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GEODESIC FOLIATIONS BY CIRCLES

A. W. WADSLEY

1. Introduction

Smooth foliations by circles of compact three-manifolds have been com-
pletely analysed by D. B. A. Epstein in the paper [2]. Essentially, he shows
that all such foliations arise as a decomposition of the manifold by the orbits
of a smooth circle action. The theorem of this paper shows that the same is
true of an arbitary smooth manifold, compact or not, with a foliation by circles
satisfying a certain (rather strong) regularity condition.

It is known that not all foliations by circles arise as the orbits of some action
by Sι indeed, the paper [2] presents a foliated noncompact three-manifold as
a counter-example to such a proposition. However, it is an open question
whether or not such examples exist in the case of a foliated compact manifold
of dimension greater than three.

A Cr flow on a Cr manifold M is a Cr action μ: R X M —• M of the additive
reals on M. A Cr flow without fixed points, each of whose orbits is compact,
gives rise to a Cr foliation of the manifold by circles. Further, any Cr foliation
by circles of a manifold M gives rise to a Cr flow on (a double cover of) M.
The version of the theorem presented here is stated for flows an equivalent
version for circle foliations in terms of differential forms is readily obtainable
(see § 2). The theorem is the following.

Theorem. Let μ: R X M —> M be a Cr action (3 < r < oo) of the additive
group of real numbers with every orbit a circle, and M a Cr manifold. Then
there is a Cr action p\ Sι X M —> M with the same orbits as μ if and only if
there exists some riemannian metric on M with respect to which the orbits of
μ are embedded as totally geodesic submanifolds of M.

Finding some such metric given a circle action on M is easy (see § 3) the
proof of the converse requires a little more effort. The author wishes to thank
David Epstein for his gentle encouragement and for his many helpful sugges-
tions.

2. The invariant one-form

Suppose a riemannian metric exists on the manifold M as in the theorem.
At each point m e M choose a unit vector Tm in the direction of the flow μ.
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Then the vector field T satisfies the relations |Γ | = 1 and V TT = 0 on M,
where V is the Levi-Civita connection of the metric. Without loss of generality
we may assume that the vector field T generates the flow μ. That is,
(d/dt)μt(m)\t=0 = Tm where μt(m) = μ(t,m).

Lemma 2.1. Let X ε TmM and suppose that X is orthogonal to T. Then
the vector μt*X in the tangent space of M at p = μt(m) for t e R is orthogonal
to Tp. That is, (μt*X, Γ> = 0 for all teR.

The proof of the lemma appears at the end of the section.
Thus the flow μ maps orthogonal vectors into orthogonal vectors for all time.

Define a one-form a on M by am(X) = <X, Γ>m then a(T) = 1 and Lτa = 0,
where Lτ denotes Lie derivative with respect to the vector field T. This follows
from Lemma 2.1 and the expression (Lτa) = lim ((μt*a)m — am)/t as t -> 0.
In fact, we have a converse: given a vector field Y on M and a one-form β
with β(Y) = 1 and Lγβ = 0 let Qm = {X e TmM: β(X) = 0} and Pm =
{X <= TmM :X = cY,ce R}. Then the tangent bundle of M splits :TM = Q®P.
Furthermore, a straightforward construction defines a riemannian metric on M
such that Qm is orthogonal to Pm at each m e M. The reverse argument to the
proof of Lemma 2.1 (see below) then shows that with respect to this metric
the trajectories of Y are geodesies in M.

In the formula Lτa = Cτ(doί) + d(Cτa) where d is the exterior derivative
and Cτ is contraction by Γ, we have d(Cτa) = 0, since Cτa = a(T) = 1.
Whence Cτ(da) = Lτa = 0. Conversely, given a one-form β and vector field
Y with Cγ(dβ) = 0 and β(Y) > 0 it is easy to verify that Lγ,β = 0 and β(Y') =
1 where Y7 = Y/β(Y). We can summarise the above two paragraphs in the
following

Lemma 2.2. Let T be a nonzero vector field on the manifold M. Then
there exists a riemannian metric on M so that the trajectories of T are em-
bedded as totally geodesic submanifolds if and only if there exists a one-form
a onM with Cτ{da) = 0 and a(T) > 0.

Such one-forms arise naturally in the study of contact manifolds as defined
by Boothby and Wang [1], In this case, the manifold M is assumed to have
dimension 2n + 1 with a globally defined one-form ω such that ω Λ (dω)n Φ 0
on M ((dω)n = dω A Λ dω). On the subspace Vx = {X e TXM: Cx{dω)
= 0} we have ω Φ 0 further, Vx has dimension one and is complementary
to the subspace of dimension In on which ω is zero. Let Zx be that element
of Vx for which ω{Zx) = 1. Then the vector field Z and one-form ω satisfy
the conditions of Lemma 2.2. Thus with a suitable metric on M the trajectories
of Z are geodesies.

Indeed, in their paper [1] Boothby and Wang proved a special case of our
theorem. They consider the case where the manifold M is compact and the
induced foliation of M by the trajectories of Z is regular in the sense of Palais
[6]. That is, about each point x of M there is an open neighborhood U of x
so that any nonempty intersection of a trajectory with U is a connected set.
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In this situation, each trajectory is closed and hence compact so each orbit
is a circle. They deduce that there is an effective circle action on M with the
same orbits as the l?-action generated by Z.

Proof of Lemma 2.1. Suppose Xm e TmM is orthogonal to the flow. Let
Vo be a small open disc transverse to the flow through m with cl Vo compact
(cl = closure), and Xm tangent to Vo at m. Furthermore, assume there are de-
fined on Vo coordinate functions x2, , xn (n = dim M) with x^m) = 0 and
(d/dxn)m = Xm. Then there is an ε > 0 such that V = μ(( — e, ε) X Fo) is the
diffeomorphic image of the open set ( —ε,ε) X F o under μ. Moreover, on V
we may define coordinate functions y\ - - -,yn as follows: for p = μt(q)
(qεV0,-ε<t< ε), set y\p) = t and y*(p) = xι(q), 2<i<n. Then (d/dy%
= Tp and (d/dy% = μt*(d/dx%) in particular, if p = μt(m) then (d/dyn)p =
μt*Xm. Define the vector field X on V by X = d/dyn.

Because our hypotheses imply (i) VTT = 0, (ii) <T, T> = 1 and (iii) 0 =
[T, X] = VTX - VXT, we have T<X, Γ> = <VTX, T> + <X, FTT} = < Γ r Z , Γ>
= (ΓjfΓ, Γ> = \X(J, T} = 0. That is, the inner product <Z, T) is constant
along the orbit of T through m. In particular, we have (μt*Xm, Γ> = 0 for
— ε < t < ε. So μ translates vectors orthogonal to the orbits of the flow into
orthogonal vectors. This completes the proof. In general, the flow μ need not
be metric-preserving.

3. Necessity

Let M be a riemannian manifold with metric tensor g. A vector field X on
M which generates a one-parameter group of isometries of M with respect to
g is known as a Killing vector field with respect to g. Such a vector field sati-
sfies the condition Lxg = 0, where Lxg is the Lie derivative of the tensor field
g with respect to X.

Lemma 3.1. Let M be a riemannian manifold with metric tensor g and a
nonzero Killing vector field X. Then there exists a metric gf on M, conformal
to g, such that X remains a Killing vector field with respect to g' and, in ad-
dition, we have \X\f = 1. Furthermore, with respect to g/ the trajectories of
X are geodesies with parametrisation by are-length.

Proof. Define the function /: M -> R by / = (g(X, X))~ι = \X\~2. We may
define the conformal metric gf by the tensor g' = fg. Now Lxf = (g(X,X))~2

Lx(g(X, X)) = (g(X, X))-\Lxg){X, X) = 0, thus Lx(fg) = (Lxf)g + f(Lxg)
= 0 because Lxg = 0 by hypothesis. The flow generated by X is isometric;
in particular, the flow preserves the subspace of vectors orthogonal to X with
respect to g'. It follows from § 2 that the trajectories of X are geodesies with
parametrisation by are-length, as \X\' = 1.

Returning to the theorem, suppose we have p: S1 X M—+M, a smooth action
of the circle group S1 without fixed points. Identifying Sι = R/Z, we may sup-
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pose p defines a flow with derived vector field T. Choose any metric g" on M
and define another metric by

= J W ) >
where the integral is taken with respect to the invariant Haar measure on S1.
Then g is invariant under the action φ that is, T is a Killing vector field with
respect to g. Lemma 3.1 can now be applied to T thus proving necessity in
the theorem.

4. Sufficiency

Suppose that we are given a flow μ: R X M —> M with every orbit a circle,
and that with respect to some riemannian metric on the manifold M the orbits
of μ are geodesies. Without loss of generality we may suppose parametrisation
by arc-length. By Lemma 2.1 we see that the flow maps orthogonal vectors
into orthogonal vectors.

Let Vo be a small disc in M transverse to the flow, with cl Vo compact. Then
there is an ε > 0 such that μ defines a homeomorphism of [ —ε, ε] X cl Vo into
M, which is a diffeomorphism on ( —ε,ε) X Vo. By a flat neighborhood in M
(resp. of a point m in M) shall be meant an open subset V of M (resp. an open
neighborhood V of m) such that V = (( — ε,ε) X Fo) for some disc Vo (resp.
for some disc Vo with m eV0). Let π: V —• VQ be the projection map.

Lemma 4.1. Let V be a flat neighborhood in M. Let σλ: [0, 1] —* F,
<72: [0, l]-+V be smooth curves in V orthogonal to the flow. If π oσλ = π o <τ2

ami σ^O) = σ2(0), */ιen σx = <r2.
Proof. A straightforward application of the uniqueness of solutions of or-

dinary differential equations.
Following [2, p. 69], we define λ: M —> /? by the conditions

i. u > 0 ,

ii. μt{x) Φ x for 0 < t < λx ,

iii. μ^O) = Λ: .

The function Λ is invariant under the flow.
Proposition 4.2, [2, § 5]. The function λ: M —> R giving the period of a

point is lower semi-continuous. If W C M, ί/ze« the set of points of continuity
of λ I W is open in the induced topology on W.

We now use an idea basically due to Montgomery (see [4, p. 224]). We de-
fine the sets Bλ,B2<zMas follows

Bγ = {x e M: λ is not continuous at x] ,

B2 = {x € Bλ: λ I Bλ is not continuous at x}.
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Each of Bλ,B2 is invariant. Furthermore, Bλ (resp. B2) is closed and has null
interior as a subspace of M (resp. Bλ). M — B2 has a countable number of
connected components each of which is an invariant open subset of M.

Lemma 4.3. Let U be an open connected set in M, and f: U —> R a con-
tinuous, invariant real-valued map such that μfm(m) = m for all m e U. Then
f is a constant map.

Proof. Fix x € U. Let V = μ(( — ε9 ε) X Vo) be a flat neighborhood of x in
M. Then on V, λ > 2ε. Choose another neighborhood W of x, W =
μ(( — e, ε) X WQ), x e Wo C VQ such that for y e W we have \fx — fy\ < ε. For
p' e W, by taking a smaller neighborhood if need be, we may further suppose
that there exists an orthogonal curve σ: [0, 1] —> W with σ(0) = x and σ(l) = p,
where p and pf lie on the same connected component of an orbit in W. Now
μfx o a is orthogonal and its image is contained in W furthermore, it is easy
to see that π o σ = π o (μfx o σ) where π: W —> WQ is projection. Since σ(0) = x
= μfxoσ(0) we may apply Lemma 4.1 to obtain a = μfx oσ. In particular,
μfx°o(X) = μ/x(p) = P Clearly /p = kλλp where kγ is an integer; similarly,
we have fx = k2λp. As \fx — fp\ < ε and ^p > 2ε we obtain 1^ — k2\ < J,
which implies kλ = k2. Whence fx ~ fp = fpf. As pr e W was arbitary and U
is connected, the lemma is proved.

C o r o l l a r y 4 . 4 . L e t U be a connected component of M — Bx. Then λ\U =
c, a constant.

Define Cλ = {x e M : λ is unbounded in any neighborhood of x}. Cγ is a
closed invariant subset of M. Furthermore, we have Cλ C Bλ as the function λ
is locally constant on M — Bλ. In the proof we assume Cλ is nonempty and
prove a contradiction.

Proposition 4.5. Let D be a connected component of M — C^ If U C D
is a component of M — Bλ with λ\U = c, then μc\D = id.

Proof. D is an open invariant subset of M. Fix m e D and let A c D be
the orbit of μ through m. Let V = μ(( — ε, ε) X Vo) be a flat neighborhood of
m in D, so Λ > 2ε on V and cl F o is compact. Because λ is locally bounded on
Z), we may assume that λ < Λ on V, Λ e R. Additionally, it can be supposed
that the disc Vo is sufficiently small to ensure that the orbit A intersects Vo in
only the single point m. We define the Poincare map S: Vλ —* Vo for some
smaller disc Vλ c VQ. For more detail the reader is referred to [2, §§4, 5].
Essentially, there exists a neighborhood Vλ of m in Vo such that the map
/: Vλ —> /?, given by the conditions

i. fx > 0 ,

ii. μf(*) ί F 0 for 0 < t < fx ,

iii. μfx € Fo ,

is well-defined and Cr on Kj. The Poincare map S: V1-> VQ is defined by
Sx = /i/a.(^). The point m € F is invariant under S. Let iV = [v4/(2ε) + 1].



546 A. W. WADSLEY

We define by induction neighborhoods Vt of m in Vo such that SVi+1 C Vt

(1 < i < N!). Because λ > 2ε on the open invariant set orb Vo (where orb Vo =
{y eM:y = μt(x) for t e R, x € Fo}) and because λ < A here, it is easy to show
that for each point x e Vq, where q = N\, Srx = x for some r, 1 < r < N.
Hence Sq = id on Vq. We obtain an open neighborhood W of m in F o which
is invariant under S by putting W = Π?=i S*Kβ. The set orb W C D is invariant,
connected and open in M. Define the function g: W -> i? by

g(x)= tit*?*) -
i = l

Then g is continuous and invariant under S. Thus it may be extended contin-
uously to a function g on all of orb W, invariant under μ and agreeing on W.
Because Sq = id on W we have μgx{x) — x for every x e orb W. By Lemma
4.3, g must be constant on orb W. As the set M — Bx is open and dense in M,
some component U of M — Bx intersects orb W nontrivially. Let λ\ U = c. It
is easy to see that g = kc on W, where k is some integer, and thus g = kc on
orb JF. The transformation μc\oτb W is periodic and is the identity on the
interior set U orb W. By a theorem of Newman [5], μc\oτb W = id. Straight-
forward use of a covering of D by flat neighborhoods and the fact that D is
connected completes the proof of the proposition.

Corollary 4.6. For D as above, μc\c\D = id, and if x e c l D then we have

kxλx = c where kx > 1 is an integer. Furthermore, μc*: TXM —•» Γ X M w ί/ie

identity for each x e cl Zλ

Corollary 4.7. For Z) 0s1 above we have bdy Z) = bdy (cl D) that is,
int(clD) = D.

It will be useful to consider the action μ on the component D of M — Cx,
where μc \ D = id as above. Define another metric g" on M by

= c-1 Γ (μ*
Jo

It follows from Corollary 4.6 that on cl D the flow is isometric with respect to
g". It will be convenient to work with the g^-metric only for the remainder
of the proof.

Since μ is isometric on the open set D, it commutes with the exponential
map there. For p e M, r > 0 set B'r(p) = {X e TPM: \X\" < r] and define
Br(p) = exp B'r(p). If p e D, then there exists some r > 0 such that Br(p) C D
and Br(p) is the difϊeomorphic image of the ball B'r(p) in TPM. Thus
μt o eχpp I B'r(p) = expq o μt* \ B'r(p) for q = μt(p) and all time /; in particular,
the set Br(p) = μλpBr(p), so that the action of μλp in a neighborhood of p is
linear with respect to geodesic coordinates at p.

It follows from Proposition 4.2 that if m e (Bx — B2) Π D then there exists
a neighborhood W of m in D such that ^ 1 ^ Π W is continuous. By choosing
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some smaller neighborhood if necessary, we can suppose λ \ Bι Π W is con-
stant. (Because μc\c\D = id and λ is locally bounded below, we may first
suppose that λ\Bι Γi W takes only a finite set of values. Then, since λ is con-
tinuous on this set, we can easily find a (smaller) neighborhood W of m so that
λ\B\ Π W is constant.) Suppose λm = c/k, k > 1 an integer. Then the trans-
formation μim*: TmM —• TmM is such that every vector is either fixed or has
period k. Using the difϊeomorphism Br(m) = exp B'r{m) it is easy to see that
if k = 1 then λ would be continuous at m, whence k > 2 thus the fixed point
set of TmM (with respect to μλm*) has codimension at least one. Denote this set
by H\m) and define Him) = expm H'(m). Thus μλm\H(m) ΓΊ Br{m) = id and
the only fixed points of Br(m) under the transformation μλm are contained in
Br(m) Π Him). (Note that Br(m) Π Bλ possibly includes points of B2.)

Define C2 = {x € CΊ: Λ|CΊ w continuous at x}. By Proposition 4.2, C2 is an
open subset of Cλ (with respect to the relative topology). Let p e bdy D ί l C 2

where D is some component of M — Cj. (bdy D CCX because points of bdy D
are not interior in M — Cλ.) Then there exists a neighborhood W of p in M
such that Λ| JF Π bdy D is continuous and, as before, we may suppose that λ
is constant there.

Lemma 4.8. λ \ bdy D Π Pf = c.
Proof. Most of the work in the proof of this lemma arises because bdy D

need not a priori be a smoothly embedded submanifold of M.
Without loss of generality, the point p is arcwise accessible from D that

is, there is some (regular) arc lying in D U {p} having p as an endpoint. Such
points are obviously dense in the boundary (see, for example, [4, p. 119]).
With a slight abuse of notation, denote some such arc by [q, p] with [q, p) con-
tained in W Π D.

It is well-known that given any compact set A C M there exists an s > 0
such that for each x e A the ball Bs(x) is convex and such that if the vector
X e TyM, y <= bdy Bs(x) is tangent to the sphere bdy Bs(x) then the geodesic
exp tX does not penetrate the ball Bs(x) near y (see, for example, [3, § 9.4]).
Setting A = [q, p] we let s > 0 as above we may further suppose that
Bs(q) C D and that if x e [q, p] then cl Bs(x) C W. Then there exists some
y € [q, p) such that bdy D Π cl £ s(y) =£ 0 and bdy D Π cl # s(y) C bdy £ s(v).
Let z e bdy Z) Π bdy Bs(y). If X e Γ,M is tangent to the sphere bdy B8iy) then
the geodesic exp tX lies outside of Bs(y) near z furthermore, if X is not tan-
gent to this sphere, then the geodesic exp tX or exp ( — tX), t > 0 penetrates
the ball Bs(y) for some positive distance. Note that as the radius s varies over
lesser values such points z will be arbitrary near /?, and that λp = λz.

There are a metric ball Br(z) C W with center z and an a > 0 such that if
x e Z?r(z) then the ball Ba(x) is convex. Thus the open set Ba(z) ΓΊ Bs(y) is con-
vex and contained within D Π W. We may distinguish two cases:

1. z is approximated by points of Bλ — B2 in #α(z) Γi Bs(y),
2. case 1 does not occur.
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Consider case 1. Let mι be an element of Bx — B2 in Ba(z) Π Bs(y) with
associated fixed-point set H(m^) (see the paragraph following Corollary 4.7).
Recall that the flow, when restricted to D, preserves the metric and conse-
quently maps geodesies into geodesies whilst preserving their parametrisation.
In particular, if g\ [0,1] —> clD is a geodesic with g(0) = x e bdy D and
g(0, l ] c D , then for each integer k we have μkλx o g: [0, 1] —> cl D is a geodesic
on (0,1] and, by continuity, it must be geodesic at μkλx°g(0) — x. Now, if
the set H(m^ ΓΊ Ba(m^ Π J5α(z) intersects bdy D then it contains an open
subset of bdyD, which is impossible. For otherwise, there is some
w e bdy D Π BJjn^, w £ H{m^ with a geodesic exp ίZ in Ba{m^), X tangent
to M at m1? such that exp tQX = w and exp tX e D Π Ba(mλ) for 0 < ί < ί0.
Thus the point exp ί0AΓ is fixed under the transformation μJmi. By the definition
of H(m^) we have tQX e H'(m^ which contradicts the hypothesis that w $ H{m^.

Furthermore, H{m^) Π cl Ba{m^) Π 2*α(z) is closed in Bα(z), and is therefore
bounded away from z. Thus we may choose ra2 e (^! — 52) Π (5α(z) Π 5 s(y))
strictly nearer z than mj so that m2 $ //(m^ but m2 e Ba(m^. (Because Ba(m^,
Ba(z) are convex and z^Ba{m^).) Proceeding inductively, we may find
rrii € (#! — B2) Π (Ba(z) Γl β s(y)) strictly nearer z than m ^ ! with m^ £ H(mj),
1 < / < / but with m^ e Ba(mj), 1 < / < /. By the definition of H(mj) c Ba(mj)
we have Λrâ  9̂  Λrâ  for 1 < /' < /. But, by hypothesis, Λ is bounded away from
zero in W and f?α(z) C W7. Moreover, μ c | c l D = id. Hence there is only a
finite number of values for λ \ D Π Ba(z). In particular, λ \ Bx Π D Π £α(z) takes
only finitely many values but this contradicts the construction of our sequence
{nii}. Thus case 1 cannot occur.

Consider case 2. That is, z is not approximated by points of Bλ — B2 in
Ba(z) Π Bs(y). But since Bλ — B2 is open and dense in B19 for some smaller
value of a we also have that Bλ Π (Ba(z) Π B,Cy)) = 0. Thus J3α(z) Π BβCy) C U,
where C/ is some component oί M — Bλ, U a D and λ| C/ = c. By Corollary
4.6, if t e bdy D f] W then U = kc where k > 1 is an integer. Consider the
case k > 2.

In Γ2M denote by F the one-codimensional hyperplane of vectors tangent
to the sphere bdy Bs(y). F partitions TZM into two complementary open half-
spaces E~ and E+ where E+ consists of vectors X such that the geodisic exp tX,
t > 0, penetrates the ball Bs(y) for some positive distance. Restricting attention
to the ball Ba(z), for each vector X e E+ and integer / the curve μjλz o exp tX
(for small />0) is a geodesic inD consequently, μjλz o exp tX = exp2 o t(μjλz*X).
Since μc\U = id, each vector Ẑ  in E + has period A: with respect to μiz*: Γ2M
-> T2M. If there is t0 > 0 such that exp /0Z e bdy D Π βα(z) where Z e E + ,
then the vector t0X would be fixed under μλz* (as λ \ W Π bdy D is constant)
which contradicts the fact that X has period k>2. Thus exp2 maps E+ Π 2^(z)
diffeomorphically into U d D.

Lemma 4.9. Let V be a vector space with F (Z V a one-codimensional
hyperplane, and T: V —> V a linear transformation of finite period such that
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each point of the open half-spaces E~, E+ of V determined by F has least
period {with respect to T) strictly greater than one. Then the orbit of E+ under
successive transformations by T includes E~.

Proof. It is sufficient to show that the orbit of each point v e E~ intersects
E+ nontrivially. If none of vT, vT2, , vTk~ι (where k is the period of T)
are in E+ then the invariant vector v + vT + + vTk~ι is in E~ as well,
but all invariant vectors are contained in F. Thus at least one vTj e E+.

In the case k > 2 the lemma applies to μλz*: TZM —• TZM. Thus exp B'a{z) C
cl U and bdy D Π Ba{z) C cl/λ But this contradicts Corollary 4.7. Therefore
k = 1, Λ | bdy D Π W = c and the proof of Lemma 4.8 is complete.

Let x e C2. There exists a neighborhood W of x in M such that Λ | W Π Cx

is continuous. Furthermore, Lemma 4.8 shows that for each point p e bpy Dt

ΓΊ W, where Dt is a component of M — Cx with μc. \Dt = id (as in Proposi-
tion 4.5), we have λp = ct. Define the function h: W -+ Rby

(Ci iίqeclD ΠW ,

Xλq if q e W Π Q .

The function Λ is clearly continuous, and μhqq — q for all q eW. By Lemma
4.3, h is constant on W, which implies Λ is bounded in a neighborhood of x.
But this contradicts the hypothesis that Q is nonempty, because C2 is dense in
Cλ. Thus Λ is bounded on M. Proposition 4.5 then implies that μ has period
c on M. Evidently, this proves the theorem.
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