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THE DE RHAM COHOMOLOGY OF
SUBCARTESIAN SPACES

CHARLES D. MARSHALL

The notion of differentiate subcartesian space is a generalization of that of
differentiable manifold. Arbitrary subsets of Rn are special examples as well
as differentiable manifolds with boundary, or corners, and analytic or semi-
analytic spaces. In [7] we constructed the category of C°°-subcartesian spaces
and introduced the calculus of tensor fields and differential forms. In this sequel
to [7] we study the cohomology algebra formed from those differential forms.

In § 1 we define the de Rham cohomology of a C°°-subcartesian space. In
§ 2 we establish the Eilenberg-Steenrod axioms on an appropriate admissible
category of pairs of subcartesian spaces. In § 3 we show by example that the de
Rham and Cech cohomologies are distinct. We then establish a spectral sequence
which has its E2-terms in sheaf cohomology and which converges in the de
Rham cohomology. We introduce a graded-sheaf invariant #F(S) of a differ-
entiable subcartesian space S, the de Rham sheaf of S, whose vanishing in
higher degrees is sufficient for the de Rham cohomology to be naturally
isomorphic to the sheaf cohomology with coefficients in J^°(S). If S is locally
contractible, then jff°(S) = R and Jfk(S) = 0 for k > 0, thus giving a natural
isomorphism of the de Rham and sheaf- theoretic cohomology theories. We
finish with an appendix on the Cfc-cohomology, showing that it is not a
topological invariant.

It is perhaps worth while to compare the cohomology theory developed here
with those of [10], [11], and [12]. In [10] Schwartz constructed a cohomology
theory which coincides with Cech cohomology on finite dimensonal compact
spaces. Example 3.1 shows that this is not always the case for our theory. In [11]
Smith constructed an exterior differential algebra and cohomology theory for
each pair (X, J*~), where X is a topological space and !F is a set of continuous
R-valued functions on X. One might expect our theory to follow as a special
case of Smith's when I is a C°°-subcartesian space and ^ = C°°(X), but
Example 3.15 shows that this is not the case. In [12] Spallek considered several
notions of differential forms on differentiable spaces and stated a de Rham
isomorphism theorem. In [7] we showed that the differential forms as defined
for subcartesian spaces and the differential forms of [12] are different. Whether
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the corresponding cohomology theories are isomorphic is an open question.
The author would like to thank N. Aronszajn, who originally suggested the

area of research pursued here, and M. Breuer for their continued interest and
many helpful suggestions.

1. Definition of the de Rham cohomology

For each C°°-subcartesian spaces S we shall denotes the graded C°°(S)-algebra
of alternating covariant tensors (also called forms) by F(S) = {Fk(S)\k e Z},
the subalgebra of forms having differentials by D(S) = {Dk(S) | k <= Z}, the
graded ideal of differentials of 0 by m(5) = {mk(S)\k e Z}, and the graded
algebra of differential forms by A(S) = {Ak(S) \ k e Z}. All of the homogeneous
submodules of grades k < 0 are 0 by definition. If /: S —> R is a C°°-mapping
of subcartesian spaces, then /* : F(R) -> F(S) maps D(R) -»D(S), m(Λ) -> m(S),
and hence induces the pull-back A(R)—> A(S) (also denoted /*). Thus the
following systems with their corresponding systems of pull-backs of inclusions
are presheaves of modules over the presheaf C$ of C°°-functions:

Fs : = {F(U) I U open in 5} , Ds : = {D(U) \ U open in S} ,

ms : = {m(J7) | 17 open in S} , Λ 5 : = {/4(E/) 11/ open in S} .

All four satisfy the sheaf axiom Fλ of Godement [5] for arbitrary S, and Fs

satisfies sheaf axiom F2. US is paracompact, then all four satisfy both Fλ and
F2. In any case we denote the corresponding generated sheaves (espaces eίales)
by ^ s , Q)s, Jίs and s/s. Note that &s = @s and s/s = &s\Jίs.

Since exterior differentiation commutes with pull-backs [7], (As,d) is a
differential graded presheaf, and (s/8, d) is a differential graded sheaf. A C°°-
mapping f:S^S/ induces /-cohomorphisms (cf. Bredon [3]) FS,—>FS,
Ds, -+ DS, mS/ —> ms, As, -> As and hence an /-cohomorphism /* : s/s, -+ s/s.
Each of these is compatible with differentiation.

Lemma 1.2. Let Σ be a paracompactίfying family of supports on S, and
let Sf be a sheaf of R-vector spaces over S. Then ^ s ® £f, Jίs® Sf, and
J^s ® £f a r e Σ-soft and Σ-fine.

Proof. Existence of C°°-partitions of unity on paracompact subcartesian
spaces [7, Proposition 1.2], and Σ being paracompactifying imply that $F\ is
i -fine and i -soft. Since $~s ® Sf, Jίs ® Sf, and s/s ® ¥ are J^0

5-modules,
it follows that each is I'-soft and I'-fine. q.e.d.

Let ί: R QS, and let y be a sheaf of i?-vector spaces over S. Define
jf(S9 R ϊf) to be the sheaf of germs of local sections γ of s/s ®R £f such
that (/* ® \R)γ = 0 (where \R is the restriction cohomomorphism ^ —> £f\R).
Equivalently, JΓ(5, R £f) is the kernel of the unique homomorphism
/: s/s ® ^ -> i(j/R ® Sf \R) such that /* ® \R has the factorization s/s®&>

® &ΊR) -> ^R® Sf\R (cf. [3, p. 9ff]). An elementary argument
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shows that j f (S, R &) = JΓ(S, R) (x) Sf 9 (where J f (S, R): = jf(S9 R R))
when R cz 5 is closed.

Define 5: = d ®R Id : J ^ 5 <g) ̂  -> J / S <g) Sf. Then <52 = 0 and δ leaves
J f (S,7? Sf) invariant. Thus (s/s <g) S?9 δ) and (Jf (S, R «$*), 5) are differential
graded sheaves. If I 7 is a family of supports on S, then the following sequence
of complexes of R-vector spaces is exact:

(1.3) 0 -> ΓΣJΓ(S9R\ Sf) -> ΓΣs/8 ®y-> ΓΣf]R^R (x) ( ^ | Λ ) .

Definition 1.4. The complex ΓΣJf(S, R\^) = \ KΣ(S, R;S?)is called the
de Rham complex of (S,R) with coefficients Sf and supports 21. We define
the de Rham cohomology of (S, R) with coefficients Sf and supports Σ to be
the homology of KΣ(S, R ^ ) , that is,

Obviously,

(1.5) H | ( S , /? SO = 0 for all k < 0.

When 5 is paracompact, R = 0, 2* = els (all closed subsets of S), and
S? = R, then KΣ(S, R <50 is naturally isomorphic to the complex of differential
forms A(S), and

i.e., closed differential k-jorms modulo exact differential k-forms. Moreover,
if we define a k-foτm ζ e Fk(S) to be closed when 0 € Fk+ι(S) is one of its dif-
ferentials, and exact when it is a differential of some ω € Fk~\S), then

z/fc/c\_ closed/:-forms/mfe(S) ^ closed Worms
exact k-iorms/mk(S) exact / -forms

Similarly, if S and i? are arbitrary, Σ is paracompactifying for the pair (S, R)
(cf. [3]), and S? = R, then

HΣ(S9R):=Hk

Σ(S9R;R)

_ {ω € Ak(S) 1 supp ω € Σ Π (5'\/?) and rfω = 0}

~ {ω € ,4fcCS) I 3ζ e Ak-\S) such that supp ζ e Σ Π (5\Λ) and rfζ = ω}

_ {φ e Fk(S) I s u p p φeΣ Π ( S \ R ) , a n d 0 g dφ}

{φ € Fk(S) 130 € F * - 1 ^ with φ e rf0 and supp Θ e Σ Π (S\Λ)} '

i.e., k-forms closed relative to R modulo k-forms exact relative to R.
Let # ' , y , and I 7 ' be alternate choices of R, S? and Σ. Define
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Λ : (s/8 (x) SS) <8> ( ^ (8) ^ 0 - ^ (x) ^ (x) 5 " ;

(or (8) σ) Λ (α' <8> σ') : = α Λ a1 ® CJ (8) σ' .

This product determines a product

(1.7) Λ: KΣ(S,R; S?) ® KΣ,(S,R'; #") -> Kmi>(S,R U Λ ' ; ^ ( 8 ) ^ 0

Products of cocycles are cocycles, and the product of a cocycle and coboundary
is a coboundary. Thus Λ induces a product

U : H*Σ(S, R\9>)® ff?,(S, R' ST) -> H%m

Σ,(S, R U R' Sf <8> 5"), *, ™ e Z .

2. The Eilenberg-Steenrod axioms

Let (5, ft) and (S\ R') be pairs of subcartesian spaces, Σ and Σf families of
supports on (5, R) and (S', ft')> and let ^ and 5^' be sheaves of R-vector spaces
over S and S'. Let /: (S, R) —> (5/, .R0 be a C°°-mapping of pairs, proper with
respect to Σ and Σf (i.e., ]~\F) e J for each F € 2"). Let g: ^ -> y7 be an f-
cohomomorphism. Then the /-cohomomorphism /* (g) g: j ^ s / ® ^ —> ^ (x) ^
induces a homomorphism of complexes KΣ,(S',R'; <?f) -+ KΣ(S,R; Sf) and
hence homomorphisms

(/, g)l: H*AS', R' ^ ) - ff|(S, Λ 50 , Λ e Z .

Let J be the category whose objects are quadruples (5, R,Sf,Σ) and whose
morphisms are pairs (/, g): (5, # , ^ , 21) -> (5 r, .R7, ^ , 2Ό, where /: (5, i^) ->
(S\ R') is C°° and proper, and g: £f" -> y 7 is an /-cohomorphism. Then (/ί, #)
is a contravariant functor from J to the category of graded R-vector spaces.
The induced homomorphism (/, gf is compatible with U -products.

If u = (/, g) :(S,R, <¥>, Σ) -»(S', R', #", Σ') is a morphism in i , we shall
write «* for /* (8) g: ^ 5 / (8) ̂  —> ̂ s ® £f. By abuse of notation, we may
also write w* for Γw* : ΓΣ.s4s> ®y-*ΓΣ^s®6fAtί\RQS\s an inclusion,
then we shall write simply z* for /* (8) | Λ , and itt for the homomorphism in
cohomology induced by z*.

A homomorphism /: Sf —> y 7 of sheaves over 5 is nothing but an id^-
cohomomorphism. In this special case we shall denote the induced homomor-
phism (id s, if HΣ{S,R ^-^HsiS^R; 9") simply by /#. For each ^,i? and
Σ the covariant functor (HΣ(S, R; ), #) is additive (in fact, strongly additive).

Theorem 2.1. Let Fk denote the junctor (Hk

Σ(S, R ), #), and Σ be a family
of supports on S paracompactifying for the pair (S,R). Then for each short
exact sequence of sheaves of R-vector spaces over S

(2.2) 0 > Sf' —U ¥ -^-> Sf" > 0
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and each k e Z, there is a homomorphism bk: Έ\Sftr) —> Fk*\<f") such that
the cohomology sequence

is exact. Moreover, each bk is natural, i.e., short commutative ladder diagrams
yield long commutative ladder diagrams.

Proof. Tensoring (2.2) with stfs®R and applying ΓΣ give the exact
sequence of complexes

(2.3) 0 —> ΓΣ<srfs ® y —> ΓΣstfs (8) ̂  -+ ΓΣΛ?S (x) </"' .

Since s/s ® Sfr is i/-soft, (2.3) remains exact when augmented on the right
by zero. Similarly, the sequence

(2 4) 0 > Γ s$ ® £ff I > Γ s$ ® ̂ f I > Γ *$/ (x) £fn I > 0

is exact. Applying the 3 x 3 l e m m a three t imes to the following diagram

I I * V

yields the exactness of the top row. The theorem now follows from the usual
diagram chase (Snake lemma).

Theorem 2.5. Let (S, R, £f, Σ) έ 1 with R closed and Σ paracompactifying.
Then there exist homomorphisms

making the cohomology sequence

> H%{S,R\ &) > HΣ(S;

exact. Each Δk is natural, i.e. ,iff: (S, R,^,Σ)-^ (S ;, R\ 2", Σf) is a morphism
in Ά,Rf is closed, and Σr is paracompactifying, then Δk o(f\Ry = f o Δk.
Given sequence (2.2), then Job — bo J = 0.

Proof. Because s/s is iZ-soft and s/s, is i/^soft, (1.3) remains exact when
augmented on the right by zero. Thus we have the following commutative
diagram of complexes with exact rows:
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0 -> KΣ(S, R SO -»• - Γ ί ^ s ® ^ -• Γ

T T
—> £±Σ,\o , re

Existence and naturality of Δk now follow as usual.

If γ € ΓΣf]Rjtfk

R ® y | Λ satisfies δp = 0, [^]Λ denotes the cohomology class
of γ in Hk

ΣΓιR(R <^|Λ), and / € Γ ^ J / 5 ® ^ is any preimage of γ, then

(2.6a) Δk[γ]R = [δf]^R) .

Similarly, if γ" z Kk

Σ(S,R\ <f") satisfies dj-" = 0, r e ί : | ( S , Λ ; ^ ) satisfies
Id (x) g(γ) = r", and / € £Ϊ + 1 (S, i? ^ 0 satisfies Id (x) /( r0 = δγ, then

(2.6b) b f c [^] = [f] .

If follows that b o J = J o & = 0.

Theorem 2.7. Lei ^ (g) ̂  and Sf'®^,^® (&" ® ^ ' 0 and {&> (g)
(x) Sf" be identified respectively via the usual natural isomorphisms. Then the
cup product is associative, graded-anticommutative and H°cιs(S)-bilinear.
Moreover,

w : flr* (5, R, <¥>) (x) H%,(S9 R\&")-+ H%m

Σ,(S, R V} R'\ 2> ® 6?')

is a natural transformation of functors on Ά satisfying the following conditions:
h g

( i ) Let 0 > ̂ Γf > £f > SΓ" > 0 be an exact sequence of sheaves

of R-vector spaces over S, and let Σ be paracompactifying for the pair (5, R).
Ifce Hk

Σ(S, R SP) and c' e H^(S, R' F") then bm{c') [j c = bm+k(c' U c).
(ii) Let i: R Q 5 be closed, let Σ and Σ' be paracompactifying support

families on S, and let 9* and 9*f be sheaves of R-vector space on S. If
c e Hk

Σf]R(R \&\R) and cr <= H^(S\ 9"), then Δc U cf = Δ(c U iV).
Proof. Associativity, graded-commutativity and bilinearity hold at the

chain level and hence in cohomology. Naturality of w with respect to induced
maps has already been mentioned and is clear.

To establish (i), let η" <= ΓΣ,(sf% ® F") and γ e ΓΣ(s/k

s ® £f) be representa-
tives of cf and c, respectively. Let η e ΓΣ\stf™ ® J~) be a preimage of η" under
Γ(id ® g), and let η' e ΓΣ,(s/%+1 ® J'') be a preimage of δη under Γ(id ® h).
Then Γ((id ® h) ® \ά)(ηf Λ γ) = δη Λ γ, and η* Λ γ is a representative of
bmcf U c. On the other hand, Γ((id ® g) ® \ά){-η Λ γ) = η" A γ is a repre-
sentative of c/ U c. Because ^ =r 0, (̂iy Λ f) = δη Λ γ. Thus ?/ Λ γ is also a
representative of bk+m(c' U c). Therefore bmd U c = ^ ^ ( c 7 U c).

To establish (ii), let η and ^ be representatives of c and cr, respectively. If
ηr is any preimage of η under the induced map Γ<$/s ® 9 —» 7^^^ (x) ^ U ,
then ^(^/ Λ ^) is a representative of Δ(c U /*cθ. Because ^^ = 0, δ(η' A γ) =
δηr A γ, and δη' A γ is a representative of J c U c r. It follows that
Δ(c U ίV) = J c U c'.
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Theorem 2.8 (Excision). Let U cz S satisfy U C Interior R, and let i
denote the inclusion (S\U,R\U) C (S,R). Then

i*:HΣ(S,R; ST) ->

is an isomorphism.
Proof. We shall show that

is an isomorphism. Injectivity is trivial. To show surjectivity, let
γ e KΣf)is\u)(S\U,R\U; ^\S\u)9 and let pεdU. There is a neighborhood V
of p in S such that V c R. For each 4 € F Π (S\U), γq = 0. If follows that
γ may be extended by 0 to all of S to give a section γ' e KΣ(S, R £f). Then

**(V0 = r
Theorem 2.9 (Dimension). Let S — P be a one-point space, and V an

R-vector space. Then

H*fp.V) = lV' ίfk==°'
[0, ifkφO.

The proof is trivial.
Definition 2.10. A homotopy A = (/, g): (S, R, ¥, Σ) X / -> (S7, JR', ^ , 2Ό

m J is a C°°-homotopy of pairs / with / proper relative to Σ X / and Σ'',
and an /-cohomomorphism g: ^ —> ^ X /.

Theorem 2.11 (Homotopy invarίance). Let SP and ^' be sheaves of R-
vector spaces over S and S', respectively, and let h be a homotopy in J as
above. Suppose R is closed in S. Then

n0 — nx. tl Σ'\o , / v , cr ) — > Jπί Σ\ΪJ , Jx , σ ) , / ( t Z .

Proof. For each t € / and p <= S let j t : S —• S X I; p >-> (p, t), and jp : I ->

S x I; t^(p,t). Let Z <= «r(5 x /) be the vector field (p, t) «-• H(d/dt)(t). For
each 0 6 FA(5 X / ) , define

Sφp = f1 Utφ)pdt

ψ

Since ί H-> (/f^)^ β ^^CTp^1)* is continuous, the integral converges. Using the
compactness of /, it is easy to show that for every p e S and ψ € 21^ with p eU
there are a neighborhood V of ψp and a local representative θ oί φ relative to
ψ x Id defined in V x /. Then «/0 € Ffc(F) is a local representative of Jφ
relative to φ, i.e., Jφ e FΛ(5). Since Jdθ = ί/,/̂ , it follows that / m Λ x 7 c m s .
Thus J induces a linear map Ak(S X /) —>^4fc(5), also denoted «/, which
commutes with rf. Define M : ^ f c ( ^ X /) -^ Ak-\S), k e Z, by
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(2.12)

For each p e S, k e Z,

(j*ω - j*ω)p = f

Because Z has local flows on S X (0, 1) (cf. [7]), we have

(2.13) £ JL((/*ω)p)Λ - J^ (j*J?zω)pdt = ̂  (jf(dizω +

i.e.,

(2.14) /*ω - jo*ω = Jdizω + Jizdω = dMω + Mdω .

If supp a) C [/ x / f or U CIS, then supp Mω C £/. We define a graded
presheaf (P, ̂ ) of R-vector spaces on S by setting

P*{V) = Γ(U X /, X \ Ό χI9(RΠU)χ /))

and p%, = ί*, where *: Όf QU. Then M o ^ , = ^ , o M. We may thus consider
M as a homomorphism from Pk to the presheaf of local sections of jfk~\S9 R).

We also define a presheaf (V, r) of i?-vector spaces on S by setting

V(U) = Γ(Uχ h&xΐ)

and letting rg, be the ordinary restriction mapping. For each v e F(t/), there is
a unique σ e Γ(U,S^) such that v = σ X Id 7. Thus we have an isomorphism of
presheaves

βπ : V(U) -> Γ(C/? ̂ ) <τ X Id7

Now let C € Γ(Jϋ X /, J Γ f c ( 5 , R \ ^ ) χl) for some open [ / C S , and let
p e U. For each ί e / there exist εf > 0 and a neighborhood UtCZU of p such
that for F , : = Ut X (* - ε,, t + ε,)

C IF, € Γ(F, , jΓ fc(5, Λ) x /) ®R Γ(Vt, £eχT).

Using the compactness of / we can find a neighborhood W cz U of p and a
finite partition ί0, , ί n + 1 of / such that the cover {K€ := ^ X [ίΐ-i^<+i]|
i = 1, , Λ} is a refinement of {J^ | / e /}. Let {wa} be a basis of the 2?-vector
space Γ(W, ό?). Then for each a and each / there is a uniqe ωa^ e Γ(Vi9 Jfk(S,
R)) such that

C|F 4 = Σ ωβ * <g> (wβ X Id7) .
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It follows that ωaΛ~ι and ωa^ agree on their common domain, thus giving rise
to sections ωa € Pk(W) such that

(2.15) ζ\wxi= Σ o>a ® (w- X Id/)

We have thus shown that for each such ζ and p there exists a W s p such that

ζ\WxIεPk(W)®V(W)
We now define

(2.16) κ = (M®β)oh*: Γ(S'9 Jfk(S', R' ^0) -

Because / is proper with respect to Σ X / and 27, K is proper with respect to
Σ and 2". From (2.14), (2.15) and (2.16) it follows that

κoδ + δoK = j*oh* -ffoh* = h* - h* .

Therefore we have

A* = AJ: H*AS',R'; 9") -> H*Σ(S,R; SO, k z Z . q.e.d.

Let ^ be the category whose objects are triples (S, R,Σ),Sa C°°-subcartesian
space, R c: S closed, and Σ paracompactifying, and whose morphisms are
proper C°°-mappings of pairs. Then y is an admissible category in the sense
of Eilenberg-Steenrod. Let V be an R-vector space. From the results of this
section it follows that the functors

F * ( V ) : ( S , R , Σ ) ^ H * A S , R \ S X V) , k e Z ,

form a cohomology theory on y in the sense of Eilenberg-Steenrod. Moreover,
if ZΓ' is an admissible subcategory of 2Γ (e.g., the full subcategory of locally
compact pairs and compact supports) then {Fk(V) |^,| k e Z} also satisfies the
Eilenberg-Steenrod axioms. We therefore have for each of these cohomology
theories the well-known series of theorems valid for Eilenberg-Steenrod co-
homology theories on admissible categories, including the standard theorems
on triads and triples, and the Mayer-Vietories theorems (cf. [4, Chapter 1]).

3. Comparison of the de Rham and sheaf cohomology theories

We begin with an example showing that the de Rham and sheaf cohomology
theories ([5] or [3]) are distinct even on the category of finite dimensional
compact spaces. We denote the sheaf cohomology functors by Hm.

Example 3.1. Let S = {l/n\n e N} U {0} have the C°°-structure induced
from R. Set R = 0, Σ = els, and let ^ be the constant sheaf of real numbers.
Then H°(S) is the direct sum of countably many copies of R. To compute H°(S),
note that dim T1/nS = 0, n e TV, and dim T0S = 1. Then / e A°(S) is a zero-
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cocycle if and only if df = 0, or equivalently, if and only if / has a C°°-exten-
sion F near 0 satisfying F'(0) = 0. If C°°[— 1, 1] has the C°°-topology, then
n : = {/ β C°°[— 1, 1]|/U = 0} is a closed subspace, and the projection
C°°[-l, 1] -* C°°[-l, l]/n is continuous. Clearly A°(S) « C°°[—1, l]/n, and
because C°°[ —1,1] has a complete linear metric, so does A\S). The map
C°°[— 1,1] —> R; F \-+ F'(0) is continuous and annihilates n. Thus {F +
n I F'(0) = 0} ̂  #°(S) is a closed subspace of C°°[ — 1, l]/n, and hence carries
a complete linear metric. On the other hand, the Baire category theorem im-
plies that H\S) cannot carry a complete linear metric. Thus H\S) and H°(S)
are not isomorphic. This example further shows that H is not continuous in
t h e s e n s e t h a t J i m ^ H(S, SJ g H(S), w h e r e Sm = {l/n\ n > m).

Although H and H are not isomorphic, there are spectral sequences relating
them. To each (S, R9Sf, Σ) e 1 there corresponds the first quadrant double
complex

Cfc'™(S, R, y7, Σ): = ΓΣV*(S Xm(S, R ^ ) ) ,

where (^, ύ?) is the canonical resolution of Godement. The first differential άf

of the double complex is d, and the second differential d" is that induced by

( - l)*δ: JΓm(5, i? &>) -> Jfm+1(S, R; Sf) .

The exact sequence of sheaves

(3.2) 0 — JΓ(S, R\y)-+stfs®y-^

induces the exact sequence of double complexes

0 - C(S, R, Sf, Σ) - C(S, 0, ^ , ̂ ) -* C

and this exact sequence is natural with respect to morphisms of 1. Composing
with the restriction mapping

CΣ(S i(s/R ® Sf U)) - C(Λ, 0,Sf\B9ΣΓlR)

we obtain the (non-exact) sequence

(3.3) C(S, R, Sf, Σ) ~ C(S, 0, ^ , Σ) -> C(Λ, 0, y 7 | Λ , ̂  Π

With each pair (S, R,<9*,Σ), (S', R', <9", Σ1) € 1 there are associated natural
homomorphisms

O w 0 S , R, 5?, Σ) (x) Cι*n(S, R', Sf\ Σf)

(3.4a) ^ΓΣn

(3.4b) -» c f e +
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where the first is the canonical product of Godement [5], and the second is
that induced by (1.6).

Definition 3.5. Let (S, R) be a pair of C°°-subcartesian spaces, and let y 7

be a sheaf of /^-vector spaces over S. Define J f k(S, R «$*) to be the &-th
derived sheaf of JT(S,R; ¥). Writing Jf(S,R; R) = :Jf(S,R) we note that
Jf(S, R S?) = 3T(S, R)®5f when R c S is closed. We call j f ( 5 , fl ^ )
(respectively jf?(S9 R)) the de Rham sheaf of (5, R <f) (respectively (S, R)).

Let Tot be the total complex of C. Then there are the usual two spectral
sequences Έ and "E satisfying

(3.6a) 'E*'TO = H\(S\ #fmX(S, R S?)) => Hk+m Tot (S, R, ^ , I7) ,

(3.6b) "E* TO = ^ f e ^ ( 5 j r ( 5 , R \ 6 ^ ) ) ^ Hk+m Tot ( 5 , # , y 7 , 21) .

The edge terms Έξ>° and ' Έ * ' 0 are Hk

Σ(S; JF°(S,R; ^)) and Hk

Σ(S,R;
respectively. The edge homomorphisms

(3.7) 'E*.° -^-> //λ Tot (S, Λ, ^ , I7) <-£- ' Έ ί 0

are induced by the chain maps:

nι

(3.8) C(S, R, £f, Σ) > Tot (5, fl, y7,17)

uι

KΣ(S,R',SO

It follows that the edge homomorphisms are natural with respect to morphisms
of J , and they respect cup products.

Theorem 3.9. // Σ is paracompacίifyίng, then β is an isomorphism. If Σ
is paracompactίfying for the pair (S,R), then β'1 oa is natural with respect to
all connecting maps bk (cf. Theorem 2.1). // R is closed, then β~ι o a is natural
with respect to the connecting maps Δk.

Proof. If Σ is paracompactifying, then Lemma 1.2 implies H™(S X(S, R
y7)) = 0 for m Φ 0. Thus " £ * TO = 0 for m Φ 0, and it follows that β is an
isomorphism (cf. [3, Chapter IV]). A short exact sequence of coefficient sheaves
induces a short exact sequence of the corresponding double complexes, i.e., a
short exact sequence of diagrams (3.8). If Σ is paracompactifying for the pair
(S, R), then these give long exact sequences in cohomology with a and β being
natural with respect to connecting maps. If R is closed, then (3.3) is exact and
remains exact when augmented on the right by zero. It then follows as usual
that a and β are natural with respect to the connecting maps. q.e.d.
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Thus when Σ is paracompactifying, (3.6a) gives

(3 13) Έ " ' W = HkΛS; ^m{S>R

« Hk

Σ

+m(S,R;^) .

Theorem 3.11. Suppose Jfk(S, R Sfj = 0 for k> 0. ΓAen or w an wo-
morphism, and there results the natural isomorphism of cohomology algebras

(3.12a) HΣ(S,R\&) « fl^(5; ^°(S,Λ; ^) ) .

// 21 w paracompactifying for the pair (S,R), then (3.12a) is natural with re-
spect to the connecting maps bk. If R is closed, then

(3.12b) HΣ(S,R\ST) « HΣ(S,R; j f °(S Sf)) ,

and (3.12b) is natural with respect to the connecting maps Δk.
Proof. The proofs of (3.12a) and the naturality of the bk are standard ([3,

IV. 2] or [5, §4]). If R is closed, then jf°(5,Λ; ¥) = Jf\S; «$%Λ and
HΣ(S9R\ tf\S\ SPi) « # ^ ( S ; 2f\S,R\ 9>)) [3, Proposition II. 12.2] from
which (3.12b) and the naturality of the Δk follow.

Corollary 3.13 (de Rham isomorphism). If Σ is paracompactifying,
(S, R, £f, Σ) is locally contractible (in 1), and R (Z S is closed, then

(3.14) HΣ(S,R',^) « HΣ(S,R,y) .

isomorpahism is natural with respect to morphisms of 1, and is also
natural with respect to connecting maps.

Proof. Theorems 2.9 and 2.11 imply

Sfv , for p $ R and k = 0,

0, otherwise.

Then

HΣ(S,R\ST)tt HΣ(S JΓ(S,R ^ ) ) « fl^(S,Λ ^ ) .

Example 3.15. Let f:R-+R be continuous but nowhere differentiate,

and define /x(0 = /. Let S be the graph of fx equipped with the structure
Jo

induced from R2. For each peS, dim TPS = 2. 5 is nowhere locally C^-con-
tractible. Let g <= F°(S) satisfy Jg = 0. Then for pγ = (x19 yj, p2 = (x2, y2) e S,

g(p2) _ g(Pι) = p (gof.γdt = 0. Thus Jf7 0:^ ^°(S, 0; Λ) is the constant

sheaf of real numbers, and tf°(S) = R. Clearly /ί m (^) = 0 for m > 2. If
ω e F\S), and fl = gdx A dy is a local representative of ω, then β is defined
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in some open convex neighborhood U of S in R2. It follows from the classical
Poincare lemma that Ω is exact in U. Hence ω is exact, JF2 = 0, and H2(S) = 0.
To compute HXS), let ω e F\S) be closed, and let Ω = g dx + h dy be a local
representative of ω defined in U. Then dΩ(x, fλ(x)) = 0 for each x e R, i.e.,

(3.16) d* dh

dx

For each (x, y) e U define

G(x, y) = g(x, fι(x)) + (x, t)dt .
Jfι(χ) dx

Then dG/dy = dh/dx in U. Using (3.16) one easily shows that GeC°°(U).
Thus 0 = Gdx + My € F\U), and 0 is closed and hence exact. Finally,
Θ\s — Ω \s = ω. Thus ω is exact. We conclude that Jf ι = 0 and Hι(S) = 0;
hence H(S) « fl(S).

We now compare i/(S) with the cohomology of S as introduced by Smith
[11]. Let & = F°(S), and let φ ( S , ^ ) denote the Smith cohomology of the
pair (S,&). If F C F is open and g : K - + S is continuous such that
/ o g <= C°°(V) for every / e ̂ , then certainly both πx o g and πyog are of class
C°°, where ττx : (x, y) ^> x and π^ : (x, y) ̂  y. Since /x o πx o g = π^ o g β C°°(F),
πxo g and hence g are constant maps. The Smith completion J^* of J^ is then
C(S), all continuous /^-valued functions on S, and each is a 0-cocycle in the
Smith theory. Thus $°(S,^) = C(S).

4. Appendix: The Cfc-de Rham cohomology theory

Throughout let 0 < k < I < OD . If S is a paracompact C^-subcartesian space,
then S admits Cfe-partitions of unity. If S is of class Cι+\ then TS is of class
CKltS is of class Cι+2, then the Lie product of two Ck+1 vector fields is defined
and is of class Ck.

Let CkFm(S) denote the m-forms on S of class Ck, and let kFm(S) c C*Fm(S)
denote the m-forms on S having a differential also of class Ck (e.g., closed
m-forms). Let kmn(S) be the differentials of 0 in kFm(S), and define kΛm{S) =
kFm(S)/kxnm(S).

Let (5, R) be a pair of Cz+2-subcartesian spaces. Let ι+2l, k+ιJfm(S, R «$"),
and fc + 1 ^ ( 5 r , # ; ^ ) be the obvious analogies of J , Jfm(S,R; if) and
X?(S, JR ^ ) . Let k+ΉΣ(S, R ^bε the homology of the complex (k+1KΣ(S,
R; ^),δ). Then k+1H is a connected family of functors on ι+2l as before,
satisfying the excision and dimension axioms.

To check the homotopy axiom, let h: S x / —> S' be a homotopy of class
Ck+2. If ω 6 fe + 1Fm(50, then /z*ω € fc+1Fw(5 X / ) . If ω is closed, then so is h*ω,
and dizh*ω = J?zh*ω, where J£z is as in Theorem 2.11. Thus
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Mh*ω = P (j*&zh*ω)dt ,
Jo

and this is evidentally an element of Ck + ιFm(S). Since

doM + M od = /? - /* ,

it follows that dMh*ω e Ck + 1F(S). Thus M/ι*ω e k+Ψ(S). The homotopy axiom

now follows as before.

The results of § 3 remain valid in the Cfc-case. Thus if fc+1JTm(S, R Sf) = 0

for m > 0, then

k+ΉΣ(S,R;<¥>) « # * ( $ ; fe+1Jf%S5JR; ^ ) )

when I 7 is paracompactifying. In particular, if (5, i?,^7,17) € ί + 2 J is C fc+2-

locally contractible, then

We end by showing that kH is not a topological invariant for k < oo.

Example. Let 5 be an arc in Rk+2 for which there is a function / g C*+1(Λ*+2)

with d/|5 = 0 but f\s not constant (cf. [14]). Then k+Ή°(S) 2 !?. On the

other hand, k+Ή\R) = i?.
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