a CLASS OF HYPERSURFACES WITH CONSTANT PRINCIPAL CURVATURES IN A SPHERE

RYOICHI TAKAGI

Introduction

In a series of papers [1], [2], [3], [4] E. Cartan investigated hypersurfaces M in a simply connected space form $M(c)$ of constant curvature c such that all principal curvatures of M are constant. He classified such hypersurfaces completely for the case $c \leq 0$, [1], and partially for the case $c>0$, [2], [3], [4]. Recently H. F. Münzner [5] developed Cartan's theory and proved that to classify such hypersurfaces in a sphere is equivalent to find all homogeneous polynomials satisfying certain simultaneous differential equation. The purpose of this paper is to determine a class of M by giving a partial solution of the equation.

To state our result we shall describe an example of M in a sphere. For an integer $n \geq 2$ we denote by F_{n} a homogeneous polynomial

$$
\left(\sum_{i=1}^{n+1}\left(x_{i}^{2}-x_{i+n+1}^{2}\right)\right)^{2}+4\left(\sum_{i=1}^{n+1} x_{i} x_{i+n+1}\right)^{2}
$$

of $2 n+2$ variables. Let $S^{2 n+1}$ denote the unit hypersphere in a Euclidean $(2 n+2)$-space $\boldsymbol{R}^{2 n+2}$ centered at the origin. For a number t with $0<t<\pi / 4$ we denote by $M^{2 n}(t)$ a hypersurface in $S^{2 n+1}$ defined by the equation

$$
F_{n}(x)=\sin ^{2} 2 t, \quad x=\left(x_{1}, \cdots, x_{2 n+2}\right) \in S^{2 n+1} .
$$

It will be shown that $M^{2 n}(t)$ is a connected compact hypersurface in $S^{2 n+1}$ having 4 constant principal curvatures with multiplicities $1,1, n-1$ and $n-1$, and admits a transitive group of isometries. Our result can be stated as

Theorem. Let M be a connected complete hypersurface in $S^{2 n+1}$ having 4 constant principal curvatures. If the multiplicity of one of the principal curvatures is equal to 1 , then M is congruent to $M^{2 n}(t)$. In particular, M admits a transitive group of isometries.

We note that, as mentioned above, E. Cartan classified those hypersurfaces in a sphere which have at most 3 constant principal curvatures or 4 constant principal curvatures with the same multiplicity. Thus for the case $n=2$ the above theorem is due to E. Cartan. The polynomial F_{2} was first found by E. Cartan [3], and F_{n} by K. Nomizu [6].

[^0]
1. Differential equation

In the first place we write up all indices and their ranges used in this paper.
In $\S 1, \alpha, \beta=1, \cdots, 2 n+2 ; u=1, \cdots, 2 n+1 ; i, j=1, \cdots, 2 m_{0}+m_{1}$; $r, s, t=2 m_{0}+m_{1}+1, \cdots, 2 n+1$, where $m_{0}+m_{1}=n$. In $\S 2, u=1$, $\cdots, 2 n+1 ; i, j=1, \cdots, 2 n-1 ; r, s, t=2 n, 2 n+1 ; a, b, c=1, \cdots, n-1$. In $\S 3, u=1, \cdots, 2 n+1 ; i, j=1, \cdots, n+1 ; r, s, t=n+2, \cdots, 2 n+1$.

Let M be a connected complete hypersurface in $S^{2 n+1}$ having 4 constant principal curvatures $\cot \theta_{a}(a=1, \cdots, 4)$ with $0<\theta_{1}<\theta_{2}<\theta_{3}<\theta_{4}<\pi$. Let m_{a} be the multiplicity of $\cot \theta_{a}$. Then by theorems of H. F. Münzner [5, Theorems 1,2 and 3] we know that $m_{0}=m_{2}$ and $m_{1}=m_{3}$ (so $m_{0}+m_{1}=$ $n \geq 2$), and that there exist a number t with $0<t<\frac{1}{4} \pi$ and a homogeneous polynomial \tilde{F} of degree 4 of $2 n+2$ variables x_{α} such that

$$
\begin{gather*}
\sum_{\alpha}\left(\frac{\partial \tilde{F}}{\partial x_{\alpha}}\right)^{2}=16\left(\sum_{\alpha} x_{\alpha}^{2}\right)^{3}, \tag{1.1}\\
\sum_{\alpha} \frac{\partial^{2} \tilde{F}}{\partial x_{\alpha}^{2}}=8\left(n-2 m_{0}\right) \sum_{\alpha} x_{\alpha}^{2} \tag{1.2}
\end{gather*}
$$

and $M=\left\{x=\left(x_{\alpha}\right) \in S^{2 n+1} ; \tilde{F}(x)=\cos 4 t\right\}$. Conversely, for every t with $0<$ $t<\frac{1}{4} \pi$ and every homogeneous polynomial \tilde{F} satisfying (1.1) and (1.2), the set $\left\{x \in S^{2 n+1} ; \tilde{F}(x)=\cos 4 t\right\}$ is a connected compact hypersurface in $S^{2 n+1}$ having 4 constant principal curvatures with multiplicites m_{0}, m_{0}, m_{1} and m_{1}.

Put $2 F=\left(\sum_{\alpha} x_{\alpha}^{2}\right)^{2}-\tilde{F}$. Then (1.1) and (1.2) are equivalent to

$$
\begin{gather*}
\sum_{\alpha}\left(\frac{\partial F}{\partial x_{\alpha}}\right)^{2}=16 \sum_{\alpha} x_{\alpha}^{2} F, \tag{1.3}\\
\sum_{\alpha} \frac{\partial^{2} F}{\partial x_{\alpha}^{2}}=8\left(m_{0}+1\right) \sum_{\alpha} x_{\alpha}^{2} . \tag{1.4}
\end{gather*}
$$

Thus in order to prove our theorem it is sufficient to prove that if $m_{0}=1$ or $m_{0}=n-1$ then every homogeneous polynomial F satisfying (1.3) and (1.4) is congruent to F_{n}, i.e., $F(x)=F_{n}(\sigma(x))$ for an orthogonal transformation σ of $\boldsymbol{R}^{2 n+2}$. In the remainder of this section we shall give the general properties of F. First fix an arbitrary index α. Without loss of generality we may assume that $F \mid S^{2 n+1}$ takes its maximum at the point $p_{\alpha}=(0, \cdots, 1, \cdots, 0)$ (i.e., all the coordinates x 's are zero except $x_{\alpha}=1$). Then we have at p_{α}

$$
\begin{equation*}
\frac{\partial F}{\partial x_{\beta}}-c x_{\beta}=0 \quad \text { for a constant } c \text { and each } \beta \tag{1.5}
\end{equation*}
$$

Here we put $F=a_{\alpha} x_{\alpha}^{4}+L x_{\alpha}^{3}+A x_{\alpha}^{2}+B x_{\alpha}+C$, where a_{α}, L, A, B and C denote homogeneous polynomials of $x_{1}, \cdots, x_{\alpha-1}, x_{\alpha+1}, \cdots, x_{2 n+2}$ of degree
$0,1,2,3$ and 4 respectively. From (1.5) we have $\partial L / \partial x_{\beta}=0$ for $\beta \neq \alpha$ at p_{α}, and $c=4 a_{\alpha}$. From (1.3) and (1.5) it follows that $c^{2}=16 a_{\alpha}$. These imply that $L=0$, and $a_{\alpha}=0$ or $a_{\alpha}=1$. Next we shall give the relations which the polynomials A, B and C must satisfy under the assumption that $a_{\alpha}=1$ for some index α, say $2 n+2$. Thus A, B and C are polynomials of $x_{1}, \cdots, x_{2 n+1}$. From (1.3) and (1.4) we have respectively

$$
\begin{equation*}
\sum_{u}\left(\frac{\partial B}{\partial x_{u}}\right)^{2}+2 \sum_{u} \frac{\partial A}{\partial x_{u}} \frac{\partial C}{\partial x_{u}}+4 A^{2}=16 A \sum_{u} x_{u}^{2}+16 C \tag{1.11}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{u} \frac{\partial B}{\partial x_{u}} \frac{\partial C}{\partial x_{u}}+2 A B=8 B \sum_{u} x_{u}^{2} \tag{1.12}
\end{equation*}
$$

$$
\begin{equation*}
B^{2}+\sum_{u}\left(\frac{\partial C}{\partial x_{u}}\right)^{2}=16 C \sum_{u} x_{u}^{2} \tag{1.13}
\end{equation*}
$$

By a suitable choice of orthogonal transformation on $x_{1}, \cdots, x_{2 n_{+1}}$ we may set $A=\sum_{u} a_{u}^{\prime} x_{u}^{2}, a_{1}^{\prime} \geq \cdots \geq a_{2 n_{+1}}^{\prime}$. From (1.6) and (1.9) we have $a_{u}^{\prime 2}=4$ and $\sum_{u} a_{u}^{\prime}=4 m_{0}-2$. Hence $a_{i}^{\prime}=2$ and $a_{r}^{\prime}=-2$.

Decompose B into $P^{\prime}+Q^{\prime}+R^{\prime}+S^{\prime}$, where $P^{\prime}, Q^{\prime}, R^{\prime}$ and S^{\prime} denote homogeneous polynomials of x_{i} and x_{r} whose degrees with respect to x_{i} are equal to $3,2,1$ and 0 respectively. Then taking account of the degree with respect to x_{i} in (1.10) and using a relation $\sum_{i} x_{i}\left(\partial P^{\prime} / \partial x_{i}\right)=3 P^{\prime}$, etc. we know $P^{\prime}=R^{\prime}=S^{\prime}=0$. In other words, B is of the form $4 \sum_{r} x_{r} B_{r}$, where B_{r} 's denote homogeneous polynomials of x_{i} of degree 2 .

Similarly decompose C into $P+Q+R+S+T$, where P, Q, R, S and T denote homogeneous polynomials of x_{i} and x_{r} whose degree with respect to x_{i} are equal to $4,3,2,1$ and 0 respectively. Then we know from (1.11)

$$
\begin{align*}
P & =-\sum_{r} B_{r}^{2}+\left(\sum_{i} x_{i}^{2}\right)^{2} \\
R & =\sum_{i}\left(\sum_{r} \frac{\partial B_{r}}{\partial x_{i}} x_{r}\right)^{2}-2 \sum_{i} x_{i}^{2} \sum_{r} x_{r}^{2} \tag{1.14}\\
S & =0, \quad T=\left(\sum_{r} x_{r}^{2}\right)^{2}
\end{align*}
$$

Hence (1.7), (1.8) and (1.12) are reduced respectively to

$$
\begin{gather*}
\sum_{i} \frac{\partial^{2} B_{r}}{\partial x_{i}^{2}}=0 \quad \text { for each } r \tag{1.15}\\
\sum_{i} \frac{\partial^{2} Q}{\partial x_{i}^{2}}=0 \tag{1.16}\\
\sum_{i, j}\left(\sum_{r} \frac{\partial^{2} B_{r}}{\partial x_{i} \partial x_{j}} x_{r}\right)^{2}=8 m_{0} \sum_{r} x_{r}^{2} \tag{1.17}\\
\sum_{r} B_{r} \frac{\partial Q}{\partial x_{r}}=0 \tag{1.18}\\
\sum_{i, r} \frac{\partial B_{r}}{\partial x_{i}} \frac{\partial Q}{\partial x_{i}} x_{r}=0 \tag{1.19}\\
\sum_{i, j, r, s, t} \frac{\partial B_{r}}{\partial x_{i}} \frac{\partial B_{s}}{\partial x_{j}} \frac{\partial^{2} B_{t}}{\partial x_{i} \partial x_{j}} x_{r} x_{s} x_{t}-8 \sum_{r} x_{r}^{2} \sum_{s} x_{s}^{2}=0 \tag{1.20}
\end{gather*}
$$

From (1.13) we have

$$
\begin{equation*}
\sum_{i}\left(\frac{\partial P}{\partial x_{i}}\right)^{2}+\sum_{r}\left(\frac{\partial Q}{\partial x_{r}}\right)^{2}-16 P \sum_{i} x_{i}^{2}=0 . \tag{1.21}
\end{equation*}
$$

Put $B_{r}=\sum_{i, j} b_{i j}^{r} x_{i} x_{j}$ and denote by B^{r} the symmetric matrix ($b_{i j}^{r}$) of degree $2 m_{0}+m_{1}$. Then (1.15), (1.17) and (1.20) are reduced to
(1.22) trace $B^{r}=0 \quad$ for each r,
(1.23) $\operatorname{trace}\left(B^{r}\right)^{2}=2 m_{0} \quad$ for each r,
(1.24) $\operatorname{trace} B^{r} B^{s}=0 \quad$ for each distinct r, s,
(1.25) $\quad\left(B^{r}\right)^{3}=B^{r} \quad$ for each r,
(1.26) $B^{s} B^{r} B^{r}+B^{r} B^{s} B^{r}+B^{r} B^{r} B^{s}=B^{s} \quad$ for each distinct r, s,
(1.27) $\mathbb{S}^{r} B^{r} B^{s} B^{t}=0 \quad$ for each mutually distinct r, s, t,
where \mathbb{S} denotes the cyclic sum with respect to r, s and t. (1.27) is significant only if $m_{1} \geq 2$.

Now we assert that in order to solve (1.3) and (1.4) for $m_{0}=1$ or $m_{0}=$ $n-1$ it is sufficient to consider the following two cases :
(I) $m_{0}=n-1$ and $a_{\alpha}=1$ for some α,
(II) $m_{0}=1$ and $a_{\alpha}=1$ for each α.

In fact, all the possible cases besides (I) and (II) are (1) $m_{0}=n-1$ and a_{α} $=0$ for each α, (2) $m_{0}=1$ and $a_{\alpha}=0$ for each α, and (3) $m_{0}=1$ and a_{α} $=1, a_{\beta}=0$ for some α, β. In any case we put $G=\left(\sum_{\alpha} x_{\alpha}^{2}\right)^{2}-F$. Then G satisfies

$$
\sum_{\alpha}\left(\frac{\partial G}{\partial x_{\alpha}}\right)^{2}=16 \sum_{\alpha} x_{\alpha}^{2} G, \quad \sum_{\alpha} \frac{\partial^{2} G}{\partial x_{\alpha}^{2}}=8\left(n-m_{0}+1\right) \sum_{\alpha} x_{\alpha}^{2} .
$$

This means that each of the cases (1), (2) and (3) is reduced to (I) or (II). We shall consider the case (I) (resp. (II)) in § 2 (resp. § 3).

2. The case (I)

We may assume that $a_{2 n+2}=1$. From (1.22), (1.23) and (1.25) it follows that by a suitable choice of orthogonal transformation on $x_{1}, \cdots, x_{2 n-1}$ we may set $B_{2 n}=\sum_{a} x_{a}^{2}-\sum_{a} x_{a+n-1}^{2}$, or equivalently

$$
B^{2 n}=\left[\begin{array}{rrr}
I & 0 & 0 \\
0 & -I & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where I denotes the unit matrix of degree $n-1$. Denote the transpose of a matrix J by ${ }^{t} J$, and put

$$
B^{2 n+1}=\left[\begin{array}{lll}
X & Y & u \\
{ }^{t} Y & Z & v \\
{ }^{t} u & { }^{t} v & w
\end{array}\right],
$$

where $Y=\left(Y_{a b}\right)$ is a matrix of degree $n-1$, and $u=\left(u_{a}\right)$ and $v=\left(v_{a}\right)$ are column vectors. Then by (1.26) we obtain $X=Z=0, w=0$, and

$$
\begin{gather*}
\sum_{c} Y_{a c} Y_{b c}+2 u_{a} u_{b}=\delta_{a b} \quad \text { for each } a, b, \tag{2.1}\\
\sum_{a} u_{a}^{2}=\sum_{a} v_{a}^{2} \tag{2.2}
\end{gather*}
$$

Hence from (1.25) it follows that

$$
\begin{gather*}
u_{a} \sum_{c} Y_{b c} v_{c}+u_{b} \sum_{c} Y_{a c} v_{c}=0 \tag{2.3}\\
v_{a} \sum_{c} Y_{c b} u_{c}+v_{b} \sum_{c} Y_{c a} u_{c}=0 \quad \text { for each } a, b \tag{2.4}
\end{gather*}
$$

Putting $a=b$ in (2.3) we get $u_{a} \sum_{c} Y_{a c} v_{c}=0$. Then by multiplying (2.3) by u_{a} and taking the sum over a we have $\sum_{a} u_{a}^{2} \sum_{c} Y_{b c} v_{c}=0$ for each b. Thus we need to divide our discussion into two cases.
(1) The case $\sum_{a} u_{a}^{2}=0$. It follows from (2.1) and (2.2) that $v=0$ and Y is an orthogonal transformation on $x_{n}, \cdots, x_{2 n-2}$. Putting $y_{a}=\sum_{b} Y_{a b} x_{b+n-1}$, we have $B_{2 n+1}=2 \sum_{a} x_{a} y_{a}, B_{2 n}=\sum_{a}\left(x_{a}^{2}-y_{a}^{2}\right)$ and $A=2 \sum_{a}\left(x_{a}^{2}+y_{a}^{2}\right)$ $+x_{2 n-1}^{2}-\sum_{r} x_{r}^{2}$. Since Q is of the form $\sum_{r} Q_{r} x_{r}$, where Q_{r} 's denote homogeneous polynomials of x_{i} of degree 3 , we have, in consequence of (1.18),

$$
0=\sum_{r} B_{r} Q_{r}=\sum_{a}\left(x_{a}^{2}-y_{a}^{2}\right) Q_{2 n}+2 \sum_{a} x_{a} y_{a} Q_{2 n+1}
$$

Hence $Q_{2 n}=B_{2 n+1} L$ and $Q_{2 n+1}=-B_{2 n} L$ for a linear combination L of x_{a}, y_{a} and $x_{2 n-1}$. Substituting these in (1.16) we get $\partial L / \partial x_{a}=\partial L / \partial y_{a}=0$, i.e., L $=k x_{2 n-1}$ for a constant k. Substituting P in (1.14) and the above Q in (1.21) we find $k^{2}=16$. Clearly we may adopt $k=4$. Thus F must be of the form

$$
\begin{aligned}
x_{2 n+2}^{4} & +2\left(\sum_{a}\left(x_{a}^{2}+y_{a}^{2}\right)+x_{2 n-1}^{2}-\sum_{r} x_{r}^{2}\right) x_{2 n+2}^{2} \\
& +4\left(\sum_{a}\left(x_{a}^{2}-y_{a}^{2}\right) x_{2 n}-2 \sum_{a} x_{a} y_{a} x_{2 n+1}\right) x_{2 n+2} \\
& +4 \sum_{a} x_{a}^{2} \sum_{a} y_{a}^{2}-4\left(\sum_{a} x_{a} y_{a}\right)^{2}+2 \sum_{a}\left(x_{a}^{2}+y_{a}^{2}\right) x_{2 n-1}^{2}+x_{2 n-1}^{4} \\
& +4\left(2 \sum_{a} x_{a} y_{a} x_{2 n}+\sum_{a}\left(x_{a}^{2}-y_{a}^{2}\right) x_{2 n+1}\right) x_{2 n-1} \\
& +2\left(\sum_{a}\left(x_{a}^{2}+y_{a}^{2}\right)-x_{2 n-1}^{2}\right) \sum_{r} x_{r}^{2}+\left(\sum_{r} x_{r}^{2}\right)^{2} .
\end{aligned}
$$

However, an orthogonal transformation $\left(x_{1}, \cdots, x_{2 n+2}\right) \rightarrow\left(x_{1}, \cdots, x_{2 n-2},\left(x_{2 n-1}\right.\right.$ $\left.\left.+x_{2 n}\right) / \sqrt{2},\left(x_{2 n-1}-x_{2 n}\right) / \sqrt{2},\left(x_{2 n+1}+x_{2 n+2}\right) / \sqrt{2},\left(x_{2 n+1}-x_{2 n+2}\right) / \sqrt{2}\right)$ of $\boldsymbol{R}^{2 n+2}$ deforms the above polynomial into a polynomial of degree 2 with respect to each x_{α}. Therefore it should appear in $\S 3$ if it is a solution.
(2) The case $\sum_{a} u_{a}^{2} \neq 0$. Since $\sum_{c} Y_{b c} v_{c}=0$ for each b, (2.2) and (2.4) imply $\sum_{c} Y_{c a} u_{c}=0$ for each a. Multiplying (2.1) by u_{b} and taking the sum over b we get $2 u_{a} \sum_{b} u_{b}^{2}=u_{a}$ for each a. Hence $\sum_{a} u_{a}^{2}=\sum_{a} v_{a}^{2}=\frac{1}{2}$. It is easily seen that by a suitable choice of orthogonal transformation leaving $B_{2 n}$ invariant we may assume that $u_{n-1}=v_{n-1}=1 / \sqrt{2}$ and all the other u_{a} and v_{a} vanish. By (2.1), (2.3) and (2.4) we see that Y is of the form $\left[\begin{array}{ll}Y^{\prime} & 0 \\ 0 & 0\end{array}\right]$,
$Y^{\prime} \in 0(n-2)$. Hence

$$
\begin{aligned}
B_{2 n} & =\sum_{s=1}^{n-2}\left(x_{s}^{2}-y_{s}^{2}\right)+x_{n-1}^{2}-y_{n-1}^{2} \\
B_{2 n+1} & =2 \sum_{s=1}^{n-2} x_{s} y_{s}+\sqrt{2}\left(x_{n-1}+y_{n-1}\right) x_{2 n-1}
\end{aligned}
$$

As in the case (1), from (1.18) we have $Q_{2 n}=B_{2 n+1} L$ and $Q_{2 n+1}=-B_{2 n} L$ for a linear combination L of x_{a}, y_{a} and $x_{2 n-1}$. Then taking account of the coefficients of $x_{2 n}^{2}$ and $x_{2 n} x_{2 n+1}$ in (1.19) we find $Q=0$. But substituting the first equation of (1.14) in (1.21) we can easily see $n=2$. In fact, the coefficient of $x_{2 n} x_{2 n+1}$ does not vanish if $n>2$. Since $a_{\alpha}=1$ for $1 \leq \alpha \leq 6$, our polynomial should appear in $\S 3$ if it is a solution.

3. The case (II)

We put

$$
F=x_{2 n+2}^{4}+A x_{2 n+2}^{2}+B x_{2 n+2}+C
$$

where A, B and C denote homogeneous polynomials of $x_{1}, \cdots, x_{2 n+1}$ of degree 2,3 and 4 respectively. It follows from (1.22), (1.23) and (1.25) that by a suitable choice of orthogonal transformation on x_{1}, \cdots, x_{n+1} we may set

$$
B^{n+2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right],
$$

where the central 0 denotes the zero matrix of degree $n-1$. For each $r>n+2$ we put

$$
B^{r}=\left[\begin{array}{ccc}
x^{r} & p^{r} & w^{r} \\
{ }^{t} p^{r} & Y^{r} & q^{r} \\
w^{r} & { }^{t} q^{r} & z^{r}
\end{array}\right],
$$

where Y^{r} is a symmetric matrix of degree $n-1$. Putting $r=n+2$ in (1.26) and $s=n+2$ in (1.26) we get, respectively, $x^{s}+z^{s}=0, w^{s}=0, Y^{s}=0$ for each $s>n+2$, and

$$
\begin{equation*}
\left(x^{r}\right)^{2}+\left|p^{r}\right|^{2}+\left|q^{r}\right|^{2}=1, \quad{ }^{t} p^{r} q^{r}+q^{r} p^{r}=0 \tag{3.1}
\end{equation*}
$$

for each $r>n+2$. From (1.25) it follows that

$$
\begin{equation*}
x^{r}\left(\left(x^{r}\right)^{2}+2\left|p^{r}\right|^{2}-1\right)=0, \quad\left(\left(x^{r}\right)^{2}+\left|p^{r}\right|^{2}-1\right) p^{r}=0 \tag{3.2}
\end{equation*}
$$

for each $r>n+2$. If $n>2$ we put $t=n+2$ in (1.27) so that

$$
\begin{gather*}
{ }^{t} p^{r} q^{s}+{ }^{t} p^{s} q^{r}+q^{r} p^{s}+q^{s} p^{r}=0 \tag{3.3}\\
p^{r}{ }^{t} p^{s}+{ }^{t} q^{r} q^{s}+x^{r} x^{s}=0 \quad \text { for each distinct } r, s>n+2
\end{gather*}
$$

Lemma. For each $r>n+2$, either $\left|p^{r}\right|=1, q^{r}=0$ and $x^{r}=0$, or $p^{r}=0,\left|q^{r}\right|=1$ and $x^{r}=0$.

Proof. It follows from (3.1) and (3.2) that for each $r>n+2$, (1) $\left|p^{r}\right|$ $=1, q^{r}=0, x^{r}=0$, or (2) $p^{r}=0,\left|q^{r}\right|=1, x^{r}=0$, or (3) $p^{r}=0, q^{r}=0$, $x^{r}= \pm 1$. Suppose that case (3) occurs, or equivalently $B^{r}= \pm\left(x_{1}^{2}-x_{n+1}^{2}\right)$. Then such an r is unique by (1.24). Hence the polynomial P (and so also F) does not involve the term x_{1}^{4}. Since this is not the case, by the symmetry of p^{r} and q^{r} we may assume that $p^{r} \neq 0$ for some $r>n+2$. Then from (3.3) we have $q^{s} p^{r}=0$ for each $s>n+2$ since $q^{r}=0$ by (1). Thus $q^{s}=0$ for each s. q.e.d.

Owing to this lemma and (3.4) we may set $B_{r}=2 x_{1} x_{r-n}$ for each r. Then, since $\sum_{u}\left(\partial P / \partial x_{u}\right)^{2}=16 \sum_{u} x_{u}^{2}$, we have $\sum_{r}\left(\partial Q / \partial x_{r}\right)^{2}=0$ from (1.21). This implies that $Q=0$. It is easily seen that the following polynomial which we just determine satisfies (1.3) and (1.4) for $m_{0}=1$:

$$
\begin{aligned}
x_{2 n+2}^{4} & +2\left(x_{1}^{2}+\sum_{r} x_{r}^{2}-\sum_{r} x_{r-n}^{2}\right) x_{2 n+2}^{2}+8 x_{1} \sum_{r} x_{r} x_{r-n} x_{2 n+2} \\
& +\left(x_{1}^{2}+\sum_{r} x_{r-n}^{2}-\sum_{r} x_{r}^{2}\right)^{2}+4\left(\sum_{r} x_{r} x_{r-n}\right)^{2} .
\end{aligned}
$$

This is nothing but F_{n} in the introduction.

4. Homogeneity of \boldsymbol{M}

Let M be a hypersurface in $S^{2 n+1}$ satisfying the condition of our theorem. Then by $\S 1$ there exist a number t with $0<t<\frac{1}{4} \pi$ and a homogeneous polynomial F satisfying (1.3) and (1.4) such that $M=\left\{x \in S^{2 n+1} ; F(x)=\sin ^{2} 2 t\right\}$, and vice versa. In $\S 2$ we prove that every homogeneous polynomial F satisfying (1.3) and (1.4) is congruent to F_{n}, i.e., $F(x)=F_{n}(\sigma x)$ for some $\sigma \in 0(2 n$ +2). On the other hand, it is known [6] that a hypersurface $M^{2 n}(t)=\{x \in$ $\left.S^{2 n+1} ; F_{n}(x)=\sin ^{2} 2 t\right\}$ in $S^{2 n+1}$ admits a transitive group $G=\mathrm{SO}(n) \times \mathrm{SO}(2)$ of isometries, which can be considered as an analytic subgroup of $0(2 n+2)$. Thus M admits a transitive group $\sigma^{-1} G \sigma$ of isometries.

Remark. There are more examples of connected compact hypersurfaces in $S^{2 n+1}$ having 4 constant principal curvatures with multiplicities m_{0}, m_{0}, m_{1} and $m_{1}\left(m_{0}+m_{1}=n\right)$ (cf. [7]). We shall mention only the pairs $\left(m_{0}, m_{1}\right)$: $(2,2 n-1)(n \geq 2),(4,4 n-5)(n \geq 2),(4,5)$ and $(6,9)$. Each of these examples admits a transitive group of isometries.

References

[1] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938) 177-191.
[2] --, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939) 335-367.
[3] --, Sur quelques familles remarquables d'hypersurfaces, C. R. Congrès Math. Liège, 1939, 30-41.
[4] --, Sur des familles remarquables d'hypersurfaces isoparamétriques des espaces sphériques à 5 et 9 dimensions, Rev. Univ. Tucumán, Ser. A, 1 (1940) 5-22.
[5] H.F. Münzner, Isoparametrische Hyperflächen in Sphären, to appear.
[6] K. Nomizu, Some results in E. Cartan's theory of isoparametric families of hypersurfaces, Bull. Amer. Math. Soc. 79 (1973) 1184-1188.
[7] R. Takagi \& T. Takahashi, On the principal curvatures of homogeneous hypersurfaces in a sphere, Differential Geometry, in Honor of K. Yano, Kinokuniya, Tokyo, 1972, 469-481.

[^0]: Received April 22, 1974, and, in revised form, April 18, 1975. Partially supported by Sakko-kai Foundation.

