GEODESIC FOLIATIONS BY CIRCLES

A. W. WADSLEY

1. Introduction

Smooth foliations by circles of compact three-manifolds have been completely analysed by D. B. A. Epstein in the paper [2]. Essentially, he shows that all such foliations arise as a decomposition of the manifold by the orbits of a smooth circle action. The theorem of this paper shows that the same is true of an arbitary smooth manifold, compact or not, with a foliation by circles satisfying a certain (rather strong) regularity condition.

It is known that not all foliations by circles arise as the orbits of some action by S^{1}; indeed, the paper [2] presents a foliated noncompact three-manifold as a counter-example to such a proposition. However, it is an open question whether or not such examples exist in the case of a foliated compact manifold of dimension greater than three.

A C^{r} flow on a C^{r} manifold M is a C^{r} action $\mu: \boldsymbol{R} \times M \rightarrow M$ of the additive reals on M. A C^{r} flow without fixed points, each of whose orbits is compact, gives rise to a C^{r} foliation of the manifold by circles. Further, any C^{r} foliation by circles of a manifold M gives rise to a C^{r} flow on (a double cover of) M. The version of the theorem presented here is stated for flows; an equivalent version for circle foliations in terms of differential forms is readily obtainable (see §2). The theorem is the following.

Theorem. Let $\mu: \boldsymbol{R} \times M \rightarrow M$ be a C^{r} action $(3 \leq r \leq \infty)$ of the additive group of real numbers with every orbit a circle, and M a C^{r} manifold. Then there is a C^{r} action $\rho: S^{1} \times M \rightarrow M$ with the same orbits as μ if and only if there exists some riemannian metric on M with respect to which the orbits of μ are embedded as totally geodesic submanifolds of M.

Finding some such metric given a circle action on M is easy (see §3); the proof of the converse requires a little more effort. The author wishes to thank David Epstein for his gentle encouragement and for his many helpful suggestions.

2. The invariant one-form

Suppose a riemannian metric exists on the manifold M as in the theorem. At each point $m \in M$ choose a unit vector T_{m} in the direction of the flow μ.

Then the vector field T satisfies the relations $|T|=1$ and $\nabla_{T} T=0$ on M, where ∇ is the Levi-Civita connection of the metric. Without loss of generality we may assume that the vector field T generates the flow μ. That is, $\left.(d / d t) \mu_{t}(m)\right|_{t=0}=T_{m}$ where $\mu_{t}(m)=\mu(t, m)$.

Lemma 2.1. Let $X \in T_{m} M$ and suppose that X is orthogonal to T. Then the vector $\mu_{t} * X$ in the tangent space of M at $p=\mu_{t}(m)$ for $t \in \boldsymbol{R}$ is orthogonal to T_{p}. That is, $\left\langle\mu_{t} * X, T\right\rangle=0$ for all $t \in \boldsymbol{R}$.
The proof of the lemma appears at the end of the section.
Thus the flow μ maps orthogonal vectors into orthogonal vectors for all time. Define a one-form α on M by $\alpha_{m}(X)=\langle X, T\rangle_{m}$; then $\alpha(T)=1$ and $L_{T} \alpha=0$, where L_{T} denotes Lie derivative with respect to the vector field T. This follows from Lemma 2.1 and the expression $\left(L_{T} \alpha\right)=\lim \left(\left(\mu_{t}^{*} \alpha\right)_{m}-\alpha_{m}\right) / t$ as $t \rightarrow 0$. In fact, we have a converse: given a vector field Y on M and a one-form β with $\beta(Y)=1$ and $L_{Y} \beta=0$ let $Q_{m}=\left\{X \in T_{m} M: \beta(X)=0\right\}$ and $P_{m}=$ $\left\{X \in T_{m} M: X=c Y, c \in R\right\}$. Then the tangent bundle of M splits : $T M=Q \oplus P$. Furthermore, a straightforward construction defines a riemannian metric on M such that Q_{m} is orthogonal to P_{m} at each $m \in M$. The reverse argument to the proof of Lemma 2.1 (see below) then shows that with respect to this metric the trajectories of Y are geodesics in M.

In the formula $L_{T} \alpha=C_{T}(d \alpha)+d\left(C_{T} \alpha\right)$ where d is the exterior derivative and C_{T} is contraction by T, we have $d\left(C_{T} \alpha\right)=0$, since $C_{T} \alpha=\alpha(T)=1$. Whence $C_{T}(d \alpha)=L_{T} \alpha=0$. Conversely, given a one-form β and vector field Y with $C_{Y}(d \beta)=0$ and $\beta(Y)>0$ it is easy to verify that $L_{Y}, \beta=0$ and $\beta\left(Y^{\prime}\right)=$ 1 where $Y^{\prime}=Y / \beta(Y)$. We can summarise the above two paragraphs in the following

Lemma 2.2. Let T be a nonzero vector field on the manifold M. Then there exists a riemannian metric on M so that the trajectories of T are embedded as totally geodesic submanifolds if and only if there exists a one-form α on M with $C_{T}(d \alpha)=0$ and $\alpha(T)>0$.

Such one-forms arise naturally in the study of contact manifolds as defined by Boothby and Wang [1]. In this case, the manifold M is assumed to have dimension $2 n+1$ with a globally defined one-form ω such that $\omega \wedge(d \omega)^{n} \neq 0$ on $M\left((d \omega)^{n}=d \omega \wedge \cdots \wedge d \omega\right)$. On the subspace $V_{x}=\left\{X \in T_{x} M: C_{X}(d \omega)\right.$ $=0\}$ we have $\omega \neq 0$; further, V_{x} has dimension one and is complementary to the subspace of dimension $2 n$ on which ω is zero. Let Z_{x} be that element of V_{x} for which $\omega\left(Z_{x}\right)=1$. Then the vector field Z and one-form ω satisfy the conditions of Lemma 2.2. Thus with a suitable metric on M the trajectories of Z are geodesics.

Indeed, in their paper [1] Boothby and Wang proved a special case of our theorem. They consider the case where the manifold M is compact and the induced foliation of M by the trajectories of Z is regular in the sense of Palais [6]. That is, about each point x of M there is an open neighborhood U of x so that any nonempty intersection of a trajectory with U is a connected set.

In this situation, each trajectory is closed and hence compact ; so each orbit is a circle. They deduce that there is an effective circle action on M with the same orbits as the \boldsymbol{R}-action generated by Z.
Proof of Lemma 2.1. Suppose $X_{m} \in T_{m} M$ is orthogonal to the flow. Let V_{0} be a small open disc transverse to the flow through m with cl V_{0} compact (cl $=$ closure), and X_{m} tangent to V_{0} at m. Furthermore, assume there are defined on V_{0} coordinate functions $x^{2}, \cdots, x^{n}(n=\operatorname{dim} M)$ with $x^{i}(m)=0$ and $\left(\partial / \partial x^{n}\right)_{m}=X_{m}$. Then there is an $\varepsilon>0$ such that $V=\mu\left((-\varepsilon, \varepsilon) \times V_{0}\right)$ is the diffeomorphic image of the open set $(-\varepsilon, \varepsilon) \times V_{0}$ under μ. Moreover, on V we may define coordinate functions y^{1}, \cdots, y^{n} as follows: for $p=\mu_{t}(q)$ $\left(q \in V_{0},-\varepsilon<t<\varepsilon\right)$, set $y^{1}(p)=t$ and $y^{i}(p)=x^{i}(q), 2 \leq i \leq n$. Then $\left(\partial / \partial y^{1}\right)_{p}$ $=T_{p}$ and $\left.\left(\partial / \partial y^{i}\right)_{p}=\mu_{t^{*}}\left(\partial / \partial x^{i}\right)_{q}\right)$; in particular, if $p=\mu_{t}(m)$ then $\left(\partial / \partial y^{n}\right)_{p}=$ $\mu_{t^{*}} X_{m}$. Define the vector field X on V by $X=\partial / \partial y^{n}$.

Because our hypotheses imply (i) $\nabla_{T} T=0$, (ii) $\langle T, T\rangle=1$ and (iii) $0=$ $[T, X]=\nabla_{T} X-V_{X} T$, we have $T\langle X, T\rangle=\left\langle\nabla_{T} X, T\right\rangle+\left\langle X, \nabla_{T} T\right\rangle=\left\langle\nabla_{T} X, T\right\rangle$ $=\left\langle\nabla_{X} T, T\right\rangle=\frac{1}{2} X\langle T, T\rangle=0$. That is, the inner product $\langle X, T\rangle$ is constant along the orbit of T through m. In particular, we have $\left\langle\mu_{t^{*}} X_{m}, T\right\rangle=0$ for $-\varepsilon<t<\varepsilon$. So μ translates vectors orthogonal to the orbits of the flow into orthogonal vectors. This completes the proof. In general, the flow μ need not be metric-preserving.

3. Necessity

Let M be a riemannian manifold with metric tensor g. A vector field X on M which generates a one-parameter group of isometries of M with respect to g is known as a Killing vector field with respect to g. Such a vector field satisfies the condition $L_{X} g=0$, where $L_{X} g$ is the Lie derivative of the tensor field g with respect to X.

Lemma 3.1. Let M be a riemannian manifold with metric tensor g and a nonzero Killing vector field X. Then there exists a metric g^{\prime} on M, conformal to g, such that X remains a Killing vector field with respect to g^{\prime} and, in addition, we have $|X|^{\prime}=1$. Furthermore, with respect to g^{\prime} the trajectories of X are geodesics with parametrisation by are-length.

Proof. Define the function $f: M \rightarrow R$ by $f=(g(X, X))^{-1}=|X|^{-2}$. We may define the conformal metric g^{\prime} by the tensor $g^{\prime}=f g$. Now $L_{X} f=(g(X, X))^{-2}$ - $L_{X}(g(X, X))=(g(X, X))^{-2}\left(L_{X} g\right)(X, X)=0$, thus $L_{X}(f g)=\left(L_{X} f\right) g+f\left(L_{X} g\right)$ $=0$ because $L_{X} g=0$ by hypothesis. The flow generated by X is isometric; in particular, the flow preserves the subspace of vectors orthogonal to X with respect to g^{\prime}. It follows from $\S 2$ that the trajectories of X are geodesics with parametrisation by are-length, as $|X|^{\prime}=1$.

Returning to the theorem, suppose we have $\rho: S^{1} \times M \rightarrow M$, a smooth action of the circle group S^{1} without fixed points. Identifying $S^{1}=\boldsymbol{R} / \boldsymbol{Z}$, we may sup-
pose ρ defines a flow with derived vector field T. Choose any metric $g^{\prime \prime}$ on M and define another metric by

$$
g=\int\left(\rho^{*} g^{\prime \prime}\right)
$$

where the integral is taken with respect to the invariant Haar measure on S^{1}. Then g is invariant under the action φ; that is, T is a Killing vector field with respect to g. Lemma 3.1 can now be applied to T thus proving necessity in the theorem.

4. Sufficiency

Suppose that we are given a flow $\mu: \boldsymbol{R} \times M \rightarrow M$ with every orbit a circle, and that with respect to some riemannian metric on the manifold M the orbits of μ are geodesics. Without loss of generality we may suppose parametrisation by arc-length. By Lemma 2.1 we see that the flow maps orthogonal vectors into orthogonal vectors.

Let V_{0} be a small disc in M transverse to the flow, with $\mathrm{cl} V_{0}$ compact. Then there is an $\varepsilon>0$ such that μ defines a homeomorphism of $[-\varepsilon, \varepsilon] \times \operatorname{cl} V_{0}$ into M, which is a diffeomorphism on $(-\varepsilon, \varepsilon) \times V_{0}$. By a flat neighborhood in M (resp. of a point m in M) shall be meant an open subset V of M (resp. an open neighborhood V of m) such that $V=\left((-\varepsilon, \varepsilon) \times V_{0}\right)$ for some disc V_{0} (resp. for some disc V_{0} with $m \in V_{0}$). Let $\pi: V \rightarrow V_{0}$ be the projection map.

Lemma 4.1. Let V be a flat neighborhood in M. Let $\sigma_{1}:[0,1] \rightarrow V$, $\sigma_{2}:[0,1] \rightarrow V$ be smooth curves in V orthogonal to the flow. If $\pi \circ \sigma_{1}=\pi \circ \sigma_{2}$ and $\sigma_{1}(0)=\sigma_{2}(0)$, then $\sigma_{1}=\sigma_{2}$.

Proof. A straightforward application of the uniqueness of solutions of ordinary differential equations.

Following [2, p. 69], we define $\lambda: M \rightarrow \boldsymbol{R}$ by the conditions

$$
\begin{aligned}
\text { i. } & \lambda x>0, \\
\text { ii. } & \mu_{t}(x) \neq x \\
\text { iii. } & \mu_{\lambda x}(x)=x .
\end{aligned} \text { for } 0<t<\lambda x
$$

The function λ is invariant under the flow.
Proposition 4.2, $[2, \S 5]$. The function $\lambda: M \rightarrow \boldsymbol{R}$ giving the period of a point is lower semi-continuous. If $W \subset M$, then the set of points of continuity of $\lambda \mid W$ is open in the induced topology on W.

We now use an idea basically due to Montgomery (see [4, p. 224]). We define the sets $B_{1}, B_{2} \subset M$ as follows

$$
\begin{aligned}
& B_{1}=\{x \in M: \lambda \text { is not continuous at } x\}, \\
& B_{2}=\left\{x \in B_{1}: \lambda \mid B_{1} \text { is not continuous at } x\right\} .
\end{aligned}
$$

Each of B_{1}, B_{2} is invariant. Furthermore, B_{1} (resp. B_{2}) is closed and has null interior as a subspace of M (resp. B_{1}). $M-B_{2}$ has a countable number of connected components each of which is an invariant open subset of M.

Lemma 4.3. Let U be an open connected set in M, and $f: U \rightarrow \boldsymbol{R}$ a continuous, invariant real-valued map such that $\mu_{f m}(m)=m$ for all $m \in U$. Then f is a constant map.

Proof. Fix $x \in U$. Let $V=\mu\left((-\varepsilon, \varepsilon) \times V_{0}\right)$ be a flat neighborhood of x in M. Then on $V, \lambda \geq 2 \varepsilon$. Choose another neighborhood W of $x, W=$ $\mu\left((-\varepsilon, \varepsilon) \times W_{0}\right), x \in W_{0} \subset V_{0}$ such that for $y \in W$ we have $|f x-f y|<\varepsilon$. For $p^{\prime} \in W$, by taking a smaller neighborhood if need be, we may further suppose that there exists an orthogonal curve $\sigma:[0,1] \rightarrow W$ with $\sigma(0)=x$ and $\sigma(1)=p$, where p and p^{\prime} lie on the same connected component of an orbit in W. Now $\mu_{f x} \circ \sigma$ is orthogonal and its image is contained in W; furthermore, it is easy to see that $\pi \circ \sigma=\pi \circ\left(\mu_{f x} \circ \sigma\right)$ where $\pi: W \rightarrow W_{0}$ is projection. Since $\sigma(0)=x$ $=\mu_{f x} \circ \sigma(0)$ we may apply Lemma 4.1 to obtain $\sigma=\mu_{f x} \circ \sigma$. In particular, $\mu_{f x} \circ \sigma(1)=\mu_{f x}(p)=p$. Clearly $f p=k_{1} \lambda p$ where k_{1} is an integer; similarly, we have $f x=k_{2} \lambda p$. As $|f x-f p|<\varepsilon$ and $\lambda p \geq 2 \varepsilon$ we obtain $\left|k_{1}-k_{2}\right|<\frac{1}{2}$, which implies $k_{1}=k_{2}$. Whence $f x=f p=f p^{\prime}$. As $p^{\prime} \in W$ was arbitary and U is connected, the lemma is proved.

Corollary 4.4. Let U be a connected component of $M-B_{1}$. Then $\lambda \mid U=$ c, a constant.

Define $C_{1}=\{x \in M: \lambda$ is unbounded in any neighborhood of $x\} . C_{1}$ is a closed invariant subset of M. Furthermore, we have $C_{1} \subset B_{1}$ as the function λ is locally constant on $M-B_{1}$. In the proof we assume C_{1} is nonempty and prove a contradiction.

Proposition 4.5. Let D be a connected component of $M-C_{1}$. If $U \subset D$ is a component of $M-B_{1}$ with $\lambda \mid U=c$, then $\mu_{c} \mid D=\mathrm{id}$.

Proof. D is an open invariant subset of M. Fix $m \in D$ and let $A \subset D$ be the orbit of μ through m. Let $V=\mu\left((-\varepsilon, \varepsilon) \times V_{0}\right)$ be a flat neighborhood of m in D, so $\lambda \geq 2 \varepsilon$ on V and $\mathrm{cl} V_{0}$ is compact. Because λ is locally bounded on D, we may assume that $\lambda \leq \Lambda$ on $V, \Lambda \in \boldsymbol{R}$. Additionally, it can be supposed that the disc V_{0} is sufficiently small to ensure that the orbit A intersects V_{0} in only the single point m. We define the Poincare map $S: V_{1} \rightarrow V_{0}$ for some smaller disc $V_{1} \subset V_{0}$. For more detail the reader is referred to [2, $\left.\S \S 4,5\right]$. Essentially, there exists a neighborhood V_{1} of m in V_{0} such that the map $f: V_{1} \rightarrow \boldsymbol{R}$, given by the conditions

$$
\begin{aligned}
\text { i. } & f x>0, \\
\text { ii. } & \mu_{t}(x) \notin V_{0} \quad \text { for } 0<t<f x, \\
\text { iii. } & \mu_{f x} \in V_{0}
\end{aligned}
$$

is well-defined and C^{r} on V_{1}. The Poincaré map $S: V_{1} \rightarrow V_{0}$ is defined by $S_{x}=\mu_{f x}(x)$. The point $m \in V$ is invariant under S. Let $N=[\Lambda /(2 \varepsilon)+1]$.

We define by induction neighborhoods V_{i} of m in V_{0} such that $S V_{i+1} \subset V_{i}$ ($1 \leq i \leq N!$). Because $\lambda \geq 2 \varepsilon$ on the open invariant set orb V_{0} (where orb $V_{0}=$ $\left\{y \in M: y=\mu_{t}(x)\right.$ for $\left.\left.t \in \boldsymbol{R}, x \in V_{0}\right\}\right)$ and because $\lambda \leq \Lambda$ here, it is easy to show that for each point $x \in V_{q}$, where $q=N!, S^{r} x=x$ for some $r, 1 \leq r \leq N$. Hence $S^{q}=$ id on V_{q}. We obtain an open neighborhood W of m in V_{0} which is invariant under S by putting $W=\bigcap_{i=1}^{q} S^{i} V_{q}$. The set orb $W \subset D$ is invariant, connected and open in M. Define the function $g: W \rightarrow \boldsymbol{R}$ by

$$
g(x)=\sum_{i=1}^{q}\left(f \circ S^{i} x\right) .
$$

Then g is continuous and invariant under S. Thus it may be extended continuously to a function g on all of orb W, invariant under μ and agreeing on W. Because $S^{q}=$ id on W we have $\mu_{g x}(x)=x$ for every $x \in$ orb W. By Lemma 4.3, g must be constant on orb W. As the set $M-B_{1}$ is open and dense in M, some component U of $M-B_{1}$ intersects orb W nontrivially. Let $\lambda \mid U=c$. It is easy to see that $g=k c$ on W, where k is some integer, and thus $g=k c$ on orb W. The transformation $\mu_{c} \mid$ orb W is periodic and is the identity on the interior set U orb W. By a theorem of Newman [5], μ_{c} orb $W=$ id. Straightforward use of a covering of D by flat neighborhoods and the fact that D is connected completes the proof of the proposition.

Corollary 4.6. For D as above, $\mu_{c} \mid \mathrm{cl} D=\mathrm{id}$, and if $x \in \mathrm{cl} D$ then we have $k_{x} \lambda x=c$ where $k_{x} \geq 1$ is an integer. Furthermore, $\mu_{c^{*}}: T_{x} M \rightarrow T_{x} M$ is the identity for each $x \in \operatorname{cl} D$.

Corollary 4.7. For D as above we have bdy $D=\operatorname{bdy}(\mathrm{cl} D)$; that is, int $(\mathrm{cl} D)=D$.

It will be useful to consider the action μ on the component D of $M-C_{1}$, where $\mu_{c} \mid D=$ id as above. Define another metric $g^{\prime \prime}$ on M by

$$
g^{\prime \prime}=c^{-1} \int_{0}^{c}\left(\mu_{t}^{*} g\right) d t
$$

It follows from Corollary 4.6 that on $\mathrm{cl} D$ the flow is isometric with respect to $g^{\prime \prime}$. It will be convenient to work with the $g^{\prime \prime}$-metric only for the remainder of the proof.

Since μ is isometric on the open set D, it commutes with the exponential map there. For $p \in M, r>0$ set $B_{r}^{\prime}(p)=\left\{X \in T_{p} M:|X|^{\prime \prime}<r\right\}$ and define $B_{r}(p)=\exp B_{r}^{\prime}(p)$. If $p \in D$, then there exists some $r>0$ such that $B_{r}(p) \subset D$ and $B_{r}(p)$ is the diffeomorphic image of the ball $B_{r}^{\prime}(p)$ in $T_{p} M$. Thus $\mu_{t} \circ \exp _{p}\left|B_{r}^{\prime}(p)=\exp _{q} \circ \mu_{t *}\right| B_{r}^{\prime}(p)$ for $q=\mu_{t}(p)$ and all time t; in particular, the set $B_{r}(p)=\mu_{\lambda p} B_{r}(p)$, so that the action of $\mu_{2 p}$ in a neighborhood of p is linear with respect to geodesic coordinates at p.

It follows from Proposition 4.2 that if $m \in\left(B_{1}-B_{2}\right) \cap D$ then there exists a neighborhood W of m in D such that $\lambda \mid B_{1} \cap W$ is continuous. By choosing
some smaller neighborhood if necessary, we can suppose $\lambda \mid B_{1} \cap W$ is constant. (Because $\mu_{c} \mid \mathrm{cl} D=$ id and λ is locally bounded below, we may first suppose that $\lambda \mid B_{1} \cap W$ takes only a finite set of values. Then, since λ is continuous on this set, we can easily find a (smaller) neighborhood W^{\prime} of m so that $\lambda \mid B_{1} \cap W^{\prime}$ is constant.) Suppose $\lambda m=c / k, k \geq 1$ an integer. Then the transformation $\mu_{2 m^{*}}: T_{m} M \rightarrow T_{m} M$ is such that every vector is either fixed or has period k. Using the diffeomorphism $B_{r}(m)=\exp B_{r}^{\prime}(m)$ it is easy to see that if $k=1$ then λ would be continuous at m, whence $k \geq 2$; thus the fixed point set of $T_{m} M$ (with respect to $\mu_{2 m^{*}}$) has codimension at least one. Denote this set by $H^{\prime}(m)$ and define $H(m)=\exp _{m} H^{\prime}(m)$. Thus $\mu_{\lambda m} \mid H(m) \cap B_{r}(m)=$ id and the only fixed points of $B_{r}(m)$ under the transformation $\mu_{2 m}$ are contained in $B_{r}(m) \cap H(m)$. (Note that $B_{r}(m) \cap B_{1}$ possibly includes points of B_{2}.)

Define $C_{2}=\left\{x \in C_{1}: \lambda \mid C_{1}\right.$ is continuous at $\left.x\right\}$. By Proposition 4.2, C_{2} is an open subset of C_{1} (with respect to the relative topology). Let $p \in \operatorname{bdy} D \cap C_{2}$ where D is some component of $M-C_{1}$. (bdy $D \subset C_{1}$ because points of bdy D are not interior in $M-C_{1}$.) Then there exists a neighborhood W of p in M such that $\lambda \mid W \cap$ bdy D is continuous and, as before, we may suppose that λ is constant there.

Lemma 4.8. $\lambda \mid \operatorname{bdy} D \cap W=c$.
Proof. Most of the work in the proof of this lemma arises because bdy D need not a priori be a smoothly embedded submanifold of M.

Without loss of generality, the point p is arcwise accessible from D; that is, there is some (regular) arc lying in $D \cup\{p\}$ having p as an endpoint. Such points are obviously dense in the boundary (see, for example, [4, p. 119]). With a slight abuse of notation, denote some such arc by $[q, p]$ with $[q, p$) contained in $W \cap D$.

It is well-known that given any compact set $A \subset M$ there exists an $s>0$ such that for each $x \in A$ the ball $B_{s}(x)$ is convex and such that if the vector $X \in T_{y} M, y \in \operatorname{bdy} B_{s}(x)$ is tangent to the sphere bdy $B_{s}(x)$ then the geodesic $\exp t X$ does not penetrate the ball $B_{s}(x)$ near y (see, for example, [3, § 9.4]). Setting $A=[q, p]$ we let $s>0$ as above; we may further suppose that $B_{s}(q) \subset D$ and that if $x \in[q, p]$ then $\mathrm{cl} B_{s}(x) \subset W$. Then there exists some $y \in[q, p)$ such that bdy $D \cap \operatorname{cl} B_{s}(y) \neq \emptyset$ and bdy $D \cap \operatorname{cl} B_{s}(y) \subset$ bdy $B_{s}(y)$. Let $z \in$ bdy $D \cap$ bdy $B_{s}(y)$. If $X \in T_{z} M$ is tangent to the sphere bdy $B_{s}(y)$ then the geodesic $\exp t X$ lies outside of $B_{s}(y)$ near z; furthermore, if X is not tangent to this sphere, then the geodesic $\exp t X$ or $\exp (-t X), t>0$ penetrates the ball $B_{s}(y)$ for some positive distance. Note that as the radius s varies over lesser values such points z will be arbitrary near p, and that $\lambda p=\lambda z$.

There are a metric ball $B_{r}(z) \subset W$ with center z and an $a>0$ such that if $x \in B_{r}(z)$ then the ball $B_{a}(x)$ is convex. Thus the open set $B_{a}(z) \cap B_{s}(y)$ is convex and contained within $D \cap W$. We may distinguish two cases:

1. z is approximated by points of $B_{1}-B_{2}$ in $B_{a}(z) \cap B_{s}(y)$,
2. case 1 does not occur.

Consider case 1. Let m_{1} be an element of $B_{1}-B_{2}$ in $B_{a}(z) \cap B_{s}(y)$ with associated fixed-point set $H\left(m_{1}\right)$ (see the paragraph following Corollary 4.7). Recall that the flow, when restricted to D, preserves the metric and consequently maps geodesics into geodesics whilst preserving their parametrisation. In particular, if $g:[0,1] \rightarrow \mathrm{cl} D$ is a geodesic with $g(0)=x \in \operatorname{bdy} D$ and $g(0,1] \subset D$, then for each integer k we have $\mu_{k x x} \circ g:[0,1] \rightarrow \mathrm{cl} D$ is a geodesic on (0,1] and, by continuity, it must be geodesic at $\mu_{k x x} \circ g(0)=x$. Now, if the set $H\left(m_{1}\right) \cap B_{a}\left(m_{1}\right) \cap B_{a}(z)$ intersects bdy D then it contains an open subset of bdy D, which is impossible. For otherwise, there is some $w \in \operatorname{bdy} D \cap B_{a}\left(m_{1}\right), w \notin H\left(m_{1}\right)$ with a geodesic $\exp t X$ in $B_{a}\left(m_{1}\right), X$ tangent to M at m_{1}, such that $\exp t_{0} X=w$ and $\exp t X \in D \cap B_{a}\left(m_{1}\right)$ for $0<t<t_{0}$. Thus the point $\exp t_{0} X$ is fixed under the transformation $\mu_{2 m_{1}}$. By the definition of $H\left(m_{1}\right)$ we have $t_{0} X \in H^{\prime}\left(m_{1}\right)$ which contradicts the hypothesis that $w \notin H\left(m_{1}\right)$.

Furthermore, $H\left(m_{1}\right) \cap \operatorname{cl} B_{a}\left(m_{1}\right) \cap B_{a}(z)$ is closed in $B_{a}(z)$, and is therefore bounded away from z. Thus we may choose $m_{2} \in\left(B_{1}-B_{2}\right) \cap\left(B_{a}(z) \cap B_{s}(y)\right)$ strictly nearer z than m_{1} so that $m_{2} \notin H\left(m_{1}\right)$ but $m_{2} \in B_{a}\left(m_{1}\right)$. (Because $B_{a}\left(m_{1}\right)$, $B_{a}(z)$ are convex and $z \in B_{a}\left(m_{1}\right)$.) Proceeding inductively, we may find $m_{i} \in\left(B_{1}-B_{2}\right) \cap\left(B_{a}(z) \cap B_{s}(y)\right)$ strictly nearer z than m_{i-1} with $m_{i} \notin H\left(m_{j}\right)$, $1 \leq j<i$ but with $m_{i} \in B_{a}\left(m_{j}\right), 1 \leq j<i$. By the definition of $H\left(m_{j}\right) \subset B_{a}\left(m_{j}\right)$ we have $\lambda m_{i} \neq \lambda m_{j}$ for $1 \leq j<i$. But, by hypothesis, λ is bounded away from zero in W and $B_{a}(z) \subset W$. Moreover, $\mu_{c} \mid \mathrm{cl} D=\mathrm{id}$. Hence there is only a finite number of values for $\lambda \mid D \cap B_{a}(z)$. In particular, $\lambda \mid B_{1} \cap D \cap B_{a}(z)$ takes only finitely many values; but this contradicts the construction of our sequence $\left\{m_{i}\right\}$. Thus case 1 cannot occur.

Consider case 2. That is, z is not approximated by points of $B_{1}-B_{2}$ in $B_{a}(z) \cap B_{s}(y)$. But since $B_{1}-B_{2}$ is open and dense in B_{1}, for some smaller value of a we also have that $B_{1} \cap\left(B_{a}(z) \cap B_{s}(y)\right)=\emptyset$. Thus $B_{a}(z) \cap B_{s}(y) \subset U$, where U is some component of $M-B_{1}, U \subset D$ and $\lambda \mid U=c$. By Corollary 4.6, if $x \in \operatorname{bdy} D \cap W$ then $\lambda x=k c$ where $k \geq 1$ is an integer. Consider the case $k \geq 2$.

In $T_{2} M$ denote by F the one-codimensional hyperplane of vectors tangent to the sphere bdy $B_{s}(y) . F$ partitions $T_{z} M$ into two complementary open halfspaces E^{-}and E^{+}where E^{+}consists of vectors X such that the geodisic exp $t X$, $t>0$, penetrates the ball $B_{s}(y)$ for some positive distance. Restricting attention to the ball $B_{a}(z)$, for each vector $X \in E^{+}$and integer j the curve $\mu_{j \lambda z} \circ \exp t X$ (for small $t>0$) is a geodesic in D; consequently, $\mu_{j z z} \circ \exp t X=\exp _{z} \circ t\left(\mu_{j z z^{*}} X\right)$. Since $\mu_{c} \mid U=$ id, each vector X in E^{+}has period k with respect to $\mu_{2_{2}{ }^{*}}: T_{z} M$ $\rightarrow T_{2} M$. If there is $t_{0}>0$ such that $\exp t_{0} X \in$ bdy $D \cap B_{a}(z)$ where $X \in E^{+}$, then the vector $t_{0} X$ would be fixed under $\mu_{\lambda z^{*}}$ (as $\lambda \mid W \cap$ bdy D is constant) which contradicts the fact that X has period $k \geq 2$. Thus $\exp _{z}$ maps $E^{+} \cap B_{a}^{\prime}(z)$ diffeomorphically into $U \subset D$.

Lemma 4.9. Let V be a vector space with $F \subset V$ a one-codimensional hyperplane, and $T: V \rightarrow V$ a linear transformation of finite period such that
each point of the open half-spaces E^{-}, E^{+}of V determined by F has least period (with respect to T) strictly greater than one. Then the orbit of E^{+}under successive transformations by T includes E^{-}.

Proof. It is sufficient to show that the orbit of each point $v \in E^{-}$intersects E^{+}nontrivially. If none of $v T, v T^{2}, \cdots, v T^{k-1}$ (where k is the period of T) are in E^{+}then the invariant vector $v+v T+\cdots+v T^{k-1}$ is in E^{-}as well, but all invariant vectors are contained in F. Thus at least one $v T^{j} \in E^{+}$.

In the case $k \geq 2$ the lemma applies to $\mu_{z^{*}}: T_{z} M \rightarrow T_{z} M$. Thus $\exp B_{a}^{\prime}(z) \subset$ cl U and bdy $D \cap B_{a}(z) \subset \operatorname{cl} D$. But this contradicts Corollary 4.7. Therefore $k=1, \lambda \mid$ bdy $D \cap W=c$ and the proof of Lemma 4.8 is complete.

Let $x \in C_{2}$. There exists a neighborhood W of x in M such that $\lambda \mid W \cap C_{1}$ is continuous. Furthermore, Lemma 4.8 shows that for each point $p \in \operatorname{bpy} D_{i}$ $\cap W$, where D_{i} is a component of $M-C_{1}$ with $\mu_{c_{i}} \mid D_{i}=\mathrm{id}$ (as in Proposition 4.5), we have $\lambda p=c_{i}$. Define the function $h: W \rightarrow R$ by

$$
h q= \begin{cases}c_{i} & \text { if } q \in \mathrm{cl} D \cap W \\ \lambda q & \text { if } q \in W \cap C_{1}\end{cases}
$$

The function h is clearly continuous, and $\mu_{h q} q=q$ for all $q \in W$. By Lemma 4.3, h is constant on W, which implies λ is bounded in a neighborhood of x. But this contradicts the hypothesis that C_{1} is nonempty, because C_{2} is dense in C_{1}. Thus λ is bounded on M. Proposition 4.5 then implies that μ has period c on M. Evidently, this proves the theorem.

Bibliography

[1] W. M. Boothby \& H. C. Wang, On contact manifolds, Ann. of Math. 68 (1958) 721-734.
[2] D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math. 95 (1972) 68-82.
[3] N. J. Hicks, Notes on differential geometry, Van Nostrand, Princeton, 1965.
[4] D. Montgomery \& L. Zippin, Topological transformation groups, Interscience, New York, 1955.
[5] M. H. A. Newman, A theorem on periodic transformations of spaces, Quart. J. Math. 2 (1931) 1-8.
[6] R.S. Palais, A global formulation of the Lie theory of transportation groups, Mem. Amer. Math. Soc. No. 22, 1957.

