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CALCULUS ON SUBCARTESIAN SPACES

CHARLES D. MARSHALL

Introduction

The notion of a differentiable subcarίesian space is a generalization of that of
a differentiate manifold and includes arbitrary subsets of Rn as special exam-
ples. In this paper we construct the category of differentiable subcartesian
spaces and develop the calculus of differentiable mappings, vector and tensor
fields, and exterior differential forms.

More precisely, a differentiable subcartesian space of class Ck is a Hausdorff
space equipped with an atlas of local homeomorphisms into various cartesian
spaces Rn, each pair of which satisfies a condition of (^-compatibility similar
to that satisfied by charts of a Cfc-manifold. For the sake of simplicity we shall
restrict attention to the C°°-case. The necessary modifications for other smooth-
ness categories are obvious for the most part, although the CMheory, for
instance, is not without independent interest (see [4]). The calculus of differ-
ential forms gives rise to the de Rham cohomology of a subcartesian space,
and we shall introduce that theory in a sequel to this paper.

In brief outline, our results are the following. The category of C°°-sub-
cartesian spaces possesses a tangent functor T sending each S into its tangent
pseudo-bundle TS and each differentiable mapping / into the corresponding
induced mapping f^. As one would guess from the terminology, TS is not a
vector bundle but is a fiber space, the dimension of whose fibers may vary on
connected components of S. We introduce the notion of differentiable vector
pseudo-bundle and show how tensor products and other covariant differentiable
functors on the category of real vector spaces may be naturally lifted to vector
pseudo-bundles. Thus having the "contravariant" tensors and their fields, we
introduce the modules of covariant and mixed tensor fields and determine their
dual modules. We then introduce the Lie module of Lie derivatives.

In each case the idea is to lift classical objects and constructions (e.g., vector
fields and their Lie products) from the ambient cartesian spaces up to S via
charts. As in the special case of differentiable manifolds, this method always
requires one to check invariance under coordinate changes, but there are now
two more things to be checked. The constructions made in Rn with local rep-
resentatives of objects on S must not depend on the choices of these local
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representatives, and the objects constructed with local representatives must
again be local representatives of objects on S. These problematic features are
clearly seen, for example, in the construction of Lie derivatives (§ 5).

In the last section we introduce exterior differentiation of alternating forms.
Here, the exterior derivative of a form is not invariant under change of local
representatives, and a multi-valued differential results. We proceed by consi-
dering residue classes of alternating forms modulo the indeterminacy ideal m
of the differential relation. This results in our definition of differential forms.
We then show that m is invariant under exterior, Lie and interior differentia-
tions, and establish several important classical identities relating these. Finally,
we establish a singular version of Stokes' identity.

Subcartesian spaces were introduced by N. Aronszajn in the study of Bessel
Potentials. (See [3] and Subcartesian and subriemannian spaces, Notices, Amer.
Math. Soc. 14 (1967) 111.) This paper is in part a response to problems ex-
posed by Aronszajn in a series of lectures on subcartesian spaces in 1966-67
and is an outgrowth of [9]. (Also see The de Rham cohomology of subcartesian
structures, Notices, Amer. Math. Soc. 18 (1971) 203.)

The author wishes to express heartfelt thanks to N. Aronszajn and M.
Breuer for many illuminating discussions.

1. Structures and maps

A subcartesian space S is a Hausdorff space which is locally homeomorphic
to (not necessarily open) subspaces of cartesian spaces Rn, n = 0, 1, . If
φ is one such local homeomorphism, then we denote its domain by Uφ and its
range space by Rn*. A C°°-atlas on S is a set 21 of local homeomorphisms
^ : 5 D Uφ —> Rn<? satisfying the following two axioms:

(Al) The domains {Uφ \ φ € Sί} form an open cover of S.

(A2) For every φ, ψ e 21 and every p <= Uφ Π UΨ there exist C°°-mappings
s extending ψ o ^ " 1 in a neighborhood of φp and t extending φoψ~ι in a neigh-
borhood of ψp.

The elements of 2ί are called charts. Every C°°-atlas on S is contained in a
maximal C°°-atlas. A maximal C°°-atlas is called a C°°-subcartesian structure,
and S together with a C°°-subcartesian structure is called a Cx-subcartesian
space. When no confusion can result we shall denote the C°°-subcartesian space
(S, 21) by S.

For each 0 < m < n define intΊn : Rm^Rn to be the injection (xλ, , xm) •-*
to, , xm, 0, , 0), and define πm>n : Rn-^Rm\(xι, ••-,*„)•-• (*i, , xm).
In the next section we shall show that (A2) implies

(A20 For every φ, ψ e 2ί and every p e UΨΠ Uψ there exist neighborhoods
U of iNi7lψ o φ(p) and V of iNt7lψ o ψ(p) in RN, and a C°°-diffeomorphism /:£/->
V extending
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where N = max {nφ, nΨ}.
Let S and S' be C°°-subcartesian spaces. A mapping /: S —> S' is of class C°°

if for every p e 5, and every ψ e Sί̂  and ψ e 21$, with p e Uψ and /(£/,,) CΞ £/Ψ,
there exists a C°°-extension of ψofoφ~ι in a neighborhood of ^?(p). The set of
such mappings is denoted by C°°(S, 5"). The set of C°°-functions C^iS^R) = :
C°°(S) is a ring with operations denned pointwise. The C°°-subcartesian spaces
together with the C°°-mappings form a category which we denote by C°°. The
category of finite dimensional C°°-manifolds (alternatively, with boundaries or
with corners) and C°°-mppings forms a full subcategory of C°°.

It is clear that with little or no modification, pseudo-groups Γ, or more
conveniently, smoothness categories ^ (cf. [12]) other than C°° may be used to
structure subcartesian spaces, e.g., Ck, /^-analytic, and Nash. Complex ana-
lytic structures can be treated similarly. (See [9] for a general axiomatic treat-
ment.)

If φ is a chart of a C°°-subcartesian structure Sίs and U is open in Uφ, then
<p\v e 2ίs. If n > nψ, then in,nψ°φ e 2ί s. K S' *s a topological subspace of S,
then {φ\s>\φ €%$} is a C°°-atlas on S'. The C°°-subcartesian structure on 5r

generated by this atlas is called the structure induced from S.
Example 1.1. Let Sn = {(x19 ,xn) € Rn \xx e [n—l,n)} andS =\Jn>ιSn.

Define ψn\ U L i ^ -^ Rn by ^n |ώ. t = ιnf*U* T n e n {^nl« > 1} determines a
C°°-subcartesian structure on 51. Thus it may be impossible to model a sub-
cartesian space in any single Rn.

The category C°° admits products. Let S and S' be C°°-subcartesian spaces.
Then

Φsxs>'.= {<P X ψ : ί/, X U+-+R"* X Λ n + | p 6 a f i , ψ 6 « f i , }

is a C°°-atlas on the topological space S x 57. The product C°°-subcartesian
space is S X S' equipped with the maximal atlas determined by $βS x 5/. The
product functor has the usual universal property in C°°.

Proposition 1.2. // S is a paracompact C°°-subcartesian space and °U is a
locally finite open cover of S, then there is a C™-partition of unity subordinate
to <%.

Proof. Without loss of generality we may assume the elements of °tt to be
chart domains. Applying the shrinking lemma, let "Γ = {Vv\ U € %} be an
open cover of S with F ^ c ί / for each U. For each U e % choose φ e 21 with
Uφ = U, and let Vψ be an open subset of Rn<? such that Vυ = ψ~\Vψ). We
now use the well-known fact (cf. [11]) that every closed subset in Rn is the
zero set for some nonnegative real-valued C°°-function. Choose gψ e C°°(Rnv)
such that gψ(x) > 0 for x e Vφ and gψ(x) = 0 for x $ Vψ. Define fv e C°°(S) by
fu(P) = 8 Ψ ° φ ( P ) f o r P £ U a n d fv(p) = 0 f o r p$U. D e f i n e / =
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T h e n / 6 C°°(S) a n d f(p) > 0 for all peS. D e f i n e zυ = / „ / / . T h e n {zv\U e <%}
is a C°°-part i t ion of u n i t y s u b o r d i n a t e t o °tt.

2. The tangent functor

Let S be a C°°-subcartesian space and let p e S. The structural dimension of
-5 at p is the number nSιP = min {ΛP | p 6 Sts and p e Uψ}, and p <= 3ϊ5 is tan-
gential at p it nφ = nSp. The structural dimension function p ι-> π S ) P is upper
semi-continuous.

Lemma 2.1. Lei p € S and let φ e Si5 be tangential at p. Let V be a neigh-
borhood of φ(p) in Rn, n = nφ9 and let f19f2 <= C°° (V,Rm). // W μ i ( F ) =

f2°φ\φ-HV)> t h e n DfiiφP) = E>UφP).
Proof. Suppose first that m = 1. If Dfλ(p) ψ Df2(φp), then fλ — f2 is of

maximal rank at p. By the implicit function theorem there is a C°°-coordinate
system θ around φ(p) such that θ sends Uθ Π (/x — /2)"1(0) into the hyperplane
ίn.n-iCK71"1)- Then πn_l)7loβoφ is a chart in 2ί s in a neighborhood of p and its
range space is Rnl. This contradicts the assumption that φ is tangential at p.
Thus Dfλ{φp) = Df2(φp). For m > 1 the lemma follows by considering coordi-
nate functions.

Corollary 2.2. Axiom A2 implies AT.
Proof. Suppose nψ < nφ. We first assume that ψ is tangential at p. Then

•^l+d^nff*) = ldRn+\nuφnu+)> a n d it follows from (2.1) that D(sof)(^p) =
lάR

n

Ψ. Thus / is of maximal rank at ψ(p). Let E be a complementary subspace
to Image Dt(ψp) in i?7^.

Define

u: Rn+ X E-+Rnr; (x, y) .-• ί(x) + y .

Then Du(ψp) = Dt(ψp) + lάE is an isomorphism, and it follows that u is a
C°°-diffeomorphism in some neighborhood of (ψp, 0) = inφ,nΨ

oΨ(p)' Now let
ψ be arbitrary and let 0 € 2ί5 be tangential at /?. There are then local difϊeo-
morphisms u extending inφ>7lθ o ^ o ^ M n a neighborhood of ψp and v extending
Ψ ° (inψ,n9 ° θ)~ι in a neighborhood of inψ>nθ o θ(p). Define w in a neighborhood
of inψ>nθ o 0p by

where F is a complement of inφtnψR
n* in i?w^. Then wou is a local C°°-difϊeo-

morphism extending (inψ,nf ° Ψ) °^"1 m a neighborhood of ^p. q.e.d.
If φ and -ψ e Sl5 are tangential at p, it follows that the linear map f*ψP:

Γ^/?71 —> TΨpR
n, n:= nψ — nψ, is independent of the choice of / among all

local difϊeomorphisms extending ψ o φ~ι near ^(p). In the set of triples (φ, p, v),
where p e 5, ψ 6 21^ is tangential at p, and v e TφPR

n, we define the relation
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(φ, p, v) ~ (ψ, q, w) if and only if p = q and w = f^v for some local
diffeomorphism f extending ψoφ'1 near φ(p).

This is an equivalence relation. We denote the equivalence class of (φ, p, v)
by [φ, p, v], and call p the footpoint of [φ, p, v]. Now let Sp be the set of all
equivalence classes of ~ with footpoint p. For each φ e$ls tangential at p and
each Xp € Sp, there is a unique v € TφPR

n with [φ, p, v] — Xp. Thus for each
p ζ S and φ 6 21 # tangential at p, we have the bijection

> P, v]) = v .

If ψ € Sίs is also tangential at p, and /*: Γ^/?7* —> TΨpR
n is the unique linear

map induced by local difϊeomorphisms / extending ψ o ^ - 1 near <pp, then
f^oφ^p = ψ ^ . Thus the bijections φ*p and ψ*p induce the same vector space
structure on Sp.

Definition 2.3. The tangent space of S at p is the vector space Sp. We also
denote Sp by TPS.

Proposition 2.4. // /: S —» S/ is a C°°-mapping, p e S, φ e %s is tangential
at p,φf e 21̂ / w tangential at f(p), and F is a C™-extension of φfofoψ~ι in a
neighborhood of φ(p), then F^.ψP : TψPR

nv —> Tψ,ofvR
n*' induces a linear map

f*P - = (φ*fp)~ι ° F*φP°φ*p τps ~> τfps',

and this map is independent of the choices of <p, θ, and F.
Proof. Let θ, θ' and G be alternate choices of φ, ψr and F, and let s and /

be local C°°-diίϊeomorphisms extending θ o φ~ι and θ' o ^ / - 1 near ?̂(p) and φ'(fp),
respectively. We have already seen that s^,ψP oφ^p = ^^^ and t%φ,σp) °φ'*fp =
^ / p . Since Gosoφ = toFoφ in a neighborhood of /?, Lemma 2.1 implies
( G o j ) ^ = {toF)^ψP. An easy computation yields

Thus /^p is independent of the choices of φ, ψr and F. Linearity of f%p is ob-
vious, q.e.d.

For each / e C°°(S, SO define /* : U p e 5 ^ - IΛes- ΓβS' by / + | Γ , S = UP.
If ?̂, ̂  € 2ί s have the same range space Rn, p € Uφ Π t/fl, and ̂  is a local C°°-
diffeomorphism extending ^ o ^ " 1 in a neighborhood F of φ(p), then Λ ̂  is a
C°°-diffeomorphism extending θ* o{φ^)~ι in the bundle neighborhood τ~\V),
where τ: Ti?n —• /?w is the tangent projection. Now define TS to be I J ^ s TPS
equipped with the topology induced by the bijections ^ , 9 e 21^. TS is a
Hausdorfϊ space, and each bijection φ^ is a homeomorphism of TUφ into TRnf.
Then S3 r 5 : = {φ*\φ e 2ί5} is a C°°-atlas on ΓS.

Definition 2.5. Define (TS, 2ίΓ S) to be the C°°-subcartesian space deter-
mined by %5TS' Define τ : TS —> 5 to be the footpoint projection.

Restricted to the subcategory of C°°-manifolds, T agrees with the classical
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tangent functor. Let 0: S —> TS be the zero section. Then 0 is of class C°°. If
φ e §ίs is tangential at /?, then φ^ e %τs is tangential at Op. It Xp e TPS is not
zero, however, then φ^ need not be tangential at Xp (see Example 2.7).

Theorem 2.6. The correspondence T: S ι-> ΓS, / ^ /* m C°° w Λ covariant
functor, and the footpoίnt map τ : TS -^ S is of class C°°.

Proo/. The proof of functorality is straightforward. If φ e SI5, then the
tangent projection TR71*-^ Rn* is a C°°-extension of ^ o r o ^ - 1 . Thus r e

Proposition 2.7. Lei 5,5 ' &e C^-subcartesian spaces. Then there is a
unique C~-diβeomorphism i: T(S X S') -+TS X TS' such that for every C°°-map
f:S"-^S x 5',

iof* = (projW)* x (proj5, o/)^ .

Proof. The product 5 <— S X 51' -> S7 gives rise to the product mapping
proj s* x projs,*: T(S x 50 -+TS X TS'. Then

(projδ X proj5,*)°/* = proj^o/^ x

- (proj^ o / ^ x

Substituting the appropriate injections S -+S X S' and S' —»5 x 5' for / shows
projs* x proj5,* to be surjective. Let φ e 21^ and ^ e SI5/ be tangential at p and
g, respectively. Since φ x θ e SΪ 5 x S/ 5 dim T{v>q)S X S' < nψ + nθ = dim ΓP5 x
T ^ , which together with surjectivity implies that proj s* X projs,* is bijective.
Thus dim T(PtQ)S X S' = dim TPS X TqS'9 and φ X θ is tangential at (p, q).
Let proj^: Rn<p+n<> —> Rnvand proj^: Rnψ+n» —> Rnθ be the obvious C°°-maps.
Then a straightforward calculation shows

(proj,* x proj,*)°(p X θ)* = (φ* X θ*) o (projs* X projs,*) .

Thus proj5* X projs,* is of class C°°. Similarly, (proj^* X proj^,*)"1 is of class
C°°. Thus we take /: = proj5* x projs,*. The uniqueness of / is obvious.

q.e.d.
Let Xp e TPS, and φ e 2ί5 be tangential at p. Let / e COT(5) and let fψ be a

C°°-map extending foφ~ι in some neighborhood of ψp. Then (^Zp)-/,, =
Dfψ{φp, φ*Xp) £ R is independent of the choice of fψ by virtue of Lemma 2.1.
If 0 € SI5 is also tangential at p, then (φ^Xp)-f9 = {β^X^-ίe. We denote this
real number by Z p •/. Each Z p thus determines a real-valued derivation on the
ring of germs of C°°-functions at p. Conversely, if D is such a derivation at p,
then there is a unique Xp <= ΓP5 such that Xp [/] = £>([/]) for every germ [/]
at p. (The proof carries over unchanged from the case S = Rn.) If D is a
derivation on C°°(5), then for every p eS, f ^ Df(p) is an i?-valued derivation.
It follows as usual that this derivation factors through the natural map / •-> [f]p

sending / into its germ at p. Then to each p e S there is a unique Xp e TPS
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such that (Df)p = Xp-f for every / e C°°(S). Now if ψ e 2T̂  and p € £/,,, then
define a1 = D(xίoφ) e C°°(Uφ), where x\ -,xn* is the standard coordinate
system on Rn*. Let U be a neighborhood of £>/? on which there are local rep-
resentatives b* of a*,i = 1, —,nφ. Then # •-• ^ is smooth because

φ*Xq = Σ b\φq)JL{φq) for all q € p^t/ .
ι=i CM

Thus, as in the case of C°°-manifolds, each derivation on C°°(5) can be realized
by a unique C°°-vector field on S.

If g e C-(S,R),fe C~(Λ) and * p € ΓPS, then (g*Z p ) ./ = Xp (g*f), where
as usual g*/: = fog.

Example 2.8. Let S be the union of the x, y-plane and the positive z-axis
in R3. The inclusion is a chart tangential at (0, 0, 0) and determines a C°°-
structure on S. ns>(OtOtO) = 3, and nSAXtVt0) = 2 and ^,(O,o,2) = 1 fc>r all x, y, z
different from 0. The tangential dimensions of TS at points Xp, p Φ (0, 0, 0),
are 2nSιP. Let X = (3/3JC)(0, 0, 0) and Z = (3/3z)(O, 0, 0). Then nτs>x+z = 3,

nτs,z = 4, «r5,x = 5 and Wτ\sf,o<o,o,o) = 6

The structural dimension nStP clearly dominates the topological dimension
dim (U) of a sufficiently small neighborhood Uofp. The difference, w5)P-dim (ί/)
however, can be arbitrarily large.

Example 2.9. Let g0: [0, 1] —> R be continuous but nowhere differentiate,

and define gk + 1(t) = | gk(x)dx. Define S cz R x Rm+ι to be the graph of ί •-•
Jo

teo(Oj * * * J ̂ m(0) Then for every /? e 5, /ι5>p = m + 2 while the topological
dimension of S is 1.

A differentiate subcartesian space S together with its sheaf of smooth func-
tions is a reduced differentiable space, [13]. When S is an analytic space, the
tangent space TPS coincides with what Whitney calls the full or Zariski tangent
space, [16]. When a differentiable space S is a differentiable subcartesian space,
then its C3-tangent space coincides with TPS.

The construction of the C°°-tangent functor can be similarly carried through
for other smoothness categories. If S is structured with ^ + , then TS is struc-
tured with # , e.g., if S is of class C* + 1, then TS is of class Ck.

3. Contra variant tensors and tensor fields

The purpose of this section is to introduce contravariant tensors and tensor
fields on subcartesian spaces. Rather than repeat certain arguments for each
kind of tensor to be considered, we shall begin with a convenient common
generalization.

A C^-jamily of R-vector spaces is a pair of C°°-subcartesian spaces B and
S, and a mapping π e C°°(B, S) onto S such that for each p e S, π~ι(p) has an
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2?-vector space structure and such that the vector operations

+ : B χsB -* B and •: R X B -> B

are of class C°°. A morphism (B, π, S) -+ (E, τ, R) is a pair / € C~(B, E) and
g € C^iS, R) such that τ o / = g o TΓ and such that / is linear along fibers. Since
/ determines g, we shall often denote the pair simply by /. We shall also some-
times denote g by fb. As usual we denote the set of C°°-sections in ξ = (B, π, S)
by Γξ. If Γξ Φ 0, then Γξ is a C°°(S)-module. If ξ = (B, π, S) and / <= C~(R, S)
then the fiber space pull-back fξ:=(R χs B, πB,R) (cf. [5]) is a C°°-family,
and R+- R χsB ->B is the pull-back of R -> S <- B in C°°. As usual, we
denote π~\p) also by ξp or fp and f\ξp by /p or /*.

Definition 3.1. A C°°-vector pseudo-bundle is a C°°-family of i?-vector
spaces ξ = (B, π, S) such that Sίfi has a subatlas S3 whose charts satisfy the
following two conditions:

(VPB1) For each β e S3, Uβ = π~ιπϋβ.
(VPB2) Each β e S3 is a morphism Uβ -> (2?^ ,̂ π n # n , i?n) of C°°-families,

where n = nβb.
Such an atlas S3 is called a pseudo-bundle atlas on B. If S is a C°°-sub-

cartesian space, then (TS, τ, S) is a C°°-vector pseudo-bundle, and {<p* | ̂  e SÎ }
is the maximal pseudo-bundle atlas on TS. Similarly, if ξ = (B, π, S) is an
arbitrary C°°-vector pseudo-bundle, then B has a unique maximal pseudo-
bundle atlas 83̂  Q Sίβ. If β e S3e, then /36 € 2IS, and for every ^ € SIS and p eUψ

there exists a β e 9βξ with p £ πUβ(^Uψ. The zero section 0: 5 —>> 5 is of class
C°°; thus for C°°-vector pseudo-bundles ξ, Γξ Φ 0. Any family of subspaces
{ζP <Ξ fp |P ^ S} with the induced structure on UPζS ζp forms a C°°-vector
pseudo-bundle.

A morphism f:ξ-^ζof C*-vector pseudo-bundles is simply a morphism of
C°°-families. The resulting category VPB contains as full subcategories the C°°-
vector bundles over C°°-subcartesian spaces and, more specially, the C°°-vector
bundles over C°°-manifolds. We denote by VPB(S) the subcategory of pseudo-
bundles over a fixed space S and morphisms / satisfying fb = I d s . Note that
VPB(S) is abelian without any additional conditions being imposed on the
morphisms. If / e C°°(R,S), and ξ = (B, π,S) is a C°°-vector pseudo-bundle,
then fξ is also a C°°-vector psesudo-bundle.

Proposition 3.2. Let f: (B, π, S) —•> (is, τ, Z?) fee a morphism of C°°-vector
pseudo-bundles. If a e %(B,,.S) a n d β e %(E,r.R) w ί t h f(Ua) C Uβ9 and if p e Uφ,
then there exist a neighborhood V of ψp {where φ: = ab) and a C~-vector
bundle map

F: (Rn°, πnψ>na, V) -> (Rn?, πnψ,np Rn+) , (ψ: = βb)

extending βo f oa-
ι\{π-i
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Proof. There is a C°°-extension g of β o / o a~ι in some neighborhood W of
α o 0(p). Let V: = τr(0(5) Π fF), and define F : V X #*«-"* -> R"+ x £**-»+

(̂ r, v) ^ (τg(q, 0), £>2P o giQt0)(v)) ,

where P : Rn* X Rnβ-n* —> Rnβ~nΨ, and Z)2 is the partial differential along Rn«-n<p.
This Z7 satisfies the requirements of the proposition.

Proposition 3.3. A C~-mapping γ:S-+B belongs to Γ(B, π, S) if and only
if for every β e $βίB,*,s) and every p e πUβ, there exists a local section σ in
(Rnβ,πn>npR

n), where n:= nβb, extending β o f o β - 1 near βbp. σ is called a
local representative of γ relative to β.

Proof. Sufficiency is clear. To show necessity, let / be any C°°-mapping
extending β o γ o β~ι in a neighborhood of βbp. Then σ: q •-> to, P © fq) is a smooth
local section extending β°γ°βb

ι near /3δp. q.e.d.
Combining the arguments of Corollary 2.2 and Proposition 3.2 we see that

if a, β 6 S3̂  take their values in the same trivial bundle (Rn, πm>n, Rm), then the
connecting map aoβ~ι admits local extensions which are C°°-vector bundle
isomorphisms. With this observation the proof of the following theorem be-
comes routine, following as in the case of differentiable vector bundles over
differentiable manifolds (cf. [8]).

Theorem 3.4. Let λ be a C°°-covariant functor of k arguments on the cat-
egory of finite dimisional R-vector spaces. There is then a unique functor A
on VPB satisfying the following conditions:

( i ) For all S € C°°, Λ(VPB(S)) C VPB(S).
(ii) For all S e C™ and ξt e VPB(S), / = 1, . . , k, and every peS,

(iii) For any /*:&-> Ci in VPB(S), / - 1, , k, and every peS, A(f\ ,
f% = λ(fP, ' • ' , & •

(iv) // ξi9 i = 1, -,k, are the trivial bundles S X Rrti, then Λ(ξ19 ••-,?*)
is the trivial bundle S X λ(Rni, , R n k ) .

(v) If he C~(R, S), then Λ(Jύξ» , Aff») = ΛM(f19 , f fc).
Further, if lr is another such covariant C™-functor, and t: λ—> lr is a natural
transformation, then the mapping Ί': A—> Af defined on each fiber by

is a natural transformation of functors on VPB(S).
Let S € C~. In view of the previous theorem we have the C°°-vector pseudo-

bundles (x)fe TS, Λfc TS = Alt (x)fe TS (the pseudo-bundle of k-vectors), ©k TS
= Sym (g)fc TS (the pseudo-bundle of symmetric tensors of rank k), and their
modules of sections ^k(S), &k(S), and ̂ (S). Alt and Sym are the obvious
natural transformations. If / e C°°(S, R), we shall often write simply /^ for any
of the induced maps (g)fc f^, etc. The externally graded modules J~(S) =
{<Tk(S)\k>l}9 %\S) = {%\S)Ik > 1}, and ̂ (S) = {^k(S)\k > 1} with the
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point-wise defined operations (i.e., as provided by the theorem) form graded
C°°(5)-algebra with the obvious symmetry properties. In contrast with the case
of differentiable manifolds, these algebras need not be generated locally by
&(S)\= ^\S), nor need the homogeneous submodules be locally free, nor
locally of finite type. These facts are born out by the following two examples.

Example 3.5. Let S be the space of Example 2.8. Then every X e &(S)
vanishes at (0,0,0), every Y € &2{S) vanishes along the z-axis, and every
Z β %\S) vanishes identically. Every X e 2£(S) A &(S) c &\S) has a zero of
order 2 at (0,0,0), but xd/dx A d/dy e %\S) has a zero only of order 1 at
(0,0,0).

Example 3.6. Let S cz R be the closed left half-line together with the points
{l/n\n 6 N}. Leti = {[/]„ e C~(S)0\ f(l/n) = 0,vne TV}. Then &(S)0 = i[d/dx]0

is neither free nor finitely generated over C°°(S)0. Since C°°(»S)0 has a unique
maximal ideal, it follows from a theorem of Kaplansky [6] that &(S)0 cannot
be projective, contrasting further the difference between vector bundles and
vector pseudo-bundles.

4. Covariant tensor fields and alternating forms

Definition 4.1. Let ξ = (B9π,S) be a C°°-vector pseudo-bundle. Define
&(ξ) = VPB(S)(f,S X /?), that is, the C°°(5)-module of footpoint-preserving
morphisms of ξ into the trivial line bundle over S. Let P: S x R —> R be the
principal part projection. We write ^k{S) for 3?(®k TS),^llt(S) for
&(Ak TS),^k

sjm(S) for ^ ( ® f c TS), and &\S) for Γ(S X R). The elements
of ^^(S) are called /^-forms.

We could equivalently define ^(ξ) to be the smooth functions on B which
are linear along fibers.

From Proposition 3.2 it follows that φ e ^(ξ) if and only if for each β e 93f

with ψ\— βb9 and each p e Uφ, there exist a neighborhood V of φp and a C°°-
section

ω e Γ(7 X

such that ω oβ\,-HUφΓiφ-iV) = Φl-πu^φ-iv)- Such anω is caΆed a local represen-
tative of φ relative to β (on Uψ Π ψ~λV). From Theorem 3.4, ^ e ^(Λξ) if and
only if ω can be chosen from Γ(V X U/?71^"71^)*). Thus, for example, 0 <= ^* l t(S)
if and only if it has local representatives which are alternating forms of rank k.

Condition (iii) of Theorem 3.4 defines

Λ ( φ \ -' , φ k ) ζ V P B (S)(A(ξ19 "-, ξ k ) , S x λR) .

Equipped with the obvious corresponding operations, !F(S): = \3F\S) \ k > 0},
^ait(S): = {^US) \k>0), and ^ s y m ( 5 ) : - {^s

fc

ym(« I * > 0} are graded
C°°(S)-algebras. As with the contravariant tensor fields, the modules of germs
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^rk(S)p need not be free (see Example 4.6). In distinction with the contra-
variant case, however, the modules J^GS), lF&n(S) and ^ B y m ( 5 ) are locally gen-
erated (in positive degrees) by έF\S).

If / e V P B ( £ , ζ ) , then

is a functorial homomorphism of i?-algebras. From Theorem 3.4,

(4.2) /*Λ(^, , φk) = Λ{f*φ\ , f*φk) .

If g€C°°(S,Λ), then

(4.3) ({AgXφ)X = φ(Ag^X) , φ <E .F(ΛΓS) , XeΛTS .

We shall usually write simply g* for
Lemma 4.4. Let ξ = (Bξ, πξ,S) and ζ = (Bζ, πζ,S) be C°°-vector pseudo-

bundles. Let μ: Bζ —> Bζ be linear along fibers and satisfy πζ o μ = πξ. Then a
necessary and sufficient condition for μ to be a VPB (S)-morphism is that ω o μ
be smooth for every ω e «^(ζ).

Proof. Necessity is obvious. To prove the converse, it is sufficient to con-
sider only the case S c= Rn,Bζ c= Rn x Rk,B:cz Rn x Rm. The proof then
follows by a straightforward use of local coordinates.

Proposition 4.5. Let ξ, ζ e VPB (5). Suppose that for every p eS there is
a β e S3ζ with p e Uψ and dim ζp = nβ — nφ, where φ:= βb. Then the natural
map

K : VPB (S)(ξ, 0 -> H o m c β ( S ) ( ^ ( ζ ) , ^ ( f ) ) ^ = μ*

is an isomorphism of Cco(S)-modules.
Proof. Evidentally, K is a monomorphism. Let h e HomCoo((S) ( ^ ( ζ ) ,

If 0 e ^(ζ) satisfies φ\v = 0 for some open ί / c S , then (/J0)|^ = 0, i.e, h is
local. We show that h is punctual. Let p € 5, ^ e «^(ζ) with 0p = 0, and
β € 23ζ with ψ:= βh and n^ = ^ + dim ζ p = : πp + m. Then there exist a
neighborhood U of ?̂p and a local representative ω e Γ(U X i?m)* of ^ rela-
tive to β. Writing ω = ΣΓ=i β ^ % where fl4 € C°°(£/) and ^̂  is the canonical
/^-coordinate section in (1/ x /?m)*, we have for each q^ψ~ιJJ

m

Since dim ζp = m, it follows that a^p) = 0, / = 1, , m. Thus (hφ)p = 0.
Then for each p e 5 there is a unique linear map hp : ζ p * —> fp* such that for
all φ e ^ ( ζ ) , (Λ^p = Apί^p). For each p e 5, define μp = Ap* : ξp -> ζ p . To
show that p ^ μp is smooth, it suffices to show that /? *-+ φo μp is smooth for
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each φ e 3F(ζ) (Lemma 4.4). But φoμp = ΛP(0P) = (A0)p. Thus μ\ p ̂  μv

belongs to VPB (5)(f, ζ), and ^ = h.
Corollary 4.6. Lei ξ <= VPB (5). Γften the natural map

w an isomorphism of C(S)°°-modules.
The dual module of Γξ, however, need not be ̂ (ξ) (cf. Example 4.9).

Trivial examples show that in general the dimensional hypothesis in Proposi-
tion 4.5 cannot be avoided.

Example 4.7. Let S = {0} U {1/n | n € N} c i?1 be equipped with the in-
duced C°°-structure. Then nSt0 = 1 and n5>1/TO = 0. If / is the inclusion S Q J ? ,
then /*dΛ: generates ^ι(S), and ί*djc is nonzero only at 0. If x e C°°(R) is the
identity map, then the germs [i*x]0 and [i*dx]0 are nonzero, but [i*x]Q[i*dx]0

= 0. Thus &\S) is not free.
Example 4.8. Let S be as in Example 3.5, and i: S QR\ Then ί*(dx + dz)

is nowhere 0 on S, i*(zdx Λ dy) is identically 0 on S, and i*(dx Λ dy Λ dz) is
nonzero only at (0, 0, 0). ^\ιx(S) is generated by i*(dx A dy A dz), but

i*(x2 + y2 + z2)dx A dy A dz = 0.

Example 4.9. Every φ e ̂ ( f ) gives an element of HomCoo(S) (Γf, C°°(S)),
but the converse is not true. Let S be the space of Example 3.6. Define ω(x)
= (l/x)dx for JC < 0 and 0 otherwise. Then i*ω maps 9£{S) into C°°(S) linearly
but is not an element of ̂ (S).

Let /: ξ -> ζ be a morphism in VPB (S), or € S3e, /3 € S3ζ with p : = α6 = βb9

m: = na — nψ, and n:= nβ — nψ. Let p e C/̂ , let U be a neighborhood of £>/?,
and suppose F': U -> Horn (i?m, /?w) extends q ̂  βofoa~\ q eU, i.e., F is a
/ocί// representative of f relative to a and β. Then with the usual interpretation
we write F = Σ ^ ® ̂ > w h e r e / = 1, , π, / = 1, , m, y* e C°°(t/, i?n),
and xj € C°°(U, Rm*). When ξ = ®k η, ζ = ®ι η, we have

F = Σy,ι® -' ®yμι®
χVι® - ®χVk >

μ,v

where y .̂ e Γ(U X 2?71) and xVi € Γ(E/ X i?m)*. Applying the contraction C},
we obtain

C)(fp) = ®ι-ιβv-
ιoC)Fo®^ap .

Thus C)f: (8)*"1 ^ -^ ®ι~ι η is a VPB (S)-morphism.
Definition 4.10. Let J^^(5) denote the C°°(S)-module VPB (S)((g)k TS,

(g)m TS). We call ^t(S) the module of tensor fields of type (k, m). We shall
also denote ^k(S) by ^\(S).

Clearly, C): ̂ kJS) -> ^ Ϊ Γ Λ W is a natural homomorphism of C°°(S)-
modules. If ω € lFtιt(S) and X e &(S), then as usual we define
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—C\X (x) ω , * > 1 ,

( , * = 0 .

Thus for X2, , Xk € ΓplS,

Λ Λ W - ω(p)(A-(p) Λ X2 Λ Xk) .

Definition 4.11. Let ξ be a vector pseudo-bundle. Define | to be the vector
pseudo-bundle whose fibers are

and whose total space structure is that induced from the total space of ξ.
For any C°°-functor λ on the category of R-vector spaces,

Proposition 4.12. Let ξt <= VPB (S), i = 1, , /:.

// all ξi = f, then

Let X € Γ (x) ξt and p e S. Assume without loss of generality that
i = l

Xp = XI (x) . . . (x) χp9 where Zf e ξf. For each i, let φι € ^ ( f <) be such that
? = 1, and define

= (π

It is routine to show that each ψj is a VPB (S)-morphism. Thus ψjX e Γξj
for each /. Since -ψ ̂  (x) (8) ΨkX(p) = ^ P , the first part is proved.

To see the second, note that for each p e S, (Λ fe f )^ C (g)fc | p , and that each
element Z p of the former is alternating. Then Z p 6 Alt (x)fc | p = Λfe | p .

Example 4.13. It is not generally true that a morphism /:£—»£ will map

I into ζ. Let 5 be the space of Example 4.8 and let /: R2 Q S be the obvious
inclusion. Then
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j*f (O,o)#2 = spani-^(O,O,O), J L ( 0 , 0 , 0 ) 1 c Γ(OfOfO)S ,
Idx dy )

while T(OtOtO)S = °
There seems to be no theorem analogous to Theorem 3.4 for contravariant

functors F. The trouble is that for each β e 83e, F(β) maps in the wrong direc-
tion in order to be a chart on [JpeS Fξp, and it may not be fiber-wise invert-
ible (e.g., when F is the dual-space functor). When S is paracompact, there
exist Riemannian metrics on ξ, and one of these may be used to equip
Upes ?* = f * w i t h a VPB-structure. Then ξ* ^ ξ and Γξ ^ Γξ* C J^(f),
where as in Examples 3.5-4.8 the inclusion may be proper. The module Γξ*
is, however, unsuitably small for the applications which follow.

5. Lie derivatives of tensor fields

We first consider Lie derivatives of contravariant tensor fields. Let X e β£{S)
and Y e ^k(S). Let φ e Sί5, p e Uφ, and suppose Xλ and Y1 are local represen-
tatives relative to φ of X and Y in some neighborhood V of φp. We shall show
that ^?

XlYί is a local representative of some W <= ^k(S) on 7 relative to φ,
and that PF^ is independent of the choices of <p9 Xλ and Yλ.

We first show that 3?xJίx(φp) is independent of the choices of the local
representatives Xx and Yx. Suppose Y vanishes on φ~ιV. Writing

a dxaχ dxa

we have

a OX OX

(5.1)
+ Σ Σ flβ(9>p)— ® ® U i , r ^ ® ® ^ -

i « 3xαi L dxaίΛ dxak

The second term on the right vanishes because aa vanishes on φϋφ Π K, and
the first vanishes by virtue of Lemma 2.1. Thus ^XlYλ{φp) is independent of
the choice of Yx.

Now suppose that X vanishes on φ~Ύ and Y is arbitrary. Since ^XχYλ is
invariant under difϊeomorphisms, we may assume without loss of generality
that φϋφ ί l F C in<p,nR

n £ RUψ, where n = n S i P and 7 is chosen sufficiently
small. From (5.1),
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where aa(φp) = 0 for every a having some ccj > n. Then

where P is the principal part projection. Since

PXi\rurnv = 0 and - ^

for all of those a with aa{ψp) Φ 0, Lemma 2.1 implies &ZιYι(φp) = 0. Thus
J^xjfiiφp) is also independent of the choice of Z ^

Before continuing, we remark that when X = 0 in a neighborhood of p, then
the above argument shows that

(5.2) i&z&φp = 0

for any Z e ^ ( i ? ^ ) satisfying Z(φp) e φ* & TPS.
Having shown &χjfx{tpp) to be independent of the choices of Xx and Yx for

fixed φ, we now show coordinate invariance. For any n > nψ and any local
representatives X2 and Y2 relative to in,nψ°φ, and for any local extensions X3

and y 3 of intnψ*°Xι°in,nψ~
ι and /n.wp 0 ^ ! 0 ^ ^ / 1 in Rn, X3 and Γ 3 are also

local representatives relative to ίn>nψ

oφ> and so it follows that

Thus it is sufficient to consider only those θ e Sί5 with p e Uθ and nθ — nψ. Let
/ be a connecting difϊeomorphism defined in a neighborhood of 0/?, and let Z 2

and Y2 be local representatives of X and y relative to θ in some (sufficiently
small) neighborhood of θp. Then f^oX2of-1 and f*oY2of~ι also are local
representatives of Z and Y relative to ψ. Thus

Finally we show that &ZlYi(<pP) £ ψ* ®k TvS- Choose φ so that φUφ c= inψ>nR
n

and choose local representatives X2 and y 2 of X and y relative to ψ in a
neighborhood of ψp such that

X2 =

with ft* = 0 for / > «, and

= Σ «'dxai dx1"1
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with aa = 0 for any a having some aj > n. Then

&xxYiiφP) = &zJz(φP) * Ψ* ®

We may thus make the following definition.
Definition 5.3. Let X e &{S) and Y e fk(S). Define SέXY β Fk{S) by

setting

for each p e S, any φ e Sί̂  with p e Uψ, and any local representatives Z x and
Yi of ^ and Y relative to φ in a neighborhood of ^p. When Y e ^(S), write
[Z, Y]: = ^ X Y. When / 6 C~(S), set &xj:= X f.

For each Z e &(S), £?x is a type-preserving derivation in ZΓ(S) which com-
mutes with Alt and Sym and satisfies

<£xjY = (X.f)Y + fJ?xY , / € C-(S) ,

For every Re C°°, p eS, and every C°°-diίϊeomorphism f\S->R,

With the bracket product, &(S) is a C°°(S)-Lie module (cf. [10]).
We now consider Lie derivatives of covariant and mixed tensor fields. If

μ e ^k

m(S), X e ^(S), y € ®fc TPS, and if ^ and Xx are local representatives of
μ and Z relative to φ e 21 s in some neighborhood of ψp, then an obvious candi-
date for <?zμ(Y) is (<p*£fZlPi)Y- This, however, is not generally well-defined.

Example 5.4. Let Sn c i?2 be the set

{(jc,Λ/2w)|Λ6[-l/2n, l/2n], /codd and 1 < A; < 2W} ,

and let /: S Q R2 be the set

{(0,j)|ye[0, 1]} U U S» .
1

Then a/5x € SXZ?2) represents a vector field X e &(S), and i*(xdy) =
0 s F ( S ) . But

i*£>d/dxxdy = ί*dy ψ 0 6 J^GS) .

Lemma 5.5. // ££Xχμλ{ψ*Y) is independent of the choice of μ19 then for
any other Θ € SΓ5 w/7Λ P £ Uθ, any local representative μ2 of μ relative to θ in
a neighborhood of θp, and any connecting map / with f o ψ — θ near p, we
have
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U&zJ*i(<P*Y) = &χJhiβ*Y) ε θ* <gr TPS .

Proof. First suppose nψ < nθ. Without loss of generality assume that / is an
imbedding (Axiom A2'). Let X3 e &(Rn') be a local extension of /* o ^ of-1

near θp. Then W\ΘUθ = 0, where W: = X2 - X3. Let Ze<Tk(Rn) satisfy
Z(0p) - Θ*Y. Then

(5.6)

From remark (5.2) it follows that both terms on the right side vanish. Thus

&xJh(β*Y) = 2?χMΘ*Y) = U{&xSf*μd(φ*Y))

By hypothesis, however,

Thus Ui&zji^Y))
Now assume that φ is tangential at p. Then <£fXlμι(φ*Y) e φ* ® m TPS, and

SO f^xMψ^)) 6 0* ® m ΓpS.
The case nψ> nθ follows similarly, q.e.d.
Lemma 5.5 then reduces the question of well-definedness of £?xμ(Y) to that

of whether for some φ and X19 ^Xχμι{ψ^Y) is independent of the choice of μx.
Theorem 5.6. Each of the following conditions is sufficient for the well-

definedness of J£xμ(Y):
( i ) Y e (®fc TPS)V, where p = ®k τY.
(ii) X has a local flow in some neighborhood of p.
(iii) X(p) = 0.
(iv) The structural dimension of

{qeS/ns>q = ns>p} e S

with the induced structure is ns>p.

Proof. ( i ) Let Ϋ € έFk(Rn<p) be a local representative of a tensor field in
yk(S) near φp such that Ϋ(φp) = φ*Y'. If μ1 represents 0 e ^k

m{S) near φp,
then

(5.7) S£Xχμλ{φ*Y) = Sexjitfiφp)) = 2 Xχ(μx o Ϋ)(φp) - μλ{<£xJ(φp)) .

From the previous results on Lie derivatives of contravariant tensor fields it
follows that each term on the right side of (5.7) vanishes.

(ii) Let Φ be a local flow of X. Define γ{t) = (®fc Φt*)Y, \t\ sufficiently
small. Then γ is a C~-curve in ®fc TUΨ. Thus f(0) e TY (x)fc ΓS, and
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the last equality following from Lemma 2.1.
(iii) Let φ be tangential at p. Then <p#TpS = TψVR

n(p, and consequently
(& φ*) & TPS = (x)fc TψPR

nv. Let X1 be a local representative of X relative
to φ, and let Φ be a local flow of Xx near pp. Since X(p) = 0, Xx(ψp) = 0
and Φt*(TψPR

n*) c Γ^Λ**. Thus, if r ( ί ) : = (x)fc Φ ^ Y ) , Y e (g)fc TP5, then
γ(t) e (x)fc TψVR

n<r. It follows that f(0) ε ((x)fc φ*)*TY ®k TS with the same result
as in (ii).

(iv) Assume without loss of generality that φ e 21 s is tangential at p. Be-
cause of (iii), we need only consider the case X(p) Φ 0. We may then assume
that Xx is constant in some neighborhood of φp, say Xλ = d/dxι (by com-
posing φ with an appropriate straightening difϊeomorphism). Writing

μι = Σ aa'βdxaχ (g) (x) ̂ a A (x) -^- (g) (x) —^— ,

we have

3?XxV-i — Σ άfx"1 ® (X) ώ α f c ® -—- (X) (X) .
dx1 dxβl dxβm

If /it represents 0 e ^ ^ ( 5 ) relative to φ, then aa^(φq) = 0 for every α: and β,
and every r̂ e 5 such that ns>q = « .̂ Condition (iv) and Lemma 2.1 now imply
(daa^/dxι)(φp) = 0 for all α,/3. Thus SeXΛμλ(φp) = 0.

Definition 5.8. Define 2(5) c: ^(5) to be the set of vector fields X such
that &xμ is well-defined for every element μ in the bi-graded algebra

Since &XY is well-defined for every Y e T(S), X e 2(5) if and only if &xφ
is well-defined for every φ e ^ ( 5 ) . Since ^(S) is locally generated by 3F\S),
X € 2(5) if and only if <£xφ is well-defined for every φ e &\S).

Theorem 5.9. 2(5) is a Lie submodule of &(S). For each X e 2(5), Jδfx is
a type-preserving derivation in 3F\ (5) which commutes with Alt, Sym and
every contraction C). For any X, X' e 2(5),

(as derivations on ^\(S)). If R ε C°°,f e C~(S,R), and if μ <a ^ΐ(S) and
v € ̂ ΐ(R) satisfy vof^ =f#oμ, and if X € 2£(S) and Y e &(R) satisfy Y(fp)
= f*Xp for all p € 5, then ^Yv o f# = f*o £>xμ.

The proof is elementary and we omit it.
Proposition 5.10. Let D be a type-preserving derivation on ϊF\ (5) which

commutes with contractions. Then there are unique X € 2(5) and μ e ^\(S)
such that D = ^ x + μ. (Recall the parlance of [7, p. 30].)

Proof. There is a unique X <ε &(S) such that D\^HS) = X. As in the case
of manifolds it follows that D is local. To show that X e 2(5), let p e 5 and
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let φ e Sis be tangential at p. Let v = Σ adχi be a local representative of
0 ς ϊF\S) relative to ψ near φp. Then tf^p) = 0 for / = 1, , nψ. Let Xx

be a local representative of X relative to φ near φp. Then

0 = D(φ*v)p =

Thus J*?xω is well-defined for every ω e &\S)> and it follows that X e Z(S).
Now K: = D — j£?x is a type-preserving derivation on J^* (5) which com-

mutes with contractions and vanishes on «^°(S), i.e., is C°°(5)-linear. From
Proposition 4.5 it follows that

for a uniquely determined μ e ^\(S). Since ^ ( S ) is generated by &\S) and
J^CS), it follows that Z)|^ ( 5 ) = &x + tcμ.

The standard argument with coordinates shows that K is punctual. From
Proposition 4.12 it follows then that K is completely determined by fcμ and its
point-wise actions K\$pS, p <=. S. Since K commutes with contractions,

0 = KQ(v* (x) v) = C{(κμp(v*) (g)v + v*®Kv)

for every v* e TPS* and v e TPS. It follows that K\ΪS = μ\$s. Thus with the
traditional abuse of notation we may write D = 3PX + μ.

6. Exterior differentiation and differential forms

If ω e lFln{S), φ € SI5, and ^ is a local representative of ω relative to φ de-
fined in some neighborhood V of φUφ, then ^ * ^ e ^a i ΐX^)- This form on
C/p, however, is not always uniquely determined by ω. For example, consider
the space S of Example 4.8 and let ω = i*(zdx Λ dy). Then ω = 0, but
z*(dz A dx A dy) Φ 0. This phenomenon motivates the following definition.

Definition 6.1. Let ω 6 ^^{S) and 0 € ^J l t(S). Then 0 is an exterior dif-
ferential of ω if for every p e S there exist ψ e 2ϊ5 with p € Uψ and representa-
tives ωψ and ^ of ω and θ relative to ψ in a neighborhood of p such that dωψ

= 0P. For each Λ > 1 we denote the set of exterior differentials of 0 e tF\κ\S)
by mk(S), and we define m°(5) = {0} and m(S) = {mfc(^) IΛ > 0}.

Note that m*(S), Jfc > 0, is local, that is, if μ\v e ^* l t (S) satisfies ^|^ € mfc(C/)
for every element U of some open cover of 5, then μ e mΛ(5).

Proposition 6.2. ( i ) If θ is a differential of ω, then rθ is a differential of
rω for all r e R. If θt is a differential of ωt e ^it(S), i = 1,2, then θ1 + θ2 is
a differential of ωλ + ω29 and θx A ω2 + (— l ) * ^ Λ θ2 is a differential of
ωλAω2. If θx and θ2 are differentials of ω e ^Ίϊt\S), then θx — θ2 e mk(S).

(ii) For each k, mk(S) Φ 0. m 1 ^) = {0}. m(5) is a homogeneous ideal in
^aitCS). If μt wk(S), then the set of differentials of μ is mk + 1(S). If θ is a dif-
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jerential of ω e ^l^\S), then the set of differentials of ω is θ + mk(S), and
the set of differentials of θ is mk+ι(S).

(iii) Let f <= C°°CS, S'), and let θ be a differential of ω e P^iS'). Then f*θ
is a differential of /*ω. In particular, /*m(50 cz m(5).

Proof. The proof of (i) follows directly from the definition and the prop-
erties of the exterior differential operator.

(ii) For each k, 0 € ^k
n(S) is an element of mk(S). Let p e S and assume

that ψ is tangential at p. Let θ e mι(S), and θψ and ωψ be local representatives
of θ and 0 relative to ψ such that θψ = dωψ. Lemma 2.1 implies dωψ{ψp) = 0.
Thus θ(p) = 0, and it follows that m 1 ^) = {0}. Let ω e J^ l t (S) and μ e mm(S),
let ωψ and /^ be representatives of ω and μ, and let ζ^ be a representative of
0 € ^ΐn\S) relative to p with μψ = dζψ. Then

^*(ζ, Λ ω,) = 0 6 &*£,n-\υ9) , ^ ( ζ , Λ dωψ) = 0 e ^ t m ( c / , ) .

Thus

φ*(μψ A ωψ) = φ*(d(ζψ Λ ωf) - ( - 1 ) ™ % Λ dωψ) - ^*^(ζ, Λ ω9) .

It follows that μ Λ ωem f c + m(5). Thus m(5) is an ideal in ^ a l t ( 5 ) and is
evidently homogeneous. Since dμψ = drfζ^ = 0, 0 € ^*3t

+1(S) is a differential
of //. From (i) it now follows that the set of differentials of μ e mm(S) is
mm + 1(5). Similarly, if ω e ^\^\S) has a differential θ, then the set of all dif-
ferentials of ω is θ + mk(S). Since 0 e mk+ι(S) is a differential of θ, mk+\S) is
the set of differentials of θ.

(iii) Let p <= 5, and let αy and 0^ be local representatives of ω and θ rela-
tive to 9' € Sl5/, where /(p) e Uφ,, and ί/ω ,̂ = ^ .̂ Let φ e Sί5 with p g [ / ? and
/(t/p) C i/^, and let F be a local C°°-extension of ψ'ofoψ'1. Then F*ωψ, and
F*^^, are local representatives of /*ω and /*<9 in a neighborhood of ^(p), and
dF*ωφ, = F*dωψ,. Thus f*θ is a differential of f*ω.

Definition and Corollary 6.3. Let $k(S) be the submodule of ^k

n(S) of
forms having differentials, and let @(S) :={@k(S) \ k > 0}. Part (ii) of the pre-
vious proposition shows that if θ is a differential, then θ e @(S), and in particu-
lar, m(S) c ^(5) . Define j/(S) = ^(S)/m(5), i.e., J / ( 5 ) = {j2/*(S)|Λ > 0},
where <*/*(£) = ^ f c(^)/m f c(5). The elements of ^ f c (5) are called differential k-
forms. For each k > 0 define d :^ f c(5) -^ ^ f c + 1(5) by dω = θ + m fe+1(5), where
/9 is any differential of ω. Then J satisfies

( i ) d(ω Λ ωθ = ^ A ^ + ( - l)fcω Λ dω', ω e ^ f c (5), ω7 e S(5).
Because ^mfc(5) = 0 € stfk+1(S), d factors through the iMinear map d: s/(S)
-* s/(S) diω + mk(S)): = dω for ω e 3)k(S). Then </ satisfies

(ii) d^k(S) c j / f e + 1 (^) ,
(iii) rf(ω Λ α>0 = rfω Λ ωf + ( - l)fcω Λ dω', ω 6 ^/ f c(^), ωr € J / ( 5 ) ,
(iv) ddω = 0e ^k+2(S), ω e ^k(S),
(v) If / € C~(S, S'), then /* : J \ l t (S0 -> ^*alt(S) induces a map <%f(S') -+
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) , also denoted by /*, and rfo/* = f* o d.
Proposition 6.4. A sufficient condition for ω e «^Jlt(5) fo belong to @k(S)

is that the support of ω have a paracompact neighborhood in S. Thus @(S) =
s/Άlt(S) if S is paracompact.

Proof. Every ω e ^k

ιt(S) has differentials locally. The proof follows by
routine use of partitions of unity.

Remarks 6.5. Whether <3){S) — «^*ait(5) for arbitrary S is an open question.
Neither the &-forms of § 4 nor the differential Λ -forms of this section coin-

cide with any of the three notions of differential forms introduced in [14]. In
Example 4.8, zdx represents 0 e ^\S), hence 0 e s/\S), but [zdx]^tOtO) $
S\{S).

We now establish analogs of some classical identities involving J£x, ix, and
d. The main lemma is the following.

Lemma 6.6. Let X <= 2(S), X€ ε &(S), i = 1, , k, and μ e mk(S). Then
μ(Xx Λ Λ Xk) = 0, ixμ e m^" 1 ^) , and S£xμ € mk(S).

Proof. Let p e S, φ e Sί̂  be tangential at p, and let Y, Yt be local repre-
sentatives of X, Xι relative to φ in some neighborhood U of ψp. Let v be a local
representative of 0 e J^ΰXS) with respect to ^ in some neighborhood U of φp,
without loss of generality, such that μ\ψ-iu = φ*dv. Since ι>(Zl9 , Zk_1) = 0
for all tangent vectors Z4 β TψPR

nv, we have

i Λ Λ XI) = dviφpXY^φp) Λ Λ

= Σ (-IV-^M ^ i A Λ f, Λ Λ Yk)
. 7 = 1

= 0

by Lemma 2.1.
Since ?̂*v =• 0, then φ*iγv = ixφ*v — 0, and

0 = £?xφ*v = ^>*̂ fyP = φ*(diγv + iγdv) ,

where φ*diγv e mk(φ~1U). Thus

It follows that ιx// e mk(S).
Finally, i f ^ l . - ^ = φ*<£γdv = φ*d£?Yv. Since ^*ifF^ = 0, φ*d£?Yv

m * ^ " 1 ! / ) . It follows that if x/i € m*(S). q.e.d.
Of course it is not generally true that (ω(p), Xp} is single-valued for ω €

and f̂p € Λ TP5. From Lemma 6.6 and Proposition 4.12, however, we have
the following.

Proposition 6.7. Let X e &k(S) and ωe^fk(S). Then <ω,^>eC T O (5).
In other words,
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( 6 . 8 ) m k ( S ) ( p ) : = {μ(p) | μ e m k ( S ) } c ( Λ f p s y , / o r allpeS .

The following example shows that the inclusion in (6.8) can be proper.

Example 6.9. Let S be the space of Example 4.8. Then Λ2 Γ ( 0 > M )S = 0.
On the other hand,

m\S) = spanC0O(5) \i*dx A dz, i*dy A dz} .

Thus m2GS)(0,0,0) £ (Λ 2 TiO,OtO)S)* = (Λ2Ti0,0t0)S)\
In view of Lemma 6.6, the following proposition is routine.
Theorem 6.9. Let X, Y e fi(S). ΓΛ^π as operators on s/(S), &\, ix, and

d satisfy the following identities :

( i ) sex = ix°d + doix ,

(ii) rfojSf^ = Jίf^orf,

(iii) iίXtY1 = Jδfz o zΓ — / r ° =^x

If Xt e ar(S), i = 0, . . . , * ,

(iv) </ω(Z0 Λ Λ W

= Σ ( - l ) % ω(Z0 Λ Λ Xi A Λ Xk)
ί = 0

As in the classical case, we have the following.
Proposition 6.10. Every derivation D on sέ(S) of degree 0 which commutes

with d is equal to Jgx for some X € £CS).
Finally, we have the following singular version of Stokes' identity. As stated,

the theorem is far from the best possible, but we shall defer a more careful
examination of the facts until later.

Proposition 6.11. Let Δn be the standard closed n-simplex and let σ: Δn —>
S be of class C°°. Then for every μ ς. mn(S),

(6.12) ί σ*μ = 0 .

Thus for each ω e s/n(S) and each θ <= ̂ l t ( S ) with θ + mn(S) = ω,

f σ*ω:= [ σ*θ

is well-defined. For every ω € s/n~ι(S),
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(6.13) ί σ*dω = f

Proof. By using a simplicial subdivision of Jn, the proof is reduced to the

special case σ(dn) cz Uφ, where φ e 21^ satisfies the following: there exists a

local representative v of 0 relative to φ in a neighborhood of φUφ such that

μ | ^ = φ*dv. Then σ*μ = σ*^*^ = (φoα)*dv is exact, yielding (6.12).

Now suppose that θ e ^lΰ\S) has a local representative <j> relative to φ in a

neighborhood of pt/, and that θ satisfies θ + mn~ι(S) = ω. Then

ί σ*dω=[ σ*dθ=[ σ*φ*dφ = ί (p

which by the classical singular Stokes' identity is

ί (φ o σ)*φ = ί σ*69 = f σ*ω .
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