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COMPLETE CONVEX HYPERSURFACES
OF A HILBERT SPACE

RUBENS LEAO DE ANDRADE

1. Statement of the results

A complete convex hypersurface M of a Hubert space H is a one-codimen-
sional C°° submanifold of H, which is complete as a metric subspace of H
such that M = dK is the boundary of a closed convex set K with nonvoid
interior. For each p e M let v(p) be the unit normal vector which points to the
interior of K. In this way we define the Gauss map v.M^Σ from M into the
unit sphere Σ of H. This is a C°° map and its derivative at each point p e M
is self-adjoint. We say that M bounds a half-line if there exists a half-line
{p + tv; t > 0} contained in the interior of K.

In the case where M is a complete convex hypersurface of a Euclidean n-
space i£w, the condition for M to bound a half-line is equivalent to that for M
to be unbounded. In § 2 we give an example of an unbounded, positively
curved, convex hypersurface which does not bound any half-line. In Theorem
A we characterize the three possible cases of boundness (bounded, unbounded
and bounding a half-line, unbounded and bounding no half-line) in terms of
the Gauss map of M. In [5] H. H. Wu proved that if M is an unbounded com-
plete convex hypersurface of Rn such that at a point p e M the sectional cur-
vatures are all positive, then M is a pseudograph over one of its tangent hyper-
planes (see definition below). Our example shows that this is not true in the
infinite dimensional case. Theorem B gives a necessary and sufficient condition
for M to be a pseudograph over one of its tangent hyperplanes. Theorem C is
the Bonnet-Myers theorem for hyper surf aces of a Hubert space.

In what follows, by a Hubert space we mean a separable Hubert space. As
usual, int (A) denotes the interior of A and cl (A) its closure.

Theorem A. Let M be a complete convex hypersurface of a Hίlbert space
H. Then:

(1) M is bounded if and only if the Gauss map v : M: —• Σ is onto,
(2) M is unbounded and bounds a half-line if and only if the image of the

Gauss map is contained in a hemisphere,
(3) M is unbounded and does not bound any half-line if and only if the

image of the Gauss map is dense and has void interior.
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Before stating Theorem B, we define what means a pseudograph (cf. [5]).
A hypersurface M of a Hilbert space H is a pseudograph over the tangent hy-
perplane F when:

(a) M lies in one of the closed half-spaces determined by F,
(b) M is the graph of a C°° function over the int (A), where A = ττ(M),

π: H —» F being the orthogonal projection,
(c) for every x <= A — int 04), M ΓΊ π~\x) is a closed half-line,
(d) for every hyperplane L above F, M Π L is bounded.
Theorem B. Let M be a complete convex hypersurface of a Hilbert space

H. Then M is unbounded and int (v(M)) Φ 0 // and only if M is a pseudograph
over one of its tangent hyperplanes TMV Φ M.

Theorem C (The Bonnet-Myers theorem for Hilbert hypersurface). Let M
be a complete connected hypersurface of a Hilbert space H. If the sectional
curvatures of M are all bounded away from zero (i.e., there exists a δ > 0
such that K(σ) > δ for every p € M and every two-plane section a C TMP),
then M is bounded, the diameter p of M satisfies p < πV δ and the Gauss map
is a diffeomorphism.

Remark. We can show that if at a point p e M the sectional curvatures are
all bounded away from zero, then the Gauss map is a diffeomorphism on a
neighborhood of p. So by combining Theorem B with a result proved by Leo
Jonker [4] we have that if M is an unbounded complete hypersurface of a
Hilbert space H such that the sectional curvatures of M are nonnegative and
all bounded away from zero at a point, then M is a pseudograph over one of
its tangent hyperplanes. It also follows that if M is an unbounded complete
convex hypersurface which does not bound any half-line, then the sectional
curvatures of M are not bounded away from zero at any point of M.

These results are part of the author's doctoral dissertation. The author
wishes to thank his advisor Professor Manfredo do Carmo for suggesting these
problems and for helpful conversations.

2. Examples

In this section we give an example of an unbounded, positively curved, con-
vex hypersurface which does not bound any half-line.

(1) Let A : H -»H be a self-adjoint, continous, positive semi-definite oper-
ator on the Hilbert space H. Set f(x) = (A(x), x}, M = {x € H f(x) = 1} and
K = {x eH'yfix) < 1}. It is clear that M = dK. The derivative f(x) is given
by f(x) - v = 2(A(x), v}, and 1 is a regular value of /. It follows from this that
M is a C°° (complete) hypersurface. To prove that M is convex take two points
JC, y in K and consider the segment {tx + (1 — t)y\ 0 < / < 1}. Then

g(t) = (A(tx + (1 - t)y, tx + ( l - t)y>

- t\A(x -y),χ-y> + 2t(A(x - v), y> + (A(y), y} .
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Since g(0) < 1 and g(l) < 1, we obtain that g(t) < 1 for 0 < / < 1. We
can easily see that if A is positive definite, then the equation g(t) = 1 has ex-
actly two distincts roots. From this we conclude that // A is positive definite,
then M does not bound any half-line.

(2) We shall now show that if A is positive definite, then M is positively
curved. The gradient of / and x is given by 2A(x), and from this it follows
that N(x) = A(x)/\\A(x)\\, x e M, is a unit normal vector field on M. Let
{v, w} be an orthogonal set in TMX. By the Gauss egregium theorem, the sec-
tional curvature on the plane σ generated by {v, w} is given by

K(σ) = <#'(*) v, vXN'(x) - w, w} - (N'(x) >v,w)2

Since A is self-adjoint and positive definite, by Schwarz inequality this last ex-
pression is positive, and we conclude that M is positively curved.

(3) Suppose now that A is positive definite and compact. That is, there
exist a complete orthonormal set {e$} and positive real numbers {orj, where
Σai < oo, such that A{Σxιe^) — ΣaiX^ei for every x = Σx^i in H. We have
that M is unbounded, because the points (1/<**)£* belong to M. Since A is
posi-tive definite, M is positively curved and does not bound any half-line.

3. Proof of Theorem A

Let M be a convex hypersurface of a Hubert space. Having the normal vec-
tor v(p) pointing to the interior of the convex body K of M is equivalent to
(v(p),x — p> > 0 for every x in K. From this it easily follows that a point
v e Σ is a point of v(M) if and only if the height function hv(x) = (y, x) as-
sumes its minimum on A! at a point p e M. In this case, we have v(p) = v.

A subset A of Σ is said to be convex if: (a) given two points x, y e A, x Φ
—y implies that the minimal geodesic segment joining x and y is contained in
A, (b) given x and —x in A, at least one of the minimal geodesic segment
joining x and — x is contained in A. It is not difficult to prove that if A is con-
vex (and closed) in Σ, then the cone C = {tx; x e A, t > 0} is convex (and
closed) in H. From this and the well known fact that if C is a closed convex
set of H then the distance function \\a — * || (where a is a fixed point in # ) as-
sume its minimum on C, we can prove that a closed convex set of Σ is either
Σ itself or contained in a hemisphere.

A point v e Σ is called a pole if v(M) is contained in the hemisphere Eυ =
{x € Σ <y, x) > 0}. Note that in the above definition we may substitute cl (v(M))
by v(M).

Lemma 1. Let M be a convex hypersurface in a Hilbert space H, and K
its convex body. A point v e Σ is a pole if and only if given p e int (K) the
half-line {p + tv t > 0} is contained in int (K).
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Proof. First suppose that v(M) C Eυ. Let p € int(X), and suppose that there
exists t0 > 0 such that q = p + tQv e M. Since p <= int (K), we have that
ζp — 4, viq)} > 0. From this we get that (v(q), vy < 0, which is a contradic-
tion. Suppose now that {p + tv t > 0} is contained in int (K) and that there
exists a ^ M such that (y(q), v} < 0. Let P be the two-dimensional plane
determined by p,q,v. Clearly P Π ΓMQ is a line containing q. Let {r(» = q +
sw; s € R}, \\w\\ = 1, be this line. Consider the equation r(s) — ̂ (0 = 0,
where v(ί) = p + tv. We assert that the above equation has a unique solu-
tion Oo, tQ) with tQ > 0. Indeed, since

(v(q), >v> = 0, and p — q is in the plane generated by {v, w}, {v, w} are linearly
independent and thus there exists a unique (s0, t0) such that p — q = sQw — tov.
Moreover, —t0 = <p - q9v(q)>/<y(q),vy. This implies ί0 > 0, Γ(J0) = v(ί0).
Since M is convex, we have that ^(0 $ K for ί > t0. This contradicts the hy-
pothesis that v(t) e int (K) for ί > 0, and hence the lemma is proved.

Lemma 2. Let M be a convex hyper surf ace of a Hubert space H. If
int (p(M)) φ 0 and v € int (cl (v(M))), then the height function hυ is bounded
below on M.

Proof. Let expυ: TΣV —> Σ be the exponential map. Let Br( — v) be a closed
ball in Σ of center — v and radius r such that int (v(M)) — # r ( — v) Φ 0 and
B r ( - ι ; ) Π int (v(M)) Φ 0. Set A = {z e 5(v) expυ ((TΓ - r)z) e int (ι^(M))}, where
S(v) is the unit sphere of TΣυ. It is clear that A is a nonvoid open set of S(v).
Since v e int (cl (v(M))), there exist a real number t, 0 < ί < r, and z € ̂ 4 such
that expυ ( —ίz) e v(M). It follows from this that there exist a, β > 0 and u,
w e v(M) such that v = au + βw. By our above remarks the height functions
hu and hw are bounded below on M, and therefore hυ is also so.

Proo/ of theorem A. To prove part (1) of the theorem, first suppose that
M is bounded. Consider in H the weak topology, that is, the topology gen-
erated by the continous functional of H. Since the convex body K of M is a
bounded, (strongly) closed, convex set of H, K is weakly compact (see [3]).
Let v € Σ and consider the height function hυ. Since a height function is a
continuous functional of H, hv assumes its minimum on K and, by our previ-
ous remarks, we obtain that v e v(M). This proves that the Gauss map is onto.
Conversely, suppose that the Gauss map is onto. Then it follows that for each
v € Σ the height function hv assumes its minimum on M. Since h_υ = —hΌ,
for every v e Σ the height function hv is bounded on M. From this it follows
that each continuous functional of H is bounded on M. Thus by the uniform
boundness theorem [3], M is bounded.

Part (2) of the theorem was proved in Lemma 1. Now we shall prove part
(3). By the result proved in [2], cl (v(M)) is a convex set of Σ. If cl (v(M)) φ Σ,
then cl (v(M)) is contained in a hemisphere and, by Lemma 1, M bounds a
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half-line. This contradicts our hypothesis so that we conclude that cl (v(M)) =
Σ. Suppose that int (v(M)) is nonvoid. Then, by Lemma 2 we have that for
each v e Σ the height function hv is bounded below on M and, by the argu-
ment used in part (1), M is bounded. This is a contradiction so that we con-
clude that int (v(M)) is void. Conversely, if int (v(M)) is void then, by part (1),
M is unbounded; if cl(v(M)) = Σ then, by part (2), M does not bound any
half-line. Hence the theorem is proved.

4. Proof of Theorem B

A linear submanίfold of a Hubert space H is a submanifold of the form
L = {p + v v ζ F} = p + F, where p is a fixed point in H and F is a closed
subspace. A hyperplane is a linear submanifold of codimension one. Let M
be a hypersurface of a Hubert space H. We say that a linear submanifold L =
p + F intersects M transversally if for each q € M Π L we have that TMq +
F = H. In this case it is known that S = M Π L is a one-codimensional sub-
manifold of L. If in addition M = dK is convex, then 5 = d(K Π L) is a con-
vex hypersurface of L.

Lemma 3. Let M be a convex hypersurface of a Hubert space H. If the
set of poles 0* and int (cl (v(M))) are both nonvoid sets, then they have nonvoid
intersection.

Proof. Since int (cl (v(M))) is nonvoid, 0> does not contain antipodal points,
as this would imply that v{M) is contained in an equator of Σ, that is, if v and
— v belong to 0>, then v(M) is contained in the equator {w e Σ\ ζv, w) = 0}
by Lemma 1. Clearly 0> is a closed set. It is not difficult to verify that 0* is
convex. To see this take v, w <= Σ. Since v is not the antipodal of w, every
point (Φ v, w) on the minimal geodesic segment joining v and w is of the form
av + βw, where a, β > 0. From this it follows that 0* is convex. Take
a € int (cl (v(M))), and let Br(a) be a closed ball of center a and radius r con-
tained in int (cl (v(M))). If w e ^ , then the length of the shortest of the two
geodesic segments joining a and w does not exceed \π — r, and thus there
exists δ > 0 such that <α, w> > <5 for every w e 0>. Consider the cone C =
{tw t>0,w € 0>}. Since 0 is closed and convex in Σ, C is closed and convex
in H. If a e ^ , we have nothing to prove. Thus suppose that α $ ^ , and let
b e C be such that ||6 — α|| is a minimum of the distance function f{x) —
\\a — x\\2 on C. It is not difficult to see that 0 < ||fe|| < 1. We shall now prove
that the pole v = b/\\b\\ is in the interior of cl(ι^(M)). First we shall show
that (v, w> > δ for every pole w.

Since b is a minimum point for the function f(x) = \\a — x\\\ x e C, we have
that (a — b, b} — 0 and (a — b, w} < 0 for every pole w. To prove this, note
that the derivative of the function g(t) = \\a — tb\\2 is zero at the point / = 1
since tb is in C for every number t > 0. This implies (a — b, b} = 0, so that
for every ί, 0 < ί < 1, rf> + (1 — ί)w is in C if w is a pole. From this it fol-
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lows that the derivative of the function g(t) = \\a — (tb + (1 — t)w\\2 at the
point t = 1 is nonpositive, and therefore that (a — b, w — b} < 0, which
combined with the first equality gives (a — b9 w} < 0. Since ||ft|| < 1, it fol-
lows from the previous inequality that <v, w} > (b, w} > (a, w} > δ for every
pole w.

We now use this inequality to prove that v is in int (cl (v(M))). Suppose that
this is not true. Then take a sequence {yn} such that \\yn — v\\ < 1/n and yn

is not in cl (v(M)). Consider the convex cone C = {tu; t > 0, u e cl (v(M))},
and let xn e C be a minimum point for the distance function \\yn — JC||2, x e C.
By the above argument, we have that (xn — yn,y} > 0 for every y in v(M).
Thus we conclude that wn = xn — ynl\\xn — yn\\ is a pole. Since | | * n | | < 1, it
follows that (wn,yny<0 and therefore that (wn,v} = <wn,v — yn} +
<>vw? yny < 1/w, which contradicts the inequality <v, τv> > β for every pole w.
Hence v is in int (cl (v(M))).

Proof of Theorem B. Suppose that the convex hypersurface M is unbound-
ed and that int (v(M)) is nonvoid. By Theorem A the set of poles is nonvoid. It
follows from Lemma 3 that there exists a pole v in int (cl (v(M))). We shall
prove that v lies in int (v(M)) and that M ΓΊ L is bounded for every hyper-
plane L perpendicular to v. This will prove parts (a) and (d) in the definition
of pseudograph.

Let L be a hyperplane which intersects the interior of the convex body K
of M and is perpendicular to v. Note that L intersects M transversally, for
otherwise if p e M Π L and TMV + F Φ H (where L = p + F) then, since M
is of codimension one, L c TMP which contradicts the fact that L intersects
the interior of K. Note that M Π L is nonvoid, for otherwise M would be a
hyperplane. Hence S = M Π L is a convex hypersurface of L.

To prove that S is bounded, we identify L with the subspace perpendicular
to v and consider the unit sphere Σf = {x € 21 <*, v> = 0} of L. Take w e Σf.
Since v is in int (cl (y(M))), there exists u in int (cl (ι^(M))) such that w = av +
βw, where a, β > 0. Consider the height function /^(Λ;) = (w, JC>, x e 5. Since
•(/y, Λ:) = 0 for every x in 5, /zM(x) = βhw(x) for every x in S. By Lemma 2,
/zw is bounded below on M. From this it follows that hw is bounded below on
S for every w in Σ''. By the argument used to prove part (3) of Theorem A,
we obtain that S is bounded. Consider the cylinder C = {x + tv x € S, t e R}9

and let π be the orthogonal projection on L. By Lemma 1, the part of K be-
low L is contained in C, that is, the closed convex set Kλ = {x ζ K\ (π(x) — x,
v} < 0} is contained in C. By Lemma 2, there exists a hyperplane Lλ below
K, that is, there exists Lλ perpendicular to v such that ζπλ{x) — x, vy > 0 for
every x in £ , where πλ is the orthogonal projection on Lλ. It follows from this
that Kλ is bounded. Thus the height function hυ assumes its minimum at a
point p oί Kx. We easily see that p is in M and conclude that v(p) = t;.

We shall now prove that M is a pseudograph on the tangent hyperplane
F = TMP. Part (d) of the definition of pseudograph was proved above. It re-
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mains to prove part (b) and part (c). Let π be the orthogonal projection on F
and set A = π(M). It in not difficult to see that π(M) = π(K) and that int (A)
= {x € A π~ι(x) is transversal to M} = {x <= A x is a regular value of π: M
-• iF} = ττ(int (£)). Take x € int 04) and q € TΓ^OC) Π M. By Lemma 1 and
the above remark, the half-line {q + tv / > 0} is contained in the interior of
K. It follows from this that π~\x) Π M is a unique point, which we shall de-
note by s(x). Thus ^ ( ή i t (A)) Π M is the graph of the function /: Int (A) -+
R = TM^ defined by f(x) = (s(x),v}v (by a translation; we may suppose
that p is the origin). To verify that / is a C°° function we note that
π: π~ι(ini(A)) Π M —> int {A) is the inverse of the function s which takes
x € int 04) into π~\x) Π M. Since every x € int 04) is a regular value of
TΓ: TΓ'^ήit 04)) —> int 04), we conclude, by the inverse function theorem, that
s is a C°° diίϊeomorphism.

Now take JC e 4̂ — int (A) and let g e π~\x) ΓΊ M. By Lemma 1, for every
point r close to q and in the interior of K the half-line {r + tv t > 0} is con-
tained in the interior of K. It follows from this that the half-line {q -\- tv t > 0}
is contained in K. This half-line does not intersect the interior of K, for other-
wise x would be in the interior of A. Thus π~ι(x) Π M = π~ι(x) Π K. Since
π~ι(x) Π £ is a closed convex set which contains the half-line {# + tv / > 0}
and is contained in the half-line {x + tv t > 0}, we conclude that π~ι{x) Π M
is a closed half-line, so that we have proved the first part of the theorem.

Conversely, suppose that the convex hypersurface M is a pseudograph over
the tangent hyperplane TMV Φ M. Set v = v(p) and take a hyperplane L per-
pendicular to v and intersecting the interior of the convex body K of M. By
hypothesis, S = MΠLφ0is bounded. Since v is clearly a pole, we have
already shown that the fact that S is bounded implies that the part of K
bounded by L and TMP is bounded. Denote this part of K by Kλ. Then Kγ is
a closed bounded convex set. Note that a point in the boundary of Kλ is in
either M or K D L = X2. Let ^ denote the orthogonal projection on L and
set α = π^p). Let m, <5 > 0 be such that \\p — x\\ < m for every x in £ 2 and
(y, a — p} — δm > 0. We claim that F = {w e Σ\ \\w — v|| < S] is con-
tained in v(M). In fact, let w € F and <? e Λ^ such that /z^ίg) is the minimum
of the height function hw on Kλ. Clearly q is in the boundary of Kλ. For every
x & K2 — K (Ί L we have

A^C*) - hw(p) = (v,x - p> + <w - v,x - p}

= <v, <3 — /?> + <w — v, x — p} > (y, a — p} — δm > 0 ,

which implies that the minimum of hw is assumed not at a point of K2 and
therefore at a point q of M. This proves that the open ball F of Σ is contained
in v(M), and the proof of the theorem is complete.
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5. Proof of Theorem C

The proof of Bonnet-Myers theorem, in the finite dimensional case, depends
on the Hopf-Rinow theorem which is known to be not true in the infinite
dimensional case [1]. In the case where M is a complete hyper surf ace of a
Hubert space, we shall prove the Bonnet-Myers theorem by reducing it to the
finite dimensional case.

Lemma 4. Let M be a hypersurjace of a Hilbert space H, and L a linear
submanifold. Suppose that L intersects M transfer sally and let S = M Π L.
Then for each two-plane σ tangent to S we have

(1) Ks(σ) > KM(σ), if KM(σ) > 0,
(2) Ks(σ) < KM(σ), if KM(σ) < 0,

where Ks and KM denote the sectional curvatures of S and M respectively.
Proof. Take p € S and let σ be a two-plane tangent to S at p. Take an

orthonormal basis {x, y} of σ, and extend x and y to vector fields X, Y defined
on a neighborhood U of M containing p such that V XX, VYY and VYX are
tangent to L at p. Let N denote a unit normal vector of M at p. Then by the
Gauss egregium theorem we have

κM(σ) = <#, FXX}(N, Fγγy - </v, vγxy

Since L intersects M transversally, N = N1 + N2, where Nλ Φ 0 is in L and
N2 is in the orthogonal complement of L. By the proper choice of X and Y
and from the fact that Nι is normal to S at p, we obtain

KM{σ) = < N 1 9 ΓXXXNU PYY} - < N 1 ? F F Z > 2 = \\Nλf Ks(σ) .

Since \\NX\\ < 1, the lemma is proved.
In Theorem A we have that if the convex hypersurf ace M is unbounded and

does not bound any half-line, then the spherical image of M has void inte-
rior. This fact reflects on the sectional curvatures of M. It follows from the
following lemma that in this case the sectional curvatures of M are not bounded
away from zero at any point of M.

Lemma 5. Let M be a hypersurjace of a Hilbert space H. Suppose that the
Gauss map is defined on M. If the sectional curvatures of M at a point p are
all bounded away from zero, then the Gauss map is a local diβeomorphism on
a neighborhood of p.

Proof. By the Gauss egregium theorem, the sectional curvatures of M at
p are given by

K(σ) =

where {x, y} is an orthonormal basis of σ, and A is the derivative of the Gauss
map at p. By assumption, there exists δ > 0 such that K(σ) > δ for every two-
plane σ C TMP. This implies that there exists a > 0 such that \\A(x)\\ > a \\x\\
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for every x in TMP. Thus A is invertible. It is clear from the above inequality
that A is one to one. To prove that A is onto, set F = TMP and let us first
show that A(F) is a closed subspace of the Hubert space F. Let {yn} be a
Cauchy sequence on A(F). Then yn = A(xn) and \\yn - ym\\ = \\A(xn - xm\\
> a\\xn — xm\\. This shows that {xn} is a Cauchy sequence on F and therefore
that A{F) is closed. Denote by L the orthogonal complement of A(F). Since
A{F) is closed, F = A(F) @) L. From the fact that A is self-adjoint, we have
that A(L) = L. This implies that L = {0}, and we conclude that A is onto.
Now the lemma follows from the inverse function theorem.

Proof of Theorem C. Suppose that M i s a complete connected hypersur-
face of a Hubert space H whose sectional curvatures satisfy K(σ) > δ > 0. By
the result proved in [1] we see that M is convex. Let p and q be two arbitrary
points on M, and take a finite dimensional linear submanifold L containing p,
q and intersecting the interior of the convex body of M. Then L intersects M
transversally, and S = M Π L is a (finite dimensional) convex hypersurface of
L. By Lemma 4 and the Bonnet-Myers theorem, the connected components of
S are bounded, and thus S is connected. By Lemma 4, the sectional curvatures
of S satisfy Ks(σ) > δ. Then the Bonnet-Myers theorem shows that the distance
ds(P,q) relative to S satisfies ds(p,q) < π/V δ . Since the distance dM(p,q)
relative to M is less then or equal to ds(p, q), the diameter p of M satisfies
P <Ξ π/ V δ .

We shall now prove that the Gauss map v : M —> Σ is a difϊeomorphism. By
part (1) of Theorem A and Lemma 5, v is a local diffeomorphism onto Σ. It
remains to prove that v is one to one. Let p,q e M, and suppose that p Φ q
and v(p) = v(q) = v. Since p and q are minimum points of the height function
hv: K —> Σ', where K is the convex body of M, we have /ιυ(p) = hυ(q) and
hence /zυ(ίp + (1 — t)q) = hv{p). From this it follows that the points on the
segment [tp + (1 — t)q; 0 < t < 1} are minimum points of hυ. Since such
points cannot occur in the interior of K, this segment is contained in M. This
contradicts the fact that M has positive curvature, and we conclude that v is
one to one.
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