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ISOMETRIC IMMERSIONS OF RIEMANNIAN
PRODUCTS IN EUCLIDEAN SPACE

S. ALEXANDER & R. MALTZ

1. Introduction

Consider a riemannian product M = M1 X • • • X Mk of k connected com-
plete riemannian manifolds, each of which is nonflat, that is, has some non-
vanishing sectional curvature. Let nt > 2 be the dimension of Mt. J. D. Moore
[7] has proved that if the M4 are all compact, then any k-codimensional iso-
metric immersion of M in euclidean space is a product of hypersurface
immersions. (The case k — 2 was treated in [1].) That is, for any isometric
immersion ƒ: M —• EN if we write N — (Σ•=i^) + k, then there exist a
decomposition EN = Eni+1 X • • • X Enk+1 of EN into the product of k mutually
orthogonal subspaces and isometric immersions ft: M4 —> Eni+1 for which
ƒ(Pi, • • •,P*) = Cfi(Pi), • • •,ƒfc(p*))• The purpose of this paper is to replace
compactness with the following condition, which says that no factor Mt con-
tains a "euclidean strip" :

(*) No Mi contains an open submanifold which is isometric to the rie-
mannian product Enί~λx{— ε, ε).

Thus the main theorem may be stated as follows. Throughout the paper we
assume all structures are C°°, and use "manifold" to mean connected manifold.

Theorem. Let M19 • • •, Mk be complete nonflat riemannian manifolds satis-
fying condition (*). Then any k-codimensional isometric immersion of the rie-
mannian product M = Mλ X • • • X Mk in euclidean space is a product of
hypersurface immersions.

An example will be given in § 4 showing that condition (*) cannot be omit-
ted.

It is known that if M = M1 X • • • X Mk is a riemannian product of com-
plete nonflat riemannian manifolds, and f:MχEno-> EN+no is an isometric
immersion of codimension k, then ƒ must be trivial on the euclidean factor [6].
That is, there exist an orthogonal decomposition EN+no = EN x Eno and an
immersion ƒ: M -»E N for which ƒ(p, p0) == (J(p), p0); such a map is described
as "/vcylindrical". The following corollary of the main theorem is immediate.

Corollary 1. Let M1 ? • • •, Mk be complete nonflat riemannian manifolds
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satisfying condition (*). Then any k-codimensional isometric immersion of
Mx X • • • X Mk X Eno in euclidean space may be expressed as a product of
hypersurface immersions of the M^ and the identity map on En\

The proof of the main theorem takes as its starting point Moore's elegant
solution of the compact problem. Moore's theorem actually states that, given
M = Mλ x • • • x Mk where the Mt are complete and of dimension nt > 2,
and given a λ;-codimensional isometric immersion f:M-+EN, then ƒ is a
product of hypersurface immersions unless M contains a complete geodesic
which is mapped by ƒ onto a straight line in EN. Clearly no such geodesic
exists if M is compact. No curvature requirement is stated because it turns
out that if ƒ maps no geodesic onto a line, then no Mt is flat.

For any p in M, let Mt(p) denote the copy of Mt in M passing through p.
Our proof will show, assuming all Mt nonflat, that ƒ is a product of hypersur-
face immersions unless M^(p), for some i and p, contains an open subset U
isometric to ( — ε, ε) X Eni~ι on which ƒ acts (nt — l)-cylindrically. That is,
U is foliated by complete totally geodesic hypersurfaces which are carried
onto parallel (nt — l)-planes in EN. Note that by the Toponogov and Cheeger-
Gromoll splitting theorems [10], [2], no such hypersurfaces can exist if Mt

has nonnegative sectional curvature or, more generally, nonnegative Ricci cur-
vature. Thus our theorem in combination with the Sacksteder immersion and
rigidity theorems for convex hypersurfaces [8], [9] gives

Corollary 2. For 1 <i<k, let Mt be a complete nonflat riemannian mani-
fold of nonnegative sectional curvature, (a) Then any k-codimensional isometric
immersion of M = Mγ X • • • X Mk in euclidean space EN is a product of k
imbeddings of convex hypersurfaces. (b) If, further, each Mt has a point at
which the conullity index of curvature of Mt is at least 3, then any two iso-
metric immersions of M in EN differ by an isometry of EN.

2. Nullity and relative nullity

Suppose ƒ: M —> EN is any isometric immersion of a riemannian manifold.
We view the second fundamental form of ƒ at p e M as a symmetric vector-
valued bilinear form T:Mpχ Mp->Mj, where Mp denotes the tangent space
of M at p. The notations T(x, y) and Txy will be used interchangeably, accord-
ing to convenience.

Curvature of M is determined by the second fundamental form of ƒ accord-
ing to the Gauss equation

<Rxyu, v> = <Txu, 7 » - < 7 > , Tvu) , x, y, u, v, e Mp .

The relative nullity space of f at p is defined by Rp = {x e Mp : Txy = 0
for all y <z Mp}. The Gauss equation implies that Rp is contained in the nullity
space of M at p, defined by Np = {x e Mp : Rxy = 0 for all y e Mp). The di-
mensions of Rp and Np are denoted by v(p) and μ(p) respectively.
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The nullity and relative nullity spaces were first defined by Chern and Kuiper
[3], who showed that the Gauss equation implies

0 < μ(p) - v(p) < k ,

where k is the codimension of the immersion. In this paper, we will use a
sharpened inequality, namely,

( 1 ) 0 < μ(p) - v(p) < k - i(p) ,

where i(p) denotes the maximum number of mutually orthogonal subspaces
of the orthogonal complement N‡ in Mp which are invariant under the action
of the curvature transformations Rxy for all x and y in Mp. (Our applications
will be to the case where M = Mλ X • • • x Mk and p = (p19 • • •, pk), with
i(p) being replaced by the number of factors Mt such that Mt has some non-
vanishing sectional curvature at pt.)

The inequality (1) is a consequence of the following lemma.
Lemma 1. Suppose a riemannian manifold M is ίsometrically immersed

in EN. If for some p in M, S is a subs pace of Mp satisfying the conditions
Rxy = 0 for all x, y in S and S Π Rp = 0, then the dimension of S does not
exceed the codimension of the immersion.

Proof. It will suffice to show the existence of a vector u e Mp such that
the restriction of Tu to S is an injection of S into M‡.

Suppose, to the contrary, that for a given u e Mv such that the restriction of
Tu to S has maximal rank, there is some nonzero x e S satisfying Tux = 0.
Since x ‡. R(p), there exists v e Mp satisfying Tvx ψ 0. Furthermore, for any
y € S the Gauss equation gives 0 = (Txu, Tyv`) = (Txv, Tyu), since Rxy = 0.
This means that for any t Φ 0, the nonzero vector Tu+tvx = tTvx = tTxv
lies in Tu+tv(S) and is perpendicular to TU(S). For t sufficiently small, it follows
that the dimension of Tu+tv(S) exceeds the dimension of TU(S), in contradic-
tion to the choice of u. q.e.d.

Now to prove the inequality (1), take S to be the subspace of Mp spanned
by the [μ(p) — y(/?)]-dimensional subspace NPΓ\R^ and nonzero vectors xi9

ϊ <i< i(p), one from each invariant subspace of Np-. RXiXj = 0 follows from
<RXiXju, v} = (RuυXi, Xj} = 0 for all u, v in Mp.

In the two lemmas which follow, we summarize some important facts about
nullity and relative nullity which will be needed later. Lemma 2 may be found
in [5]. Lemma 3 was proved by P. Hartman in [4].

Lemma 2. Suppose a riemannian manifold M contains an open subset W
on which the nullity spaces Np have constant dimension μ(p) = c. Then the
distribution N on W is completely integrable and the integral submanίfolds
are totally geodesic in W. Suppose γ: [a,b] -> M is a geodesic satisfying γ(s)
e W and γ'(s) e Nΐ(s) for all s e (a, b). Then μ(γ(a)) = μ(γ(b)) = c, and the

nullity spaces are parallel along γ\ [a, b].
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Lemma 3. Suppose that an isometric immersion ƒ: M —> EN of a rieman-
nian manifold M is such that M contains an open subset W on which the re-
lative nullity spaces Rp have constant dimension v(p) = c. Then the distribution
R on W is completely integrable, and the integral submanifolds are totally
geodesic in W. Suppose γ: [α, b] —•» M is a geodesic satisfying γ(s) e W and
γ\s) e Rΐis) for all s e (a, b). Then v(γ(ά)) = v(γ(b)) = c, and the relative nul-
lity spaces are parallel along γ \ [a, b].

We turn now to the case of an isometric immersion ƒ of a riemannian pro-
duct M = Mj X • • • X Mk in some euclidean space. For fixed p = (pi,
•••,pj, . . . ,pϋ)eAf, let Af,(p) be the copy {(pj, •>•9pi9 •••,rf): Λ € M J of
Mi through p. πι will denote orthogonal projection of Mp onto its subspace
tangent to Mt(p). The subspaces Rip and Nίp of πtMp are respectively defined
to be the relative nullity space of ƒ | Mt(p) at p and the nullity space of Mt(p)
at p. (Note that the latter is determined by pt but the former is not.)

Since the curvature transformations Rxy of M vanish whenever x and y are
tangent to different factors, we easilly obtain

Nip = NPΠ ntMp , Θ t i Nίp = φk

ί=1 πtNp = Np .

Also, the Gauss equation for (Rxyx, y) shows that if x and y are tangent
to different factors, then whenever Txx = 0 holds, Txy = 0 also holds. From
this we may deduce

Rίp = Rp Π πίMp .

However, the statement ®k

i=1 Rίp = ®ί=1πiRp = Rp need not be true. If it is
true, we say the relative nullity space Rp conforms to the product structure of
M. In general, we may only assert

( 2 ) Θ t i Rίp ^RP^ Θ?=i πtRp c Np

with equality holding at the first inclusion if and only if it holds at the second.
The third inclusion follows from Rp Œ. Np and πi^Nv C Np.

We give a simple example to illustrate these remarks. Let M1 = M2 = E\ and
isometrically immerse M = Eι X E1 in E3 as a right circular cylinder with
the image of the lines y = x + c as generators. Specifically, set f(x,y) =
(cos x, sinx, y) where x = (x — y)/\^2 and y = (x + y)/<f~2. Then M
carries one-dimensional distributions πλMp, π2Mp and Rp tangent to the lines
x = c, y = c and y = x + c respectively. Thus Rip = Rp Π πιMp = 0; and the
spaces (BRip, Rp and ®πiRp have dimensions zero, one and two respectively.

Finally we state three lemmas due to Moore [7]. The assumption here is
that ƒ: M —> EN is a /:-codimensional isometric immersion of some riemannian
product manifold M = Mx X • • • X Mk (not necessarily complete.) For the
second fundamental form T of ƒ, we say "T(xi9Xj) = 0 holds at p" if this
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equation holds for every choice of index pair / Φ j and of vectors xt e
Xj 6 πjMp. Similary, "T(x19 xj) = 0 holds at p" means the equation holds for
every choice j Φ 1, xx € πλMp9 xά e πjMp.

It may be helpful in interpreting the lemmas to represent T by a matrix
with entries T(ea, eb) e M‡, 1 < a, b < N — k, where e19 • • •, eN_k is a basis
of Mp which conforms to the product structure of M. The condition T(xi9 x3)
= 0 becomes the condition that the only nonzero entries occur in diagonal
blocks. Note that a tangent vector x = Σa=i χΛea (χa <= <R) is i n the relative
nullity space Rp if and only if the corresponding linear combination of rows
vanishes. The condition T(xί9Xj) = 0 thus clearly implies that the projections
πtx are relative nullity vectors whenever x is, that is, that Rp conforms to the
product structure of M.

Lemma 4. If T(xi9 x3) = 0 holds at all p e M, and no Mt is everywhere
flat, then f is a product of hypersurface immersions.

Lemma 5. For 1 < i < k, suppose that Mt is not flat at pi. Then at p =

(Pi, • • •, Pk) in M9 T(xi9 Xj) = 0 holds.
In the following lemma, given an open subset S of Mx(p) we say q is visible

along S from p if there is a geodesic γ satisfying ;-(O) = p, γ(b) = q, γ(s) e S,
and γ'(s) e i? l r ( S ) for 0 < s < b.

Lemma 6. (i) Let S be an open subset of Mλ(p) on which the spaces Rιp

have constant dimension. If a point at which T(xιy x3) = 0 holds is visible
along S from p, then T(x19 Xj) — 0 holds at p also.

(ii) Let S be an open subset of Mx(p) having a neighborhood in M on
which T(xλ, Xj) = 0 holds. If a point at which T(xt, x3) = 0 holds is visible
along S from p, then T(xi9 x0) = 0 holds at p also.

3. The main theorem

Suppose ƒ: M —> EN is a λ;-codimensional isometric immersion of some rie-
mannian product M = M1 x • • • X Mk. Let X be the open subset of M con-
sisting of points at which T(xi9Xj) = 0 fails. If p = (p19 • • •, pk) is such a
point, then Lemma 5 implies that for at least one value of / the factor Mi is
flat at pt. Let k'(p) denote the number of factors M€ flat at pt. Then the sum
of the dimensions of these factors is at least 2k'(p)9 so nullity of M satisfies
μ(p) > 2k'(p). On the other hand, relative nullity of ƒ and nullity of M satisfy
0 < μ(p) — v(p) < k'(p), according to (1). Therefore

( 3 ) μ(p) > v(p) > μ(p) - k'(p) > k'(p) > 0

holds at every point of X.
The first step of the proof of the main theorem casts light on the example

in §2.
Proposition. Suppose f:M-*EN is a k-codimensional isometric immersion

of a complete riemannian product M = MYχ • • • X Mk. Then the relative
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nullity spaces of f conform to the product structure of M unless one of the
factors Mi is everywhere flat.

Proof. Suppose there are points at which the relative nullity spaces Rp do
not conform, that is, at which Rp Φ 0f=1 πιRp holds. Let Xf Œ M be the
open set consisting of all such points.

Since we know Xf cz X by the remark proceding Lemma 4, then (3) holds
on Xr. By letting V c: Xr be the minimum set for v on A!7, and W c: V be
the minimum set for μ on F, we obtain a nonempty open subset W of X' on
which the dimensions of the relative nullity spaces and nullity spaces respec-
tively are constant and positive. Let R denote the distribution of relative nul-
lity spaces on W.

Choose any p eW. The leaves of R are totally geodesic in W by Lemma 3,
so for a given initial condition γ'(O) e Rp the corresponding M-geodesic γ is
tangent to R as long as it remains in W. Suppose γ \ [0, b) lies in W. Since
both R and the distributions tangent to the factors are parallel along γ \ [0, b],
the fact that Rp does not conform to the product structure of M implies that
Rγib) does not. That is, γ(b) e X'. Since by Lemmas 2 and 3, v and μ do not
change at γ(b), we have further γ(b) e W. It follows that γ does not leave W,
so the leaf through p of R is complete. Next we show that this can only hap-
pen if one of the factors is everywhere flat.

Set kr — k'(p), and reorder the factors so that the first k! are flat at p. Now
®i=1 πtRp lies in the nullity space Np of M by (2), has dimension larger than
the dimension of Rp, and hence has dimension at least μ(p) — kf + 1 by (3).
Thus its codimension in Np is at most kr — 1. Since Np = ©?= 1 πιNp, it fol-
lows that the codimension of ®?=1 ntRp in ®f=1 πtNp is at most k' — 1. But
we have ordered the factors so that the latter is all of ®f=1 πιMp. It follows
that πiRp = πtMp for some /, and we may assume / = 1.

Thus for any xλ e πλMp, there exists some x = x1 + y e Rp, where y is or-
thogonal to 7ΓiMp. Consider the complete geodesic γ = γ1 X • • • X γk in M
with initial condition x. γ lies entirely in W because the leaf through p of R is
totally geodesic and complete. By Lemma 2, the distribution of nullity spaces
Nγ{t) is parallel along γ, so πλMγ{t) c Nΐ(t) holds for every value of t because it
holds at p. But then Mλ is flat at γλ(t) for every value of t. Since xλ is arbitrary
and ft is a complete geodesic in Mλ with initial condition JC1? it follows that M1

is everywhere flat.

Proof of main theorem. Let ƒ: M —* EN be a /:-codimensional isometric
immersion of M = Mx X • • • X Mk, where the M^ are complete and nonflat,
and suppose ƒ is not a product of hypersurface immersions. We wish to show
that condition (*) is violated.

By Lemma 4 we know X is not empty, where X still denotes the subset of
M on which T(xt, Xj) = 0 fails. We take ί F C Z t o b e a connected component
of the minimum set for v on X.

Since the spaces Rp have constant dimension on W and conform to the pro-
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duct structure of M by the preceding proposition, it follows that the spaces
Rίp have constant dimension on W for each i. This is because each point has
a neighborhood on which the dimension of Rip does not increase; and by Rp

= ®i=1 Rip, a decrease in one would force an increase in another.
Repeating an argument from the proof of the proposition, since for any

poεW the codimension of RPo in NPo is at most &'(p0) by (3), then for some /
the dimension of πtRPQ is at least Πi — 1. Since RPo conforms to the product
structure, RiPo = niRPo. Thus, taking i = 1, we conclude that W carries a dis-
tribution R1 of dimension either nx — 1 or nλ, where each Rlp is the relative
nullity space of ƒ \Mλ(p). Applying Lemma 3 to the open subset Mλ(p) Π W
of any Mx(p) shows that Rλ is integrable and its leaves are totally geodesic in
M.

Suppose T(x19 x3) = 0 holds everywhere on W. For a given p0 in W, define
S = M^PQ) Π W. Then for any p e S, Lemma 6 (ii) says that only points of
X are visible along S from p. That is, if γ\ [0, b) is any geodesic in S tangent
to R19 where γ(O) = p, then γ(b) lies in X. But since Rλ cz R, Lemma 3 says
that v does not change at γ(b), so γ(b) lies in S = Mλ(p^ Π W by definition
of W. Thus the leaves of the distribution Rλ on S are complete.

The other possibility is that T(x19 Xj) = 0 fails at some pQeW. Now define
S to consist of all points of Mλ(p^) Π W at which T(x15 JC )̂ = 0 fails. Then for
any p e S, Lemma 6 (i) says that only points at which T(xλ, xό) = 0 fails are
visible along S from p. Then for any geodesic γ \ [0, b) in S tangent to Rλ,
with f(0) = p, we have γ(b) e X. γ(b) e W follows as before, hence γ(b) e S
by definition of S. Thus again the leaves of the distribution Rλ on S are com-
plete.

In any case, we conclude that some Mλ(p^ contains a nonempty open subset
S such that the relative nullity spaces of ƒ | Mλ(p^) have dimension nλ — 1 on S,
and the leaves of the corresponding distribution Rλ on S are complete. (The
possibility that Rλ has dimension nx is ruled out because by assumption Mγ is
not flat.) It remains to show, assuming S connected, that such leaves must be
carried onto parallel (nx — l)-planes in EN. In the remainder of this section
we consider only the immersion ƒ \Mλ(p^, so we suppress subscripts and from
now on write M = Mλ(p^, f = f\M^Po), n = nu and R = Rλ.

Now let p be a point of S and L = L(p) be the leaf of R through p. Since
L is complete, ƒ maps L isometrically onto an (n — l)-plane in EN. Further-
more, for all points r eL the image n-planes f*(Mr) are constant. (These as-
sertions are easily verified using the definition of R and the fact that L is
totally geodesic in M.) Without loss of generality, assume p is identified with
the origin in EN, L is identified with the y1 • • • y^-plane, and M is tangent
to the y1 - • - vw-plane at every point of L.

Each q e S has a neighborhood carrying Frobenius coordinates {u1,
• • ., un~\w), that is, coordinates for which the hypersurfaces w = constant
are tangent to R. Suppose we know that the translation of f(L(q)) to the origin
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is transverse to the yn • • • y^-plane. Then by the inverse function theorem,
we may take uι to be the restriction of yι o ƒ, 1 < i < n — 1. In the following
such a coordinate neighborhood will be said to be "adapted", and yίof will
be abbreviated y\

Let iV0 be an adapted coordinate neighborhood of p, coordinatized by {y1,
• • *, yn~\ w0} where wo(p) = 0. JFrite L(c) for the complete leaf of R passing
through the point with coordinates (0, • • •, 0, c). Then {/, • • •, yn~1} is one-
one on each L(c), and it follows that the L(c) are all distinct. Thus w0 extends
to a function w on the open set U = U_ε<c<εL(c). To verify that the one-
one map {y\ • • -,yn~\w} of U onto En~1χ(—ε9e) is a diίϊeomorphism, let
q e L(c) be any point of £/. Join (0, • • •, 0, c) e NQ to q by a path γ in L(c),
and cover γ by finitely many adapted neighborhoods NQ, - - -,Nj9 where Nj
contains q and carries coordinates y\ • • •, yn~\ wό. It suffices to show w varies
smoothly with Wj at q and (dw/dwj)(q) =£ 0. This may be done in j steps; at
the first step we have (dw/dw^dw^dw^ = dwldwx on No Π Nx Π γ, and both
left hand factors are nonzero.

Now express ƒ on U as a function of the coordinates {/, • • •, yn~λ, w). Set
Ai(w) = (df/dy%O, • • •,O,H>) for 1 < i < n - 1. Thus <Λ<(w),*,> - δij9

1 < h) < n — 1, where the ež are part of the standard basis of EN. It fol-
lows that

f(y\ -", yn~\ w) = Σ?=ί y*At(w) + ƒ(O,. • •, o, w) .

Furthermore, df/dw is always orthogonal to ei9 1 < i < n — 1. Since ƒ is an
immersion which places M tangent to the y1 • • • yw-plane along L = L(O), this
means (df/dw)(y1, • • •, yn~ι, 0) is always a nonzero multiple of en.

Now to conclude (6L4Jdw)(O) = 0, we apply [4, Lemma 4.1] of P. Hartman.
The argument is repeated here because in this special case it is very short.
We have

(df/dw)(y1, • •-,y*-\O) = Σΐ^y*(dAJdw)(O) + (3ƒ/3w)(O, • • -,0) .

Taking values of 0 and 1 variously for y\ • • •, yn~ι shows that each (dAJdw)(O)
is a multiple of en. The assumption (dAt/dw)(0) Φ 0 for some i would
imply (dAJdw)(O) = c(3f/dw)(O, • • •, 0) for some c Φ 0, and hence (3ƒ/9w)(O,
• • •, —c~1, • • •, 0) = 0, which is false.

This completes the proof that ƒ carries the leaves of R onto parallel (n — 1)-
planes in EN. Taking the standard metric on (—ε, ε), and taking w to give arc
length along the curve y1 = • • • = yn~ι = 0, we find that {y\ • • •, yn~\ w} is
an isometry of U onto the riemannian product En~ι X ( —ε, ε). This com-
pletes the proof of the theorem.
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4. Immersions which are not products

Yeaton Clifton has given, in private communication, a method of construct-
ing a 2-codimensional immersion into euclidean space which induces a parallel
line field but does not map the corresponding integral curves into planes. His
construction is used below to show that for certain riemannian product mani-
folds M, an isometric immersion of M which is the product of hypersurface
immersions may be continuously deformed through nonproduct isometric im-
mersions of M. In particular, it will follow that condition (*) in the main
theorem cannot be omitted.

Let ƒx: M1 —> Eni+ί be any isometric immersion of codimension one, where
Mλ is a compact riemannian manifold with metric g19 and let / denote an in-
terval ( —ε, ε) with the standard metric. For N = nx + 3, we have the trivial
isometric immersion M1 X / —•> EN given by

( 4 ) (m, t) - (Σfji2 j\{m)ed + teN_, ,

where e19 • • •, eN is the standard basis of EN.
Now let γ: ( —ε, ε) —> EN be a regular curve satisfying γ[f) = teN_x when

iε < \t\ < ε. We require that γ take its values in the three-dimensional
subspace spanned by eN_2, eN_λ, eN, and carry a smooth frame field xN_2,
*iv-i>*i\r satisfying x^t) = et when ε̂ < |ί | < ε, and satisfying the Frenet
equations:

dγ _ dxN_Y _

~άt ~ N~λ ' ~Ύt N'
( 5 )

JL ( f ) f= i- = — κaxN .
at at

Here a(t) is a smooth function satisfying a(t) = 0 for ε̂ < |ί | < ε. We also
require that for some t e ( — |-ε, Jε) both Λ:(O and α:(O are nonzero, so that
the image of γ does not lie in any two-dimensional subspace.

Define a map h: Mλ X / —> EN by

A(m,ί) = Σf=^i3ƒί(m)^ + f?-\m)[xN_2 + axN_1](t) + γ(t) .

Observe that /z agrees with (4) for ε̂ < \t\ < ε. For local coordinates mj

on Mx we have

( 7 ) 3A/3ί=[ l +

Since ƒx is an immersion, the matrix (dƒj/3m-0, ί < i < N — 2, has maximal
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rank. Furthermore, because Mx is compact, we may assume \da/dt\ small
enough to ensure that (7) never vanishes, so that h an immersion.

Now define s: Mλ x / —> M1 X Eι by s(m, t) = (m, s(m, t)), where s(m, t)
= t + a(t)f?-\m). (The effect of this map is to reparametrize each of the
curves tangent to d/dt by /z-induced arc length s.) Since ds/dt =1 + (da/dt)f?~2

Φ 0, s is regular. Furthermore, s is strictly monotone in t and satisfies s(m, t)
= t for —jε<\t\<ε. It follows that s is a diffeomorphism of Mx X / onto
Mx x /.

We claim that ƒ = hoš~1 is an isometric immersion of the riemannian pro-
duct Mλχl mEN \ that is, that the ƒ-induced metric g is given by g = gλ + ds2.

First it must be shown that d/ds is parallel with respect to g. At any point
(m,s), we have df/ds = (dh / dt)(dt / ds) = x^-i(O for ί = ί(ra,s). Thus ^ƒ/3s2

= (dxN_J di)(dt/ds) and d2f/dmjds = (dxN_Jdt)(dt/dmj), both of which are
parallel to x^(O by (5) and therefore orthogonal to the image of ƒ by (6) and
(7). Hence the connection induced by ƒ satisfies VB/dsd/ds = 0 and Fd/dmjd/ds
= 0.

By construction, g and gλ + ds2 agree for \ε < \s\ < ε. Furthermore, we
have just shown that 3/ds is a parallel unit vector field on Λf x X / with respect
to both metrics. In particular, g is locally a product metric. Cover any s-curve,
— ?ε<s<jε, by finitely many g-product neighborhoods. Since s gives arc
length in both metrics, it follows that g and gλ + ds2 agree on a neighborhood
of the curve. Thus g = g1 + ds2 holds everywhere.

Observe, however, that ƒ is not a product of hypersurface immersions. In-
deed, for fixed m € M19 the image of / is tangent to the xN_ι(t), which by con-
struction do not lie in any two-dimensional subspace.

Now suppose ƒ2: M2 —> En2+ι is any isometric immersion of codimension one
such that M2 contains an open subset U isometric to ( — ε, ε) X EU2~\ and
such that ƒ2 is totally geodesic on U. Let ƒx: M1 -• Eni+1 be as before. The
restriction of the product immersion ƒx X ƒ2 to Mλ X U is given by

where still V̂ = «! + 3. But we have seen how to construct an isometric im-
mersion ƒ of Mλ X U, leaving the above terms involving rk unchanged, which
is not a product of hypersurface immersions and agrees with ]λ X ƒ2 whenever
— jε<\t\<ε. This means that ƒ and jλ X ƒ2 may be pieced together to ob-
tain a 2-codimensional isometric immersion of M1 X M2 which is not a product
of hypersurface immersions. Finally, we point out that a continuous variation
of curves γ about the curve γo(t) = teN_ι gives a continuous variation of
such isometric immersions about the product immersion f1 X ƒ2.
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