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KAHLER MANIFOLDS WITH POSITIVE CURVATURE

C. J. FERRARIS

1. Introduction

This paper is concerned with the study of complex manifolds. Our main
result is motivated by the following conjecture: Is a compact Kahler manifold
with positive sectional curvature holomorphically equivalent to a complex pro-
jective space? The conjecture has been verified until now for complex dimen-
sion less than or equal to three, [10].

The technique used throughout this work is to consider the variational pro-
perties of the geodesic distance r of a Riemannian manifold M, where the latter
is considered as a real-valued function in M X M.

In § 2 we introduce the open dense submanifold of M X M, denoted by
M \/ M, which is the complement of the union of the diagonal submanifold
of M X M and the set of cut pairs of M. The tangent bundle oίM\/ M splits
into a direct sum of two subbundles V+ and V~ both of rank dim (M). In par-
ticular, this decomposition is useful in the study of the second fundamental
form of the boundary of the metric tubular neighborhoods (oneighborhoods)
of the diagonal of M x M.

Since the proof of our main result requires the use of some elements on the
geometry of geodesies, we include the latter in §§ 3 and 4 in the more general
context of Riemannian manifolds with positive sectional curvature. Theorem 1
in § 4 gives some information about the "position" of local geodesic sprays of
V+ with respect to the metric tubular neighborhoods.

Finally, in § 5 we prove our main theorem, namely, Theorem 3 : Let M be
a connected compact Kahler manifold of complex dimension n with positive
holomorphic bisectional curvature, then any closed w-dimensional complex
analytic subvariety V (possibly singular) of M X M intersects the diagonal.

Although an alternative proof might be obtained by making use of the theory
of deformations to simplify the singularities of V, we prefer a more direct me-
thod consisting of using an extended notion of the second fundamental form
which applies to singular varieties.

The author wishes to acknowledge Professor E. Calabi for suggesting the
problem and for his encouragement along the preparation of this work.

Communicated by E. Calabi July 17, 1974.
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2. Preliminaries

Let Λf be a connected complete n-dimensional Riemannian manifold of class
C°°, and let us consider the product manifold M X M. We distinguish in Λf xΛf
the diagonal submanifold denoted by MΔ and the set of cut pairs of Λf denoted
by Mcut. The latter is a closed set of topological dimension <2n — 1.

We consider the open submanifold

M\/M = (Mx M)\(MΔ U Mcut) .

The structural group of the tangent bundle of M\/M, denoted by T(M\/M),
can be reduced to O(n — 1) in a natural way as follows. Let (po, qQ) eM\/M,
and let γ be the shortest geodesic in M between p0 and ‰ which is unique
since (po, q0) is not a cut pair of Λf. Let us take any orthonormal frame
{e'i(Po), 1 < / < n} of M at pQ such that e[(po) is the unit tangent vector to γ
at /v Then we get an orthonormal frame {e"(q0), 1 < / < ή] of Λf at qQ by
parallel translation of the frame {e•(p0)} along γ from pQ to qQ. After identifying
e'i(Po) with (e'i9 0)(p0, q0) and e"(<‰) with (0, e")Oo> <7o)> we set

e±ί(Po, Qo) = - 7 = ( e ' i ( P o ) ± e ' S ( q , ) ) , \ < i < n .
V 2

Let us denote by F'(M V Λf) the set of all frames obtained in this way. We
observe that for each element in F'(M V Λf) the pair (po, q0) determines
uniquely the vectors e±1(p0, q0), and the rest of the e±i\ are determined up to
an element of O(n — 1) which acts on F'(M V Λf) as follows:

ge±1(p0, Qo) = e±1(p0, q0) ,

ge±i(Po, Qo) = -^(8<(P) ± g<'(Φ) > i>2>
v 2

for every g e O(n - 1) and {e±ί(p, q)} ε F'(M V Λf). Accordingly the set
F'(Λf V Λf) becomes a principal bundle with O(n — 1) as its structural group,
and is a subbundle of F(Λf V Λf), the bundle of all orthonormal frames of
M\/ M. The action of O(n — 1) as well as the product structure of Λf V Λf
as an open submanifold of Λf x Λf defines certain invariant subspaces of its
tangent bundle. Among these we distinguish the following

i = l

We shall denote by r the geodesic distance in M regarded as a real-valued
function in Λf X Λf. For any positive real number c, let us set
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Nc = {(p, q)€Mx M/r(p, q) < c) ,

Wc = 3NC = {(p, q) € M X M/r(p, g) = c} .

We call each Nc a c-neighborhood of the diagonal MΔmM X M.
Remarks. 1. M \ / M i s the maximal open submanifold in M x M on

which the function r is of class C°°.
2. For each positive real number c, Wc Π (M V ^ 0 *s a (2w — l)-dimen-

sional manifold.
3. ^_i(Po, qQ) is the "inward" unit normal vector to Wc at (po, go)> where

c = r(po,qo).
4. Since M is complete, the product manifold M X M is also complete,

so that the exponential map of M X M is defined on the whole T(M x M).
Let (po, q0) be an element in M V M5 and c = r(p0, g0). Then the connected
component of (po, q0) in the intersection of {JtζiR exp(ί,Oi9o) (^+i) with M\/ M
is contained in Wc.

5. e+ 1 is a principal direction of curvature in the tangent space of WC9 and
its corresponding principal curvature is equal to zero. This follows from the
fact that

where V stands for the covariant differentiation in the Levi-Civita connection
of M x M.

3. Riemannian manifolds with positive sectional curvature

In the present and next sections we obtain some information about the
boundary of the c-neighborhoods of M as well as the "position" of n-dimension-
al local geodesic sprays in M X M with respect to the c-neighborhoods by as-
suming that the sectional curvature of M is positive. First of all, we prove

Proposition 1. Let (po, q0) e M V M and c = r(p„, q0). Then Wc has at
(A)? #O) at least n — 1 principal directions, in which the normal curvature is
positive (i.e., Wc is at least (n — \)-concave at (po, q0)), and at least one prin-
cipal curvature equal to zero.

Proof. The proof makes use of the variation of the length integral of a
one-parameter family of curves to show that the second fundamental form of
Wc is positive semi-definite on V+. Let γ be the shortest geodesic in M between
p0 and q0. Then we may assume that γ is parametrized by the arc-length s,
0 < s < c. For each v in V+POiqo)\Re+1(p09q0) we construct a one-parameter
family of curves γt(s), 0 < s < c and \t\ < ε for some positive number ε, hav-
ing the foollowing properties :

( i ) φ ) = γ(s), for all sε[O,c].
( i i ) ^ ( 0 ) = e x p P o O ' ) = pt and γt(c) = expqo(tv") for all \t\ < ε, where

v' € TPQ(M)\Re[, v" € ΓJM)\2?< and v = v' + v".
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(iii) For every s e (0, c), γt(s) is the geodesic tangent to v'(s), where v'(s)
is the parallel translate of v' along γ from pQ to γ(s).

Let us denote by L the length integral of a curve. Then

( 1 ) L(γύ > Kexp(1,o,go) (tv)) = r(pt, qt)

for every \t\ < ε. By the construction of γt(s), we have

d
L(γ0) = r(p0, q0) , — - L ( ^ ) | ί = 0 = 0 ,

and also

~r-r(pt,qt)\t=0 = dr(PQίQo)(v) = 0 .

Then from (1) we get

( 2 )

Next, by computing the second variation of the arc length with respect to the
family γt(s) we obtain ([2], [6])

( 3 ) ^ L ( Γ ί ) | ί = 0 < 0 .

On the other hand

( 4 ) ltfAVt` ^ ) | ί = 0 = r '

where r o• and ZΓTFc stand for the second covariant differentiation in the Levi-
Civita connection of M (in a coordinate system of M at (pQ, q0)) and the second
fundamental form of Wc at (po, qQ) respectively, and the repetition of indices
indicates summation.

From (3), (4) and (2) we conclude

ΠWc[v] > 0 .

This together with Remark 5 shows that ΠWc is positive semi-definite on
Vtpo,qo)• Hence Wc must have at least n — 1 positive principal directions of
curvature and at least one equal to zero (the e+1) at (po, q0) proving our asser-
tion.

Now let 0?0, q0) e M V M, and c = r(p0, q0). We shall prove that there exists
a neighborhood Ue of 0 in VfPQtqo) such that
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r(exp(P0jQ0) (*)) < r(p0, q0) , for all x e Uε .

Let 5 be a local geodesic spray of V+ at (po, #0), and let (u19 • • •, wj be a
coordinate system of S with center at (po, g0) such that

where we have chosen the e+ ί 's, 2 < / < n, to be the principal directions of
curvature of Wc at (p, q) with principal curvatures Xt ( > 0), 2 < ί < n (see
Proposition 1).

We proceed to show that for every (ps, ps) e S with coordinates

Ui((Ps, Qs)) = 0 , 2 < i < n ,

the differential of r satisfies

( 5 ) * c p . , e » = O

for every v z T(Pttqt)(JS).

To prove (5) it will be sufficient to prove

( 6 ) TiPsM(S) Œ (T(Ps,qs)(M V M)) μ e_γ ,

where f— stands for perpendicular in the natural metric of M X M. Let
v 6 ϊ\p„g,)(S). The knowledge of one of the projections of v either onto TPs(M)
or onto Tqs(M) determines the other. In fact, let us assume given v' the pro-
jection of v onto TPs(M) and let us determine v" in Tqs(M) such that vf + ^
= v. Let α b e a curve in M through ps tangent to v\ i.e.,

a(t) = expPo {v\t)) ,

with t;'(/) e TPo(M) and |ί | < ^ for some positive real number ??. Next, by
parallel translation of v\t) along γ from /?0 to q0 we obtain v/7(0 € TQfβf),
and then

^(/) - exp,0 (v"(O) ,

with [ί| < jy, is a curve in M through qs whose tangent v" belongs to TQs(M)

and

v' + v" = v .

Remarks. ( i ) If ?/ is tangent to γ at p s, then our construction shows that
i;" is tangent to γ at <?s, and also that v = vf + v" belongs to Re+ι.

(ii) If v' belongs to (TPs(M)) |— ^ί(ps), then our argument together with
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the Gauss lemma, [2], shows that v" belongs to (Tqs(M)) f— e"(qs), and
therefore v = v' + v" belongs to (T{VsM(M V M)) |— Re,.

Remarks (i) and (ii) prove (6) and hence (5).
In the coordinates (uu • • •, un) the function r can be expressed as

r(u19 • • •, un) = r(p0, q0) - ‡Σ ^iu\ + Σ ^u^^u) ,
ϊ = 2 i,j = 2

where each ψiά (uu • • •, un), 2 < i, j < n, is at least linear in uλ because of (5).
Therefore we can restrict the w/s conveniently so that

r(p, q) < r(p0, q0) ,

for every (p, q) in S, proving our assertion.

4. Cut pairs

In this section by dealing with cut pairs of M we obtain a refinement
(Theorem 1) of the result proved at the end of the last section. Let (p09 q0) e Wc,
c = KA» #O)> and let us assume that (po, qQ) e Mcut. Take a shortest geodesic
γ in M between p0 to ‰ and let us consider m0 to be any point on γ different
from p0 and qQ. Then neither (po, m0) nor (mo, g0) is a cut pair, and therefore
we can apply the result at the end of § 3 to get

( 7 ) r(p, m) < r(p0, ra0) ,

( 8 ) r(ra, #) < r(m0, (70)

for every (p, m) and (m, <?) belonging to the local geodesic sprays of V+ through
(Po, m0) and (mo, qQ) respectively.

Next, by using the inequalities (7) and (8) and the fact that γ is a geodesic,
we get

r(p, q) < r(p, m) + r(m, q) < r(p0, m0) + r(m0, q0) = r(p0, q0)

for every (p, q) in a local geodesic spray of V+ (constructed from r) at (po, q0).
Finally, we can state

Theorem 1. Let M be a connected complete n-dίmensional Riemannian
manifold with positive sectional curvature. Then for each (po, qQ) in M X M
there exists a neighborhood Uε of 0 in V†VQΛQ) such that

(i) exp(PO5go) (x) € Nc , for every x e Uε ,
(ii) dim ((exp(POιβo) (Uε)) ΠWC)<1 ,

where c = r(po,qo).
As an application we shall prove
Theorem 2. Lei M be <xs in Theorem 1.
(a) Le/ Vn be an n-dimensίonal local geodesic spray at (po, q0), and assume

that r attains its minimum on Vn at (po, q0). Then the set C of all points in Vn
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where r is equal to c ( = r(p0, q0)) includes at least one geodesic in which the
point (po, qQ) is an interior point.

(b) Let Vn be an n-dimensional submanifold of M X M transversal to e+1.
Then r cannot achieve its minimum on Vn at a point (pQ, q0) which is flat
relative to e_γ {i.e., the e_x component of the second fundamental form of
Vn at (pQ,q0) is zero).

Proof, (aj) Let us assume that (po, q0) is not a cut pair. Then we have

Γ ( Λ l β 0 )(F») C Γ(Λ>βo)(Wg ,

since r has a minimum on Vn at (pQ, q0). Moreover,

dim (Γ(Λ,β0)(V»)) = dim (VtPM0)) = n ,

and therefore

τ^,qo)(vn) n *‰o>) * (0).

Let v0 z (T{po,qo)(Vn) Π VΐPo,qo))\{O}. Then by Proposition 1

( 9 ) ΠWc[v0] > 0 .

On the other hand

(10) ^ J r ( W ^ ) > 0 .

From (9) and (10), we have

(11) Ππ,[Vo\ = O,

and from (11),

T(Po,qo)(Vn) Π VtPoM = Re+ι .

Since Vn is a local geodesic spray at (po, q0), exp(Pθjβo) (te+1) belongs to Vn for
every / e (a, b), where a < 0 and b > 0.

Set

C = {(p, q) € V"/r(p, q) = r{p„ q0) = c) .

It is clear that exp(POϊβo) (te+}) is contained in C for every t, a < t < b, since

(Po> Qo) i s n o t a c u t Pai r•
(a2) Now let us assume that (po, q0) € Mcut. In this case we shall introduce

an auxiliar function r' which is of class C°° in a neighborhood of (po, <?0) and
satisfies
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(12) r'(p„, qQ) = r(p09 q0) ,

(13) r'(p,q)>r(p,q) ,

wherever it is meaningfull.

Definition of r'. Let us take γ to be a shortest geodesic in M between p0

and ‰ and let mQ be any point on γ different from pQ and q0. Then we set

, q) = ^(expP o W , exp ί 0 (y)) = r(p, m(p, q)) + r(m(p, q), q) ,

where (p, <?) = exp(POίβo) (x, y), x <= TPo(M), y e Γ ί 0(M), and

m(p, ^) = expmo —[(c - ^o)^ + ̂ y i >
c

where xr and yf are the parallel translations along y oί x and y from p0 to m0

and (?0 to ra0 respectively, and ^0 = r(p0, m0).
The / just defined has the required properties (12) and (13), so finally by

setting

W = {(p,q)/r'(p,q) = r(po,qj} ,

we have that W is a (2n — l)-dimensional manifold and observe that if r at-
tains a minimum at (po, q0) it also holds for r'. Therefore the case of the cut
pair (po, qQ) will be reduced to the non-cut pair case (ax) by replacing r by rf.

(b) Let us assume that r achieves its minimum on Vn at (po, q0) which is
a flat point relative to e_λ. Then we get

ϊ`cp.,ί.)(^") n (^‰,β.,\Λβ+1) ^ (0)

because of the minimality of r at (po, q>0) and the transversality of Vn with re-
spect to e+1.

Let v0 e (Γ ( M > a o )(F«) Π (^, ί 0 )\Λβ+ 1))\{0}. Then

<I4) ΠWc[v0] > 0

from Proposition 1. On the other hand

(15) ^.Ir„,. ,„,(F-, < 0

because of the minimality of r at (po, q0).
The inequalities (14) and (15) lead us to a contradiction, hence r cannot

achieve its minimum on Vn at a flat point with respect to e_λ. This concludes
the proof of (b) and hence that of Theorem 2.
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5. Complex manifolds

Let M be a complex manifold of complex dimension n, and let (U;
Zi, • • •, zn) be a coordinate system of M at p e M with origin at p. We proceed
to define a quadratic transformation at the point p ("blowing-up"). Let pn~\C)
be an (n — l)-dimensional complex projective space with homogeneous coor-
dinates w19 • • •, wn, and consider the complex manifold U X pn~\C).

Let U cz ί7 X p*"*(C) be defined by

# = {(*,C) 6 t/ X p"-KO/Zt{q)wj(Q = zfa)Wt(O, 1 < i, ƒ < n} .

£/ is a complex manifold of complex dimension n. In fact, if we set Vk equal
to the subset of Cpn~ι where wk Φ 0, then

pn~\C) = \JVk,
k = l

and in (U X Vk) Π U the defining equations give Zj = zkwj/wk so that

fo? >̂ i/>̂ λ;? • • * J >̂ λ;-1/̂ fe5 * * * J >̂ π/>̂ Λ;) forms a coordinate system in (C/ X Vk)

n t/.
We define a projection σ^ : U —> U by σv{q,0 = #? which is one-to-one

except in σ^({p}) because ΊίqΦp there exists /, 1 < ƒ < n, such that z/g) ^ 0,
then n>fc = MλjZA;/̂ . Hence the w's are determined up to a proportionality imply-
ing the existence of a unique ζ € pn~\C) such that α^g, ζ) = q.

Let us denote by σ1 the restriction of σ^ to ύ\σύK{p}). Then we can define
a complex manifold by setting

Mp = t/ U (Aί\{p}) ,

where the symbol U denotes the union of ϋ with M\{/?} in which the respec-

tive subsets U\σϋ\{p}) and C/\{p} are identified under σγ. One gets a manifold
from the fact that the graph of σλ in U x M\{p} is a closed subspace, [3].

There is a natural map σ: Mv —> M, which extends the σ^ and is also onto
and one-to-one except in σ~\{p}). The subvariety σ~\{p}) is an (n — l)-dimen-
sional complex projective space and will be denoted by Bp. The manifold Mp

is called the "blowing-up" manifold of M at the point p, and σ a quadratic
transformation with respect to p. For any two coordinate systems (U;
Zi, • • •, zn) and (U'; zί, • • •, z^) in neighborhoods of p with origin at p, the
natural isomorphism of Mp\σ~\{p}) and Mp\</~X{p}) extends naturally to a
holomorphic isomorphism, [1] and [4].

We consider now the effect of the "blowing-up" of M at p on a subvariety
F containing p.

Lemma 1. Let V ^ M be an analytic subvariety and let p e V, and con-
sider Mp with the subvariety V°p = σ~\V\({p})). Then the topological closure
Vv of Vv in Mp is an analytic subvariety of Mp.
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Proof. We consider σ~\V), which is an analytic subvariety of Mp and is
a finite union of irreducible components, [8]; let us say

a~\V) = Bp U Ax U • • • U Am ,

where each Au 1 < i < m, is an irreducible component. Denote by A the
analytic subvariety Ax U • • • U ̂ 4m, and observe that A must contain the set
V\. Since σ is one-to-one in the complement of Bp, we get

(16) A\A ΓΊ Bp = V\ .

Next, by taking closure in Mp, the identity (16) becomes

(17) A = Λ\Λ ΓΊ £ p = F | =

since 4̂\̂ 4 Π Bp is everywhere dense in A. The identity (17) proves the
lemma.

The subvariety Vp is called the "blowing-up" of the variety V at the point
p. Denote it by KP(V) = VP\V°P = VpΓϊ Bp and call it the protective tangent
cone of the variety V at p. Note that if V is irreducible and d-dimensional,
then the dimensions of Vp and KP(V) are J and d — 1 respectively.

Now let us consider M to be a Kahler manifold, and let us denote by R and
/ its Riemann curvature tensor and the automorphism of T(M) with P = —id.,
induced by the complex structure of M, respectively.

Definition. Let M be a Kahler manifold, and let σ and σf be two /-invari-
ant planes in TP(M). Then the holomorphic bisectional curvature H(σ,σ') is
defined [7] by

H(σ, </) = R(t, Jt, s, Js) ,

where t and s are unit vectors in σ and σ' respectively. By using Bianchi's
identity we have

H(σ, </) = R(t, s, t, s) + R(t, Js, t, Js) .

Finally, by taking under consideration Kahler manifolds with positive holo-
morphic bisectional curvature, we prove as the main result in this paper the
following generalization of a result in [6].

Theorem 3. Let M be a compact connected Kahler manifold of complex
dimension n with positive holomorphic bisectional curvature. Then any closed
n-dimensional complex analytic (possibly singular) subvariety V of M X M in-
tersects MΔ.

Proof. We shall reach a contradiction by assuming that r achieves a posi-
tive relative minimum on V at (po, q0). Since the case of the cut pair (po, q0)
can be reduced to the noncut pair case by introducing an auxiliary function rf

(Theorem 2, § 4), we are just left with the following two cases.
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(i) Let (po, q0) be an element in M \/ M, and assume that it is a regular
point of V. In this case, we have

T(Mώ(Wc) = Σ Ret + Σ Re-i + Σ RJ*i + Σ
ί = l ΐ = 2 ί = l ί = l

where c = r(p0, q0), and / is the automorphism of TiP0tQ0)(M X M) with /2 =
— id., defined by the complex structure of M x M.

Let us set

dim* (Γ(,O,QO)(JFC)) = 4n - 1 ,

= 2n .

Then we have

Hence

dimB ((Γ(PO,50)(F)) Π VtP0,QJ > 1 .

Let v0 e (Γ^,,„,(F) Π T-‰,„>)\{O}. Then Jv0 belongs to (Γ (P0i<io)(F) ΓΊ
F^,0i5o))\{0}, and v0 and Jv0 are i?-linearly independent. Therefore

dim* (Γ(PO,ΪO)(F) ΓΊ Ki,,,„) > 2 .

Now we make use of the following relations:

(18) ΠWc\T(Poιqo)(V)<Πv,

(19) Πv[v] + Πv[Jv] = 0 ,

for all v e T(PQ^qo)(V), where Πv stands for the component of the second fun-
damental form of V in the direction of the "outward" normal to Wc.

Let v e TiPOtqo)(y)\Re1 U RJeγ. Then we have

(20) 0 < ΠWc[v] + ΠWc[Jv] = -2r,aβv
avί

by using the fact that M is a K'ahler manifold with positive holomorphic bi-
sectional curvature and a computation similar to that carried out in the proof
of Proposition 1 in § 2. Therefore

(21) Πy[Vo\ + Πy[JV0] > 0

for all v0 in VtPo,qo) Π T^^(V)\Re, U RJel9 because of (20) and (18).
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On the other hand

(22) Πr[v0] + Πv(Jv0] = 0

because of (19). Subtracting (21) from (22) we have

(Uy - ΠWc)[vQ] + (Πy - ΠWc)[Jv0] < 0 ,

leading to a contradiction, since each summand is positive or zero because of

(18).
(ii) Let (po, q0) be an element of M V M, and assume that it is a singu-

larity of V. In this case, we proceed as follows. Let us consider submanifolds
Mλ and M2 oί M \/ M containing (po, q0) with

T<*,*JMd = τ(Pΰ,iώ(wc) n j(τ,PM0)(wc)),

respectively. Hence

KiP0,ί0)(M2) C K^{Md •

On the other hand

because of the minimality of the function r at (po, qQ). Therefore

K ( M, 5 0 )(F) Π KίPΌ^(M2) φ 0 ,

since K(Po,qo)(V) is an algebraic variety by Chow's theorem [5], and the di-
mensions of K(pOiQo)(V) and K(p^qo)(M2) are complementary dimensional in
K(PQm)(M^ ( = (2n — 2)-dimensional complex projective space).

Let Ao be an element in K(POtQo)(V) ΓΊ K(P0tqώ(M2). We may assume also that
it belongs to neither Reλ nor RJeλ. Then by Lemma 1 there exists a holomor-
phic curve ψ(f) in Vv such that φ(O) = Ao and with the property that it inter-
sects Bp just at Ao locally. The projection of φ(t) under σ provides us with a
holomorphic curve C{t) in V, with C(O) = (po, q0) and such that if (z1? • • •, zn)
is a coordinate system in a neighborhood of (po, q0) with origin at (po, qQ),
there exists an integer d > 1 such that

zχc{t)) = (C(0)α = Σ ^ ^ ώ + 1

i=o

with A% Φ 0 for some <z, 1 < α: < 2n, since the y40's are the local homogene-
ous coordinates of the point Ao in Mp.

We are going to show that for sufficiently small nonzero t
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(23) r(C(t)) - r(C(O)) < 0 .

We recall that the jets of a diίϊerentiable real-valued function on Cm have
bidegree (d', d") and real (or total) degree d = d/ + d"'.

In the coordinate system (z l5 • • •, z2n) we can write

r(C{t)) - r(C(O)) = IMe(r, α(C(ί))β) + «e(r, „,

+ r, aβ(C(t))a(C(t)y + terms in (t, t) of

total degree greater than or equal to 3d ,

where the barred indices a = a + 2n, • • • range from 2n + 1 to An and refer
to the conjugate holomorphic coordinates za+n = zs = žα•

Next, we take the average of the function r(C(t)) — r(C(O)), i.e.,

277

On the other hand

) - r(C(O))

A - Γ (r(C(ίe*O) - *C(O)))dθ .
77 Jo

f
V

+ terms in (t, t) of total degree greater than or equal to 3d .

We observe that the only summand in the above expression giving any con-
tribution when integrated from 0 to 277 comes from

r, aβ\( Σ Aajt j]

and is given by the jet of total degree less that 3d of

r,aβ( Σ
\j=k=O

Therefore

277
\- Γ (r(C(te")) - r(C(O)))dθ
\Π Jo

= -4r Γ r' *M*M \*\2* +
277 Jo
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Y I y
— Γ> aβ\ L

\j=

which is negative for small t because of (20). This proves the inequality (23)

which contradicts the fact that r achieves a minimum on V at (pQ, qQ). There-

fore we conclude that r cannot achieve a positive minimum on V. On the

other hand, the compactness of V in M X M and the continuity of r imply the

existence of some (p, q) in V, which achieves a minimum on V, and by our dis-

cussion r(p,q) must be equal to zero, which shows the case (ii). Hence the

proof of Theorem 3 is complete.

Ih the case where V has no singularities our Theorem 3 is [6] equivalent to

Theorem 2, which was used to prove that a compact Kahler manifold of com-

plex dimension 2 and positive sectional curvature is analytically isomorphic to

P2(C), but so far our technique does not seem to be applicable to study the

conjecture for greater dimensions.
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