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ISOMETRIC IMMERSIONS OF RIEMANNIAN
PRODUCTS IN EUCLIDEAN SPACE

S. ALEXANDER & R. MALTZ

1. Introduction

Consider a riemannian product M = M, X --- X M, of k connected com-
plete riemannian manifolds, each of which is nonflat, that is, has some non-
vanishing sectional curvature. Let n; > 2 be the dimension of M;. J. D. Moore
[7]1 has proved that if the M, are all compact, then any k-codimensional iso-
metric immersion of M in euclidean space is a product of hypersurface
immersions. (The case k = 2 was treated in [1].) That is, for any isometric
immersion f: M — EV if we write N = (} %, n,) + k, then there exist a
decomposition EY = E™*! X ... X E™*! of E¥ into the product of k mutually
orthogonal subspaces and isometric immersions f;: M; — E™*! for which
oy -5 pe) = (F(pD, -+ -, fe(pr)). The purpose of this paper is to replace
compactness with the following condition, which says that no factor M; con-
tains a “euclidean strip” :

(*) No M; contains an open submanifold which is isometric to the rie-
mannian product E™'x(— e, €).

Thus the main theorem may be stated as follows. Throughout the paper we
assume all structures are C*, and use “manifold” to mean connected manifold.

Theorem. LetM,, .- ., M, be complete nonflat riemannian manifolds satis-
fying condition (*). Then any k-codimensional isometric immersion of the rie-
mannian product M = M, X --- X M, in euclidean space is a product of

hypersurface immersions.

An example will be given in § 4 showing that condition (*) cannot be omit-
ted.

It is known that if M = M, X --- X M, is a riemannian product of com-
plete nonflat riemannian manifolds, and f: M X E™ — EV*™ is an isometric
immersion of codimension &, then f must be trivial on the euclidean factor [6].
That is, there exist an orthogonal decomposition E¥*" = E¥ x E™ and an
immersion f: M — E¥ for which f(p, p,) = (f(p), p,); such a map is described
as “ng-cylindrical”. The following corollary of the main theorem is immediate.

Corollary 1. Let M|, - - -, M, be complete nonflat riemannian manifolds
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satisfying condition (*). Then any k-codimensional isometric immersion of
M, X -+« X M, X E™ in euclidean space may be expressed as a product of
hypersurface immersions of the M, and the identity map on E™.

The proof of the main theorem takes as its starting point Moore’s elegant
solution of the compact problem. Moore’s theorem actually states that, given
M =M, X --- X M, where the M, are complete and of dimension n; > 2,
and given a k-codimensional isometric immersion f: M — E¥, then f is a
product of hypersurface immersions unless M contains a complete geodesic
which is mapped by f onto a straight line in E¥. Clearly no such geodesic
exists if M is compact. No curvature requirement is stated because it turns
out that if f maps no geodesic onto a line, then no M; is flat.

For any p in M, let M,(p) denote the copy of M; in M passing through p.
Our proof will show, assuming all M; nonflat, that f is a product of hypersur-
face immersions unless M;(p), for some i and p, contains an open subset U
isometric to (—e,¢) X E™! on which f acts (n; — 1)-cylindrically. That is,
U is foliated by complete totally geodesic hypersurfaces which are carried
onto parallel (n; — 1)-planes in E¥. Note that by the Toponogov and Cheeger-
Gromoll splitting theorems [10], [2], no such hypersurfaces can exist if M,
has nonnegative sectional curvature or, more generally, nonnegative Ricci cur-
vature. Thus our theorem in combination with the Sacksteder immersion and
rigidity theorems for convex hypersurfaces [8], [9] gives

Corollary 2. For 1 <i<k, let M; be a complete nonflat riemannian mani-
fold of nonnegative sectional curvature. (a) Then any k-codimensional isometric
immersion of M = M, X .-+ X M, in euclidean space E" is a product of k
imbeddings of convex hypersurfaces. (b) If, further, each M; has a point at
which the conullity index of curvature of M, is at least 3, then any two iso-
metric immersions of M in EY differ by an isometry of EV.

2. Nullity and relative nullity

Suppose f: M — EV is any isometric immersion of a riemannian manifold.
We view the second fundamental form of f at p € M as a symmetric vector-
valued bilinear form T: M, X M, — M}, where M, denotes the tangent space
of M at p. The notations T(x, y) and T,y will be used interchangeably, accord-
ing to convenience.

Curvature of M is determined by the second fundamental form of f accord-
ing to the Gauss equation

(R, vy = {Tu, T vy — (T, Tyuy, X, y,u, v, €M, .

The relative nullity space of f at p is defined by R, = {x e M,: T,y =0
for all y € M,}. The Gauss equation implies that R, is contained in the nullity
space of M at p, defined by N, = {x e M,,: R, = O for all y e M,}. The di-
mensions of R, and N, are denoted by v(p) and x(p) respectively.
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The nullity and relative nullity spaces were first defined by Chern and Kuiper
[3], who showed that the Gauss equation implies

0< pulp) —ulp) <k,

where k is the codimension of the immersion. In this paper, we will use a
sharpened inequality, namely,

(1) 0L pup) —vp) <k —ilp),

where i(p) denotes the maximum number of mutually orthogonal subspaces
of the orthogonal complement N} in M, which are invariant under the action
of the curvature transformations R, for all x and y in M,. (Our applications
will be to the case where M = M, X .-+ X M, and p = (p,, - - -, pi), with
i(p) being replaced by the number of factors M; such that M, has some non-
vanishing sectional curvature at p;.)

The inequality (1) is a consequence of the following lemma.

Lemma 1. Suppose a riemannian manifold M is isometrically immersed
in EN. If for some p in M, S is a subspace of M, satisfying the conditions
R,, =0forall x,yinS and S N R, = 0, then the dimension of S does not
exceed the codimension of the immersion.

Proof. It will suffice to show the existence of a vector u € M, such that
the restriction of T, to S is an injection of § into M.

Suppose, to the contrary, that for a given u € M, such that the restriction of
T, to S has maximal rank, there is some nonzero x € S satisfying T, x = 0.
Since x ¢ R(p), there exists v e M, satisfying T',x == 0. Furthermore, for any
y € S the Gauss equation gives 0 = {T,u, T ,v> = (T v, T ,uy, since R, =0.
This means that for any ¢ # 0, the nonzero vector T,,,,x = T, x = (T,v
liesin T, ,,(S) and is perpendicular to T,(S). For ¢ sufficiently small, it follows
that the dimension of T,,,,(S) exceeds the dimension of 7,(S), in contradic-
tion to the choice of u. q.e.d.

Now to prove the inequality (1), take S to be the subspace of M, spanned
by the [¢(p) — v(p)]-dimensional subspace N, R} and nonzero vectors x,,
1 <i<i(p), one from each invariant subspace of N;. R, ,, = 0 follows from
Rz s V) = {RyyXy, x;p = 0 for all u, v in M,

In the two lemmas which follow, we summarize some important facts about
nullity and relative nullity which will be needed later. Lemma 2 may be found
in [5]. Lemma 3 was proved by P. Hartman in [4].

Lemma 2. Suppose a riemannian manifold M contains an open subset W
on which the nullity spaces N, have constant dimension p(p) = c. Then the
distribution N on W is completely integrable and the integral submanifolds
are totally geodesic in W. Suppose y: [a,b] — M is a geodesic satisfying 7(s)

e W and y/(s) € N, for all s e (a,b). Then p(y(a)) = p(y(b)) = ¢, and the
nullity spaces are parallel along y|[a, b].
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Lemma 3. Suppose that an isometric immersion f: M — E¥ of a rieman-
nian manifold M is such that M contains an open subset W on which the re-
lative nullity spaces R, have constant dimension v(p) = c. Then the distribution
R on W is completely integrable, and the integral submanifolds are totally
geodesic in W. Suppose y: [a, b] — M is a geodesic satisfying y(s) e W and
7'() € R, for all s e (a, b). Then v(y(@)) = v(y(b)) = ¢, and the relative nul-
lity spaces are parallel along 7 |[a, b].

We turn now to the case of an isometric immersion f of a riemannian pro-
duct M =M, X --- X M, in some euclidean space. For fixed p = (p},
D5 e, D) € M, let M(p) be the copy {(pY, - -+, ps, - -+, PVt Py € My} of
M, through p. z; will denote orthogonal projection of M, onto its subspace
tangent to M,(p). The subspaces R;, and N,, of =,M, are respectively defined
to be the relative nullity space of f|M;(p) at p and the nullity space of M,(p)
at p. (Note that the latter is determined by p; but the former is not.)

Since the curvature transformations R, of M vanish whenever x and y are
tangent to different factors, we easilly obtain

Nz‘p=Np ﬂ ﬂiMp, ®?=1Nip=@?=1ﬂin=Np.

Also, the Gauss equation for (R,,x,y) shows that if x and y are tangent
to different factors, then whenever T,x = 0 holds, T,y = 0 also holds. From
this we may deduce

Rip = Rp n n.iMp .

However, the statement ®%_; R,, = ®F_, =,R, = R, need not be true. If it is
true, we say the relative nullity space R, conforms to the product structure of
M. In general, we may only assert

(2) @1‘;1 Rz‘p g. Rp g G_)f:l ﬂiRp g Np

with equality holding at the first inclusion if and only if it holds at the second.
The third inclusion follows from R, € N, and =,N, & N,,.

We give a simple example to illustrate these remarks. Let M, = M, = E', and
isometrically immerse M = E' X E' in E* as a right circular cylinder with
the image of the lines y = x + ¢ as generators. Specifically, set f(x,y) =
(cos %, sin %, 7) where ¥ = (x — ¥)/+/2 and J = (x + y)/ﬁ. Then M
carries one-dimensional distributions =,M,, ,M, and R, tangent to the lines
x=c, y=c and y = x + c respectively. Thus R;, =R, N z;M,=0; and the
spaces @R;,, R, and @r;R, have dimensions zero, one and two respectively.

Finally we state three lemmas due to Moore [7]. The assumption here is
that f: M — E¥ is a k-codimensional isometric immersion of some riemannian
product manifold M = M, X --. X M, (not necessarily complete.) For the
second fundamental form T of f, we say “T(x;,x;) = O holds at p” if this
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equation holds for every choice of index pair i #+ j and of vectors x; € ;M ,,
x; € ;;M,. Similary, “T(x,, x;) = 0 holds at p” means the equation holds for
every choice j # 1, x, e ;;M,, x; € m;M,.

It may be helpful in interpreting the lemmas to represent 7' by a matrix
with entries T(e,, e,) e M3, 1 < a,b < N — k, where e,, - - -, ey_; is a basis
of M, which conforms to the product structure of M. The condition T'(x;, x;)
= 0 becomes the condition that the only nonzero entries occur in diagonal
blocks. Note that a tangent vector x = > ¥-F x%, (x* € R) is in the relative
nullity space R, if and only if the corresponding linear combination of rows
vanishes. The condition T'(x;, x;) = O thus clearly implies that the projections
m;x are relative nullity vectors whenever x is, that is, that R, conforms to the
product structure of M.

Lemma 4. If T(x;, x;) = 0 holds at all pe M, and no M, is everywhere
flat, then f is a product of hypersurface immersions.

Lemma 5. For 1 < i < k, suppose that M, is not flat at p;. Then at p =
(py, -+, pp)in M, T(x;, x;) = 0 holds.

In the following lemma, given an open subset S of M (p) we say q is visible
along S from p if there is a geodesic 7 satisfying 7(0) = p, y(b) = g, 1(s) € S,
and 7/(s) € R, for 0 < s < b.

Lemma 6. (i) Let S be an open subset of M,(p) on which the spaces R,
have constant dimension. If a point at which T(x,, x;) = 0 holds is visible
along S from p, then T(x,, x;) = 0 holds at p also.

(ii) Let S be an open subset of M,(p) having a neighborhood in M on
which T(x,,x;) = 0 holds. If a point at which T(x;, x;) = 0 holds is visible
along S from p, then T(x;, x;) = 0 holds at p also.

3. The main theorem

Suppose f: M — E¥ is a k-codimensional isometric immersion of some rie-
mannian product M = M, X --- X M,. Let X be the open subset of M con-
sisting of points at which T'(x;, x;) = 0 fails. If p = (p,, - - -, p;) is such a
point, then Lemma 5 implies that for at least one value of i the factor M, is
flat at p;,. Let k’(p) denote the number of factors M, flat at p,. Then the sum
of the dimensions of these factors is at least 24’(p), so nullity of M satisfies
£(p) > 2k'(p). On the other hand, relative nullity of f and nullity of M satisfy
0 < u(p) — v(p) < K'(p), according to (1). Therefore

(3) #(p) = v(p) > pp) — K'(p) > K'(p) > 0

holds at every point of X.

The first step of the proof of the main theorem casts light on the example
in §2.

Proposition. Suppose f: M — EY is a k-codimensional isometric immersion
of a complete riemannian product M = M, X .- X M,. Then the relative
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nullity spaces of f conform to the product structure of M unless one of the
factors M; is everywhere flat.

Proof. Suppose there are points at which the relative nullity spaces R, do
not conform, that is, at which R, + @, n,R, holds. Let X’ C M be the
open set consisting of all such points.

Since we know X’ C X by the remark proceding Lemma 4, then (3) holds
on X’. By letting ¥V C X’ be the minimum set for v on X’, and W C V be
the minimum set for x on ¥, we obtain a nonempty open subset W of X’ on
which the dimensions of the relative nullity spaces and nullity spaces respec-
tively are constant and positive. Let R denote the distribution of relative nul-
lity spaces on W.

Choose any p € W. The leaves of R are totally geodesic in W by Lemma 3,
so for a given initial condition y’(0) ¢ R, the corresponding M-geodesic 7 is
tangent to R as long as it remains in W. Suppose 7|[0, b) lies in W. Since
both R and the distributions tangent to the factors are parallel along r| [0, b],
the fact that R, does not conform to the product structure of M implies that
R,;, does not. That is, y(b) € X’. Since by Lemmas 2 and 3, v and p do not
change at y(b), we have further y(b) e W. It follows that y does not leave W,
so the leaf through p of R is complete. Next we show that this can only hap-
pen if one of the factors is everywhere flat.

Set K’ = k’(p), and reorder the factors so that the first &’ are flat at p. Now
@k, =R, lies in the nullity space N, of M by (2), has dimension larger than
the dimension of R,, and hence has dimension at least u(p) — &’ + 1 by (3).
Thus its codimension in N, is at most & — 1. Since N, = @%_, n;N,, it fol-
lows that the codimension of ®%., =,R, in ®%., z;N, is at most ¥’ — 1. But
we have ordered the factors so that the latter is all of @, z;M,. It follows
that 7;R, = =;M, for some i, and we may assume i = 1.

Thus for any x, € n,M,, there exists some x = x; + y € R,, where y is or-
thogonal to m,M,. Consider the complete geodesic y =7, X +++ X rpin M
with initial condition x. y lies entirely in W because the leaf through p of R is
totally geodesic and complete. By Lemma 2, the distribution of nullity spaces
N,, is parallel along y, so m,M,,, & N,, holds for every value of ¢ because it
holds at p. But then M, is flat at 7,(¢) for every value of ¢. Since x, is arbitrary
and 7, is a complete geodesic in M, with initial condition x,, it follows that M,
is everywhere flat.

Proof of main theorem. Let f: M — E¥ be a k-codimensional isometric
immersion of M = M, X ... X M,, where the M, are complete and nonflat,
and suppose f is not a product of hypersurface immersions. We wish to show
that condition (*) is violated.

By Lemma 4 we know X is not empty, where X still denotes the subset of
M on which T(x;, x;) = 0 fails. We take W C X to be a connected component
of the minimum set for v on X.

Since the spaces R, have constant dimension on W and conform to the pro-
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duct structure of M by the preceding proposition, it follows that the spaces
R;, have constant dimension on W for each i. This is because each point has
a neighborhood on which the dimension of R;, does not increase ; and by R,
= @¥_, R;,, a decrease in one would force an increase in another.

Repeating an argument from the proof of the proposition, since for any
p, € W the codimension of R, in N,, is at most k’(p,) by (3), then for some i
the dimension of ;R is at least n, — 1. Since R, conforms to the product
structure, R;, = m;R,,. Thus, taking i = 1, we conclude that W carries a dis-
tribution R, of dimension either n, — 1 or n,, where each R,, is the relative
nullity space of f|M,(p). Applying Lemma 3 to the open subset M,(p) N W
of any M (p) shows that R, is integrable and its leaves are totally geodesic in
M.

Suppose T'(x;, x;) = 0 holds everywhere on W. For a given p, in W, define
S = M,(p,) N W. Then for any p ¢ S, Lemma 6 (ii) says that only points of
X are visible along S from p. That is, if y|[0, b) is any geodesic in S tangent
to R,, where y(0) = p, then y(b) lies in X. But since R, C R, Lemma 3 says
that v does not change at y(b), so y(b) lies in S = M,(p,) N W by definition
of W. Thus the leaves of the distribution R, on S are complete.

The other possibility is that T(x,, x;) = O fails at some p, ¢ W. Now define
S to consist of all points of M,(p,) N W at which T(x,, x;) = O fails. Then for
any p €S, Lemma 6 (i) says that only points at which T(x,, x;) = O fails are
visible along S from p. Then for any geodesic 7|[0, b) in S tangent to R,,
with y(0) = p, we have y(b) € X. y(b) ¢ W follows as before, hence () € S
by definition of S. Thus again the leaves of the distribution R, on S are com-
plete.

In any case, we conclude that some M,(p,) contains a nonempty open subset
S such that the relative nullity spaces of f| M,(p,) have dimensionn, — 1 on §,
and the leaves of the corresponding distribution R, on S are complete. (The
possibility that R, has dimension #, is ruled out because by assumption M, is
not flat.) It remains to show, assuming S connected, that such leaves must be
carried onto parallel (n, — 1)-planes in E¥. In the remainder of this section
we consider only the immersion f|M,(p,), so we suppress subscripts and from
now on write M = M,(p,), f = fIM,(p)), n = n,;, and R = R,.

Now let p be a point of S and L = L(p) be the leaf of R through p. Since
L is complete, f maps L isometrically onto an (n — 1)-plane in E”. Further-
more, for all points r € L the image n-planes f,(M,) are constant. (These as-
sertions are easily verified using the definition of R and the fact that L is
totally geodesic in M.) Without loss of generality, assume p is identified with
the origin in EY, L is identified with the y* - .. y"~'-plane, and M is tangent
to the y* . . - y"-plane at every point of L.

Each geS has a neighborhood carrying Frobenius coordinates {u',
.., u*"1, w}, that is, coordinates for which the hypersurfaces w = constant
are tangent to R. Suppose we know that the translation of f(L(q)) to the origin
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is transverse to the y* ... y¥-plane. Then by the inverse function theorem,
we may take u® to be the restriction of ytof, 1 < i < n — 1. In the following
such a coordinate neighborhood will be said to be “adapted”, and y*o f will
be abbreviated y*.

Let N, be an adapted coordinate neighborhood of p, coordinatized by {y',

-+, ¥, wo} where wy(p) = 0. Write L(c) for the complete leaf of R passing
through the point with coordinates (O, - --,0,c). Then {y', - - -, y*~'} is one-
one on each L(c), and it follows that the L(c) are all distinct. Thus w, extends
to a function w on the open set U = [ J_, ... L(c). To verify that the one-
one map {y', ---,y" ', w} of U onto E*""'X(—¢,¢) is a diffeomorphism, let
q € L(c) be any point of U. Join (0, ---,0,¢) e N, to g by a path 7 in L(c),
and cover y by finitely many adapted neighborhoods N,, ---,N;, where N,
contains g and carries coordinates y', - - -, y"~!, w;. It suffices to show w varies
smoothly with w; at g and (6w/ow,;)(q) # 0. This may be done in j steps; at
the first step we have (ow/ow,)(@w,/ow,) = ow/ow, on N, N N, N ¢, and both
left hand factors are nonzero.

Now express f on U as a function of the coordinates {y', ---,y""!, w}. Set
A;(w) = (0f/ay)(, ---,0,w) for 1 <i<n— 1. Thus {4,(w),e;> = d;;,
1 <i,j < n—1, where the e; are part of the standard basis of E¥. It fol-
lows that

o ey w) = s yiA,w) + 0, - -,0,w) .

Furthermore, df/ow is always orthogonal to e;, 1 < i < n — 1. Since f is an
immersion which places M tangent to the y' - - - y"-plane along L = L(0), this
means (8f /ow)(3*, - - -, y"71, 0) is always a nonzero multiple of e,.

Now to conclude (dAi /aw)(0) = 0, we apply [4, Lemma 4.1] of P. Hartman.
The argument is repeated here because in this special case it is very short.
We have

@f [ow)(y', - -+, y"71,0) = 33551 ¥(dA;/dw)(0) + (3f/aw)(0, - - -, 0) .

Taking values of O and 1 variously for y*, - - -, y*~! shows that each (d4;/dw)(0)
is a multiple of e,. The assumption (dA;/dw)(0) = 0 for some i would
1mply (dA / dw)(O) = c(af /ow)(0, - - -, 0) for some ¢ = 0, and hence (3f/ow)(0,

ce,—C” -,0) = 0, which is false

This completes the proof that f carries the leaves of R onto parallel (n — 1)-
planes in E¥. Taking the standard metric on (—e¢,¢), and taking w to give arc
length along the curve y' = .- = y*»~! = 0, we find that {y', ---,y" !, w} is
an isometry of U onto the riemannian product E*~' X (—e,¢). This com-
pletes the proof of the theorem.
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4. Immersions which are not products

Yeaton Clifton has given, in private communication, a method of construct-
ing a 2-codimensional immersion into euclidean space which induces a parallel
line field but does not map the corresponding integral curves into planes. His
construction is used below to show that for certain riemannian product mani-
folds M, an isometric immersion of M which is the product of hypersurface
immersions may be continuously deformed through nonproduct isometric im-
mersions of M. In particular, it will follow that condition (*) in the main
theorem cannot be omitted.

Let f,: M, — E™*! be any isometric immersion of codimension one, where
M, is a compact riemannian manifold with metric g,, and let I denote an in-
terval (—e,¢) with the standard metric. For N = n, 4+ 3, we have the trivial
isometric immersion M; X I — E¥ given by

(4) (m, 1) — (Y5 film)e) + tey_, ,

where e,, - - -, ey is the standard basis of E?V.

Now let y: (—e,e) — E¥ be a regular curve satisfying y(#) = tey_, when
3e < |t <e. We require that y take its values in the three-dimensional
subspace spanned by ey_,,ey_;, ey, and carry a smooth frame field xy_,,
Xy_1, Xy satisfying x,(f) = e; when Je < |tf| <, and satisfying the Frenet
equations :

dy dxy_,
— = XN_ 5 - = 5
() dat v dt X
d d
;;V =k(—xy_1 + axy_y), —x;t—‘z— = —KkaXy .

Here «(f) is a smooth function satisfying «(f) = 0 for {e < |¢| < e. We also
require that for some t € (—4e, 3¢) both £(f) and «() are nonzero, so that
the image of y does not lie in any two-dimensional subspace.

Define a map h: M, X I — E¥ by

h(m, ) = 205 fitme, + 7 (m)[xy_, + axy 1O + 7() .

Observe that / agrees with (4) for {e < |¢| < e. For local coordinates m?
on M, we have

oh X3 oft ofy ~* ofy ~*
(6) omi zgl amfei + om’ Fy-z t om’ W1
(7) oh/ot = [1 + (da/dO)f) *Ixy_, .

Since f, is an immersion, the matrix (df:/om?), i < i < N — 2, has maximal
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rank. Furthermore, because M, is compact, we may assume |da/dt| small
enough to ensure that (7) never vanishes, so that 4 an immersion.

Now define §: M, X I - M, X E' by §(m, t) = (m, s(m, t)), where s(m, t)
=t + a()ff~*(m). (The effect of this map is to reparametrize each of the
curves tangent to d/dt by A-induced arc length s.) Since 9s/9t = 1 + (da/dO)fY 2
#+ 0, § is regular. Furthermore, s is strictly monotone in ¢ and satisfies s(m, )
=1t for —e < [|t] <e. It follows that § is a diffecomorphism of M, X I onto
M, X I.

We claim that f = #0357 is an isometric immersion of the riemannian pro-
duct M, X I in EV; thatis, that the f-induced metric g is given by g = g, + ds’.

First it must be shown that 9/ds is parallel with respect to g. At any point
(m, s), we have of /s = (0h/at)(0t/ds) = xy_,(?) for t = t(m, s). Thus % /ds®
= (dxy_,/dt)(dt/ds) and 0*f/omIds = (dxy_,/dt)(dt/om?), both of which are
parallel to xy(f) by (5) and therefore orthogonal to the image of f by (6) and
(7). Hence the connection induced by f satisfies ;,,,0/0s = 0 and ¥, ,,,,0/3s
= 0.

By construction, g and g, + ds® agree for L < |s| < e. Furthermore, we
have just shown that d/ds is a parallel unit vector field on M, X I with respect
to both metrics. In particular, g is locally a product metric. Cover any s-curve,
—1e < 5 < Le, by finitely many g-product neighborhoods. Since s gives arc
length in both metrics, it follows that g and g, + ds® agree on a neighborhood
of the curve. Thus g = g, + ds* holds everywhere.

Observe, however, that f is not a product of hypersurface immersions. In-
deed, for fixed m ¢ M,, the image of I is tangent to the x,_,(#), which by con-
struction do not lie in any two-dimensional subspace.

Now suppose f,: M, — E™*! is any isometric immersion of codimension one
such that M, contains an open subset U isometric to (—e,e) X E™!, and
such that f, is totally geodesic on U. Let f,: M, — E™*' be as before. The
restriction of the product immersion f, X f, to M, X U is given by

(m, (@1, -, r ) — Z¥Pfilmle; + tey_, + 2 rfey .y »

where still N = n, + 3. But we have seen how to construct an isometric im-
mersion f of M, X U, leaving the above terms involving r* unchanged, which
is not a product of hypersurface immersions and agrees with f, X f, whenever
—1e < |t| < e. This means that f and f, X f, may be pieced together to ob-
tain a 2-codimensional isometric immersion of M, X M, which is not a product
of hypersurface immersions. Finally, we point out that a continuous variation
of curves y about the curve y,(f) = tey_, gives a continuous variation of
such isometric immersions about the product immersion f, X f,.
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