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THE DE RHAM COHOMOLOGY OF
SUBCARTESIAN SPACES

CHARLES D. MARSHALL

The notion of differentiable subcartesian space is a generalization of that of
differentiable manifold. Arbitrary subsets of R™ are special examples as well
as differentiable manifolds with boundary, or corners, and analytic or semi-
analytic spaces. In [7] we constructed the category of C~-subcartesian spaces
and introduced the calculus of tensor fields and differential forms. In this sequel
to [7] we study the cohomology algebra formed from those differential forms.

In §1 we define the de Rham cohomology of a C~-subcartesian space. In
§ 2 we establish the Eilenberg-Steenrod axioms on an appropriate admissible
category of pairs of subcartesian spaces. In § 3 we show by example that the de
Rham and Cech cohomologies are distinct. We then establish a spectral sequence
which has its E,-terms in sheaf cohomology and which converges in the de
Rham cohomology. We introduce a graded-sheaf invariant s#(S) of a differ-
entiable subcartesian space S, the de Rham sheaf of S, whose vanishing in
higher degrees is sufficient for the de Rham cohomology to be naturally
isomorphic to the sheaf cohomology with coefficients in s#°(S). If S is locally
contractible, then #°(S) = R and #*(S) = O for k > 0, thus giving a natural
isomorphism of the de Rham and sheaf- theoretic cohomology theories. We
finish with an appendix on the C*-cohomology, showing that it is not a
topological invariant.

It is perhaps worth while to compare the cohomology theory developed here
with those of [10], [11], and [12]. In [10] Schwartz constructed a cohomology
theory which coincides with Cech cohomology on finite dimensonal compact
spaces. Example 3.1 shows that this is not always the case for our theory. In [11]
Smith constructed an exterior differential algebra and cohomology theory for
each pair (X, &), where X is a topological space and % is a set of continuous
R-valued functions on X. One might expect our theory to follow as a special
case of Smith’s when X is a C~-subcartesian space and % = C=(X), but
Example 3.15 shows that this is not the case. In [12] Spallek considered several
notions of differential forms on differentiable spaces and stated a de Rham
isomorphism theorem. In [7] we showed that the differential forms as defined
for subcartesian spaces and the differential forms of [12] are different. Whether
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the corresponding cohomology theories are isomorphic is an open question.

The author would like to thank N. Aronszajn, who originally suggested the
area of research pursued here, and M. Breuer for their continued interest and
many helpful suggestions.

1. Definition of the de Rham cohomology

For each C~-subcartesian spaces S we shall denotes the graded C>(S)-algebra
of alternating covariant tensors (also called forms) by F(S) = {F*(S) |k ¢ Z},
the subalgebra of forms having differentials by D(S) = {D*(S)|k ¢ Z}, the
graded ideal of differentials of 0 by m(S) = {m*(S) |k ¢ Z}, and the graded
algebra of differential forms by A(S) = {4%(S) |k € Z}. All of the homogeneous
submodules of grades k < 0 are O by definition. If f: § — R is a C*-mapping
of subcartesian spaces, then f*: F(R) — F(S) maps D(R) — D(S), m(R) — m(S),
and hence induces the pull-back A(R) — A(S) (also denoted f*). Thus the
following systems with their corresponding systems of pull-backs of inclusions
are presheaves of modules over the presheaf Cg of C*-functions:

Fg:= {F(U)|U open in S} , Dg:= {D(U)|U open in S} ,

(- mg:= {n(U)|U open in S} , Ags:= {AU)|U open in S} .

All four satisfy the sheaf axiom F, of Godement [5] for arbitrary S, and Fy
satisfies sheaf axiom F,. If S is paracompact, then all four satisfy both F;, and
F,. In any case we denote the corresponding generated sheaves (espaces etales)
by Fs,Ps, A5 and 5. Note that F 3 = D5 and A5 = F 5/ M5.

Since exterior differentiation commutes with pull-backs [7], (As,d) is a
differential graded presheaf, and (&5, d) is a differential graded sheaf. A C~-
mapping f:S — S’ induces f-cohomorphisms (cf. Bredon [3]) Fg — Fj,
Dy, — Dg, mg, — mg, Ag — Ag and hence an f-cohomorphism f* : /5 — .
Each of these is compatible with differentiation.

Lemma 1.2. Let 3 be a paracompactifying family of supports on S, and
let & be a sheaf of R-vector spaces over S. Then F QR ¥, M3 R F, and
oA QL are X-soft and X-fine.

Proof. Existence of C=-partitions of unity on paracompact subcartesian
spaces [7, Proposition 1.2], and % being paracompactifying imply that F¥ is
JY-fine and JX-soft. Since 7 ¢ ® &, MR ¥, and &3 R & are F y-modules,
it follows that each is X-soft and X-fine. q.e.d.

Let i: RG S, and let & be a sheaf of R-vector spaces over S. Define
A(S,R; ¥) to be the sheaf of germs of local sections y of &g ®p & such
that (i* ® |z)y = O (where | is the restriction cohomomorphism & — &|z).
Equivalently, #°(S,R; %) is the kernel of the unique homomorphism
ji AR — (A Q F|z) such that i* Q |z has the factorization &/ Q &
- (AR L) > IR F|r (cf. [3, p. 9f]). An elementary argument
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shows that #°(S,R; %) = A4 (S,R) ® &, (where 4 (S,R): = A (S,R; R))
when R C S is closed.

Define 6:=dQpIld: ¥/ ®F - F Q. Then 6° =0 and o leaves
A°(S, R; &) invariant. Thus (& ® &, ) and (A£(S, R ; &), 6) are differential
graded sheaves. If X is a family of supports on §, then the following sequence
of complexes of R-vector spaces is exact:

(1.3) 0T3S, R; ) >3 5QF =151z @ (L) -

Definition 1.4. The complex I';#°(S, R; &) = : K(S, R; &) is called the
de Rham complex of (S, R) with coefficients . and supports 3. We define
the de Rham cohomology of (S, R) with coefficients . and supports X' to be
the homology of K;(S, R; &), that is,

H%(S,R; &¥):= H*K;(S,R; &) , keZ.
Obviously,
(1.5) H%@S,R; #) =0 for all £ < 0.

When S is paracompact, R = ¢, 2 = cls (all closed subsets of S), and
& = R, then K;(S, R; &) is naturally isomorphic to the complex of differential
forms A(S), and

Ker d: A*(S) — A**'(S)

H (S)= Hcls(S9¢; R) = Imd: Ak-l(S) —-)Ak(S)

b

i.e., closed differential k-forms modulo exact differential k-forms. Moreover,
if we define a k-form £ e F*(S) to be closed when 0 € F**1(S) is one of its dif-
ferentials, and exact when it is a differential of some w ¢ F*~*(S), then

HS) ~ closed k-forms/m*(S) __ closed k-forms
exact k-forms/m*(S) exact k-forms

Similarly, if S and R are arbitrary, X' is paracompactifying for the pair (S, R)
(cf. [3]), and ¥ = R, then
H%(S,R):= H%(S,R; B)
{w € A*(S)|supp w € ¥ N (S\R) and do = 0}
{co e A*(S) |3 € A*7Y(S) such that supp { € 3 N (S\R) and d¢ = o}

~ {p € F¥(S)|supp ¢ € 2 N (S\R), and 0 e dy}
{o € F¥(S)|30 e F¥'(S) with ¢ € d and supp e X N (S\R)}

i.e., k-forms closed relative to R modulo k-forms exact relative to R.
Let R/, %, and 3’ be alternate choices of R, & and X. Define
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NA(AsQ@P)RQ(AsQ ) — A @S QS

(1.6)
@RNDN(@Rd):=aNdQRoRd .

This product determines a product
1.7 AN:K;S,R; A)PK;(S,R'; ¥)—>K;,s.(S, RUR;; QS .

Products of cocycles are cocycles, and the product of a cocycle and coboundary
is a coboundary. Thus A induces a product

U:HYS,R; AQHY(S,R; ) —>HY% S, RUR; ¥R F ), k,me Z .

2. The Eilenberg-Steenrod axioms

Let (S, R) and (S’, R’) be pairs of subcartesian spaces, X and 2’ families of
supports on (S, R) and (', R’), and let ¥ and .#’ be sheaves of R-vector spaces
over S and §’. Let f: (S, R) — (8, R’) be a C*-mapping of pairs, proper with
respect to 2 and 2’ (i.e., f"'(F) ¢ 3 foreach Fe¢ 3. Let g: ¥’ — & be an f-
cohomomorphism. Then the f-cohomomorphism f* Q@ g: 5 @ ¥ — AR L
induces a homomorphism of complexes K;.(S, R"; ') — K;(S,R; %) and
hence homomorphisms

(9L H5(S, R"; ) > HYS,R; ),  keZ.

Let 2 be the category whose objects are quadruples (S, R, ¥, ) and whose
morphisms are pairs (f,2): (S,R, ¥, 2) — (S, R/, ¥, %), where f: (S,R) —
(§’, R) is C~ and proper, and g: &’ — & is an f-cohomorphism. Then (H, )
is a contravariant functor from 2 to the category of graded R-vector spaces.
The induced homomorphism (f, g)* is compatible with U -products.

If u=(@(,8:G,R,&,2)— (S R,¥,62) is a morphism in 2, we shall
write u* for * R g: A5 @ ¥ — ZgQ® F. By abuse of notation, we may
also write u* for I'u*: 'y, L. @ ' - ;AR L. If i: R G S is an inclusion,
then we shall write simply i* for i* ® |, and ## for the homomorphism in
cohomology induced by i*.

A homomorphism f: & — &’ of sheaves over § is nothing but an idg-
cohomomorphism. In this special case we shall denote the induced homomor-
phism (idg, /)*: H;(S,R; &) — Hy(S, R; &¥’) simply by f,. For each S, R and
2 the covariant functor (H:(S, R; ), #) is additive (in fact, strongly additive).

Theorem 2.1. Let F* denote the functor (H%(S,R; ), #), and 3 be a family
of supports on S paracompactifying for the pair (S, R). Then for each short
exact sequence of sheaves of R-vector spaces over S

2.2) 00— tsp B 9r__ 0
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and each k ¢ Z, there is a homomorphism b* . F*(¥"") — F**\(%’) such that
the cohomology sequence

8 bk
o s P s Py B Py P pe ey —

is exact. Moreover, each b* is natural, i.e., short commutative ladder diagrams
yield long commutative ladder diagrams.

Proof. Tensoring (2.2) with /¢ ®, and applying /'y give the exact
sequence of complexes

(2.3) 05T ds Q@S > T3 s @Y -1y s @S .

Since &5 ® &’ is Y-soft, (2.3) remains exact when augmented on the right
by zero. Similarly, the sequence

(2.4) 0—’['2n1e»‘2{13®y,’12—’F):mR&{R@ybz_’anRﬂR®y"|R—’0
is exact. Applying the 3 X 3 lemma three times to the following diagram

0—- K;S,R;¥%) — KiyS5R;¥%) — K;SR;¥%) —0

l l l
0 I;ds®F —> TIds®F —> TI';ls®@F" —0
l l l

0HFZQR‘¢R®'¢/[R-)FZORMR®‘¢|R—_‘)FZ'[‘)R'Q{R®‘¢//IR —>0

yields the exactness of the top row. The theorem now follows from the usual
diagram chase (Snake lemma).

Theorem 2.5. Let(S,R, ¥, X) ¢ 2 with R closed and X paracompactifying.
Then there exist homomorphisms

4% H%,x(R; L |p) — HE'(S, R F)
making the cohomology sequence
- —> H5(S,R; &) —> HY(S; &) —> H(z(R; L |r)
A HSS R P —

exact. Each 4% is natural, i.e., iff: (S,R, ¥, 2) — (S', R’, &', 2') is a morphism
in 2, R’ is closed, and 3’ is paracompactifying, then A*o(f|p)* = f*o 4.
Given sequence (2.2), then dob = bod = 0.

Proof. Because 7 is X-soft and 7. is 2’-soft, (1.3) remains exact when
augmented on the right by zero. Thus we have the following commutative
diagram of complexes with exact rows:
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0— K;S,R;%) — I'ss®YF — s p Iz @F|g —0

, 1 1 1
0Ky (SR ; F) > T5ls ®F —yngplp ®F |n—0

Existence and naturality of 4* now follow as usual.

It yel'y p % ® &g satisfies 6y = 0, [yl denotes the cohomology class
of yin H%  x(R; #|p), and 1/ e '3/ s @ & is any preimage of 7, then

(2.6a) Ayl = 07 s, -

Similarly, if y” e K%(S,R; &) satisfies 67" = 0, 7 e K%(S,R; &) satisfies
Id ® g(y) = 17, and 7/ € K%*(S, R; &) satisfies Id ® (") = dy, then

(2.6b) b*[y"] = [y'] .

If follows that bo 4 = 4ob = 0.
Theorem 2.7. Let ¥ Q& and ¥’ Q F, ¥ R (¥ Q &) and (¥ Q F')
&® F” be identified respectively via the usual natural isomorphisms. Then the

cup product is associative, graded-anticommutative and H?Y(S)-bilinear.
Moreover,

I HYS,R,S)QHL(S,R; &) > HE5(S,RUR": ¥ ®F)

is a natural transformation of functors on 2 satisfying the following conditions :

(i) LetO T’ h > & i T 0 be an exact sequence of sheaves
of R-vector spaces over S, and let 3 be paracompactifying for the pair (S, R).
If ce HS(S,R; &) and ¢’ e H™.(S,R’; ") then b™(c’) U ¢ = b™*%(c¢’ U ¢).

(i) Leti: R G S be closed, let ¥ and 3’ be paracompactifying support
families on S, and let & and &%’ be sheaves of R-vector space on S. If
ceHY \x(R; L) and ¢’ e H?.(S; '), then dc U ¢’ = d(c U i*c’).

Proof. Associativity, graded-commutativity and bilinearity hold at the
chain level and hence in cohomology. Naturality of \— with respect to induced
maps has already been mentioned and is clear.

To establish (i), let 5" € ['; (7 ® J ") and y € [';(Z% ® &) be representa-
tives of ¢’ and c, respectively. Let 5 ¢ I';.(/7 ® J) be a preimage of 7" under
I'Gd® g), and let 9’ e I'; (2 ® ') be a preimage of o7 under I'(id ® h).
Then I'((id ® h) ® id)(y’ A y) =y A7y, and 9 Ay is a representative of
b™c’ U c. On the other hand, I'((id ® g) ®id)(n A\ y) =5’ Ay is a repre-
sentative of ¢’ U ¢. Because dy = 0, d(p A ) = dyp /A y. Thus 7/ A 7 is also a
representative of b**™(¢” U c). Therefore b™c’ U ¢ = b**™(c’ U ¢).

To establish (ii), let 7 and y be representatives of ¢ and ¢’, respectively. If
7’ is any preimage of 7 under the induced map I' s @ & — 'l @ &L |,
then 6(y” A\ 7) is a representative of 4(c U i*c’). Because dy = 0, (7' A\ 7) =
oy ANy, and dy Ay is a representative of dc U c’. It follows that
A(c U i#*c’) = dc U ¢'.
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Theorem 2.8 (Excision). Let U C S satisfy U C Interior R, and let i
denote the inclusion (S\U, R\U) C (S, R). Then

i#:Hz(S,R; L) — HEH(S\U)(S\U, R\U§ y|s\y)

is an isomorphism.
Proof. We shall show that

*: K38, R; L) — Ky qs:n(S\U, R\U; & |5\v)

is an isomorphism. Injectivity is trivial. To show surjectivity, let
7€ KsnunS\U, R\U; &|s\v), and let p e dU. There is a neighborhood V
of p in S such that ¥V C R. For each ge V N (S\U), 7, = 0. If follows that
y may be extended by O to all of S to give a section ¢’ ¢ K;(S, R; &). Then
*() = 7.

Theorem 2.9 (Dimension). Let S = P be a one-point space, and V an
R-vector space. Then

Vv, ifk=0,

H¥P; V) = { .
0, ifk+0.

The proof is trivial.

Definition 2.10. A homotopy 2 = (f,8): (S,R, ¥, 2) X [ - (S, R’, ¥, 2")
in 2 is a C~-homotopy of pairs f with f proper relative to Y X I and 2/,
and an f-cohomomorphism g: ¥’ — &% X I.

Theorem 2.11 (Homotopy invariance). Let & and &’ be sheaves of R-
vector spaces over S and S’, respectively, and let h be a homotopy in 2 as
above. Suppose R is closed in S. Then

ht =ht: H(S,R'; &) > H%S,R; &), keZ.

Proof. ForeachtelandpeSletj:S—SXxI;p— (p,t), and j?: ] —
SXI;t—(p,t). Let Ze Z(S X I) be the vector field (p, £) — j2(3/0%)(). For
each ¢ € F*(S X I), define

I = | Grgrsar

Since t — (jf¢), € \*(T,S)* is continuous, the integral converges. Using the
compactness of I, it is easy to show that for every pe Sand g € g withpe U,
there are a neighborhood V' of ¢p and a local representative 0 of ¢ relative to
¢ X 1d defined in ¥V x I. Then .#6 ¢ F¥(V) is a local representative of ¢
relative to ¢, i.e., £¢ € F¥(S). Since £df = d.#0, it follows that Fmy,; C mg.
Thus # induces a linear map A*(S X I) — A*(S), also denoted .#, which
commutes with d. Define M : A¥(S X I) — A*7(S), ke Z, by
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(2.12) Mo = Jiw .
Foreachpe S, ke Z,

. . 0 ,,.
(iFo — jto), = |, 2 (Fo)
Because Z has local flows on § x (0, 1) (cf. [7]), we have
e | 2ot = [ it 00, = [ (F@iz0 + izdo),dt,
i.e.,

2.14) o — jfo = Adizo + Fizdeo = dMo + Mdo .

If supp w S U X I for U C S, then supp Mw C U. We define a graded
presheaf (P, p) of R-vector spaces on S by setting

PiU) =T'(U X I, AU x I, RN U) x 1))

and p;, = ¢*, where ¢: U’ G U. Then M o oY, = p¥, o M. We may thus consider
M as a homomorphism from P* to the presheaf of local sections of £ *~'(S, R).
We also define a presheaf (V,r) of R-vector spaces on S by setting

ViU)=I'WUXx1I1,¥%x1)

and letting rZ, be the ordinary restriction mapping. For each v ¢ V(U), there is
aunique ¢ € I'(U, &) such that v = ¢ X 1d;. Thus we have an isomorphism of
presheaves

Bu: VW) —-I'U,%); oXld—o.

Now let £e I'(U x 1, 4% S,R; &) x I) for some open UC S, and let
p e U. For each ¢ ¢ I there exist ¢, > 0 and a neighborhood U, C U of p such
thatfor V,:= U, X (t — &, t + ¢,)

Cly, e 'V, LS, R) X D@ I'(V,, & X 1) .

Using the compactness of I we can find a neighborhood W C U of p and a
finite partition £, - - -, #,,, of I such that the cover {V;:= W X [t;_, t;,,]]
i =1,...,n}is arefinement of {V,|t e I}. Let {wa} be a basis of the R-vector
space I'(W, ). Then for each « and each i there is a unige 0™ e I'(V;, (S,
R)) such that

Clyve= 2 o™ @ (w, X 1dy) .
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It follows that w**~! and w™* agree on their common domain, thus giving rise
to sections w* € P¥(W) such that

(2.15) Clwsr = 2 0" ® (w, X 1dy) .

We have thus shown that for each such { and p there exists a W 5 p such that
Clwxr € PE(W) @ V(W).
We now define

2.16) £k =MOPoh*: I'(S", S, R'; &) — 'S, 4*'(S,R; &) .

Because f is proper with respect to 3 X I and 3”, x is proper with respect to
Y and X’. From (2.14), (2.15) and (2.16) it follows that

kod 4 Jok = jfoh* — j¥oh* = hf — h¥ .
Therefore we have
ht =hi: H:.(S,R'; ¥) - H%S,R; &), keZ. q.e.d.

Let 7 be the category whose objects are triples (S, R, X), S a C*-subcartesian
space, R C S closed, and Y paracompactifying, and whose morphisms are
proper C~-mappings of pairs. Then Z is an admissible category in the sense
of Eilenberg-Steenrod. Let V' be an R-vector space. From the results of this
section it follows that the functors

F*(V): (S,R,2) » H%:(S,R; S X V), keZ,

form a cohomology theory on 7 in the sense of Eilenberg-Steenrod. Moreover,
if 77 is an admissible subcategory of 9 (e.g., the full subcategory of locally
compact pairs and compact supports) then {F*(V)|,.| k € Z} also satisfies the
Eilenberg-Steenrod axioms. We therefore have for each of these cohomology
theories the well-known series of theorems valid for Eilenberg-Steenrod co-
homology theories on admissible categories, including the standard theorems
on triads and triples, and the Mayer-Vietories theorems (cf. [4, Chapter 1]).

3. Comparison of the de Rham and sheaf cohomology theories

We begin with an example showing that the de Rham and sheaf cohomology
theories ([5] or [3]) are distinct even on the category of finite dimensional
compact spaces. We denote the sheaf cohomology functors by H™.

Example 3.1. Let S = {1/n|ne N} U {0} have the C~-structure induced
from R. Set R = §§, 3 = cls, and let . be the constant sheaf of real numbers.
Then H°(S) is the direct sum of countably many copies of R. To compute H’(S),
note that dim 7', = 0, ne N, and dim T\, = 1. Then fe A%S) is a zero-
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cocycle if and only if df = O, or equivalently, if and only if f has a C~-exten-
sion F near O satisfying F’(0) = 0. If C*[—1, 1] has the C~-topology, then
n:={feC~[—1, 1]|f|s = 0} is a closed subspace, and the projection
C~[—1,1] - C~[—1, 1]/n is continuous. Clearly 4°(S) ~ C*[—1, 1]/n, and
because C~[—1,1] has a complete linear metric, so does A°S). The map
C*[—1,1]1 > R; F— F'(0) is continuous and annihilates n. Thus {F +
n|F(0) = 0} = H'(S) is a closed subspace of C*[—1, 1]/n, and hence carries
a complete linear metric. On the other hand, the Baire category theorem im-
plies that H(S) cannot carry a complete linear metric. Thus H°(S) and H’(S)
are not isomorphic. This example further shows that H is not continuous in
the sense that _1@) H(S, S,) £ H(S), where S, = {1/n|n > m}.

Although H and H are not isomorphic, there are spectral sequences relating
them. To each (S, R, %, 2) e 2 there corresponds the first quadrant double
complex

Ck,m(S,R,y’ 2):: Fz(gk(s; ‘%/‘m(S’R; ‘Sp)) ’

where (%, d) is the canonical resolution of Godement. The first differential d’
of the double complex is d, and the second differential d” is that induced by

(=D¥6: ™S,R; &) > A ™S, R; &) .
The exact sequence of sheaves
(3.2) 0> AS,R; ) > As Q@S — (A g ® S |g)
induces the exact sequence of double complexes
0—C(S,R,#,2) - C($,0,%,3) = Cy(S; (s ® F|p) ,

and this exact sequence is natural with respect to morphisms of 2. Composing
with the restriction mapping

Cs(S; (A r ® L) — C(R, 0, F |z, 2 N R)
we obtain the (non-exact) sequence
(3.3) C(S,R,¥,2) — C(S,0,%,2) > CR,0,# |z 2 NR) .

With each pair (S, R, ¥, %), (S, R/, &', 3’) ¢ 2 there are associated natural
homomorphisms

ctm(S,R, ¥, 2)® C-™(S, R/, &', 3)

(3.4a) = Lyaz @TUS; A™S, R; ) Q A, R )
(3.4b) — CHtmin§, RUR, S Q@ F,3N DY),
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where the first is the canonical product of Godement [5], and the second is
that induced by (1.6).

Definition 3.5. Let (S, R) be a pair of C~-subcartesian spaces, and let &
be a sheaf of R-vector spaces over S. Define #%(S,R; &) to be the k-th
derived sheaf of #°(S, R; &). Writing s#(S, R; R) = :5(S, R) we note that
HS,R; #) = H#ES,R)®Y when RC S is closed. We call s#(S,R; &)
(respectively (S, R)) the de Rham sheaf of (S, R ; &) (respectively (S, R)).

Let Tot be the total complex of C. Then there are the usual two spectral
sequences 'E and "E satisfying

(3.6a) 'Ef™ = H%(S; ™A (S,R; &) > H**™Tot (S, R, ¥, 2) ,
(3.6b) "E¥™ = H*H7P(S; #(S,R; &) > H**™Tot (S,R, &, 2) .

The edge terms ’E%° and "E%° are H%(S; s#°S,R; &)) and H%(S,R; &),
respectively. The edge homomorphisms

(3.7) 80 %5 HETot (S, R, #, 3) <o 7Ego
are induced by the chain maps:

Cs(S; A°S,R; &)

Jo

3.9 C(S,R,¥,2)—> Tot(S,R, ¥, 2)

tu

K;(S,R; )

It follows that the edge homomorphisms are natural with respect to morphisms
of 2, and they respect cup products.

Theorem 3.9. If X is paracompactifying, then B is an isomorphism. If ¥
is paracompactifying for the pair (S, R), then 87! o« is natural with respect to
all connecting maps b* (cf. Theorem 2.1). If R is closed, then B~ o « is natural
with respect to the connecting maps A*.

Proof. If X is paracompactifying, then Lemma 1.2 implies H%(S; 2 (S, R;
&) =0 for m # 0. Thus “Ef™ = 0 for m # 0, and it follows that j is an
isomorphism (cf. [3, Chapter IV]). A short exact sequence of coefficient sheaves
induces a short exact sequence of the corresponding double complexes, i.c., a
short exact sequence of diagrams (3.8). If X' is paracompactifying for the pair
(S, R), then these give long exact sequences in cohomology with « and 3 being
natural with respect to connecting maps. If R is closed, then (3.3) is exact and
remains exact when augmented on the right by zero. It then follows as usual
that « and j are natural with respect to the connecting maps. q.e.d.
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Thus when Y is paracompactifying, (3.6a) gives

'Ep™ = HY(S; ™S, R; £)) = H*™HY(S; #(S,R; &)
~ Hy™(S,R; &) .

(3.13)

Theorem 3.11. Suppose #*(S,R; ) = 0 for k > 0. Then « is an iso-
morphism, and there results the natural isomorphism of cohomology algebras

(3.12a) H;(S,R; ¥) = Hy(S; #(S,R; &£)) .

If 3 is paracompactifying for the pair (S, R), then (3.12a) is natural with re-
spect to the connecting maps b*. If R is closed, then

(3.12b) H:(S,R; &) = Hy(S,R; #°(S; F)) ,

and (3.12b) is natural with respect to the connecting maps A*.

Proof. The proofs of (3.12a) and the naturality of the b* are standard ([3,
IV. 2] or [5, §4]). If R is closed, then #°(S,R; &) = H*S; F)sr and
H:(S,R; H(S; &) =~ Hy(S; #°%S,R; ¥)) [3, Proposition 11. 12.2] from
which (3.12b) and the naturality of the 4* follow.

Corollary 3.13 (de Rham isomorphism). If X is paracompactifying,
(S,R, &, ) is locally contractible (in 2), and R C S is closed, then

(3.14) H.S,R; %) ~ H;(S,R; &) .

This isomorpahism is natural with respect to morphisms of 2, and is also
natural with respect to connecting maps.

Proof. Theorems 2.9 and 2.11 imply
Fp for p¢ R and k = 0,

HES,R; L), = .
¢ ) {0, otherwise.

Then
H;(S,R;¥) = Hy(S; #°S,R; &) = H;(S,R; &) .

Example 3.15. Let f: R — R be continuous but nowhere differentiable,
and define f,(¥) = Jt f. Let S be the graph of f, equipped with the structure
0

induced from R?. For each p ¢ S, dim T,§ = 2. S is nowhere locally C~-con-
tractible. Let g e F'(S) satisfy dg = 0. Then for p, = (x,, ), P, = (X;, ¥,) € S,

e(p) — g(p) = j (gof)dt = 0. Thus #°: = #S, §; R) is the constant

sheaf of real numbers, and H°(S) = R. Clearly H™(S) = 0 for m > 2. If
o ¢ F(S), and Q = gdx A dy is a local representative of w, then £ is defined
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in some open convex neighborhood U of § in R%. It follows from the classical
Poincaré lemma that 2 is exact in U. Hence w is exact, #* = 0, and H*S) = O.
To compute H(S), let w € F'(S) be closed, and let 2 = gdx + hdy be a local
representative of o defined in U. Then dQ(x, f,(x)) = O for each x € R, i.e.,

(3.16) dg | _ oh |
ay s ox |s

For each (x, y) e U define

Gx,y) = g(x, fi(¥) + j "Ry par

fi@  0X

Then 8G/dy = 9h/ox in U. Using (3.16) one easily shows that G e C=(U).
Thus O = Gdx + hdy e F'(U), and O is closed and hence exact. Finally,
Ols = 2|s = o. Thus o is exact. We conclude that »#' = 0 and H'(S) = 0;
hence H(S) =~ H(S).

We now compare H(S) with the cohomology of S as introduced by Smith
[11]. Let &# = F%S), and let (S, F) denote the Smith cohomology of the
pair (S,%). If VC R™ is open and g:V — S is continuous such that
fog e C(V) for every f e #, then certainly both n,0g and x,0 g are of class
C>, where 7,: (x,y) — x and 7, : (x,y) — y. Since f,om, 08 = 7,08 € C*(V),
7,0 g and hence g are constant maps. The Smith completion F* of & is then
C(S), all continuous R-valued functions on S, and each is a O-cocycle in the
Smith theory. Thus $°(S, F) = C(9).

4. Appendix: The C*-de Rham cohomology theory

Throughout let 0 < k < [ < oo. If S is a paracompact C'-subcartesian space,
then S admits C*-partitions of unity. If S is of class C'*!, then TS is of class
C!. If S is of class C'*2, then the Lie product of two C**! vector fields is defined
and is of class C*.

Let C*F™(S) denote the m-forms on S of class C*, and let *F™(S) C C*F™(S)
denote the m-forms on S having a differential also of class C* (e.g., closed
m-forms). Let *m™(S) be the differentials of 0 in *F™(S), and define *4™(S) =
EFm™(S)/ *m™(S).

Let (S, R) be a pair of C'**-subcartesian spaces. Let !*22, **'15¢'™(S, R ; &),
and **'K%(S,R; &) be the obvious analogies of 2,4 ™(S,R; %) and
K%(S,R; &). Let **'H (S, R; &) be the homology of the complex (**'K (S,
R; #),6). Then *"'H is a connected family of functors on *22 as before,
satisfying the excision and dimension axioms.

To check the homotopy axiom, let 4: S X I — S’ be a homotopy of class
Ck*2 If @ e ¥"'F™(S”), then h*w ¢ **'F™(S x I). If @ is closed, then so is h*w,
and dih*w = ¥ ,h*w, where &Z, is as in Theorem 2.11. Thus
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Mh*o = I’ (%% h*e)dt
0

and this is evidentally an element of C**'F™(S). Since
doM + M od = j¥ — jf ,

it follows that dMh*w e C**'F(S). Thus Mh*w € **'F(S). The homotopy axiom
now follows as before.

The results of § 3 remain valid in the C*-case. Thus if **'5#™(S,R; &) = 0
for m > 0, then

"H(S,R; F) = Hy(S; "' AS,R; &)

when 2 is paracompactifying. In particular, if (S,R,.%, %) e !*22 is Ck+-
locally contractible, then

HUH (S, R; ) ~ Hy(S,R; &) .

We end by showing that *H is not a topological invariant for k < oo.

Example. Let S be an arc in R**? for which there is a function f ¢ C*+!(R**?)
with df |s = 0 but f|s not constant (cf. [14]). Then **'H°(S) 2 R. On the
other hand, **'H°(R) = R.
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