COMPLETE CONVEX HYPERSURFACES OF A HILBERT SPACE

RUBENS LEÃO DE ANDRADE

1. Statement of the results

A complete convex hypersurface M of a Hilbert space H is a one-codimensional C^{∞} submanifold of H, which is complete as a metric subspace of H such that $M=\partial K$ is the boundary of a closed convex set K with nonvoid interior. For each $p \in M$ let $\nu(p)$ be the unit normal vector which points to the interior of K. In this way we define the Gauss map $\nu: M \rightarrow \Sigma$ from M into the unit sphere Σ of H. This is a C^{∞} map and its derivative at each point $p \in M$ is self-adjoint. We say that M bounds a half-line if there exists a half-line $\{p+t v ; t \geq 0\}$ contained in the interior of K.

In the case where M is a complete convex hypersurface of a Euclidean n space R^{n}, the condition for M to bound a half-line is equivalent to that for M to be unbounded. In $\S 2$ we give an example of an unbounded, positively curved, convex hypersurface which does not bound any half-line. In Theorem A we characterize the three possible cases of boundness (bounded, unbounded and bounding a half-line, unbounded and bounding no half-line) in terms of the Gauss map of M. In [5] H. H. Wu proved that if M is an unbounded complete convex hypersurface of R^{n} such that at a point $p \in M$ the sectional curvatures are all positive, then M is a pseudograph over one of its tangent hyperplanes (see definition below). Our example shows that this is not true in the infinite dimensional case. Theorem B gives a necessary and sufficient condition for M to be a pseudograph over one of its tangent hyperplanes. Theorem C is the Bonnet-Myers theorem for hypersurfaces of a Hilbert space.

In what follows, by a Hilbert space we mean a separable Hilbert space. As usual, int (A) denotes the interior of A and $\mathrm{cl}(A)$ its closure.

Theorem A. Let M be a complete convex hypersurface of a Hilbert space H. Then:
(1) M is bounded if and only if the Gauss map $\nu: M: \rightarrow \Sigma$ is onto,
(2) M is unbounded and bounds a half-line if and only if the image of the Gauss map is contained in a hemisphere,
(3) M is unbounded and does not bound any half-line if and only if the image of the Gauss map is dense and has void interior.

[^0]Before stating Theorem B, we define what means a pseudograph (cf. [5]). A hypersurface M of a Hilbert space H is a pseudograph over the tangent hyperplane F when:
(a) M lies in one of the closed half-spaces determined by F,
(b) $\quad M$ is the graph of a C^{∞} function over the int (A), where $A=\pi(M)$, $\pi: H \rightarrow F$ being the orthogonal projection,
(c) for every $x \in A-\operatorname{int}(A), M \cap \pi^{-1}(x)$ is a closed half-line,
(d) for every hyperplane L above $F, M \cap L$ is bounded.

Theorem B. Let M be a complete convex hypersurface of a Hilbert space H. Then M is unbounded and $\operatorname{int}(\nu(M)) \neq \emptyset$ if and only if M is a pseudograph over one of its tangent hyperplanes $T M_{p} \neq M$.

Theorem C (The Bonnet-Myers theorem for Hilbert hypersurface). Let M be a complete connected hypersurface of a Hilbert space H. If the sectional curvatures of M are all bounded away from zero (i.e., there exists a $\delta>0$ such that $K(\sigma) \geq \delta$ for every $p \in M$ and every two-plane section $\left.\sigma \subset T M_{p}\right)$, then M is bounded, the diameter ρ of M satisfies $\rho \leq \pi \sqrt{\delta}$ and the Gauss map is a diffeomorphism.

Remark. We can show that if at a point $p \in M$ the sectional curvatures are all bounded away from zero, then the Gauss map is a diffeomorphism on a neighborhood of p. So by combining Theorem B with a result proved by Leo Jonker [4] we have that if M is an unbounded complete hypersurface of a Hilbert space H such that the sectional curvatures of M are nonnegative and all bounded away from zero at a point, then M is a pseudograph over one of its tangent hyperplanes. It also follows that if M is an unbounded complete convex hypersurface which does not bound any half-line, then the sectional curvatures of M are not bounded away from zero at any point of M.

These results are part of the author's doctoral dissertation. The author wishes to thank his advisor Professor Manfredo do Carmo for suggesting these problems and for helpful conversations.

2. Examples

In this section we give an example of an unbounded, positively curved, convex hypersurface which does not bound any half-line.
(1) Let $A: H \rightarrow H$ be a self-adjoint, continous, positive semi-definite operator on the Hilbert space H. Set $f(x)=\langle A(x), x\rangle, M=\{x \in H ; f(x)=1\}$ and $K=\{x \in H ; f(x) \leq 1\}$. It is clear that $M=\partial K$. The derivative $f^{\prime}(x)$ is given by $f^{\prime}(x) \cdot v=2\langle A(x), v\rangle$, and 1 is a regular value of f. It follows from this that M is a C^{∞} (complete) hypersurface. To prove that M is convex take two points x, y in K and consider the segment $\{t x+(1-t) y ; 0 \leq t \leq 1\}$. Then

$$
\begin{aligned}
g(t) & =\langle A(t x+(1-t) y, t x+(1-t) y\rangle \\
& =t^{2}\langle A(x-y), x-y\rangle+2 t\langle A(x-y), y\rangle+\langle A(y), y\rangle .
\end{aligned}
$$

Since $g(0) \leq 1$ and $g(1) \leq 1$, we obtain that $g(t) \leq 1$ for $0 \leq t \leq 1$. We can easily see that if A is positive definite, then the equation $g(t)=1$ has exactly two distincts roots. From this we conclude that if A is positive definite, then M does not bound any half-line.
(2) We shall now show that if A is positive definite, then M is positively curved. The gradient of f and x is given by $2 A(x)$, and from this it follows that $N(x)=A(x) /\|A(x)\|, x \in M$, is a unit normal vector field on M. Let $\{v, w\}$ be an orthogonal set in $T M_{x}$. By the Gauss egregium theorem, the sectional curvature on the plane σ generated by $\{v, w\}$ is given by

$$
\begin{aligned}
K(\sigma) & =\left\langle N^{\prime}(x) \cdot v, v\right\rangle\left\langle N^{\prime}(x) \cdot w, w\right\rangle-\left\langle N^{\prime}(x) \cdot v, w\right\rangle^{2} \\
& =(1 /\|A(x)\|)^{2}\left(\langle A(v), v\rangle\langle A(w), w\rangle-\langle A(v), w\rangle^{2}\right) .
\end{aligned}
$$

Since A is self-adjoint and positive definite, by Schwarz inequality this last expression is positive, and we conclude that M is positively curved.
(3) Suppose now that A is positive definite and compact. That is, there exist a complete orthonormal set $\left\{e_{i}\right\}$ and positive real numbers $\left\{\alpha_{i}\right\}$, where $\Sigma \alpha_{i}<\infty$, such that $A\left(\Sigma x_{i} e_{i}\right)=\Sigma \alpha_{i} x_{i} e_{i}$ for every $x=\Sigma x_{i} e_{i}$ in H. We have that M is unbounded, because the points $\left(1 / \alpha_{i}\right) e_{i}$ belong to M. Since A is posi-tive definite, M is positively curved and does not bound any half-line.

3. Proof of Theorem \mathbf{A}

Let M be a convex hypersurface of a Hilbert space. Having the normal vector $\nu(p)$ pointing to the interior of the convex body K of M is equivalent to $\langle\nu(p), x-p\rangle \geq 0$ for every x in K. From this it easily follows that a point $v \in \Sigma$ is a point of $\nu(M)$ if and only if the height function $h_{v}(x)=\langle v, x\rangle$ assumes its minimum on K at a point $p \in M$. In this case, we have $\nu(p)=v$.
A subset A of Σ is said to be convex if : (a) given two points $x, y \in A, x \neq$ $-y$ implies that the minimal geodesic segment joining x and y is contained in A, (b) given x and $-x$ in A, at least one of the minimal geodesic segment joining x and $-x$ is contained in A. It is not difficult to prove that if A is convex (and closed) in Σ, then the cone $C=\{t x ; x \in A, t \geq 0\}$ is convex (and closed) in H. From this and the well known fact that if C is a closed convex set of H then the distance function $\|a-x\|$ (where a is a fixed point in H) assume its minimum on C, we can prove that a closed convex set of Σ is either Σ itself or contained in a hemisphere.

A point $v \in \Sigma$ is called a pole if $\nu(M)$ is contained in the hemisphere $E_{v}=$ $\{x \in \Sigma ;\langle v, x\rangle \geq 0\}$. Note that in the above definition we may substitute $\operatorname{cl}(\nu(M))$ by $\nu(M)$.

Lemma 1. Let M be a convex hypersurface in a Hilbert space H, and K its convex body. A point $v \in \Sigma$ is a pole if and only if given $p \in \operatorname{int}(K)$ the half-line $\{p+t v ; t \geq 0\}$ is contained in int (K).

Proof. First suppose that $\nu(M) \subset E_{v}$. Let $p \in \operatorname{int}(K)$, and suppose that there exists $t_{0}>0$ such that $q=p+t_{0} v \in M$. Since $p \in \operatorname{int}(K)$, we have that $\langle p-q, \nu(q)\rangle>0$. From this we get that $\langle\nu(q), v\rangle<0$, which is a contradiction. Suppose now that $\{p+t v ; t \geq 0\}$ is contained in int (K) and that there exists a $q \in M$ such that $\langle\nu(q), v\rangle<0$. Let P be the two-dimensional plane determined by p, q, v. Clearly $P \cap T M_{q}$ is a line containing q. Let $\{r(s)=q+$ $s w ; s \in R\},\|w\|=1$, be this line. Consider the equation $r(s)-v(t)=0$, where $v(t)=p+t v$. We assert that the above equation has a unique solution $\left(s_{0}, t_{0}\right)$ with $t_{0}>0$. Indeed, since

$$
\langle\nu(q), v\rangle<0,
$$

$\langle\nu(q), w\rangle=0$, and $p-q$ is in the plane generated by $\{v, w\},\{v, w\}$ are linearly independent and thus there exists a unique $\left(s_{0}, t_{0}\right)$ such that $p-q=s_{0} w-t_{0} v$. Moreover, $-t_{0}=\langle p-q, \nu(q)\rangle /\langle\nu(q), v\rangle$. This implies $t_{0}>0, r\left(s_{0}\right)=v\left(t_{0}\right)$. Since M is convex, we have that $v(t) \notin K$ for $t>t_{0}$. This contradicts the hypothesis that $v(t) \in \operatorname{int}(K)$ for $t>0$, and hence the lemma is proved.

Lemma 2. Let M be a convex hypersurface of a Hilbert space H. If $\operatorname{int}(\nu(M)) \neq \emptyset$ and $v \in \operatorname{int}(\mathrm{cl}(\nu(M)))$, then the height function h_{v} is bounded below on M.
Proof. Let $\exp _{v}: T \Sigma_{v} \rightarrow \Sigma$ be the exponential map. Let $B_{r}(-v)$ be a closed ball in Σ of center $-v$ and radius r such that int $(\nu(M))-B_{r}(-v) \neq \emptyset$ and $B_{r}(-v) \cap \operatorname{int}(\nu(M)) \neq \emptyset$. Set $A=\left\{z \in S(v) ; \exp _{v}((\pi-r) z) \in \operatorname{int}(\nu(M))\right\}$, where $S(v)$ is the unit sphere of $T \Sigma_{v}$. It is clear that A is a nonvoid open set of $S(v)$. Since $v \in \operatorname{int}(\mathrm{cl}(\nu(M)))$, there exist a real number $t, 0<t<r$, and $z \in A$ such that $\exp _{v}(-t z) \in \nu(M)$. It follows from this that there exist $\alpha, \beta>0$ and u, $w \in \nu(M)$ such that $v=\alpha u+\beta w$. By our above remarks the height functions h_{u} and h_{w} are bounded below on M, and therefore h_{v} is also so.

Proof of theorem A. To prove part (1) of the theorem, first suppose that M is bounded. Consider in H the weak topology, that is, the topology generated by the continous functionals of H. Since the convex body K of M is a bounded, (strongly) closed, convex set of H, K is weakly compact (see [3]). Let $v \in \Sigma$ and consider the height function h_{v}. Since a height function is a continuous functional of H, h_{v} assumes its minimum on K and, by our previous remarks, we obtain that $v \in \nu(M)$. This proves that the Gauss map is onto. Conversely, suppose that the Gauss map is onto. Then it follows that for each $v \in \Sigma$ the height function h_{v} assumes its minimum on M. Since $h_{-v}=-h_{v}$, for every $v \in \Sigma$ the height function h_{v} is bounded on M. From this it follows that each continuous functional of H is bounded on M. Thus by the uniform boundness theorem [3], M is bounded.

Part (2) of the theorem was proved in Lemma 1. Now we shall prove part (3). By the result proved in [2], $\mathrm{cl}(\nu(M))$ is a convex set of Σ. If $\mathrm{cl}(\nu(M)) \neq \Sigma$, then $\mathrm{cl}(\nu(M))$ is contained in a hemisphere and, by Lemma $1, M$ bounds a
half-line. This contradicts our hypothesis so that we conclude that $\mathrm{cl}(\nu(M))=$ Σ. Suppose that int $(\nu(M))$ is nonvoid. Then, by Lemma 2 we have that for each $v \in \Sigma$ the height function h_{v} is bounded below on M and, by the argument used in part (1), M is bounded. This is a contradiction so that we conclude that int $(\nu(M))$ is void. Conversely, if int $(\nu(M))$ is void then, by part (1), M is unbounded; if $c l(\nu(M))=\Sigma$ then, by part (2), M does not bound any half-line. Hence the theorem is proved.

4. Proof of Theorem B

A linear submanifold of a Hilbert space H is a submanifold of the form $L=\{p+v ; v \in F\}=p+F$, where p is a fixed point in H and F is a closed subspace. A hyperplane is a linear submanifold of codimension one. Let M be a hypersurface of a Hilbert space H. We say that a linear submanifold $L=$ $p+F$ intersects M transversally if for each $q \in M \cap L$ we have that $T M_{q}+$ $F=H$. In this case it is known that $S=M \cap L$ is a one-codimensional submanifold of L. If in addition $M=\partial K$ is convex, then $S=\partial(K \cap L)$ is a convex hypersurface of L.

Lemma 3. Let M be a convex hypersurface of a Hilbert space H. If the set of poles \mathscr{P} and $\operatorname{int}(\mathrm{cl}(\nu(M)))$ are both nonvoid sets, then they have nonvoid intersection.

Proof. Since $\operatorname{int}(\operatorname{cl}(\nu(M)))$ is nonvoid, \mathscr{P} does not contain antipodal points, as this would imply that $\nu(M)$ is contained in an equator of Σ, that is, if v and $-v$ belong to \mathscr{P}, then $\nu(M)$ is contained in the equator $\{w \in \Sigma ;\langle v, w\rangle=0\}$ by Lemma 1 . Clearly \mathscr{P} is a closed set. It is not difficult to verify that \mathscr{P} is convex. To see this take $v, w \in \Sigma$. Since v is not the antipodal of w, every point $(\neq v, w)$ on the minimal geodesic segment joining v and w is of the form $\alpha v+\beta w$, where $\alpha, \beta>0$. From this it follows that \mathscr{P} is convex. Take $a \in \operatorname{int}(\mathrm{cl}(\nu(M)))$, and let $B_{r}(a)$ be a closed ball of center a and radius r contained in int $(\mathrm{cl}(\nu(M)))$. If $w \in \mathscr{P}$, then the length of the shortest of the two geodesic segments joining a and w does not exceed $\frac{1}{2} \pi-r$, and thus there exists $\delta>0$ such that $\langle a, w\rangle \geq \delta$ for every $w \in \mathscr{P}$. Consider the cone $C=$ $\{t w ; t \geq 0, w \in \mathscr{P}\}$. Since \mathscr{P} is closed and convex in Σ, C is closed and convex in H. If $a \in \mathscr{P}$, we have nothing to prove. Thus suppose that $a \notin \mathscr{P}$, and let $b \in C$ be such that $\|b-a\|$ is a minimum of the distance function $f(x)=$ $\|a-x\|^{2}$ on C. It is not difficult to see that $0<\|b\|<1$. We shall now prove that the pole $v=b /\|b\|$ is in the interior of $\mathrm{cl}(\nu(M))$. First we shall show that $\langle v, w\rangle \geq \delta$ for every pole w.

Since b is a minimum point for the function $f(x)=\|a-x\|^{2}, x \in C$, we have that $\langle a-b, b\rangle=0$ and $\langle a-b, w\rangle \leq 0$ for every pole w. To prove this, note that the derivative of the function $g(t)=\|a-t b\|^{2}$ is zero at the point $t=1$ since $t b$ is in C for every number $t \geq 0$. This implies $\langle a-b, b\rangle=0$, so that for every $t, 0 \leq t \leq 1, t b+(1-t) w$ is in C if w is a pole. From this it fol-
lows that the derivative of the function $g(t)=\| a-\left(t b+(1-t) w \|^{2}\right.$ at the point $t=1$ is nonpositive, and therefore that $\langle a-b, w-b\rangle \leq 0$, which combined with the first equality gives $\langle a-b, w\rangle \leq 0$. Since $\|b\|<1$, it follows from the previous inequality that $\langle v, w\rangle \geq\langle b, w\rangle \geq\langle a, w\rangle \geq \delta$ for every pole w.

We now use this inequality to prove that v is in int $(\operatorname{cl}(\nu(M)))$. Suppose that this is not true. Then take a sequence $\left\{y_{n}\right\}$ such that $\left\|y_{n}-v\right\|<1 / n$ and y_{n} is not in $\operatorname{cl}(\nu(M))$. Consider the convex cone $C=\{t u ; t \geq 0, u \in \operatorname{cl}(\nu(M))\}$, and let $x_{n} \in C$ be a minimum point for the distance function $\left\|y_{n}-x\right\|^{2}, x \in C$. By the above argument, we have that $\left\langle x_{n}-y_{n}, y\right\rangle \geq 0$ for every y in $\nu(M)$. Thus we conclude that $w_{n}=x_{n}-y_{n} /\left\|x_{n}-y_{n}\right\|$ is a pole. Since $\left\|x_{n}\right\|<1$, it follows that $\left\langle w_{n}, y_{n}\right\rangle \leq 0$ and therefore that $\left\langle w_{n}, v\right\rangle=\left\langle w_{n}, v-y_{n}\right\rangle+$ $\left\langle w_{n}, y_{n}\right\rangle<1 / n$, which contradicts the inequality $\langle v, w\rangle \geq \delta$ for every pole w. Hence v is in int $(\operatorname{cl}(\nu(M)))$.

Proof of Theorem B. Suppose that the convex hypersurface M is unbounded and that int $(\nu(M))$ is nonvoid. By Theorem A the set of poles is nonvoid. It follows from Lemma 3 that there exists a pole v in int $(\mathrm{cl}(\nu(M)))$. We shall prove that v lies in int $(\nu(M))$ and that $M \cap L$ is bounded for every hyperplane L perpendicular to v. This will prove parts (a) and (d) in the definition of pseudograph.

Let L be a hyperplane which intersects the interior of the convex body K of M and is perpendicular to v. Note that L intersects M transversally, for otherwise if $p \in M \cap L$ and $T M_{p}+F \neq H$ (where $L=p+F$) then, since M is of codimension one, $L \subset T M_{p}$ which contradicts the fact that L intersects the interior of K. Note that $M \cap L$ is nonvoid, for otherwise M would be a hyperplane. Hence $S=M \cap L$ is a convex hypersurface of L.

To prove that S is bounded, we identify L with the subspace perpendicular to v and consider the unit sphere $\Sigma^{\prime}=\{x \in \Sigma ;\langle x, v\rangle=0\}$ of L. Take $w \in \Sigma^{\prime}$. Since v is in $\operatorname{int}(\operatorname{cl}(\nu(M)))$, there exists $u \operatorname{in} \operatorname{int}(\operatorname{cl}(\nu(M)))$ such that $u=\alpha v+$ βw, where $\alpha, \beta>0$. Consider the height function $h_{w}(x)=\langle w, x\rangle, x \in S$. Since $\langle v, x\rangle=0$ for every x in $S, h_{u}(x)=\beta h_{w}(x)$ for every x in S. By Lemma 2, h_{u} is bounded below on M. From this it follows that h_{w} is bounded below on S for every w in Σ^{\prime}. By the argument used to prove part (3) of Theorem A, we obtain that S is bounded. Consider the cylinder $C=\{x+t v ; x \in S, t \in \boldsymbol{R}\}$, and let π be the orthogonal projection on L. By Lemma 1, the part of K below L is contained in C, that is, the closed convex set $K_{1}=\{x \in K ;\langle\pi(x)-x$, $v\rangle \leq 0\}$ is contained in C. By Lemma 2, there exists a hyperplane L_{1} below K, that is, there exists L_{1} perpendicular to v such that $\left\langle\pi_{1}(x)-x, v\right\rangle \geq 0$ for every x in K, where π_{1} is the orthogonal projection on L_{1}. It follows from this that K_{1} is bounded. Thus the height function h_{v} assumes its minimum at a point p of K_{1}. We easily see that p is in M and conclude that $\nu(p)=v$.

We shall now prove that M is a pseudograph on the tangent hyperplane $F=T M_{p}$. Part (d) of the definition of pseudograph was proved above. It re-
mains to prove part (b) and part (c). Let π be the orthogonal projection on F and set $A=\pi(M)$. It in not difficult to see that $\pi(M)=\pi(K)$ and that $\operatorname{int}(A)$ $=\left\{x \in A ; \pi^{-1}(x)\right.$ is transversal to $\left.M\right\}=\{x \in A ; x$ is a regular value of $\pi: M$ $\rightarrow F\}=\pi($ int $(K))$. Take $x \in \operatorname{int}(A)$ and $q \in \pi^{-1}(x) \cap M$. By Lemma 1 and the above remark, the half-line $\{q+t v ; t>0\}$ is contained in the interior of K. It follows from this that $\pi^{-1}(x) \cap M$ is a unique point, which we shall denote by $s(x)$. Thus $\pi^{-1}(\operatorname{int}(A)) \cap M$ is the graph of the function $f: \operatorname{Int}(A) \rightarrow$ $R=T M_{p}^{\perp}$ defined by $f(x)=\langle s(x), v\rangle v$ (by a translation; we may suppose that p is the origin). To verify that f is a C^{∞} function we note that $\pi: \pi^{-1}(\operatorname{int}(A)) \cap M \rightarrow \operatorname{int}(A)$ is the inverse of the function s which takes $x \in \operatorname{int}(A)$ into $\pi^{-1}(x) \cap M$. Since every $x \in \operatorname{int}(A)$ is a regular value of $\pi: \pi^{-1}(\operatorname{int}(A)) \rightarrow \operatorname{int}(A)$, we conclude, by the inverse function theorem, that s is a C^{∞} diffeomorphism.

Now take $x \in A-\operatorname{int}(A)$ and let $q \in \pi^{-1}(x) \cap M$. By Lemma 1, for every point r close to q and in the interior of K the half-line $\{r+t v ; t \geq 0\}$ is contained in the interior of K. It follows from this that the half-line $\{q+t v ; t \geq 0\}$ is contained in K. This half-line does not intersect the interior of K, for otherwise x would be in the interior of A. Thus $\pi^{-1}(x) \cap M=\pi^{-1}(x) \cap K$. Since $\pi^{-1}(x) \cap K$ is a closed convex set which contains the half-line $\{q+t v ; t \geq 0\}$ and is contained in the half-line $\{x+t v ; t \geq 0\}$, we conclude that $\pi^{-1}(x) \cap M$ is a closed half-line, so that we have proved the first part of the theorem.

Conversely, suppose that the convex hypersurface M is a pseudograph over the tangent hyperplane $T M_{p} \neq M$. Set $v=\nu(p)$ and take a hyperplane L perpendicular to v and intersecting the interior of the convex body K of M. By hypothesis, $S=M \cap L \neq \emptyset$ is bounded. Since v is clearly a pole, we have already shown that the fact that S is bounded implies that the part of K bounded by L and $T M_{p}$ is bounded. Denote this part of K by K_{1}. Then K_{1} is a closed bounded convex set. Note that a point in the boundary of K_{1} is in either M or $K \cap L=K_{2}$. Let π_{1} denote the orthogonal projection on L and set $a=\pi_{1}(p)$. Let $m, \delta>0$ be such that $\|p-x\| \leq m$ for every x in K_{2} and $\langle v, a-p\rangle-\delta m>0$. We claim that $V=\{w \in \Sigma ;\|w-v\|<\delta\}$ is contained in $\nu(M)$. In fact, let $w \in V$ and $q \in K_{1}$ such that $h_{w}(q)$ is the minimum of the height function h_{w} on K_{1}. Clearly q is in the boundary of K_{1}. For every $x \in K_{2}=K \cap L$ we have

$$
\begin{aligned}
h_{w}(x)-h_{w}(p) & =\langle v, x-p\rangle+\langle w-v, x-p\rangle \\
& =\langle v, a-p\rangle+\langle w-v, x-p\rangle \geq\langle v, a-p\rangle-\delta m>0
\end{aligned}
$$

which implies that the minimum of h_{w} is assumed not at a point of K_{2} and therefore at a point q of M. This proves that the open ball V of Σ is contained in $\nu(M)$, and the proof of the theorem is complete.

5. Proof of Theorem \mathbf{C}

The proof of Bonnet-Myers theorem, in the finite dimensional case, depends on the Hopf-Rinow theorem which is known to be not true in the infinite dimensional case [1]. In the case where M is a complete hypersurface of a Hilbert space, we shall prove the Bonnet-Myers theorem by reducing it to the finite dimensional case.

Lemma 4. Let M be a hypersurface of a Hilbert space H, and L a linear submanifold. Suppose that L intersects M transversally and let $S=M \cap L$. Then for each two-plane σ tangent to S we have
(1) $K_{S}(\sigma) \geq K_{M}(\sigma)$, if $K_{M}(\sigma) \geq 0$,
(2) $K_{S}(\sigma) \leq K_{M}(\sigma)$, if $K_{M}(\sigma) \leq 0$,
where K_{S} and K_{M} denote the sectional curvatures of S and M respectively.
Proof. Take $p \in S$ and let σ be a two-plane tangent to S at p. Take an orthonormal basis $\{x, y\}$ of σ, and extend x and y to vector fields X, Y defined on a neighborhood U of M containing p such that $\nabla_{X} X, \nabla_{Y} Y$ and $\nabla_{Y} X$ are tangent to L at p. Let N denote a unit normal vector of M at p. Then by the Gauss egregium theorem we have

$$
K_{M}(\sigma)=\left\langle N, \nabla_{X} X\right\rangle\left\langle N, \nabla_{Y} Y\right\rangle-\left\langle N, \nabla_{Y} X\right\rangle^{2} .
$$

Since L intersects M transversally, $N=N_{1}+N_{2}$, where $N_{1} \neq 0$ is in L and N_{2} is in the orthogonal complement of L. By the proper choice of X and Y and from the fact that N_{1} is normal to S at p, we obtain

$$
K_{M}(\sigma)=\left\langle N_{1}, \nabla_{X} X\right\rangle\left\langle N_{1}, \nabla_{Y} Y\right\rangle-\left\langle N_{1}, \nabla_{Y} X\right\rangle^{2}=\left\|N_{1}\right\|^{2} K_{S}(\sigma) .
$$

Since $\left\|N_{1}\right\| \leq 1$, the lemma is proved.
In Theorem A we have that if the convex hypersurface M is unbounded and does not bound any half-line, then the spherical image of M has void interior. This fact reflects on the sectional curvatures of M. It follows from the following lemma that in this case the sectional curvatures of M are not bounded away from zero at any point of M.

Lemma 5. Let M be a hypersurface of a Hilbert space H. Suppose that the Gauss map is defined on M. If the sectional curvatures of M at a point p are all bounded away from zero, then the Gauss map is a local diffeomorphism on a neighborhood of p.

Proof. By the Gauss egregium theorem, the sectional curvatures of M at p are given by

$$
K(\sigma)=\langle A(x), x\rangle\langle A(y), y\rangle-\langle A(y), y\rangle^{2},
$$

where $\{x, y\}$ is an orthonormal basis of σ, and A is the derivative of the Gauss map at p. By assumption, there exists $\delta>0$ such that $K(\sigma) \geq \delta$ for every twoplane $\sigma \subset T M_{p}$. This implies that there exists $\alpha>0$ such that $\|A(x)\| \geq \alpha\|x\|$
for every x in $T M_{p}$. Thus A is invertible. It is clear from the above inequality that A is one to one. To prove that A is onto, set $F=T M_{p}$ and let us first show that $A(F)$ is a closed subspace of the Hilbert space F. Let $\left\{y_{n}\right\}$ be a Cauchy sequence on $A(F)$. Then $y_{n}=A\left(x_{n}\right)$ and $\left\|y_{n}-y_{m}\right\|=\| A\left(x_{n}-x_{m} \|\right.$ $\geq \alpha\left\|x_{n}-x_{m}\right\|$. This shows that $\left\{x_{n}\right\}$ is a Cauchy sequence on F and therefore that $A(F)$ is closed. Denote by L the orthogonal complement of $A(F)$. Since $A(F)$ is closed, $F=A(F) \oplus L$. From the fact that A is self-adjoint, we have that $A(L)=L$. This implies that $L=\{0\}$, and we conclude that A is onto. Now the lemma follows from the inverse function theorem.

Proof of Theorem C. Suppose that M is a complete connected hypersurface of a Hilbert space H whose sectional curvatures satisfy $K(\sigma) \geq \delta>0$. By the result proved in [1] we see that M is convex. Let p and q be two arbitrary points on M, and take a finite dimensional linear submanifold L containing p, q and intersecting the interior of the convex body of M. Then L intersects M transversally, and $S=M \cap L$ is a (finite dimensional) convex hypersurface of L. By Lemma 4 and the Bonnet-Myers theorem, the connected components of S are bounded, and thus S is connected. By Lemma 4, the sectional curvatures of S satisfy $K_{S}(\sigma) \geq \delta$. Then the Bonnet-Myers theorem shows that the distance $d_{S}(p, q)$ relative to S satisfies $d_{S}(p, q) \leq \pi / \sqrt{\delta}$. Since the distance $d_{M}(p, q)$ relative to M is less then or equal to $d_{S}(p, q)$, the diameter ρ of M satisfies $\rho \leq \pi / \sqrt{\delta}$.

We shall now prove that the Gauss map $\nu: M \rightarrow \Sigma$ is a diffeomorphism. By part (1) of Theorem A and Lemma 5, ν is a local diffeomorphism onto Σ. It remains to prove that ν is one to one. Let $p, q \in M$, and suppose that $p \neq q$ and $\nu(p)=\nu(q)=v$. Since p and q are minimum points of the height function $h_{v}: K \rightarrow \Sigma$, where K is the convex body of M, we have $h_{v}(p)=h_{v}(q)$ and hence $h_{v}(t p+(1-t) q)=h_{v}(p)$. From this it follows that the points on the segment $\{t p+(1-t) q ; 0 \leq t \leq 1\}$ are minimum points of h_{v}. Since such points cannot occur in the interior of K, this segment is contained in M. This contradicts the fact that M has positive curvature, and we conclude that ν is one to one.

References

[1] M. do Carmo, Positively-curved hypersurfaces of a Hilbert space, J. Differential Geometry 2 (1968) 355-362.
[2] M. do Carmo, \& B. Lawson, Spherical images of convex surfaces, Proc. Amer. Math. Soc. 2 (1972) 635-636.
[3] N. Dunford \& J. Schwartz, Linear operators. Part I, Interscience, New York 1958.
[4] L. Jonker, Hypersurfaces of nonnegative curvatures in Hilbert spaces, Trans. Amer. Math. Soc. 169 (1972) 461-474.
[5] H. H. Wu, A structure theorem for complete non-compact hypersurfaces of nonnegative curvature, Bull. Amer. Math. Soc. 77 (1971) 1070-1071.

Institute for Pure and Applied Mathematics Rio de Janeiro, Brazil

[^0]: Communicated by S. S. Chern, February 1, 1974.

