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THE TWO-PIECE-PROPERTY AND CONVEXITY FOR
SURFACES WITH BOUNDARY

LUCIO L. RODRIGUEZ

0. Introduction

For smooth manifolds immersed in an ^-dimensional Euclidean space Rn,
one has the notions of the Two-Piece-Property (T.P.P.), introduced by Ban-
choff, of the minimal total absolute curvature, defined by Chern and Lashof,
and of tightness, defined by Kuiper. The three notions are equivalent for
closed surfaces in R3. The definition of the T.P.P. applies equally well to
manifolds with boundary. A closed surface M in R3 has minimal total absolute

curvature if \K\ dM = 4 — χ(M), where K is the Gaussian curvature

of M, dM is the area element of M, and χ(M) is the Euler characteristic of M.
This definition does not adapt itself to surfaces with boundary, although we
will show that the following formula holds for a surface M with boundaries
C19 - - , Cn in R3 having the T . P . P . :

ί K dM + Σ ί \k\ds + [ kgds = 4π ,
J M,K>0 ί = lJd JCi

where k is the curvature of the boundary curve, kg is its geodesic curvature,
and s its arc-length.

Definition. An immersion /: M —> Rn of an m-dimensional manifold (with
or without boundary) has the T.P.P. if for any hyperplane H in Rn the set
f~\Rn — H) has at most two connected components.

For the standard definition of tightness using height functions and the rela-
tionships between these concepts see Kuiper [5]. We will use a definition which
is^equivalent for surfaces and makes sense for manifolds with boundary.

Definition. An immersion f:M—>Rn is said to be A -tight if for almost all
z in S71'1 and real numbers c, the inclusion map /': M(z, c) = {x: z-f(x) < c]

—> M induces monomorphisms in homology 0 —> Hk(M(z, c)) —^> Hk(M) for
some field of coefficients. It is tight if it is A:-tight for all k; see Kuiper [4,
p. 53].

For an immersion of a topological sphere into iΐ3, the T.P.P. or tightness
or minimal total absolute curvature implies that the immersion is an embedd-
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ing onto the boundary of a convex body in R3 see Chern-Lashof [2, p. 307].
In § 1, using the identity mentioned above we will prove the following theorem.

Theorem 1. // M is a manifold with boundary dM topologically equivalent
to a sphere with p disjoint discs removed, then for any immersion f: (M, dM) —*
R3 with the T.P.P. we have

(a) /1dM consists of planar convex curves,

(b) / is an embedding of M into the boundary of its convex hull, or f(M)
lies in a plane.

In § 2 we show that the results of Theorem 1 are valid for immersions into
arbitrary Euclidean spaces we say that an immersion /: M —• Rn is substantial
if f(M) is not contained in any hyperplane.

Theorem 2. // /: (M, dM) -> Rn is an immersion with the T.P.P., where
(M, dM) is a two sphere with p disjoint open discs removed, then f is not sub-
stantial for n > 4.

We apply the analysis used in this section to tight immersions of surfaces
with boundary.

Theorem 3. // /: (M, dM) —• Rn is a smooth tight immersion of a compact
connected surface with nonvoid boundary, then f is not substantial for n> 4.

One example of a nonplanar surface with the T.P.P. is a half-sphere (which
is topologically a disc) however, it can be shown that a tight disc in R3 must
actually be contained in some plane as the convex hull of a convex curve.
Therefore the T.P.P. and tightness are not equivalent for manifolds with
boundary, although tightness implies the T.P.P.

The author would like to thank Professor Thomas Banchofϊ for initiating
him in these problems and giving much help and encouragement. The author
also appreciates very much the help and advise of Professor Katsumi Nomizu.

1. Surfaces with boundary in R3 having the T.P.P.

In this section we will consider compact connected surfaces with boundary
difϊerentiably immersed in R3. We will study some consequences of the T.P.P.,
and at the end of the section using some equivalent formulations of the T.P.P.
we will show that any immersion of a topological sphere minus some discs
having the T.P.P. is convex. If we let C: [a, b] -> R3 be an arc-length param-
etrization of a component of dM, then we have a natural tangent vector Xx =
C'(t0), where x = C(t0) is a boundary point. Let Yx be the tangent vector per-
pendicular to Xx which points away from M. Then Z = X x Y is the unit
normal, and we can extend the frame (X, Y, Z) globally along a neighborhood
of the curve C.

Given any unit vector z, we consider the height function z f, where ( ) is
the usual Euclidean inner product in R3. For a surface without boundary N,
open or closed, z / has a critical point at a point y if and only if z is normal
to N at y. Suppose that g: U —> S2 is the Gauss map. Then we know that z f
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has a critical point at x if g(x) = z. The critical point at x is nondegenerate

if and only if the Jacobian of g at x is not zero, so, by Sard's theorem, z-f

has nondegenerate critical points in U for z in S2 minus a set of measure zero

see Milnor [9].

At a boundary point, we say that z / has a critical point if z (/1 dM) — z C
has one, and that it is nondegenerate if (i) it is nondegenerate as a critical
point of z C, and (ii) z Y x φ 0. A function φ on M can be locally expressed
at an interior nondegenerate critical point y as φ(x) = 0(y) ± (JC^2 ± (x,)2,
and its index is equal to the number of minus signs in that expression. Thus
φ has index 2 if and only if y is a local maximum. At a nondegenerate critical
boundary point x, we say z / has index 2 if z C"(Q < 0 and z Yx > 0, in-
dex 0 if z-C"(t0) > 0 and z Yx < 0, index one otherwise. We say that z-f is
a nondegenerate function if it has only nondegenerate critical points at either
boundary or interior points.

We have that z / is nondegenerate for almost all z. For a nondegenerate
function, let β(z) equal the number of critical points in dM with index 2, and
γ(z) equal the number of critical points in the interior of M with index 2. The
following lemma justifies our definition of a critical point of index 2 at a
boundary point.

Lemma 1. Let x in dM be a nondegenerate critical point of the function
z-f. Then the point x is a strict local maximum of z-f if and only if x is a crit-
ical point of index 2.

Proof. If x is a strict local maximum of z /, then it is also a strict local

maximum of z C. Hence z C'XQ < 0, and z (— Y) cannot be greater than

zero, because, in that case, if D: [0, ε] —> M is a curve in M starting at x with

D'(0) = - Y , then (z £>)' = z-Ό' = z ( - Γ ) > 0 and therefore z f(D(ε)) >

z f(D(0)) = z /O), contradicting the fact that x is a local maximum of z /.

Conversely, identifying X with /*(X) we consider the map p: Rz —> {X} © {z}

given by orthogonal projection. The derivative p* of /? is given by p* = p be-

cause p is linear. Now consider the map pof; note that z / = z-(pof), be-

cause z is in pGR3) Therefore it is sufficient to show that z (pof) has a strict

local maximum. The derivative of pof is (pof)^. = p ^ . It is an immersion

because p*/*(X) = p*(X) =£ 0 and p*/*(Y) = p#(Y) = p(Y) = {Y-X)X +

(Y'Z)z = (Y-z)z Φ 0, by our assumption. Since po/is an immersion, p(j(M))

must be locally to one side of p o C it lies to the side in the direction of — z,

since z Y > 0 implies z (po/^Y) > 0. Moreover, z ( p o Q " = z (poC") =

z-C < 0, because z is in pGR3). Therefore z (poC) has a strict local maxi-

mum at x, and z (pof) has a strict local maximum at x also, q.e.d.

Any function must have a maximum on a compact set, so that if z / is non-

degenerate, it must have a strict local maximum at an interior or at a bound-

ary point. In any case, we have that β(z) + γ(z) > 1, and
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ί (β(z) + γ{z)) dS2 > 4π .
J S2

The next lemma shows that we get equality if and only if /: M, dM -+ R3 has
the T . P . P .

Lemma 2. An immersion f: M, dM -^ Rn of a surface with boundary has
the T.P.P. if and only if any nondegenerate function of the form z-f has only
one maximum, i.e., β(z) + γ(z) = 1.

Proof. Suppose that z-f had two nondegenerate maxima at x1 and at x2,
with c = z /Ui) < Z'f(x2). Then, for any small ε > 0, we consider the half-
space H = {y in Rn: z y > c — ε} but since xλ is a strict local maximum of
z-f, f~\H) would contain two different components of M.

Conversely, suppose that / does not have the T.P.P. then, for some vector
z and real number c, the set {x in M: z-f{x) > c) consists of at least two
connected components A and B. Let xx in A and x2 in B be the maxima of
z-f, with D = z-KxJ < Z'f(x2). Then given any ε > 0 there exists δ such that
D(z') = {xinM: z'-f(x) > c + ε} c A U B if \\z - z'|| < δ. Now z
z /(JCJ) - (z f(xί) - zf /(JCJ)) >D—\z- /Oi) - zf - fix,) \>D - δ(sup{\\f(x)

c + ε, for small ε and δ. Similarly, z! -Kx2) > c + ε, which implies D(zO Π
A Φ φ and D(zO f] B Φ φ. Consequently ZXzO has at least two connected
components if \\z — z'\\ < δ. Since arbitrarily close to z there is a z7 such that
z'-f has only nondegenerate maxima, we have a z7 with a critical point of in-
dex 2 in D(zO ΓΊ A and another in D(z') Π B. q.e.d.

Now we want to calculate the contribution of the f(z)'s for any immersed
surface in R3.

Lemma 3. At an interior point x, the fact that a nondegenerate function
z-f has a local strict maximum implies that the Gaussian curvature K(x) is
greater than zero. Conversely, if K(x) > 0,then z-f has a maximum at x,
where z is equal to one of the normals ±ZX.

Proof. See Kuiper [4].

We see therefore that if g is the Gauss map, then g*(dS2) = γ(z) dS2.
JM,K>O J S*

On the other hand, we know that the Jacobian of the Gauss map is equal to

the Gaussian curvature K. Therefore the contribution of the f(z)'s is γ(z)dS2

— K dM. The following is a formula similar to that of minimal total curva-
J M,K>0

ture characterizing the T.P.P. for surfaces in R3:

( 2 ) ί KdM + f β(z)dS2 = 4π .
J M,K>0 J £2

If /: M, dM —> R3 has the T . P . P . , and z-f is a nondegenerate height func-
tion with x as a local maximum, then x must be a global maximum by Lemma
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2, i.e., Z'f(y) < z-f(x) for every y in M. If we denote the plane {y inR3:
wy = c} by P(w, c), then we see that f(M) is on one side of P(z, z-f(x)),
while still touching it. For any immersion we define the following.

Definition. P(z, c) is called a top-plane of / if z-f(y) < c for all y in M,
and z-f(x) = c for some x in M.

Definition. If P(z, c) is a top-plane of /, then f~ι(c) is called a topset.
Note that if z-f is nondegenerate with maximum x andz /U) = c, then the

corresponding topset is just the single point {x}. Thus almost all topsets con-
sist of single points. The following proposition will be useful later.

Lemma 4. The limit of top-planes is also a top-plane.

Proof. Suppose that P(zn, cn) is a sequence of top-plane with lim zn = z and

lim cn = c; then we want to show that P(z, c) is a top-plane. Let xt be a global

maximum of Zi-f, i = 1, 2, 3, take a converging subsequence of * t ' s .

Rename the sequence such that lim xn = x. Then c = lim cn = lim zn f(xn)

= z-f{x). The point JC must be a global maximum if not, there exists a point

y in M such that z •/()>) > c. But then there exists an integer k such that

cn > Zn'fiy) > z f(y) — ε > c, if n> k; and lim cn > c, a contradiction.

q.e.d.

If y is an interior point, then the only possible top-plane is the tangent plane
TMV however, in general, this will not be the situation for a boundary point.
In the case of a flat disc contained in some plane in .R3, every plane containing
the tangent vector C'(t^ = Xx at some boundary point x is a top-plane. On
the other hand, if M is a hemisphere, then only half the possible z's give rise
to top-planes P(z,z f(x)) at a boundary point x. If C(t) is an arc-length pa-
rametrization of a component of dM immersed in R\ then we have already
denoted C\t) by X. If C"(t) = X't φ 0, let Nt = C"(t)/\\C"(t)II, the curvature

normal to the curve. Let Bt = Xt x Nt, the binormal to the curve. The frame
(X, N9 B) along C(t) is the Frenet frame of the boundary curve. Now we are
ready to define the function which will tell us how many normal vectors give
rise to functions z / with local maxima (half of the vectors which give rise to
supporting planes). Let β: C —> R be defined by letting θ(C(t)) equal the angle
between Bt and Zt9 that is, the smallest angle. If C"(t) = 0, let θ(C(t)) = 0.

Note that 0 < 0(JC) < π, and cos θ{C(i)) = Bt Zt; even though B and Z
depend on the direction of C, Bt Zt does not. The angle θ{C(t)) is the same
as the angle between Nt and Yt, i.e., cos θ{C(t)) = NtΎt.

At a boundary point x, if θ{x) is not equal to zero or π, then Nx Φ YX9 and
we can choose the normal Zx with Zx-Nx < 0. Consider the vectors Wa =
(cos tf)Zx + (sin α ) y x . The next lemma justifies the above definition of θ.

Lemma 5. The function Wa / has a nondegenerate critical point of index
2 at x if and only if 0 < a < θ(x) < π.

Proof. Nx = (cos Θ)YX — (sin Θ)ZX, by the definition of θ and the choice
of Z. Then Wa Y = sin a > 0 if and only if 0 < a < π9 and Wa*N = cos ̂ sin a
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— sin θ cos a = sin (a — θ) < 0 if and only if — π < a — θ < 0, or a < θ.
Since Wa C"(t) = \\C\t)\\Wa-N, our proof is complete.

An important consequence is the following.
Corollary 6. // x in dM is not in a top-set of an immersion f: M, dM —» R3

having the T.P.P., then θ(x) = 0, i.e., C"(Q-ZX = 0.

Proo/. If θ(x) Φ 0, then there exists an a, 0 < α < 0(C(ϊo)) and Wa f
has a local maximum at x and hence a global maximum. Therefore P(Wa, Wa f(x))
is a top-plane, and x is in a topset. q.e.d.

A curve C(t) on a surface with Cf\Q-Zx = 0 is said to be asymptotic at *.
In terms of the second fundamental form h, this means that h{X, X) = 0. The
simplest example of an asymptotic curve is a plane curve. Note that the image
under / of any topset must be contained in the boundary of the convex hull
of f(M), if / has the T.P.P. therefore Corollary 6 says that if a portion of
the boundary curve is in the interior of the convex hull H(M) of /(Λί), then it
must be an asymptotic curve.

The planes P(WQ, W0-f(x)) and P(Wθix), WHX) f(x)) are the tangent plane to
the surface and the osculating plane of the curve, respectively. If θ(x) Φ 0,
we showed that every Wa f had a global maximum at JC, if / has the T.P.P.
Therefore, if / has the T.P.P. and θ(x) Φ 0, then both planes are top-planes
by Lemma 4. This fact gives the following corollary which we will use later.

Corollary 7. // C(t), tx < t < t2, is a portion of a boundary curve which
is contained in the boundary of the convex hull 3H(M) of an immersion with
the T.P.P., and C"(t) Φ 0, then C(t) is a plane curve.

Proof. If C(f) is in a topset and θ(C(t)) Φ 0, then, as we remarked above,
the osculating plane is a top-plane. In case θ(x) = 0, then either the curvature
of the curve is equal to zero or the osculating plane is the tangent plane and
the only possible top-plane. Since C"(t) Φ 0, the osculating planes are all top-
planes, implying that the curve is locally on one side of the osculating plane.
But this in turn implies that the torsion τ(C(t)) = 0. Hence the curve is a
plane curve for tx < t < t2. q.e.d.

At this time, we want to go back to calculate the contribution of the /3(z)'s
to the "total curvature" of the immersion /: M, dM —> R\

Proposition 8. // / has the T.P.P., then

( 3 ) f β(z) dS2= ΣΪ (1 ~ cos θ(s))\k(s)\ ds ,
J £2 i = ljCi

where k(s) is the curvature of the curve, i.e., | |C"(ϊ o) | | . Indeed, for any immer-
sion, if each boundary curve consists of portions which are either planar or
asymptotic, then (3) still holds.

Proof. By Lemma 5, the total contribution of β(z) dS2 is equal to the sum
J s*

of the contributions of the (Wa)x's from each curve. Hence it is sufficient to
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prove that the area in S2 of {(WJX: x in C, 0 < a < θ(x)} is equal to ί (1 —
J c

cos θ(s))\k(s)\ds for each boundary curve C. More precisely, since integrals
and areas are additive, we can consider a small segment C(t), tι < t < t2, on
which the map (x, a) -» (Wa)x in S2 is one-to-one it is enough to show that

the area of {(Wa)C{t): tx < t < t2; 0 < a < θ(C(t))} is equal to ί (1 -
J C[ίi,ί2]

cos θ(s))Ik(s)\ds.
If x in C is also in the interior of the convex hull of /(M), then θ(x) = 0,

and there is no Wa contribution, by Corollary 6 and, on the other side, 1 —
cos θ = 0. Since k(x) = 0 implies that θ(x) = 0, we can also assume that
k(x) Φ 0. Therefore, by Corollary 7, we can assume that C(t), tί < t < t2, is
a plane curve with k(x) Φ 0.

Consider now spherical coordinates for S2, F: [0, 2π] X [0, π] -> S2, F(φ, r)
= (sin r cos φ, sin r sin 0, cos r). Let <?(0) = F(0, π/2) in 51 in (.R2 x {0} Π 52)

^ h-1

inR3. Since C is planar, we can parametrize C as follows: [a, b] > Sι > C,
where h(s) = — Ns is the "Gauss map" of the curve in the plane. The map
h is one-to-one since k(s) Φ 0. Naming this parametrization by the same C,
we have that s = C(φ) = h~ιq{φ). Since we can assume that C lies in R2 X {0}
such that (0,0, l) /0c) < 0, with q(φ) = —NC(Φ)9 it is clear that F(φ, r) =
(Wiθ_r))C{φ). Therefore the area contributed by the (Wa)s's of C is equal to the
area of F(D), where D == {(φ, a): a < φ < b,0 < a < θ(C(φ))}. That is,

dS2=\ F*(dS2) = smrdrdφ=\ ύnrdr\dφ
JF(D) JD JD J α L J o J

= £ [-cos r|0
s<o<*»]^ = Γ (1 - cos θ(C(φ))) dφ .

On the other hand,

f & (1 - cos β(s))\k(s)\ds

= ί (1 - cos θ(C(C~\s))))
JC&a, ~

because

, 6 3 ) ds

dC~x

ds
dh

ds
•

dq-1

dr = q(φ) dr

as ,

= \k(s)\,

since q is length-preserving. Finally, the last integral is equal to

(1 - cos θ(C(φ))) dφ ,
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by a change of variables, q.e.d.
We observe that the geodesic curvature kg is equal to the length of the pro-

jection of the vector C"(s) on the tangent plane, positive in the inward direc-
tion, that is, kg(s) = C"{s) (-Y) = -\k(s)\(Ns Ys). Since -cos 00) =
—NSΎS, the following proposition follows directly from formula (2) and
Proposition 8.

Proposition 9. // /: M, dM -» R3 has the T.P.P., then

(4) f KdM+t[ (\k\ + kg)ds = 4π .
J M,K>0 i = l J d

Conversely, if each boundary curve consists of portions which are either planar
or asymptotic, and if (4) holds, then f has the T.P.P.

With the aid of formula (4), we will be able to characterize the immer-
sions of M with the T.P.P., when M is topologically a sphere minus a finite
number of disjoint discs. In the remainder of this section, we let (M, dM) be

/ n n \

topologically equivalent to (S2 — (J Dt, (J C«), where the D^'s are open discs

with boundaries C f 's, and Ct Π Cj- = 0 if / Φ /.
Proof of part (a) of Theorem 1. First, we recall the Gauss-Bonnet formula

( 5 ) f K dM + f kg ds = 2πχ(M) ,
J M J dM

where χ(M) is the Euler characteristic, K is the Gaussian curvature, and kg

is the geodesic curvature of the boundary curves. Recall now that the Euler
characteristic of M is χ(M) = 2 — n. Since / has the T.P.P., combining for-
mulas (4) and (5) we have

Aπ = f KdM + Σ ί (1*1 + *,) ώ > f KdM + t[ W + kg) ds
J M,K>0 ί = l J d JM i = l J d

= 2πχ(M) - f * , < & + £ [ (1*1 + *,) ^
J dM ί = l J C i

= 2τr(2 - n) + Σ f 1*1 ds > 4π ,
i = l J Ci

since by FencheΓs theorem, \k(s)\ ds > 2π, with equality only if Ct is a

plane convex curve. Since we have equalities, the boundary curves are convex,

and ί KdM = \ KdM, which implies that K > 0 on M.
J M, K>0 JM

Proof of part (b) of Theorem 1. We know that the boundary curves are
convex, i.e., they bound a convex disc in some plane. We extend / to a map
j on the closed sphere by mapping each Dt homeomorphically onto the convex
disc with boundary Q . The new map / will not be smooth in general, but it
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will be continuous. Moreover, if z-f is a nondegenerate function on M, then
z / will have exactly the same isolated critical points as z /, since there are n o

new ones in [J Dt. In particular, z-f has only one maximum for almost all z
i = l

in S2. If we can show that / is a topological immersion, then we can apply
Theorem 4 in [5, p. 227], which concludes that / is an embedding onto the
boundary of a convex body in R3. We will show that either / is an immersion
or that f(M) is contained in some plane. If / is not an immersion at a point x
in a boundary curve C, then C is contained in TMX, and — Yx points towards
the interior of D. Let Zx be the normal which has x as a global maximum of

zx i.
For a smooth convex curve, such as C, we have a well defined interior

normal Nx at every point x of C even if k(x) = 0. If k(x) Φ 0 then cos θ(x) =
NX YX= —NX'NX= — 1, and #(jt) = π. Thus — Zx / also has a global max-
imum at x, and f(M) is contained in f%(TMx). Even if k(x) = 0 we have
— Yx — Nx.\ί C(t0) = x, let [a, b] be the largest interval containing tQ on
which C"(f) = 0 then C{b) is the limit of points xn in C such that k(xn) Φ 0.
Now we observe that C: [a, b] —» R3 is an asymptotic curve in M, but, as it
was shown in the proof of part (b), K > 0 on M. This implies that τ =
V — K = 0 along C([α, b]), and that Z y and Yy are parallel along C([α, b]).
Thus Yy = — Ny along C([α, b]) and, since liin — YXn = —YC(b) = N<7(δ> and
^(JKJ Φ 0, we have that lim β(xn) = π. We observe that the half-spaces
H(WHXn),Wθ{xJ(xJ) = {yeR3:Wθ(Xn)'y<WHXn)'Kxn)} all contain /(M),
since / has the T.P.P. Looking at the proof of Lemma 4, we could also have

proven that the limit of the half-spaces, Hi lim Wθ(Xn),lim Wθ(Xn)-f(xn)\ =
\n-*oo n—>oo /

H(—ZCib), —ZC{h)'C(b)) = H(—Zx, —ZX'f(x)), also contain f(M), since they
are closed. Therefore x is a global maximum of both Zx>f and —Zx-f, and
hence /(M) is contained in the plane perpendicular to Zx.

2. Surfaces with the T.P.P. and tightness in higher dimensions

In § 1 we studied immersions in R3 of spheres with discs removed with the
T.P.P. In this section we will show that any immersion in Rn of a 2-sphere
with discs removed having the T.P.P. must actually be contained in some
three-dimensional affine subspace of Rn, so that we do not obtain any more
examples in higher codimension. The analysis involved will give similar results
for the case of any tight immersions of surfaces with boundary in Rn, that is,
they must be contained in three-dimensional affine subspaces of Rn.

Let /: M, dM —• Rn be a smooth immersion of a compact surface with
boundary into Rn. Let TMX and TM^ denote the tangent plane and the normal
space at x, with Sx and S£ the unit tangent circle and unit normal sphere, re-
spectively. As before, let X be the unit tangent vector to the boundary curves
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and let Y be the tangent vector to Λf, perpendicular to X, which points out
from M. At each point x of M we have a vector-valued symmetric bilinear
map ax: TMX X TMX —> TM^, the second fundamental form.

In what follows, we assume that /: M, 3M —> Rn is an isometric immersion
with the T.P.P.

The locus of points a(X, X) with X in Sx can be shown to be an ellipse in
the normal plane called the curvature ellipse. This concept was introduced by
Wilson and Moore [12] and further studied by Little [7], A radial line in the
normal space is a half-line emanating from the origin.

Lemma 10. // /: M —» Rn is an immersion of a surface (with or without
boundary) into Rn such that at a point x the curvature ellipse Bx is contained
in a radial line without touching the origin, then f is not substantial for n>4.

Proof. Fix β — a(X, X), X in TMX. If z is a vector of the open half-sphere
{z in Sf: z-β < 0}, then z f has a strict local maximum at x and therefore a
global maximum at x since / has the T.P.P.. Therefore, in the limit, we see
that the equatorial (n — 4)-sphere S'x is composed of vectors which satisfy w f(x)
> w-f(y) for all y in M. If both w-f and ( — w)-f have global maxima at x,
then f(M) is contained in the hyperplane perpendicular to w under the assump-
tion for simplicity that f(x) = 0. Hence f(M) c S'J-, a three-plane in Rn.

Lemma 11. // p is in dM and ap(X, X) Φ 0, where X is tangent to the
boundary, then f(M) C H C Rn for some three-plane H.

Proof. Let z e S£ with z a(X, X) < 0. Let p: Rn -> .R3 be the orthogonal
projection onto the three-plane TMX 0 {z}, and C(t) the boundary curve with
C(O = x. If D = poC, then the surface g = po/ has D'^tJ-z = [(p o C ) ^ ) ] z
= [pCC^COl z = pWX,X)) z = a(X,X)-z < 0 since z € /?(#"). Therefore,
by Lemma 1, w g has a local maximum at x, where w = z + εY^ for small
positive ε. Since w is in p(Rn), we have that w g = w / so that w f has a
strict global maximum at x because / has the T.P.P. Thus, in the limit, when
ε tends to zero, z-f has a global maximum at x, and the same is true for all
vectors in the half-sphere {β in Sx: β a(X9 X) < 0}. Therefore, as in the above
lemma, all vectors in the equatorial sphere Sx = {β in Sx: β-a(X,X) = 0}
give rise to global support hyperplanes. Hence /(M) c S^-1, a three-plane in
Rn. q.e.d.

We recall now that the Gauss-Bonnet formula for a region with boundary
M is an intrinsic formula with kg = FZX ( — Y), where V is the covariant de-
rivative in M, X is the unit tangent vector to the boundary curve, and Y is the
tangent vector perpendicular to X and pointing away from M. We are consid-
ering surfaces immersed in Rn and, for those with the T.P.P., we can obtain
an extrinsic formulation as follows.

Proposition 12. // f:M,dM->Rn is substantial, then kg = —\k\ for a
boundary point x.

Proof. By definition, \k\ = \\FZX\\ where F is the covariant derivative in
Rn. Using Lemma 11 and Gauss's formula for submanifolds, we have that
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VXX = VXX + a(X,X) = VXX. On the other hand, VXX = ±\\FXX\\Y; if
the sign were negative, then (z + εY)-f would have a local maximum at x for
any z in S£ since VXX = VXX. Thus, if we assume f(x) = 0, then any zL would
be a global support plane, and f(M) c TMX, so that / is not substantial. Hence
pχχ = -\\pzχ\\(-Y) = -\k\(-Y), and kg = FxX.(-Y)= -\k\. q.e.d.

Thus formula (5) becomes

( 6 ) [ KdM = 2πχ(M) + ί \k\ ds .
J M J dM

Now we consider further the local geometry of the immersion f:M—>Rn.
Definition. Given z in S£, the Lipschitz-Killing curvature G(p, z) in the

direction of z is the determinant of the symmetric bilinear form α-z, i.e.,
G(p,z) = (α(X,X)-z)(α(Y, Y) z) - (α(X, Y) z)2, where X and Y are ortho-
normal tangent vectors.

If we let g: N(f) —> S71'1 be the Gauss map of M, where Λf(/) is the normal
bundle on the interior of M, with g(p, z) = z, then G(p, z) is equal to the de-
terminant of the Jacobian of g at (p, z). Therefore, by Sard's theorem, all z,
except for a set of measure zero on S71'1, are regular values of g, i.e., for al-
most all z, G(p, z) φ 0 if g(p, z) = z.

Now, for any z in S71"1, z / has a maximum at some point x in M, sinceM
is compact. Let /?(z) = 1 if the maximum is attained at a boundary point,
= 0 if at an interior point; let γ(z) — 1 — ρ(z). Then

Sn~i

γ(z) dSn~ι + [ p(z)

where cn_ι denotes the volume of the (n — l)-sphere.
Since M is a manifold, z (/1 dM) has a strict maximum for almost all z, im-

plying that FxX-z < 0. By Proposition 12, VXX = VXX = |Jfc|Y, but then
z ( — Y) > 0, which contradicts the fact that ( — Γ) is the tangent vector point-
ing towards the inside of M. We have shown

( 7 ) f p(z)
J Sn-i

dSn~ι = 0

Let f(z) = 1 if and only if G(p, z) > 0 and /? in the interior of M is a max-
imum with (/?, z) in g" 1^)- Since, by Sard's theorem, G(p, z) Φ 0 for all (/?, z)
in g^Cz), for all z except for a set of measure zero we have that

ί γ(z) dSn~ι = ί f(z) dSn~ι .

Therefore by the change of variables suggested above we get
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cn-i = ί f ω as*-1 = ί 4 - έ B n " 1

, Q N G(P,»)>0

_ If _ If
-T.U) g

 ~TJΛ_ JJV(/)
C(p,Zί)>0 (?(?), z)>0

, z)

where we use the fact that the number of maxima is equal to one-half the
number of maxima and minima of z /, which in turn is equal to one-half the
number of points p with G(p, z) > 0.

We now show that we can obtain the Gaussian curvature as an average of
the Lipschitz-Killing curvatures. Let cn denote the volume of the ̂ -sphere Sn.

Lemma 13. // /: M —> Rn is an isometric immersion, then

( 9 ) f x G(p, z) ^
n- 2

Proof. Let ̂ 4(τ;) = α v, a real-valued symmetric bilinear form defined for
every normal vector v. Note that G(p,v) = det^4(v). If ^^ ,^ n _ 2 is an
orthonormal frame of normal vectors in TMP, then K(p) = ά&tAiv^ + •
+ det^(v n _ 2 ) . On the other hand, A(v) = ^ ( ^ i ) + + an.2A{vn_2)
if i; — a1v1 + + an_2vn_2. Since ^4(Ί;) is a 2 X 2 matrix, άttA(v) =
a\ det A(Vi) + + a\_2 det ^(^^.2) + 2 aίajBίj> where 5 ^ consists of a sum

of products of the coefficients of the A(ViYs. We claim that aMjB^ dS^
JSp1

= 0. Let S°s be the small sphere obtained by intersecting Sj with the hyper-
plane in the normal space, aό = s. Then

dS^ = Bίή Γ ([ aλ ds = 0 ,
p ιJ J-i (1 -sψΛ)sl 7

since at is an odd function on S°8. Therefore

n-2

ί G(p, v) ̂  = "Σ det ^(v() f a? dS$ ,
J Sp1 i = l J ^

the theorem is proven if we show that a\ dS^ = C n~3 . Since a\ dSj =
J Sp1 n — 2 J Sp1

a) dS^, we have
Js}-

(n - 2)f (ήdSi = nΣ ί L$dSΪ = f Σ 2 ^ ^ = f ΛSi- = c._3 .

Corollary 14 (Gauss-Bonnet theorem). If f:M^>Rn is an isometric im-

mersion of a closed surface M, then K dM = 2πχ{M).
J M
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Proof. If g: N(f) —» S71'1 is the Gauss map, then, as we saw above,

ί g* dSn~ι = ί ί G(p, z) dzdM = [ Cn~3 K(p) dM .
J N(f) JM J Sp JM Π — 2

At the same time, the left-hand integral is equal to dcn_1, where d is the de-
gree of the Gauss map this degree is equal to the Euler characteristic of M (see

Kobayashi-Nomizu [3, p. 359]). Therefore cn_lX(M) = Cn~2 f K(p)dM,
n — 2 J M

and the theorem follows from the fact that the ratio cn_Jcn_3 of the volumes
of spheres is equal to 2π/(n — 2) (see Otsuki [10, p. 64]). q.e.d.

Let μ(p) = min {G(p, z): z in S^} and λ(p) = max {G(p, z): z in S£}. Note
that μ{p) < 0, since G(p, z) < 0 if z is perpendicular to a(Z, Z) for some tan-
gent vector Z. It can also be pointed out that μ(p) = 0 if and only if the curva-
ture ellipse Bp is contained in some line in the normal space starting at the
origin, which is called a radial line. The following proposition gives a formula
similar to that of Proposition 9 of § 1.

Proposition 15. If f: M,dM-* Rn has the T.P.P., then

(10) 4π = ί (n-2 Γ Q ^ ^ ^ Λ m ^ Γ R ^ m

Jp<=.lntM\ Cv_o JzζS^ / JM

G(p,z)>0 W>°

with equality only if μ(p) = 0 for every p in M.
Proof. We get the first equality by multiplying both sides of (3) by

2(n — 2)/cn_3, noting, as in the proof of Corollary 14, that (n — 2)cn_1/cn_3

= 2π. The last inequality follows from Lemma 13.
Proof of Theorem 2. Combining formulas (6) and (10) we obtain

4τr > ί K(p) dM>[ KdM = £ f \k\ds + 2ττ(2 - r)
J M J M ί = l J d

Hp)>0

= *π + Σ ([ \k\ds -2π) > Aπ .
ί = l \J Ci /

The second inequality holds since K < 0 on {p in M: λ(p) < 0} by Lemma
13, and the last inequality is true by FencheΓs theorem. Since we have equali-
ties, μ(p) = 0. But at some point p we must have K(p) > 0, and this implies
that ap(Z, Z) Φ 0 for all Z in Sp otherwise, we would have K(p) —
a(Z,Z) a(W, W) - α(Z, W) a(Z, W) = -a(Z, W)2 < 0. Therefore the cur-
vature ellipse is contained in a radial line without touching the origin, and the
theorem follows from Lemma 10. q.e.d.

Banchoff has given an example of a tight polyhedral Moebius band in R*:
it is the union of the triangles etei+lei+2 (i mod 5) of a simplex e^e^e^ in
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R\ Kuiper has shown that any tight topologically and substantially embedded
Moebius band in R4 is equal to Banchoff's example (see Kuiper [6]). From
this it follows that there is no smooth embedded tight Moebius band in R*.
Using formula (8) we can quickly show that there is no smooth tight substantial
immersion in R4 of a surface with nonvoid boundary.

Proof of Theorem 3. We recall that for a connected surface M with or
without boundary, f:M-+Rn is tight if and only if for any vector z in S71'1

and real number c, the inclusion map H*(M(z, c)) —> H*(M) is injective, where
M(z, c) = {x in M: z f(x) < c). If G(p, z) > 0 for some p in the interior of
M, then z-f or (—z)-f has a strict local maximum at p; say it is z /. Then,
for small e, M(—z, —z f(p) + ε) contains a small isolated disc D with bound-
ary curve C, which obviously bounds i n M . However, C C M(z,z f(p) — ε),
but it cannot bound in M(z,z f(p) — ε), since in that case M would contain
a component without boundary, contradicting the fact that M is connected.
Hence G(p,z) < 0 for every p and z, contradicting formula (3), since / has
the T.P.P.

Another simple consequence of our formulas is the following.

Proposition 16. Let f:M,dM-+R* have the T.P.P., where M is equal to
a fiat torus minus r discs. If f is substantial, the boundary curves Ci9 / = 1,
• , r, are plane convex curves.

Proof. In this case, formula (2) becomes 0 = 2τr(—r) + £ I \k\ds.
i = l J d

Since \k\ds > 2π, we have equalities, and hence by FencheΓs theorem
J Ci

each Ct is a plane convex curve, q.e.d.

By studying further the functions μ{p) and λ(p), introduced above, we can
get some insight into the extrinsic geometry of surfaces in higher dimensions.
In what follows, we will restrict ourselves to four dimensions. The following
lemma is proven by Otsuki who studied this problem in [10].

Lemma 17. If f: M —> R* is an isometric immersion, then

K(p) = λ{p) + μ(p) .

Proof. G(p, z) = det A(z), where A(z) = a z and, given an orthonormal
base v19 v2 in TM£, then G(p, aλvλ + a2v2) = det {aγA{v^ + a2A(v2)) is a quad-
ratic form in a1 and a2. Hence we can "diagonalize" G, i.e., there exist ortho-
normal vectors wx and w2 in TM^ which are eigenvectors of G(p, w) with
eigenvalues G(p,wλ) and G(p,w2). Therefore, one of them, say G(p, wj, is
equal to min {G(p,z): z in S-^} = μ(p), and G(p,w2) = λ(p). On the other
hand, G(p, w^ = d e t ^ O ^ ) ; however, as we pointed out above, K(p) =
det^Wi) + det^4(w2) if w1 and w2 are orthonormal. q.e.d.

Note that if μ(p) Φ λ(p) then we have two distinct normal lines. Using this
observation, we obtain the following global proposition.
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Proposition 18. There exists no immersion having the T.P.P. of the pro-
jective plane P2 in R\ with Gaussian curvature K(p) > 0 at every point.

Proof. Since Kuiper in [4] has shown that there is none in R3, it is suffici-
ent to show that if K > 0 throughout P2, then the immersion is not substantial.
We have remarked previously that μ(p) < 0. Therefore, in this case, λ(p) > 0
by Lemma 17.

Case 1: μ(p) < 0 for all p in P2. Then det A(w^) = G(p, wλ) = μ(p) < 0
for all p, that is, p has negative Lipschitz-Killing curvature in the direction of
wx (or — WΊ) as in the case of hyperbolic point in R3, this means that there
exist two distinct "asymptotic" lines Z and W in TMP with a(Z,Z)>z =
a(W, W)-z = 0. Hence there exists a continuous tangent line field throughout
P2, implying that χ(P2) = 0, a contradiction.

Case 2: μ(p) = 0 at some point p. As we have remarked before, this im-
plies that the curvature ellipse Bp is contained in a radial line. On the other
hand, λ(p) > 0 implies that Bp does not meet the origin. The theorem follows
now from Lemma 10.

3. Remarks

It is well known that two isometric closed convex surfaces in R3 are congru-
ent. However in general, this is not true for surfaces with boundary, see Leibin
[8]. In our case of isometric immersions with the T.P.P., we can use some
partial results of Pogorelov [11] to obtain rigidity theorems.

Proposition. Given two isometric immersions f19 f2: M, dM —» R3 with the
T.P.P., then the surfaces differ by a rigid motion of R3 if either one of the fol-
lowing holds:

(a) there exists an isometry τ of R3 with fx \ dM = τ o f21 dM and kgΦ —\k\
for one curve C C dM,

(b) dM consists of one curve and ft(M) can be projected in a one-to-one
fashion to some plane.

Proof. Condition (a) implies that, after a rigid motion, the immersed sur-
faces can be put in a position such that they are visible from the origin and
that the distances from the origin to corresponding points on the boundary
are equal. But with this last property, Pogorelov [11, Th. 4, p. 181] concludes
that the surfaces agree globally.

Similarly, if condition (b) holds, since our boundary curves are planar, after
a motion of R3 we can put them in a position such that they are in the half
plane {z € R3: z v > 0} and v f^x) = v-f2(x) for every x e dM, and we can
apply Theorem 2 of Pogorelov [11, p. 178].

In § 1 we showed that for the sphere with discs removed the T.P.P. implies
convex boundary curves. But for surfaces of higher genus there exist examples
with nonplanar boundary curves, which must be asymptotic. Also, not all ex-
amples of surfaces with boundary having the T.P.P. are obtained from closed
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tight surfaces. Although there are polyhedral examples of Moebius bands in
R3 with the T.P.P., there seems to be no smooth example. Banchofϊ [1] has
studied the T.P.P. and tightness for π-manifolds with boundary in Rn.
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