_{5}=0$, we must have $l_{1} \cdot l_{4}=0$. Since $l_{2} \cdot l_{3}$ $=l_{2} \cdot l_{4}=0$, we must have $l_{2} \cdot l_{5}=0$. Thus by the previous cases $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{i}\right)$ $=0, i=4,5$. Hence

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=(\cos \theta) \eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{4}\right)+(\sin \theta) \eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{5}\right)=0 .
$$

Lemma 9. Let l_{1}, l_{2} be orthonormal tangent vectors. Then $l_{2} \in \alpha\left(l_{1}\right)^{\perp}$ if and only if $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$.

Proof. Suppose $l_{2} \in \alpha\left(l_{1}\right)^{\perp}$. If l_{2} is a critical point of $f_{l_{1}}$, then Lemma 6 and Lemma 8 show that $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$ or 1 . But $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=1$ implies $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ and so $l_{2} \in \alpha\left(l_{1}\right)$. So the assumption $l_{2} \in \alpha\left(l_{1}\right)^{\perp}$ shows that $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$. But the critical points of $f_{l_{1}}$ include both its maximum and minimum points. Hence $\eta\left(l_{1}\right) \cdot \eta(l)=f_{l_{1}}(l)=\frac{1}{2}$ for all l in the domain of $f_{l_{1}}$ which is all unit vectors in $\alpha\left(l_{1}\right)^{\perp}$.

Now suppose $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$. Write $l_{2}=a l_{3}+b l_{4}$, where $l_{3} \in \alpha\left(l_{1}\right), l_{4} \in \alpha\left(l_{1}\right)^{\perp}$ and $a^{2}+b^{2}=1$. Then $\eta\left(l_{1}\right)=\eta\left(l_{3}\right)$ and by the first part $\eta\left(l_{1}\right) \cdot \eta\left(l_{4}\right)=\frac{1}{2}$. Hence

$$
\begin{aligned}
\frac{1}{2} & =\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\eta\left(l_{3}\right) \cdot \eta\left(l_{2}\right)=\eta\left(l_{3}\right) \cdot \eta\left(a l_{3}+b l_{4}\right) \\
& =\eta\left(l_{3}\right) \cdot\left(a^{2} \eta\left(l_{3}\right)+2 a b \eta\left(l_{3}, l_{4}\right)+b^{2} \eta\left(l_{4}\right)\right)=a^{2}+\frac{1}{2} b^{2} .
\end{aligned}
$$

Here $\eta\left(l_{3}\right) \cdot \eta\left(l_{3}, l_{4}\right)=0$ by Lemma 5. So $\frac{1}{2}=a^{2}+\frac{1}{2} b^{2}$ and $a^{2}+b^{2}=1$, which give $a=0$. Thus $l_{2} \in \alpha\left(l_{1}\right)^{\perp}$.

We call a linear subspace L of T_{p} closed with respect to α if $l \in L$ implies $\alpha(l) \subset L$ for any unit vector l.

Lemma 10. If L is closed with respect to α, then L^{\perp}, the orthogonal complement, is also closed with respect to α.

Proof. Take $l_{1} \in L^{\perp}$ and $l_{2} \in \alpha\left(l_{1}\right)$. Then we may write $l_{2}=a l_{3}+b l_{4}, l_{3} \in L$, $l_{4} \in L^{\perp}, a^{2}+b^{2}=1 . \eta\left(l_{1}\right)=\eta\left(l_{2}\right)=a^{2} \eta\left(l_{3}\right)+2 a b \eta\left(l_{3}, l_{4}\right)+b^{2} \eta\left(l_{4}\right)$. Since L is closed with respect to α, we have $\alpha\left(l_{3}\right) \subset L$, so that $l_{1}, l_{4} \in \alpha\left(l_{3}\right)^{\perp}$. By Lemma 9, $\eta\left(l_{1}\right) \cdot \eta\left(l_{3}\right)=\eta\left(l_{4}\right) \cdot \eta\left(l_{3}\right)=\frac{1}{2}$. Thus $\frac{1}{2}=\eta\left(l_{1}\right) \cdot \eta\left(l_{3}\right)=a^{2}+2 a b \eta\left(l_{3}\right) \cdot \eta\left(l_{3}, l_{4}\right)+\frac{1}{2} b^{2}$. By Lemma 5, $\eta\left(l_{3}\right) \cdot \eta\left(l_{3}, l_{4}\right)=0$. So $\frac{1}{2}=a^{2}+\frac{1}{2} b^{2}$, which together with $a^{2}+b^{2}$ $=1$ gives $a=0$. Hence $l_{2} \in L^{\perp}$.

Lemma 11. Assume all the orthonormal vectors below satisfy $l_{i} \in \alpha\left(l_{j}\right)$ or $l_{i} \in \alpha\left(l_{j}\right)^{\perp}$ for any $i, j, i \neq j$. Then: for any unit vector

$$
\eta\left(l_{1}\right)^{2}=1 ;
$$

for any orthonormal pair

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)= \begin{cases}1 & \text { if } l_{1} \in \alpha\left(l_{2}\right) \\ \frac{1}{2} & \text { if } l_{1} \in \alpha\left(l_{2}\right)^{\perp}\end{cases}
$$

$$
\begin{aligned}
\eta\left(l_{1}, l_{2}\right)^{2} & = \begin{cases}0 & \text { if } l_{1} \in \alpha\left(l_{2}\right), \\
\frac{1}{4} & \text { if } l_{1} \in \alpha\left(l_{2}\right)^{\perp},\end{cases} \\
\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{2}\right) & =0 ;
\end{aligned}
$$

for any orthonormal triple

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0, \quad \eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{1}, l_{3}\right)=0 ;
$$

for any orthonormal quadruple

$$
\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{3}, l_{4}\right)=0
$$

if $l_{1} \in \alpha\left(l_{2}\right)$ or $l_{3} \in\left(l_{4}\right)$, or if $l_{i} \in \alpha\left(l_{j}\right)^{\perp}$ for all $i, j, i \neq j$.
Notice that we have not covered all cases for an orthonormal quadruple of vectors.

Proof. $\quad \eta\left(l_{1}\right)^{2}=1$ if l_{1} is a unit vector because geodesics are circles of radius 1.
Let l_{1}, l_{2} be orthonormal vectors satisfying the conditions of the lemma. If $l_{1} \in \alpha\left(l_{2}\right)$, then $\eta\left(l_{1}\right)=\eta\left(l_{2}\right)$ so $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\eta\left(l_{1}\right)^{2}=1$. If $l_{1} \in \alpha\left(l_{2}\right)^{\perp}$, then by Lemma 9, $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$. Since $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}\right)+2 \eta\left(l_{1}, l_{2}\right)^{2}=1$ by Lemma 5, $\eta\left(l_{1}, l_{2}\right)^{2}=0$ or $\frac{1}{4}$ according as $l_{1} \in \alpha\left(l_{2}\right)$ or $l_{1} \in \alpha\left(l_{2}\right)^{\perp}$. Also $\eta\left(l_{1}\right) \cdot \eta\left(l_{1}, l_{2}\right)=0$ by Lemma 5.

Let $l_{1} l_{2} l_{3}$ be an orthonormal triple satisfying the conditions of the lemma. Assume $l_{2} \in \alpha\left(l_{1}\right)^{\perp}$. From Lemma 9 we see that $\eta\left(l_{1}\right) \cdot \eta(l)=\frac{1}{2}$ for all unit vectors $l \in \alpha\left(l_{1}\right)^{\perp}$. Hence the function $f_{l_{1}}$ of Lemma 8 is constant so that every point of its domain is a critical point. But since $l_{2} \in \alpha\left(l_{1}\right)^{\perp}, l_{2}$ is in the domain of $f_{l_{1}}$ and hence a critical point of $f_{l_{1}}$. Thus by Lemma $8, \eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0$. Next assume $l_{2} \in \alpha\left(l_{1}\right)$. Use Lemma 5 to write

$$
\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)+2 \eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{1}, l_{3}\right)=0 .
$$

From above if $l_{2} \in \alpha\left(l_{1}\right)$ then $\eta\left(l_{1}, l_{2}\right)=0$ so $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0$. Now $\eta\left(l_{1}, l_{2}\right)$ $\cdot \eta\left(l_{1}, l_{3}\right)=0$ for any triple satisfying the conditions of the lemma by Lemma 5 and the fact that $\eta\left(l_{1}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0$.

Next let $l_{1} l_{2} l_{3} l_{4}$ be an orthonormal quadruple such that $l_{i} \in \alpha\left(l_{j}\right)^{\perp}$ for $1 \leq i$, $j \leq 4$. In particular $l_{1} l_{2}$ are in $\alpha\left(l_{3}\right)^{\perp}$ and $\alpha\left(l_{4}\right)^{\perp}$. Hence $\left(l_{1}+l_{2}\right) / \sqrt{2}$ is in $\alpha\left(l_{3}\right)^{\perp}$ and $\alpha\left(l_{4}\right)^{\perp}$. Using Lemma 9 we see that $l_{i} \in \alpha\left(l_{j}\right)^{\perp}$ if and only if $l_{j} \in \alpha\left(l_{i}\right)^{\perp}$. Thus $\left(l_{1}+l_{2}\right) / \sqrt{2}, l_{3}, l_{4}$ are an orthonormal triple satisfying the conditions of this lemma. Hence $\eta\left(\left(l_{1}+l_{2}\right) / \sqrt{2}\right) \cdot \eta\left(l_{3}, l_{4}\right)=0$. Also since $l_{1} l_{3} l_{4}$ and $l_{2} l_{3} l_{4}$ are triples satisfying the conditions of this lemma, we have $\eta\left(l_{1}\right) \cdot \eta\left(l_{3}, l_{4}\right)=0$ and $\eta\left(l_{2}\right) \cdot \eta\left(l_{3} \cdot l_{4}\right)=0$. So

$$
\begin{aligned}
0 & =\eta\left(\left(l_{1}+l_{2}\right) / \sqrt{2}\right) \cdot \eta\left(l_{3}, l_{4}\right) \\
& =\left(\frac{1}{2} \eta\left(l_{1}\right)+\eta\left(l_{1}, l_{2}\right)+\frac{1}{2} \eta\left(l_{2}\right)\right) \cdot \eta\left(l_{3}, l_{4}\right)=\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{3}, l_{4}\right) .
\end{aligned}
$$

If $l_{1} \in \alpha\left(l_{2}\right)$ then $\eta\left(l_{1}, l_{2}\right)=0$, and if $l_{3} \in \alpha\left(l_{4}\right)$ then $\eta\left(l_{3}, l_{4}\right)=0$. Hence in these cases also $\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{3}, l_{4}\right)=0$. This finishes the proof of Lemma 11.

Lemma 12. If L_{1} and L_{2} are completely orthogonal subspaces of T_{p} both closed with respect to α, then their linear span is also closed with respect to α.

Proof. Let $l \in \operatorname{span}\left(L_{1}, L_{2}\right)$ be a unit vector, and let l^{\prime} be a unit vector in $\alpha(l), l^{\prime} \in \alpha(l)$. Then we may write

$$
l^{\prime}=a l_{1}+b l_{2}+c l_{3}
$$

where $l_{1} \in L_{1}, l_{2} \in L_{2}$ and $l_{3} \in \operatorname{span}\left(L_{1}, L_{2}\right)^{\perp}$ are unit vectors and $a^{2}+b^{2}+c^{2}$ $=1$.

$$
\begin{aligned}
\eta\left(l^{\prime}\right)= & \eta\left(a l_{1}+b l_{2}+c l_{3}\right) \\
= & a^{2} \eta\left(l_{1}\right)+b^{2} \eta\left(l_{2}\right)+c^{2} \eta\left(l_{3}\right)+2 a b \eta\left(l_{1}, l_{2}\right) \\
& +2 a c \eta\left(l_{1}, l_{3}\right)+2 b c \eta\left(l_{2}, l_{3}\right)
\end{aligned}
$$

Since L_{1} and L_{2} are closed with respect to $\alpha, l_{3} \in \alpha\left(l_{1}\right)^{\perp}$ and $l_{3} \in \alpha\left(l_{2}\right)^{\perp}$. Thus $\eta\left(l_{3}\right) \cdot \eta\left(l_{1}\right)=\frac{1}{2}$ and $\eta\left(l_{3}\right) \cdot \eta\left(l_{2}\right)=\frac{1}{2}$. So

$$
\eta\left(l^{\prime}\right) \cdot \eta\left(l_{3}\right)=\frac{1}{2} a^{2}+\frac{1}{2} b^{2}+c^{2}=\frac{1}{2}+\frac{1}{2} c^{2} .
$$

On the other hand $l \in \operatorname{span}\left(L_{1}, L_{2}\right)$ can be written $l=r l_{4}+s l_{5}$ where $l_{4} \in L_{1}$, $l_{5} \in L_{2}$ are unit vectors and $r^{2}+s^{2}=1$. Thus

$$
\eta(l)=\eta\left(r l_{4}+s l_{5}\right)=r^{2} \eta\left(l_{4}\right)+2 r s \eta\left(l_{4}, l_{5}\right)+s^{2} \eta\left(l_{5}\right) .
$$

Again because L_{1} and L_{2} are closed with respect to α, we must have $l_{3} \in \alpha\left(l_{4}\right)^{\perp}$ and $l_{3} \in \alpha\left(l_{5}\right)^{\perp}$. Hence

$$
\eta(l) \cdot \eta\left(l_{3}\right)=\frac{1}{2} r^{2}+\frac{1}{2} s^{2}=\frac{1}{2} .
$$

But $\eta(l)=\eta\left(l^{\prime}\right)$ so $\frac{1}{2}=\frac{1}{2}+\frac{1}{2} c^{2}$ giving $c=0$ and $l^{\prime}=a l_{1}+b l_{2}$. Thus $l^{\prime} \in$ span (L_{1}, L_{2}) which concludes the lemma.

Proposition 13. For any unit tangent vector l_{1} at any point p, the dimension of $\alpha\left(l_{1}\right)$ is the same. We call it a.

Proof. Let $a\left(l_{1}\right)$ be the dimension of $\alpha\left(l_{1}\right)$. We will show that

$$
\eta\left(l_{1}\right) \cdot H=\frac{1}{2}+\frac{1}{2} a\left(l_{1}\right) / n,
$$

where H is the mean curvature vector. The result follows from this because $\eta\left(l_{1}\right) \cdot H$ is continuous on the unit tangent bundle and $a\left(l_{1}\right)$ is integer-valued,

Choose orthonormal tangent vectors l_{1}, \cdots, l_{n} so that l_{1}, \cdots, l_{a} span $\alpha\left(l_{1}\right)$. Then $H=(1 / n) \sum_{i=1}^{n} \eta\left(l_{i}\right)$ so that

$$
\eta\left(l_{1}\right) \cdot H=\frac{1}{n} \sum_{i=1}^{a} \eta\left(l_{1}\right) \cdot \eta\left(l_{i}\right)+\frac{1}{n} \sum_{i=a+1}^{n} \eta\left(l_{1}\right) \cdot \eta\left(l_{i}\right) .
$$

Now $\eta\left(l_{1}\right)=\eta\left(l_{i}\right)$ for $i=1, \cdots, a$ so $\eta\left(l_{1}\right) \cdot \eta\left(l_{i}\right)=1$. For $i=a+1, \cdots, n$, $l_{i} \in \alpha\left(l_{1}\right)^{\perp}$ we have $\eta\left(l_{1}\right) \cdot \eta\left(l_{i}\right)=\frac{1}{2}$ by Lemma 9 . Hence

$$
\eta\left(l_{1}\right) \cdot H=\frac{a}{n}+\frac{n-a}{2 n},
$$

which concludes the proof.
The quadratic form $\eta: T_{p} \rightarrow N_{p}$ sends a linear space of dimension a, say $\alpha(l)$, into a line, the line through $\eta(l)$. Hence the rank of the Jacobian of η must fall by $a-1$ at every point of T_{p}.

Now if L is a linear space of T_{p} closed with respect to α, then the restriction $\eta: L \rightarrow N_{p}$ of η to L also sends linear spaces of dimension a into lines. Hence the Jacobian of the restriction of η to a linear space closed with respect to α falls by $a-1$ in rank.

According to Lemma 10 if $l_{2} \in \alpha\left(l_{1}\right)^{\perp}$ is a unit vector then $\alpha\left(l_{2}\right) \subset \alpha\left(l_{1}\right)^{\perp}$. We choose vectors $l_{i} \in \bigcap_{j=1}^{i-1} \alpha\left(l_{j}\right)^{\perp}$ by induction. This decomposes T_{p} into a direct sum

$$
T_{p}=\alpha\left(l_{1}\right) \oplus \cdots \oplus \alpha\left(l_{k}\right)
$$

where of course $\alpha\left(l_{i}\right) \subset \alpha\left(l_{j}\right)^{\perp}, i \neq j$.
Since the dimension of $\alpha\left(l_{i}\right)$ is a, we see that $a k=n$ so that a divides n.
Let us choose an orthonormal basis $l_{1} \cdots l_{n}$ of T_{p} in agreement with the direct sum decomposition of T_{p} given above, namely, each basis vector is in one of the summands. Such a basis has the property that either $l_{i} \in \alpha\left(l_{j}\right)$ or $l_{i} \in \alpha\left(l_{j}\right)^{\perp}$ for any $i, j, i \neq j$. Any basis with this property we call a basis which respects α.

Lemma 14. Suppose $a=2$. Let L_{1}, L_{2} be completely orthogonal α-closed subspaces of dimension 2. Let $l_{1} l_{2}$ be a basis of L_{1} and $l_{3} l_{4}$ of L_{2}, both orthonormal. Then in this basis or the one obtained by reflection in L_{2} (sending l_{3} $\rightarrow-l_{3}$) we have

$$
\eta\left(l_{1}, l_{3}\right)=\eta\left(l_{2}, l_{4}\right), \quad \eta\left(l_{1}, l_{4}\right)=-\eta\left(l_{2}, l_{3}\right) .
$$

Furthermore, if L_{1}, L_{2}, L_{3} are completely orthogonal α-closed subspaces of dimension 2, and $l_{1} l_{2}, l_{3} l_{4}, l_{5} l_{6}$ are respective orthonomal bases such that the above relations hold on $L_{1} \oplus L_{2}$ and $L_{1} \oplus L_{3}$, then they also hold on $L_{2} \oplus L_{3}$.

Proof. By Lemma 12 and the comment after Proposition 13 the restriction of the Jacobian of η to $L_{1} \oplus L_{2}$ falls in rank by 1 . The restriction is

$$
\eta\left(x_{1} l_{1}+\cdots+x_{4} l_{4}\right)=\sum_{i, j=1}^{4} x_{i} x_{j} \eta\left(l_{i}, l_{j}\right)
$$

with derivatives

$$
\eta_{x_{i}}=2 \sum_{j=1}^{4} x_{j} \eta\left(l_{i}, l_{j}\right)
$$

evaluated at $l_{1}+l_{3}$, which are

$$
\begin{array}{ll}
\eta_{x_{1}}=2\left(\eta\left(l_{1}\right)+\eta\left(l_{1}, l_{3}\right)\right), & \eta_{x_{2}}=2 \eta\left(l_{2}, l_{3}\right), \\
\eta_{x_{3}}=2\left(\eta\left(l_{3}, l_{1}\right)+\eta\left(l_{3}\right)\right), & \eta_{x_{4}}=2 \eta\left(l_{4}, l_{1}\right) .
\end{array}
$$

Because the Jacobian falls in rank by 1 , these four vectors must be dependent. But $\eta\left(l_{1}\right), \eta\left(l_{3}\right)$ are orthogonal to $\eta\left(l_{i}, l_{j}\right), i \neq j$, and independent. Hence we must have $\eta\left(l_{2}, l_{3}\right)$ and $\eta\left(l_{4}, l_{1}\right)$ linearly dependent. Since they are the same length, we must have $\eta\left(l_{2}, l_{3}\right)= \pm \eta\left(l_{1}, l_{4}\right)$. We now reverse the sign of l_{3} if necessary to achieve $\eta\left(l_{2}, l_{3}\right)=-\eta\left(l_{1}, l_{4}\right)$. Use Lemma 5 to write

$$
\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{3}, l_{4}\right)+\eta\left(l_{1}, l_{3}\right) \cdot \eta\left(l_{2}, l_{4}\right)+\eta\left(l_{1}, l_{4}\right) \cdot \eta\left(l_{2}, l_{3}\right)=0 .
$$

Because $\eta\left(l_{1}, l_{2}\right)=0$ we have

$$
\eta\left(l_{1}, l_{3}\right) \cdot \eta\left(l_{2}, l_{4}\right)=-\eta\left(l_{1}, l_{4}\right) \cdot \eta\left(l_{2}, l_{3}\right) .
$$

But $\eta\left(l_{i}, l_{j}\right), i=1$ or $2, j=3$ or 4 , are all the same length and $\eta\left(l_{2}, l_{3}\right)=$ $-\eta\left(l_{1}, l_{4}\right)$. Hence $\eta\left(l_{1}, l_{3}\right)=\eta\left(l_{2}, l_{4}\right)$ and the first part of the lemma is completed.

Now this same argument applied to $L_{1} \oplus L_{3}$ shows that (perhaps after sending l_{5} to $-l_{5}$)

$$
\eta\left(l_{1}, l_{5}\right)=\eta\left(l_{2}, l_{6}\right), \quad \eta\left(l_{1}, l_{6}\right)=-\eta\left(l_{2}, l_{5}\right) .
$$

When we apply this argument to $L_{2} \oplus L_{3}$ we find that

$$
\eta\left(l_{3}, l_{5}\right)=\lambda \eta\left(l_{4}, l_{6}\right), \quad \eta\left(l_{3}, l_{6}\right)=-\lambda \eta\left(l_{4}, l_{5}\right),
$$

where $\lambda= \pm 1$. We must show that $\lambda=+1$.
On $L_{1} \oplus L_{2} \oplus L_{3}$ the Jacobian of η falls in rank by 1 . We evaluate the derivatives $\eta_{x_{i}}, i=1, \cdots, 6$, at the point $l_{1}+l_{3}+l_{5} . \eta_{x_{1}}, \eta_{x_{3}}, \eta_{x_{5}}$ have respectively the term $\eta\left(l_{1}\right), \eta\left(l_{3}\right), \eta\left(l_{5}\right)$. Because these vectors are independent (they are of length 1 and the inner product of any two is $\frac{1}{2}$) and orthogonal to $\eta\left(l_{i}, l_{j}\right), i \neq j$, we see, much as before, that $\eta_{x_{2}}, \eta_{x_{4}}, \eta_{x_{6}}$ given by

$$
\begin{aligned}
& \eta_{x_{2}}=2\left(\eta\left(l_{2}, l_{3}\right)+\eta\left(l_{2}, l_{5}\right)\right), \\
& \eta_{x_{4}}=2\left(\eta\left(l_{4}, l_{1}\right)+\eta\left(l_{4}, l_{5}\right)\right), \\
& \eta_{x_{6}}=2\left(\eta\left(l_{6}, l_{1}\right)+\eta\left(l_{6}, l_{3}\right)\right),
\end{aligned}
$$

must be dependent. We use the above relations and those on $L_{1} \oplus L_{2}$ to obtain

$$
\begin{aligned}
& \eta_{x_{2}}=-2\left(\eta\left(l_{1}, l_{4}\right)+\eta\left(l_{1}, l_{6}\right)\right), \\
& \eta_{x_{4}}=2\left(\eta\left(l_{1}, l_{4}\right)-\lambda \eta\left(l_{3}, l_{6}\right)\right),
\end{aligned}
$$

$$
\eta_{x_{6}}=2\left(\eta\left(l_{1}, l_{6}\right)+\eta\left(l_{3}, l_{6}\right)\right) .
$$

Hence

$$
0=\eta_{x_{2}} \wedge \eta_{x_{4}} \wedge \eta_{x_{6}}=-8(1-\lambda) \eta\left(l_{1}, l_{4}\right) \wedge \eta\left(l_{3}, l_{6}\right) \wedge \eta\left(l_{1}, l_{6}\right) .
$$

Using Lemma 11 and the fact that $\eta\left(l_{3}, l_{6}\right)=-\lambda \eta\left(l_{4}, l_{5}\right), \lambda= \pm 1$ we see that $\eta\left(l_{1}, l_{4}\right), \eta\left(l_{3}, l_{6}\right)$ and $\eta\left(l_{1}, l_{6}\right)$ are orthogonal. Because they are nonzero, they are independent and so $\lambda=+1$.
Remark. Quaternion multiplication on a basis $l_{1} l_{2} l_{3} l_{4}$ may be defined by $-l_{j} l_{i}=l_{i} l_{j}=l_{k}$ for i, j, k any cyclic permutation of $2,3,4$ and $l_{i} l_{1}=l_{1} l_{i}=l_{i}$ for all i and $l_{i}^{2}=-l_{1}$ for $i=2,3,4$. The conjugation is defined by $\bar{l}_{1}=l_{1}, \bar{l}_{i}$ $=-l_{i}, i=2,3,4$.

Lemma 15. Suppose $a=4$. Let L_{1}, L_{2} be two completely orthogonal subspaces of dimension 4, both closed with respect to α. Let $l_{1} l_{2} l_{3} l_{4}$ be an orthonormal basis of L_{1}. Then for either this basis or its reflection (sending $l_{1} \rightarrow-l_{1}$) there is an orthonormal basis $l_{5} l_{6} l_{7} l_{8}$ of L_{2} such that $\eta\left(l_{i}, l_{j+4}\right)= \pm \eta\left(l_{k}, l_{m+4}\right)$ if and only if $l_{i} l_{j}= \pm l_{k} l_{m}$ in the quaternion multiplication. Here both signs are taken as positive or both negative and the indices range from 1 to 4 .

Proof. Let $l_{1} l_{2} l_{3} l_{4}$ be the given basis of L_{1}, and $l_{5} l_{6} l_{7} l_{8}$ any orthonormal basis of L_{2}. We may restrict η to $L_{1} \oplus L_{2}$ and the Jacobian must still fall in rank by 3. The restriction is

$$
\eta\left(x_{1} l_{1}+\cdots+x_{8} l_{8}\right)=\sum_{i, j=1}^{8} x_{i} x_{j} \eta\left(l_{i}, l_{j}\right)
$$

We now compute the Jacobian of η at $l_{k}+l_{5}, 1 \leq k \leq 4$. Since

$$
\eta_{x_{i}}=2 \sum_{j=1}^{8} x_{j} \eta\left(l_{i}, l_{j}\right),
$$

we have, at $l_{k}+l_{5}$,

$$
\begin{array}{lll}
\eta_{x_{k}}=2 \eta\left(l_{k}\right)+2 \eta\left(l_{k}, l_{5}\right) ; & \eta_{x_{i}}=2 \eta\left(l_{i}, l_{5}\right), & 1 \leq i \leq 4, i \neq k ; \\
\eta_{x_{5}}=2 \eta\left(l_{5}\right)+2 \eta\left(l_{k}, l_{5}\right) ; & \eta_{x_{i}}=2 \eta\left(l_{k}, l_{i}\right), & i=6,7,8
\end{array}
$$

Now $\eta\left(l_{k}\right)=\eta\left(l_{1}\right)$ and $\eta\left(l_{5}\right)$ are independent and both are orthogonal to $\eta\left(l_{i}, l_{5}\right)$, $i \leq 4$, and $\eta\left(l_{k}, l_{i}\right), i \geq 5$. The reason for this and for many similar such statements in this proof is Lemma 11. Also $\eta\left(l_{i}, l_{5}\right), i \leq 4$, are orthogonal to each other and nonzero. $\eta\left(l_{k}, l_{i}\right), i \geq 5$, are orthogonal to each other and nonzero. Since the rank is 5 , the sets $\left\{\eta\left(l_{i}, l_{5}\right), i \leq 4\right\}$ and $\left\{\eta\left(l_{k}, l_{i}\right), i \geq 5\right\}$ span the same space, $k=1,2,3,4$.

In order to render the remainder of the proof easier to follow we write out the relations to be proved in the following tableau:

$$
\begin{aligned}
& \eta\left(l_{1}, l_{5}\right)=\eta\left(l_{2}, l_{6}\right)=\eta\left(l_{3}, l_{7}\right)=\eta\left(l_{4}, l_{8}\right), \\
& \eta\left(l_{1}, l_{6}\right)=-\eta\left(l_{2}, l_{5}\right)=\eta\left(l_{3}, l_{8}\right)=-\eta\left(l_{4}, l_{7}\right), \\
& \eta\left(l_{1}, l_{7}\right)=-\eta\left(l_{2}, l_{8}\right)=-\eta\left(l_{3}, l_{5}\right)=\eta\left(l_{4}, l_{6}\right), \\
& \eta\left(l_{1}, l_{8}\right)=\eta\left(l_{2}, l_{7}\right)=-\eta\left(l_{3}, l_{6}\right)=-\eta\left(l_{4}, l_{5}\right) .
\end{aligned}
$$

We will not keep track of the signs but come back to them at the end.
Now $\eta\left(l_{1}, l_{5}\right), \eta\left(l_{1}, l_{6}\right), \eta\left(l_{1}, l_{7}\right), \eta\left(l_{1}, l_{8}\right)$ are orthogonal and $\eta\left(l_{2}, l_{5}\right), \eta\left(l_{2}, l_{6}\right)$, $\eta\left(l_{2}, l_{7}\right), \eta\left(l_{2}, l_{8}\right)$ are orthogonal and span the same space as the first set. Also $\eta\left(l_{1}, l_{5}\right)$ is orthogonal to $\eta\left(l_{2}, l_{5}\right)$. We leave $l_{1} l_{2} l_{3} l_{4} l_{5}$ alone and rotate $l_{6} l_{7} l_{8}$ among themselves in order to make $\eta\left(l_{2}, l_{6}\right)$ coincide with $\eta\left(l_{1}, l_{5}\right)$. We are still free to rotate l_{7}, l_{8} among themselves. From Lemma 5 we obtain

$$
\eta\left(l_{1}, l_{5}\right) \cdot \eta\left(l_{2}, l_{6}\right)+\eta\left(l_{1}, l_{2}\right) \cdot \eta\left(l_{5}, l_{6}\right)+\eta\left(l_{1}, l_{6}\right) \cdot \eta\left(l_{2}, l_{5}\right)=0 .
$$

Since $\eta\left(l_{1}, l_{2}\right)=0$ and $\eta\left(l_{1}, l_{5}\right) \cdot \eta\left(l_{2}, l_{6}\right)=\eta\left(l_{1}, l_{5}\right)^{2}=\frac{1}{4}$, we have $\eta\left(l_{1}, l_{6}\right) \cdot \eta\left(l_{2}, l_{5}\right)$ $=-\frac{1}{4}$. So $\eta\left(l_{2}, l_{5}\right)= \pm \eta\left(l_{1}, l_{6}\right)$. Thus $\eta\left(l_{2}, l_{7}\right), \eta\left(l_{2}, l_{8}\right)$ being orthogonal to $\eta\left(l_{2}, l_{5}\right)$ and $\eta\left(l_{2}, l_{6}\right)$ are also orthogonal to $\eta\left(l_{1}, l_{5}\right), \eta\left(l_{1}, l_{6}\right)$ and hence in the same plane as $\eta\left(l_{1}, l_{7}\right), \eta\left(l_{1}, l_{8}\right)$. Since $\eta\left(l_{1}, l_{8}\right)$ and $\eta\left(l_{2}, l_{7}\right)$ are both orthogonal to $\eta\left(l_{1}, l_{7}\right)$, $\eta\left(l_{1}, l_{8}\right)= \pm \eta\left(l_{2}, l_{7}\right)$. This leaves $\eta\left(l_{1}, l_{7}\right)= \pm \eta\left(l_{2}, l_{8}\right)$. We have done the first two columns of the tableau except for signs. We are still free to rotate $l_{7} l_{8}$ in their plane.

Now $\eta\left(l_{3}, l_{7}\right)$ is orthogonal to $\eta\left(l_{2}, l_{7}\right)$, hence to $\eta\left(l_{1}, l_{8}\right)$, and also to $\eta\left(l_{1}, l_{7}\right)$. Hence it lies in the plane of $\eta\left(l_{1}, l_{5}\right)$ and $\eta\left(l_{1}, l_{6}\right)$. Also $\eta\left(l_{3}, l_{8}\right)$ is orthogonal to $\eta\left(l_{2}, l_{8}\right)$, hence to $\eta\left(l_{1}, l_{7}\right)$, and also to $\eta\left(l_{1}, l_{8}\right)$. Hence it lies in the plane of $\eta\left(l_{1}, l_{5}\right)$ and $\eta\left(l_{1}, l_{6}\right)$.

We now perform a rotation of $l_{7} l_{8}$ which leaves $\eta\left(l_{1}, l_{5}\right)$ and $\eta\left(l_{1}, l_{6}\right)$ alone and rotates $\eta\left(l_{3}, l_{7}\right), \eta\left(l_{3}, l_{8}\right)$ so that $\eta\left(l_{3}, l_{7}\right)$ coincides with $\eta\left(l_{1}, l_{5}\right)$. We then have $\eta\left(l_{3}, l_{8}\right)$ and $\eta\left(l_{1}, l_{6}\right)$ in the same direction.

Now $\eta\left(l_{4}, l_{8}\right)$ is orthogonal to $\eta\left(l_{3}, l_{8}\right)$ and so to $\eta\left(l_{1}, l_{6}\right)$. It is orthogonal to $\eta\left(l_{2}, l_{8}\right)$ and so to $\eta\left(l_{1}, l_{7}\right)$. Since it is also orthogonal to $\eta\left(l_{1}, l_{8}\right)$, it must lie along $\eta\left(l_{1}, l_{5}\right)$. Also $\eta\left(l_{4}, l_{7}\right)$ is orthogonal to $\eta\left(l_{3}, l_{7}\right)$ and so to $\eta\left(l_{1}, l_{5}\right)$. It is orthogonal to $\eta\left(l_{2}, l_{7}\right)$, so to $\eta\left(l_{1}, l_{8}\right)$, and of course to $\eta\left(l_{1}, l_{7}\right)$. Hence $\eta\left(l_{4}, l_{7}\right)$ must lie along $\eta\left(l_{1}, l_{6}\right)$. We have now completed the first two rows of the tableau as well.

From Lemma 5 we know

$$
\eta\left(l_{1}, l_{8}\right) \cdot \eta\left(l_{3}, l_{5}\right)+\eta\left(l_{1}, l_{3}\right) \cdot \eta\left(l_{5}, l_{8}\right)+\eta\left(l_{1}, l_{5}\right) \cdot \eta\left(l_{3}, l_{8}\right)=0 .
$$

Hence using what we have proved so far we have $\eta\left(l_{1}, l_{8}\right) \cdot \eta\left(l_{3}, l_{5}\right)=0$. So $\eta\left(l_{3}, l_{5}\right)$ is orthogonal to $\eta\left(l_{1}, l_{8}\right)$, to $\eta\left(l_{2}, l_{5}\right)$ and so to $\eta\left(l_{1}, l_{6}\right)$, and to $\eta\left(l_{1}, l_{5}\right)$. Hence $\eta\left(l_{3}, l_{5}\right)$ must lie along $\eta\left(l_{1}, l_{7}\right)$. The remainder now fills in easily to obtain the entire set of relations up to signs.

To compute the signs we use

$$
\eta\left(l_{i}, l_{j}\right) \cdot \eta\left(l_{k}, l_{m}\right)+\eta\left(l_{i}, l_{k}\right) \cdot \eta\left(l_{j}, l_{m}\right)+\eta\left(l_{i}, l_{m}\right) \cdot \eta\left(l_{j}, l_{k}\right)=0
$$

from Lemma 5 . The choices of i, j, k, m which are not already zero are 1256 , $1278,3478,3456,1357,1368,2468,2457,1458,2358,1467,2367$. In addition we may reflect sending $l_{1} \rightarrow-l_{1}$ or $l_{i} \rightarrow-l_{i}, i=5,6,7,8$, if we wish. In this way we obtain a basis which satisfies the relations of the lemma exactly.

Lemma 16. Suppose $a=4$. Let L_{1}, L_{2}, L_{3} be completely orthogonal subspaces of dimension 4 , closed with respect to α. Any basis of $L_{1} \oplus L_{2}$ which respects α in which the relations of Lemma 15 are satisfied may be extended to a basis of $L_{1} \oplus L_{2} \oplus L_{3}$ so that the relations are satisfied on $L_{1} \oplus L_{3}$. Furthermore in any basis of $L_{1} \oplus L_{2} \oplus L_{3}$ which respects α, if the relations of Lemma 15 are satisfied on $L_{1} \oplus L_{2}$ and $L_{1} \oplus L_{3}$ they are also satisfied on $L_{2} \oplus L_{3}$.

Proof. Let l_{9} be a unit vector in $L_{3}, l_{1} l_{2} l_{3} l_{4}$ a basis for L_{1}, and $l_{5} l_{6} l_{7} l_{8}$ a basis for L_{2} chosen so that the relations of Lemma 15 are satisfied on $L_{1} \oplus L_{2}$. Since $l_{5}, l_{9} \in L_{1}^{\frac{1}{1}}, l_{5} \cos \theta+l_{9} \sin \theta \in L_{1}^{\perp}$. Let $L(\theta)=\alpha\left(l_{5} \cos \theta+l_{9} \sin \theta\right)$. By Lemma $10, L(\theta)$ and L_{1} are completely orthogonal. By Lemma $12, L(\theta) \oplus L_{1}$ is closed with respect to α. By applying Lemma 15 to $L(\theta) \oplus L_{1}$, we see that the basis provided by the lemma is continuous in θ. Hence no reflection in L_{1} can occur. Thus we may find a basis $l_{9} l_{10} l_{11} l_{12}$ so that on $L_{1} \oplus L_{3}$ the relations of Lemma 15 are satisfied in the basis $l_{1} l_{2} l_{3} l_{9} l_{1} l_{10} l_{11} l_{12}$.

Now we show that in the basis l_{5}, \cdots, l_{12} the relations of Lemma 15 are satisfied on $L_{1} \oplus L_{3}$. First, as in the proof of Lemma 15, by computing the rank at $l_{5}+l_{9}$, we see that

$$
\begin{aligned}
& \eta\left(l_{5}, l_{9}\right) \wedge \eta\left(l_{5}, l_{10}\right) \wedge \eta\left(l_{5}, l_{11}\right) \wedge \eta\left(l_{5}, l_{12}\right) \\
& \quad=\lambda \eta\left(l_{5}, l_{9}\right) \wedge \eta\left(l_{6}, l_{9}\right) \wedge \eta\left(l_{7}, l_{9}\right) \wedge \eta\left(l_{8}, l_{9}\right)
\end{aligned}
$$

for $\lambda \neq 0$. Then on $L_{1} \oplus L_{2} \oplus L_{3}$ the rank of the Jacobian of η falls by 3. Thus among $\eta_{x_{i}}, i=1, \cdots, 12$, any ten are dependent. We evaluate the Jacobian at $l_{1}+l_{5}+t l_{9}, t \neq 0$. The vectors $\eta_{x_{1}}, \eta_{x_{5}}, \eta_{x_{9}}$ are independent from each other and from all the other $\eta_{x_{i}}$. This is because they have, respectively, terms $\eta\left(l_{1}\right)$, $\eta\left(l_{5}\right), \eta\left(l_{9}\right)$ and $\eta_{x_{i}}, i \neq 1,5,9$, are sums of terms of the form $\eta\left(l_{i}, l_{j}\right), i \neq j$. Since $\eta\left(l_{1}\right), \eta\left(l_{5}\right), \eta\left(l_{9}\right)$ are orthogonal to all these vectors, they must be independent of them. Furthermore, $\eta\left(l_{1}\right), \eta\left(l_{5}\right), \eta\left(l_{9}\right)$ are all unit vectors and the inner product of any two is $\frac{1}{2}$. Since no such triple of vectors can be linearly dependent, among $\eta_{x_{2}}, \eta_{x_{3}}, \eta_{x_{4}}, \eta_{x_{6}}, \eta_{x_{7}}, \eta_{x_{8}}, \eta_{x_{10}}, \eta_{x_{11}}, \eta_{x_{12}}$ any seven are dependent.

Let $\Lambda(t)=\eta_{x_{2}} \wedge \eta_{x_{3}} \wedge \eta_{x_{4}} \wedge \eta_{x_{6}} \wedge \eta_{x_{7}} \wedge \eta_{x_{8}}$ evaluated at $l_{1}+l_{5}+t l_{9}$ and let

$$
\Lambda_{10}=\Lambda(t) \wedge \eta_{x_{10}}, \quad \Lambda_{11}=\Lambda(t) \wedge \eta_{x_{11}}, \quad \Lambda_{12}=\Lambda(t) \wedge \eta_{x_{12}}
$$

Then $\Lambda_{10}, \Lambda_{11}, \Lambda_{12}$ must be identically zero. Ostensibly they are of sixth degree in t; however by computing the rank at $l_{5}+l_{9}$ we see that the highest degree term is 0 because $\eta\left(l_{5}, l_{10}\right), \eta\left(l_{5}, l_{11}\right), \eta\left(l_{5}, l_{12}\right)$ lie in the span of $\eta\left(l_{6}, l_{9}\right), \eta\left(l_{7}, l_{9}\right)$, $\eta\left(l_{8}, l_{9}\right)$ as was stated above. Then compute the 5 th degree terms of $\Lambda_{10}, \Lambda_{11}, \Lambda_{12}$
using the fact that the relations of Lemma 15 are satisfied on $L_{1} \oplus L_{2}$ and $L_{1} \oplus L_{3}$. By equating these terms to zero we find that

$$
\eta\left(l_{5}, l_{10}\right)=-\eta\left(l_{6}, l_{9}\right), \quad \eta\left(l_{5}, l_{11}\right)=-\eta\left(l_{7}, l_{9}\right), \quad \eta\left(l_{5}, l_{12}\right)=-\eta\left(l_{8}, l_{9}\right) .
$$

This does not give us quite enough information, so we now evaluate the Jacobian at $l_{1}+l_{5}+t l_{10}$ and proceed as before. This time we may disregard $\eta_{x_{1}}, \eta_{x_{5}}, \eta_{x_{10}}$ and of the remaining, any seven must be dependent. We choose $\eta_{x_{2}} \wedge \eta_{x_{3}} \wedge \eta_{x_{4}} \wedge \eta_{x_{\mathrm{B}}} \wedge \eta_{x_{7}} \wedge \eta_{x_{8}} \wedge \eta_{x_{11}}$. We compute the fifth degree term in t and equate it to 0 obtaining

$$
\eta\left(l_{5}, l_{11}\right)=\eta\left(l_{8}, l_{10}\right) .
$$

We next use

$$
\eta\left(l_{i}, l_{j}\right) \cdot \eta\left(l_{k}, l_{m}\right)+\eta\left(l_{i}, l_{k}\right) \cdot \eta\left(l_{j}, l_{m}\right)+\eta\left(l_{i}, l_{m}\right) \cdot \eta\left(l_{j}, l_{k}\right)=0
$$

from Lemma 5 and the fact that if $\eta\left(l_{i}, l_{j}\right) \cdot \eta\left(l_{k}, l_{m}\right)= \pm \frac{1}{4}$ then $\eta\left(l_{i}, l_{j}\right)=$ $\pm \eta\left(l_{k}, l_{m}\right)$, respectively because $\left|\eta\left(l_{i}, l_{j}\right)\right|=\left|\eta\left(l_{k}, l_{m}\right)\right|=\frac{1}{2}$. This enables us to complete the proof that all relations of Lemma 15 are satisfied on $L_{2} \oplus L_{3}$.

As an example of the computations we show that $\eta\left(l_{5}, l_{10}\right)=-\eta\left(l_{6}, l_{9}\right)$. Taking into accocnt that the relations of Lemma 15 are satisfied on $L_{1} \oplus L_{2}$ and $L_{1} \oplus L_{3}$ we obtain $\eta_{x_{i}}$ evaluated at $l_{1}+l_{5}+t l_{9}$:

\[

\]

We write $\eta\left(l_{5}, l_{10}\right)=a \eta\left(l_{6}, l_{9}\right)+b \eta\left(l_{7}, l_{9}\right)+c \eta\left(l_{8}, l_{9}\right)$. The t^{5} term of the wedge of the above seven vectors after simplification is

$$
\begin{aligned}
\eta\left(l_{1}, l_{10}\right) \wedge \eta\left(l_{1}, l_{11}\right) & \wedge \eta\left(l_{1}, l_{12}\right) \wedge \eta\left(l_{6}, l_{9}\right) \wedge \eta\left(l_{7}, l_{9}\right) \wedge \eta\left(l_{8}, l_{9}\right) \\
& \wedge\left[\eta\left(l_{1}, l_{6}\right)+a \eta\left(l_{1}, l_{6}\right)+b \eta\left(l_{1}, l_{7}\right)+c \eta\left(l_{1}, l_{8}\right)\right] .
\end{aligned}
$$

Now $\eta\left(l_{1}, l_{6}\right), \eta\left(l_{1}, l_{7}\right), \eta\left(l_{1}, l_{8}\right), \eta\left(l_{1}, l_{10}\right), \eta\left(l_{1}, l_{11}\right), \eta\left(l_{1}, l_{12}\right), \eta\left(l_{6}, l_{9}\right), \eta\left(l_{7}, l_{9}\right), \eta\left(l_{8}, l_{9}\right)$ are all nonzero and orthogonal to each other. Use Lemma 5 and the relations of Lemma 15 satisfied on $L_{1} \oplus L_{2}$ and $L_{1} \oplus L_{3}$ to show orthogonality. Since this must be zero we see that $1+a=b=c=0$ and $\eta\left(l_{5}, l_{10}\right)=-\eta\left(l_{6}, l_{9}\right)$.

Remark. Cayley multiplication on a basis l_{1}, \cdots, l_{8} of E^{8} may be defined as follows. Let l_{2}, \cdots, l_{8} be the seven points of a projective plane over Z_{2} with cyclic ordering of each line given as in the figure:

Define $-l_{j} l_{i}=l_{i} l_{j}=l_{k}$ in case $l_{i} l_{j} l_{k}$ has the given cyclic ordering. Define further $l_{i}^{2}=-l_{1}, i \neq 1$, and $l_{1} l_{i}=l_{i} l_{1}=l_{i}$ for all i. For this definition see Freudenthal [1]. Conjugation is defined by $\bar{l}_{1}=l_{1}, \bar{l}_{i}=-l_{i}, i=2, \cdots, 8$.

Lemma 17. Suppose $a=8$. Let L_{1}, L_{2} be two completely orthogonal subspaces of dimension 8 closed with respect to α. Then there are bases $l_{1} \cdots l_{8}$ of L_{1} and $l_{9} \cdots l_{16}$ of L_{2} so that $\eta\left(l_{i}, l_{j+8}\right)= \pm \eta\left(l_{k}, l_{m+8}\right)$ if and only if in the Cayley product given above $l_{i} \bar{l}_{j}= \pm l_{k} \bar{l}_{m}$. Here both signs are taken as positive or both as negative, and the indicies range from 1 to 8.

Proof. Let $l_{1} \cdots l_{8}$ be an orthonormal basis of L_{1} and $l_{9} \cdots l_{16}$ of L_{2}. By Lemma 12, η falls in rank by 7 on $L_{1} \oplus L_{2}$. Now

$$
\eta_{x_{i}}=2 \sum_{j=1}^{16} x_{j} \eta\left(l_{i}, l_{j}\right) .
$$

Fix $k \leq 8$ and $m \geq 9$. At $l_{k}+l_{m}$

$$
\begin{aligned}
& \eta_{x_{i}}=2 \eta\left(l_{i}, l_{m}\right), \quad i \leq 8, i \neq k, \\
& \eta_{x_{i}}=2 \eta\left(l_{i}, l_{k}\right), \quad i \geq 9, i \neq m, \\
& \eta_{x_{k}}=2 \eta\left(l_{k}\right)+2 \eta\left(l_{k}, l_{m}\right), \\
& \eta_{x_{m}}=2 \eta\left(l_{m}\right)+2 \eta\left(l_{k}, l_{m}\right) .
\end{aligned}
$$

Now $\eta\left(l_{k}\right), \eta\left(l_{m}\right)$ are orthogonal to $\eta_{x_{i}}, i \neq k, m$, and to $\eta\left(l_{k}, l_{m}\right)$. They are unit vectors and independent since $\eta\left(l_{k}\right) \cdot \eta\left(l_{m}\right)=\frac{1}{2}$. Thus $\eta_{x_{k}}, \eta_{x_{m}}$ are not dependent on $\eta_{x_{i}}, i \neq k, m$, and therefore any 8 of $\eta_{x_{i}}, i \neq k, m$, must be dependent. But $\eta\left(l_{i}, l_{m}\right)$ for $i \leq 8, i \neq k$, are orthogonal and hence independent. Thus $\eta\left(l_{i}, l_{k}\right)$ for $i \geq 9, i \neq m$ depends on $\left\{\eta\left(l_{i}, l_{m}\right), i \leq 8, i \neq k\right\}$. Similarly $\eta\left(l_{i}, l_{m}\right), i \leq 8$, $i \neq k$, depends on $\left\{\eta\left(l_{i}, l_{k}\right), i \geq 9, i \neq m\right\}$. Hence the sets

$$
\left\{\eta\left(l_{i}, l_{m}\right), i \leq 8\right\} \quad \text { and } \quad\left\{\eta\left(l_{i}, l_{k}\right), i \geq 9\right\},
$$

for any $m \geq 9, k \leq 8$, all span the same space.
We write out the relations to be proved to make it easier to follow the arguments. Because the list is large we abbreviate $\eta\left(l_{i}, l_{j}\right)$ by i, j and $-\eta\left(l_{i}, l_{j}\right)$ by
$-i, j$. We also leave out the equal signs because we understand that the vectors in each row are equal. The tableau of relation is:

1,9	2,10	3,11	4,12	5,13	6,14	7,15	8,16
1,10	$-2,9$	3,12	$-4,11$	5,15	$-6,16$	$-7,13$	8,14
1,11	$-2,12$	$-3,9$	4,10	$-5,16$	$-6,15$	7,14	8,13
1,12	2,11	$-3,10$	$-4,9$	5,14	$-6,13$	7,16	$-8,15$
1,13	$-2,15$	3,16	$-4,14$	$-5,9$	6,12	7,10	$-8,11$
1,14	2,16	3,15	4,13	$-5,12$	$-6,9$	$-7,11$	$-8,10$
1,15	2,13	$-3,14$	$-4,16$	$-5,10$	6,11	$-7,9$	8,12
1,16	$-2,14$	$-3,13$	4,15	5,11	6,10	$-7,12$	$-8,9$

$\left\{\eta\left(l_{2}, l_{i}\right), i=9, \cdots, 16\right\}$ and $\left\{\eta\left(l_{1}, l_{i}\right), i=9, \cdots, 16\right\}$ are each sets of orthogonal vectors spanning the same space. Furthermore $\eta\left(l_{1}, l_{9}\right)$ and $\eta\left(l_{2}, l_{9}\right)$ are orthogonal. As l_{10}, \cdots, l_{16} rotate among themselves, $\eta\left(l_{2}, l_{10}\right)$ is carried into any vector orthogonal to $\eta\left(l_{2}, l_{9}\right)$. In particular we may rotate so that $\eta\left(l_{1}, l_{9}\right)=$ $\eta\left(l_{2}, l_{10}\right)$. Then using Lemma 5 we find $\eta\left(l_{1}, l_{10}\right)=-\eta\left(l_{2}, l_{9}\right)$. During this proof each use of Lemma 5 refers to the formula:

$$
\eta\left(l_{i}, l_{j}\right) \cdot \eta\left(l_{k}, l_{m}\right)+\eta\left(l_{i}, l_{k}\right) \cdot \eta\left(l_{j}, l_{m}\right)+\eta\left(l_{i}, l_{m}\right) \cdot \eta\left(l_{j}, l_{k}\right)=0,
$$

where we use $i, j, k, m=1,2,9,10$.
Now $\left\{\eta\left(l_{1}, l_{i}\right), i=11, \cdots, 16\right\}$ and $\left\{\eta\left(l_{2}, l_{i}\right), i=11, \cdots, 16\right\}$ are orthogonal sets spanning the same space. Furthermore $\eta\left(l_{1}, l_{11}\right)$ and $\eta\left(l_{2}, l_{11}\right)$ are orthogonal. Hence by rotating l_{12}, \cdots, l_{16} among themselves we may achieve $\eta\left(l_{1}, l_{11}\right)=$ $-\eta\left(l_{2}, l_{12}\right)$. By Lemma $5, \eta\left(l_{1}, l_{12}\right)=\eta\left(l_{2}, l_{11}\right)$. Again $\left\{\eta\left(l_{1}, l_{i}\right), i=13, \cdots, 16\right\}$ and $\left\{\eta\left(l_{2}, l_{i}\right) i=13, \cdots, 16\right\}$ are orthogonal vectors spanning the same space. Since $\eta\left(l_{1}, l_{13}\right)$ and $\eta\left(l_{2}, l_{13}\right)$ are orthogonal, rotating l_{14}, l_{15}, l_{16} among themselves we achieve $\eta\left(l_{1}, l_{13}\right)=-\eta\left(l_{2}, l_{15}\right)$. By Lemma 5, $\eta\left(l_{1}, l_{15}\right)=\eta\left(l_{2}, l_{13}\right)$. This leaves $\left\{\eta\left(l_{1}, l_{14}\right), \eta\left(l_{1}, l_{16}\right)\right\}$ and $\left\{\eta\left(l_{2}, l_{14}\right), \eta\left(l_{2}, l_{16}\right)\right\}$ spanning the same plane. But $\eta\left(l_{1}, l_{14}\right)$ and $\eta\left(l_{2}, l_{14}\right)$ are orthogonal. Hence by changing l_{16} to $-l_{16}$ if necessary we may achieve $\eta\left(l_{1}, l_{14}\right)=\eta\left(l_{2}, l_{16}\right)$ and by Lemma 5, $\eta\left(l_{1}, l_{16}\right)=-\eta\left(l_{2}, l_{14}\right)$. Thus the first two columns of the tableau are equal.

Since $\eta\left(l_{1}, l_{12}\right)=\eta\left(l_{2}, l_{11}\right)$ we see that $\left\{\eta\left(l_{i}, l_{11}\right), i=3, \cdots, 8\right\}$ and $\left\{\eta\left(l_{1}, l_{i}\right)\right.$, $i=9,10,13,14,15,16\}$ span the same space. We rotate l_{3}, \cdots, l_{8} among themselves to make $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{3}, l_{11}\right)$. Apply Lemma 5 to $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{2}, l_{10}\right)=\eta\left(l_{3}, l_{11}\right)$ to see that $\eta\left(l_{2}, l_{11}\right)=-\eta\left(l_{3}, l_{10}\right)$ and $\eta\left(l_{1}, l_{11}\right)=-\eta\left(l_{3}, l_{9}\right)$. Hence $-\eta\left(l_{2}, l_{12}\right)=$ $-\eta\left(l_{3}, l_{9}\right)$ and Lemma 5 applied to this gives $-\eta\left(l_{2}, l_{9}\right)=\eta\left(l_{3}, l_{12}\right)$.

The conditions $\eta\left(l_{1}, l_{14}\right)=\eta\left(l_{2}, l_{16}\right)$ and $\eta\left(l_{1}, l_{16}\right)=-\eta\left(l_{2}, l_{14}\right)$ are preserved by a rotation of l_{14}, l_{16} in their plane. Hence we may yet rotate l_{14}, l_{16} and not change any of the relations so far established. But $\eta\left(l_{3}, l_{14}\right)$ and $\eta\left(l_{3}, l_{16}\right)$ lie in the plane spanned by $\eta\left(l_{1}, l_{13}\right)$ and $\eta\left(l_{1}, l_{15}\right)$. Thus performing a rotation of l_{14}, l_{16} we may
achieve $\eta\left(l_{1}, l_{13}\right)=\eta\left(l_{3}, l_{16}\right)$. By Lemma 5, $\eta\left(l_{1}, l_{16}\right)=-\eta\left(l_{3}, l_{13}\right)$. So the first three columns of the tableau are equal.

Now $\left\{\eta\left(l_{i}, l_{12}\right), i=4, \cdots, 8\right\}$ and $\left\{\eta\left(l_{1}, l_{i}\right), i=9,13,14,15,16\right\}$ both span the same space. Hence by rotating $l_{4}, l_{5}, \cdots, l_{8}$ we may achieve $\eta\left(l_{1}, l_{9}\right)=$ $\eta\left(l_{4}, l_{12}\right)$. Using the fact that $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{2}, l_{10}\right)=\eta\left(l_{3}, l_{11}\right)=\eta\left(l_{4}, l_{12}\right)$ and applying Lemma 5 we see that $\eta\left(l_{1}, l_{12}\right)=-\eta\left(l_{4}, l_{9}\right),-\eta\left(l_{2}, l_{12}\right)=\eta\left(l_{4}, l_{10}\right)$ and $\eta\left(l_{3}, l_{12}\right)$ $=-\eta\left(l_{4}, l_{11}\right)$. But now $\left\{\eta\left(l_{4}, l_{i}\right), i=13, \cdots, 16\right\}$ and $\left\{\eta\left(l_{1}, l_{i}\right), i=13, \cdots, 16\right\}$ span the same space. Because $\eta\left(l_{1}, l_{15}\right)=-\eta\left(l_{3}, l_{14}\right)$ and $\eta\left(l_{1}, l_{16}\right)=-\eta\left(l_{2}, l_{14}\right)$ we see that $\eta\left(l_{4}, l_{14}\right)$ is orthogonal to $\eta\left(l_{1}, l_{i}\right), i=14,15,16$. Hence $\eta\left(l_{1}, l_{13}\right)=$ $-\lambda \eta\left(l_{4}, l_{14}\right), \lambda= \pm 1$. By Lemma 5 because $\eta\left(l_{1}, l_{13}\right)=-\eta\left(l_{2}, l_{15}\right)=\eta\left(l_{3}, l_{16}\right)=$ $-\lambda \eta\left(l_{4}, l_{14}\right)$ we see that $\eta\left(l_{1}, l_{14}\right)=\lambda \eta\left(l_{4}, l_{13}\right),-\eta\left(l_{2}, l_{14}\right)=\lambda \eta\left(l_{4}, l_{15}\right)$ and $-\eta\left(l_{3}, l_{14}\right)$ $=-\lambda_{\eta}\left(l_{4}, l_{16}\right)$. Hence except for the determination of λ, the first four columns of the tableau are equal.

Now $\left\{\eta\left(l_{i}, l_{13}\right), i=5,6,7,8\right\}$ lies in the span of $\left\{\eta\left(l_{1}, l_{i}\right), i=9,10,11,12\right\}$. By rotating among $l_{5} l_{6} l_{7} l_{8}$ we may assume that $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{5}, l_{13}\right)$. We apply Lemma 5 successively to a list of relations each of which is true by an application of Lemma 5 to an earlier member of the list and use of the fact that the first four columns in the tableau are equal, except for λ. The list is $\eta\left(l_{1}, l_{9}\right)=$ $\eta\left(l_{5}, l_{13}\right) ; \eta\left(l_{3}, l_{11}\right)=\eta\left(l_{5}, l_{13}\right) ;-\eta\left(l_{2}, l_{14}\right)=\eta\left(l_{5}, l_{11}\right) ;-\eta\left(l_{4}, l_{9}\right)=\eta\left(l_{5}, l_{14}\right) ; \eta\left(l_{1}, l_{12}\right)$ $=\eta\left(l_{5}, l_{14}\right) ;-\eta\left(l_{3}, l_{10}\right)=\eta\left(l_{5}, l_{14}\right) ; \eta\left(l_{1}, l_{16}\right)=\eta\left(l_{5}, l_{11}\right) ;$ and $\eta\left(l_{1}, l_{15}\right)=-\eta\left(l_{5}, l_{10}\right)$. The result is that $\lambda=+1$ and the first five columns of the tableau are equal.

Now $\left\{\eta\left(l_{i}, l_{14}\right), i=6,7,8\right\}$ and $\left\{\eta\left(l_{1}, l_{i}\right), i=9,10,11\right\}$ span the same space. Hence by rotating $l_{6} l_{7} l_{8}$ we may make $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{6}, l_{14}\right)$. We apply Lemma 5 to the relations of the first row as far as we know them and then to $\eta\left(l_{1}, l_{16}\right)=$ $\eta\left(l_{4}, l_{15}\right)=\eta\left(l_{6}, l_{10}\right)$ to conclude that the first six columns of the tableau are equal.

Again $\left\{\eta\left(l_{i}, l_{15}\right), i=7,8\right\}$ and $\left\{\eta\left(l_{1}, l_{9}\right), \eta\left(l_{1}, l_{12}\right)\right\}$ span the same plane. Thus rotating $l_{7} l_{8}$ we may achieve $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{7}, l_{15}\right)$. Applying Lemma 5 to the relations of the first row as far as we know them and then to $\eta\left(l_{1}, l_{16}\right)=$ $-\eta\left(l_{7}, l_{12}\right)$ we conclude that the first seven columns of the tableau are equal.

By sending l_{8} to $-l_{8}$ if necessary we see that $\eta\left(l_{1}, l_{9}\right)=\eta\left(l_{8}, l_{16}\right)$. Applying Lemma 5 to the relations of the first row finishes the proof.

Proof of the theorem. We may assume by Proposition 4 that all the geodesics of M are circles of radius 1 . The unit tangent sphere $T S_{p}^{n-1}$ is fibred by great spheres of dimensions $a-1$. Namely the point $l \in T S_{p}^{n-1}$ lies on the great sphere $\alpha(l) \cap T S_{p}^{n-1}$. By Proposition 13 they all have the same dimension $a-1$. But it is a theorem of topology that an $(n-1)$-sphere can be fibred by spheres of dimension $a-1$ only if $a=1,2,4,8$, or n. For $a=1,2$ or $4, n$ may be any multiple of 1,2 , or 4 respectively. $a=n$ may hold for any n and the only other case is $a=8$ and $n=16$.

If $a=n$ then M is a unit n-sphere because all the geodesics through a point have the same center. (See the remark after Proposition 7.) For the other cases where $\alpha=1,2,4$ or 8 we use Lemma 11 and Lemmas $14-17$ to find a basis l_{i} of T_{p} such that $\eta\left(l_{i}, l_{j}\right) \cdot \eta\left(l_{k}, l_{m}\right)$ are known for all i, j, k, m.

In the cases where $a=1,2,4$ or 8 let V be the given embeddings of $\boldsymbol{R} P^{n}$, $\boldsymbol{C P} \boldsymbol{P}^{n}, \boldsymbol{L P ^ { n }}, \boldsymbol{O} \boldsymbol{P}^{2}$ respectively. Perform a dilatation of the Euclidean space so that the geodesics of V have radius 1 , and assume V and M lie in the same Euclidean space.

Now V is a manifold with planar geodesics. Hence by our previous calculations we may find a basis $l_{i V}$ of $T_{p} V$ such that the quantities $\eta_{V}\left(l_{i V}, l_{j V}\right)$. $\eta_{V}\left(l_{k V}, l_{m V}\right)$ have the calculated values.

Perform a translation to make M and V coincide at one point. Then perform a rotation about that point to make the tangent planes of M and V coincide at that one point. Let l_{i} be the basis in the common tangent plane in which $\eta\left(l_{i}, l_{j}\right) \cdot \eta\left(l_{k}, l_{m}\right)$ were computed, and $l_{i V}$ the corresponding basis for V. Rotate and reflect about the common point until l_{i} coincides with $l_{i v}$.

Now if two sets of vectors have identical inner products (for corresponding pairs), we may perform a rotation and reflection about the origin to make them agree. Using this fact we may perform a rotation and reflection in the normal space, leaving the common tangent plane pointwise fixed to make $\eta_{V}\left(l_{i}, l_{j}\right)=$ $\eta\left(l_{i}, l_{j}\right)$. This implies that $\eta=\eta_{V}$ at that point. Hence the geodesics of each manifold through that point coincide so that the manifolds coincide locally. By analytic continuation M is either an open subset of an n-plane or congruent to a dilatation of an open subset of a manifold in the list.

References

[1] H. Freudenthal, Sur ebenen Oktaven Geometrie, Nederl. Akad. Wetensch. Proc. Ser. A, 15 (1953) 195-200.
[2] --, Oktaven, Ausnahme Gruppen und Oktaven Geometrie, Math. Inst. Univ. Utrecht, 1951.
[3] S. Hong, Isometric immersions of manifolds with plane geodesics into Euclidean space, J. Differential Geometry 8 (1973) 259-278.

[^0]: Received July 31, 1974.

