
J . DIFFERENTIAL GEOMETRY
10 (1975) 467-489

A GENERALIZATION OF THE CURVATURE INVARIANT

ROBERT KNAPP

Introduction

Let M be a manifold, and Dθ a linear connection on T(M). Classically it
has been shown that all local parallel vector fields, i.e., all vector fields X with
DΘX = 0, must satisfy X e Π ker VιR where the Rimannian curvature tensor

i

R and its covariant derivatives FιR are regarded as linear maps FιR : T{M) —>
(x) T*(M) <g> Γ(M). See, e.g., [1].
1 + 2

A related problem is the following: when is a tensor of type [1,1] on a
Riemannian or affinely connected manifold the covariant derivative of a vector
field?

If E is a vector bundle and Dθ a connection on E, then the analogous ques-
tions can be asked. We study both questions in this general setting. In this
context the maps VιR no longer exist. However, we introduce a set of invariants
Θω which are called higher order curvatures and serve the same purpose in
this context. The definition is completely general we associate to any differential

operator E > F a sequence of 0-linear maps Θa)(D): E —> G M where G M

is canonically defined. (E and F are vector bundles.) In the present context
Θa)(Dθ) = θ is the classical curvature. It is not true, however, that Θil) = Vι~ιΘ
when E = Γ(M), but they do have a close relationship as we shall see. Moreover,
in the appropriate sense the Θa)(Dθ) are covariant derivatives of θ and obey
Bianchi-type identities.

The θω also play a role in the study of the nonhomogeneous equation
DJ = a. In fact when Dθ has constant rank, it is shown that if Er = Π ker θa\

Dθ restricts to a flat connection on E'. This allows us to reduce the study of
H(M, ω), where ω is the sheaf of germs of local solutions of DJ = 0, to the
case where Dθ is flat. Our preliminary calculation of H(M, ώ) yields satisfactory
results in two cases.

a) When the base manifold M of E is simply connected.
b) When M is a Riemannian manifold of strictly positive or strictly nega-

tive sectional curvature, and Dθ is the Riemannian connection on T(M).
Some of the results of this paper were announced in [3].

Communicated by D. C. Spencer, February 1, 1974. This work was supported in part
by the National Science Foundation. The author wishes to thank Professor D. C.
Spencer who suggested this direction of research to him, and Professor H. Goldschmidt
who made many helpful comments about this paper.
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0. Preliminaries

We shall make use of several notions arising in the theory of overdetermined
systems without defining them in the text. For a full account of the ideas in-
volved one should consult [2a], [6a], or [7]. For easy reference we recall them
here.

Let E be a vector bundle. (We work entirely in the C°° category.) Then we
write Jk(E) for the bundle of A -jets. The fibre Jk(E) over a point x is the
quotient of the sheaf of germs of sections of E by the subset of germs of sec-
tions vanishing to order k + 1 at x. We note that Jk is a functor from the
category of C°° vector bundles and bundle morphisms into itself. We write jk

for the differential operator

which takes a germ of a section of E to its quotient.
The jet bundles enjoy a universal property with respect to differential op-

erators. Namely, let D: E -+ F be a differential operator of order k. Then
there is a unique bundle map p(D): Jk(E) —» F such that D = ρ(D)ojk.

Note that we have a natural injection 0 -+ S*T* (x) E > Jk(E) such that

0 > S*Γ* (g) E - ^ Jk(E) J ^ > Jk_λ(E) > 0

is exact. We define the symbol of an operator D with bundle map ρ(D) to be
the composition σ(D) = p(D)oε.

Given an operator D: E —> F_ of order k, the composition jLoD: E —> Jt(F)
is of order k + I. It has a corresponding bundle map pt(P) called the Zth pro-
longation of D. It is the unique map such that

n
D_ F

commutes. Similarly the prolonged symbol is the composition σt(D) = pt(D)o£

which goes into the sub-bundle SιT* ® F of Jt(F), i.e.,

σt(P): Sfc+*T* (x) E — S'T* (x) F .

Of particular interest are the kernels of these maps. Thus we define

Rk = ker p(D) , Rk + ι = ker ^ Φ ) ,

which are called the equation and prolonged equations, respectively. Further
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gk = ker σ{D) , gk + ι = ker ^(D)

are called the symbol and prolonged symbol, respectively.
Since Rk+t C Jk+ι(E), we can restrict TΓ^+Z-I to ^Λ+Z and have nk + t_lRk + i C

/̂ fc + ί.j. Hence we can state the important
Definition. An operator D is formally integrable if Rk+ι is a vector bundle

for every / > 0 and πk + ι_x: Rk+1 —• RJC + I-I is surjective for every / > 1.
We also have
Definition. An operator D is regular if Rk + ι is a vector bundle for every

/ > 0 .
We will need the operator

D: ΛrF* ® Λ(g) -> Λr+1^

which is characterized by the following conditions:
(1) The sequence

0 > E > JjXE) ~^-> T*®Jk_λ{E)

is exact.
(2) If s is a section of /\ P Γ* ® Jk(E), and α is a differential form of degree

q, then D(α Λ i ) = ώ Λ πk_λs + ( — 1 ) ^ Λ Z)^.

We have D2 = 0, D(/\rT* ®Rk+ι+1) c Λ r + 1 ^ * ® ^ + ^ and if (5:
E -> /\'"+1Γ* (x) 5fc-ij* (x) E is the restriction of - D , then

This leads to the complexes

δ δ δ
8m > I W 8m-l > /\ i W Sτn-2 ' ' ' > /\ I *9 Em-r

where m>k.gk is said to be involutive if these sequences are exact.
Next we construct the second Spencer complex. Let Cr

m = (/\ rΓ*

^ m + i ) / ^ ( Λ r " ^ * ® ^m+2) Then the diagram

o—> Arτ ^

o — > δ(f\rτ*®gm+2) — > Λr+1r*(g)^m+1 — > c ^ > o

induces an operator D which factors through Cr

m and therefore defines an

operator
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Thus we obtain the Spencer complex

A A

» fc> » C ^ > C^ • C m >

Suppose Rm is formally integrable and gm = 0. It follows that gm + z = 0,
I > 0. Then π^+1: j\rT*<g)Rm+1 -> /\ r T* ® J R W + 2 is an isomorphism, and
the Spencer complex is given by

A A

0 >Θ >Rm+ι-^T^(g)Rm+ι^ Λ 2 ^*®#m + i >

where D — Doπ^+1. Thus D2 = 0? and if /s 6 ΛTO+1 where / if a function, then
we have D(fs) = D(fπ^+1s) = df A s + fDπ^+1s = df A s + fDs. It follows
that σφ) = id, i.e., that JD is a connection on Rm+1. Similarly if a € f\qT*,
then ,D(U: Λ ί ) = D(α Λ T Γ ^ ^ ) = dα Λ s + (—1)% Λ Ds. It follows that
D2 = 0 is the curvature of D. Therefore one may choose flat frames s19 , sn

for jRm+1. Now however, since Dsi = 0, we have Doπ^+1Si — 0. It follows
thatπ^+iSi = j m + 2 fe) where ^ are sections i n l a n d hence st = ^m+io Γ^^o^ =
im+ife)- The foregoing is a special case of a more general result due to
D. C. Spencer. For details see [6a].

Finally, we recall [2a]
Theorem. Let ψ\ Jk(F) —» F be a linear map with Rk = ker ψ. Then it is

formally integrable if
i) Rk+ι is a vector bundle,

ii) πk : Rk+1 —> Rk is surjective,
iii) gk is 2-acyclic.

1. Higher order curvature

1.1. Definitions and basic properties. Let £ and F be vector bundles and
D a differential operator of order k D\E^F_. We define Z> (M), / > 0,
0 < / < / + k — 1 by requiring that the following diagram commute:

Jι(F)!Pι(D)(Γk+ι(E))

where Ji+i(E) is the kernel of πt: Jk + t —> Ji(E), and ώt is the natural pro-
jection. We define Θa^(D) = p(Da>l)oD), and set Θu^ = θ α ' ί } ( D ) when Z)
is understood. When i = 0, we write θ α ) = θ α > 0 ) and call Θa) the /th curvature
of D.
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Proposition 1.1. The operator DUiί) o D is a differential operator of order i.
Proof. By construction, p{Dihί) o D ) = ώ { o pt(D) which vanishes on Jl+ι(E),

establishing the proposition.
In fact the diagram

^Jι(F)/pι(D)(Ji

k+ι(E))

induces a map ΩaΛ)(D), and we observe

Θ«.«(D) = pφWoD) = wtoPi(D) = Ωa^{D)oπί .

Henceforth we will identify Θ(M)(Z>) and Ωihί)(D) and, where convenient, define
Θa^(D): JrW-ϊJ^/p^DXJlΛD)) where r > i by θ(M)offt. In particular
gen __ oa^0)oD, and we have

Corollary. θ α ) w a zero order differential operator between families of
vector spaces.

Proposition 1.2. If 0 < m < I and —1 < i < k + m, then the diagram

0 0 0

I'
J?(F)

I-
(1.1)

Rί

1
K+m,ι

I
0

is exact where the top row and right and left columns are induced, and we
have adopted the convention J^KE) — Jk(E).

Proof. Clear by a diagram chase.
The main interest is the case m = I — 1, for it gives us specific information

on the structure of Jι(F)/pι(Ji+ι(E)). Namely we have
Proposition 1.3. The sequence
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7 i SιT* <g) F Jt(F)
0

> E) Pι{D){J\+ι{E))

Pι-i(P)VLι-i(E))

is exact. When π\+m\ R{+1 —> R\+m is surjective,

clT1* (Q) p T (pΛ

• • - DF) ' Pl(D)(Jl+l(E))

is exact.

Proof. If suffices to observe that pι(D)Wk+ι-HE) = σL(D) under the identifica-

tion J\X\-\E) = SιT* ® E. The rest is a diagram chase of (1.1).
Proposition 1.4. If i - k < m < I, we have πm o ©«»« = θ^.*>.
Proo/. We have πm o 0 a ' i } = ^ o a ) i O ^ ( D ) = d)< o ^ m o Pι{D) = d>< o /

Proposition 1.5. We have an exact sequence

o —> πi{Ri+ι) •—• mm — • un/piΦwium)

—> uv/pάDwi+iim) —> o.

Proof. Follows by a diagram chase from the diagram

0 0 0

I

ϊ-
Ri -

\-
-> mm

1
0

CoroUary. // θ(ί» = 0, then /,(f)/>t(D)(7ϊ+t(E)) «"d Jι(.F)/pιΦXJk+ι(E))
are canonically isomorphic.

Proof. Follows from Proposition 1.5 with / = 0, / = — 1.
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Theorem 1.1. Let Rk be the equation of D, and Rk+ι its prolonged equa-
tions. Then πm(Rk + ι) = ker <9α'm)(£>).

Proof. Follows from Proposition 1.5 with / = — 1 .
1.2. Geometric meaning of higher order curvature, a) Bianchi identities.

We expect Θω(D) to have geometric meaning whenever D does. In the re-
mainder of this chapter we explore in some detail the meaning of Θa)(Dθ)
where Dθ is a covariant differential operator. Recall that Dθ can be thought
of in the following way: Let E be a differential operator, and θ a splitting of
the sequence

θ induces a map p(Dθ): Jλ(E) -> Γ* (x) E with p(Dθ) o / = id. p(Dθ)9 in turn,
defines a first order operator Dθ: E -» Γ* Θ E whose symbol σ(Dθ): Γ* (x) E
-» Γ* (g) E is the identity.

Our first point is the following:
Theorem 1.2. Lei θ foe the classical curvature regarded as a section of

Hom(E, Λ 2^* ®E)- Then θ = θω(Dθ) up to a canonical isomorphism.
Further, up to the same isomorphism

D?' 0 ) =Dθ:T*(g)E > Λ 2Γ* (x) E .

We need
Lemma 1.1. The sequence

^ E)/Pι(Dθ)(βι+1(E)) > 0

We first must show that Pι(Dθ): J\+ι(E) -> /J(Γ* (g) E) is defined,
i.e., that ptΦeWi^iiE)) C 7?(Γ* ® £ ) . Let α β 7}+1(E)(JC0) and choose / € E^o

such that jι+ιf = a. Then, since Dθ is first order, (D$f)(xQ) = 0. We have

|>ι(D,)α](*o) = [ / ϊ ° ^ / ] W a n d h e n c e [7ro(^£(I>ff)a)]Uo) = K 0 " ί ° ^ / ) ] W =
(Dθf)(xQ) = 0 which is to say Pι(Dθ)a e J%T* ® E).

It is clear by definition of the maps involved that ώ0 o pt(Dθ) = 0. We now
show that ώ0 is surjective. Namely let β € [Jt(T* ® £)/MD,)(/?+1(E))Lo and
let α 6 Jt(T* (x) E)a.o be a representative of β. Since the symbol of Dθ is an iso-
morphism, we can find / e EXo with /(Λ:0) = 0 and (Dθf)(x0) = πoa. Since jι+1f ε
J°ι+i(E)Xo, we have ώo(/Ί ° D9f)(x0) = (Φ0opι(D9)ojι+ιf)(χQ) = 0 and hence d)0(α
- iι(Dθf)(x0)) = ώo(a) = β. Since α - h(Dθf){xQ) e J%T* (x) E)Xo, this estab-
lishes surjectivity of ώ0.

It remains to establish exactness at /J(Γ* ® £ ) . Suppose /3 e /JCT1* ® ̂ ) ^ 0

and ^ e k e r ώ 0 . This means that β = pL(Dθ)a for some α: € J\+1(E)XQ. Let
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jι+1f = a where / e EX o, and note that f(x0) = 0. Further, (DJ)iXo) = πoβ = 0.
But observe that [σ(Dθ) ojj](χ0) = [p(De)ojj](x0) = (Dθf)(x0) = 0 so, since
σ(Dβ) is injective, (hf)(xQ) = 0. It follows that a e J]+1(E).

Corollary. The sequence

S*T* (g) E J_+ r * (x) Γ* (x) E __% Λ(Γ* (x) E)/P](DΘ)(J°2(E)) > 0

is exact, inducing an isomorphism h: f\2T* <g) E -» ^ ( T * ® E)/pι(Dθ)(J°2(E)).
If δ is the projection δ\ T* ® T* ® E ^ /\2T* ® E, and a z [T* (g) Γ* <g) E k
w 0 representative of β = δ(a), then h(β) — ώG(a).

Proof of Theorem 1.2. It is enough to show that D{^0) = hoDθ where
£>,: Γ* ® E - > Λ2Γ*(R)E, since it immediately follows that θ ( 1 )(/)θ) =
D^' 0 ) oDθ = hoDθoDθ = hoθ. Recall that Z),: T* ® E — Λ 2 Γ* (8) E may
be defined in the following manner. Namely, if α ( x ) ^ Γ * ® Zs^, then
£>,(αr ® β ) = = d α ® e - - α r Λ £ ) ^ . Accordingly, let α (8) e e Γ* (g) £T f l, We
choose ^ with e(;*:0) ^ 0. Since the symbol of D^ is the identity, we can choose
f-ee EXo such that f(x0) = 0andZΛ(/ e)O0) = (a ® e)(*0). Since /(JC0) = 0, we
haveD? °> oDθ{f e){xQ) = θw(j>e)(xj = 0. Hence ώ o (/> ® e - Dθ(f - e)))(xQ)
= ώ0 o j^a (x) e)(x0). We have jλ{a ®e — Dβ(f e))(x0) = j^a (g) e - df (x) β)(jc0)
- h(fD9e)(xQ) = MCα - dβ ® β)(jc0) - h(fD,e)(x0). Since j^fD^Xx,) and
7i((α ® β - D,(/ ^))(x0) He in T* <g> Γ* ® £ , /,((« - df) ® β)(jc0) 6 Γ* (x) Γ* ® £ .
It follows that (α — df)(x0) = 0.

Notice now that for any β (x) e e T* (x) £" with /3(x0) = 0, we have δ o / ^ (x)
<?)(*„) = ^ ® β W It follows that δ(h(a ®e)-Dθ{f e))(x0) = δ o /,((* - d/)
® β)(jc0) - δojtfDieXxJ = (da ® e)(*o) - d/ Λ Z ) ^ W = dα ® ^(x0) - α
Λ Dθe(xQ) establishing the theorem.

Dθ is extended to Λ Γ* (g) E in the following manner. Let a (x) ^ € Λ ' ^ *
(x) E. Then D/αr ® e) = da 0 e + (— l)*α Λ Z),β € /\*-"Γ* (x) E. Notice that
Z)2,(α: ®e) = De[da(g)e + ( - l)*αr Λ Dθe] = d2a ® e + ( - l)*+1dα Λ Z V
+ (— l)*dα Λ Z),^ + ( - l)2ίa A D\e = a Λθe. We will later need the follow-
ing generalization of Theorem 1.2:

Theorem 1.3. Consider the differential operator D?>0) = w0 o j γ : f\ *Γ* (x) E

there is a canonical isomorphism h(ί): /\ i + 1 T * ® E -> G{^ ««d D^' 0 ) = A(ί) o Z),.
Proof. Consider the commutative diagram where i > 2.
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I

i * δ

1
0
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0

δ

-•JίίΛ'Γ ®^) —

Uo

1
0

0

, I
-* /\i+1T*®E >

ϋ - i»"
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The top and bottom rows are exact, and all columns except possibly the
last, which is induced by the diagram, are exact. The map p2(D&) restricts to
JKA^27* ® E) and the image of the restriction lies in /°(Λ*~1Γ* <8> E) because
Dθ is a first-order operator. Since pι(Dθ) o p2(Dθ) = p^D*) — ρx{β) is a first-
order operator, it must vanish on /J(/\ ί " 2 T* (x) E). Since exactness in the rest
of the middle row is clear, the middle row is a complex. Exactness at
y o ^ i - i j * (g)£) follows by a diagram chase. Note that exactness of the last
column is not required in this chase. Now that everything else is exact exactness of

the last column and specifically the isomorphism /\ ί + 1 Γ* (g) £ > G $ follows
by a diagram chase. Explicity if β e /\«+1T* (x) E and δ(a) = β, then h{i)'β = ώoa.

We now proceed as in Theorem 1.2. Let a (g) e e /\*Γ* (x) EX o. We choose
β with β(jc0) φ 0. Choose ^ (x) e z /\^T^®EXo with ^ ( J C 0 ) = azndβ(x0) = 0.
Noticing that Dθ(β ® e)(xQ) = (a (g) e)(x0), we have D?' 0 ) o D,(β ® β)(jc0) =
θω(β ® e)(jc0) = 0. Hence D^°>(α: ® β - Dθ(β ® β))(jc0) = D^'0>(α: ® β). We
therefore replace a® e by α(g)β — Dfl(j8 ® e). We have ^(α ® e — Dθ(β ®
β))(jc0) = U(a ®e-dβ® e)(x0) - hd-iy-'β Λ Dθe)(x0). Both terms lie in
T* ® Λ ' ^ * ® E- Remark that for any γ ® e e Λ ' Γ * ® ^ with r(jc0) = 0,

= dγ(g)e(x0). Applying this fact we have 3(/Ί((α ® e ) —
= δ o /,((« - dβ) ® β)(jco) + (-1)*3 o / ^ Λ D^)(JCO) - (da ®

W + (—l)*(α Λ D^)(x0), establishing the theorem.
Now consider the sequence

Λ Λ (g)E^ /\*T*(g)E .

Let i be a bundle mapy4:£—> /\2Γ*(x)JE. Then the standard covariant
derivative of y4 can be defined in the following way: Define A' to be the
composition
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where Λ is the obvious map. (One can check, in particular, that Θ' — D\:

Then define

(1.2) DΘΛ = DθoΛ - ΛfoDθ .

From this point of view the Bianchi identity becomes utterly trivial:

Dθθ = D9oθ - ΘoDθ = DθoDθoDθ - DθoDθoDθ = 0 .

We wish to generalize this formula to find a way to covariantly differentiate
the higher-order curvatures θa) by some operator Dθ t with Dθβ

a) — 0.
Clearly, we wish that the domain of Dβ%ι be Horn (E, G M ) where G M =

Jt(T* (g) E)/Pι(Dθ)(J°ι+1(E)) is the range of θa). We wish further that D^Λ)
be linear over functions and that it be expressible in a form analogous to (1.2).
Finally, it w ould be nice if DθyJθa) vanished for a reason analogous to the
reason given for Dθθ = 0.

We begin with
Lemma 1.2. Let E and F be vector bundles, and A: E'-+ F a bundle map.

Regarding A as a zero-order operator, we can take its first prolongation. Then
we have σx(A) = Ίά®A where σ,(A): Γ* (x) E -> T* ® F.

Proof. Trivial.
Our next proposition allows us to take a covariant derivative of anything in

Horn (E, F) given only a covariant derivative on E.
Proposition 1.6. Let E be a vector bundle with covariant derivative Dθ,

and F another vector bundle with A: E -+ F a bundle map. Consider the
diagram

Then DΘA = jx o A — i o (id ® A)oDθ is a bundle map.
Proof. Since both j1oA and / o (id (x) A) o Dθ are first-order operators, it

suffices to prove that their symbols are identically equal. But we have

σQλ o A) = CJ(/Ί) ° σ^A) = id o (id (x) A) = id ® A

and, on the other hand,

σ(io (id (x) A)oDθ) = (id (x) A) oσ(Dθ) = id ® A

since σ(Dθ) = id.
Remark. Dθ is thus a first-order operator
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ύθ: Hom(E,F) > Horn (E, J.jF)) .

In the classical situation F is equipped with a first-order differential operator
and composition of its bundle map with DΘA provides the usual covariant
derivative of A. In accordance with this point of view, we now focus on the
bundles G ί 0 and desire to take covariant derivatives of sections of Horn (E, GZ o).
We consider the following sequence

where D'θl = ώ0ojl9 and we note that Θ(1>(Z>« °>) = E/9tloD^°\
We make the following definition.
Definition. Let A : E —> G^o be a bundle map. Then we write

D9%ιA = DθιoA - σ(D'θ,ι)o(iά®A)oDθ = p(D'θJ o DθlA .

Hence Dθ t is a first-order differential operator and

D§tl: Horn (E, G,>0) > Horn (E, G ,̂o)

where G M = J1(GlfO)/p1(Dr))(J(i+ί(T^ ® E)).
Notice that the y4r we sought is provided by Af = σ ( D ^ ) o (id (x) y4).
We now state
Theorem 1.4. i 5 M θ α ) = 0.
Proof. Remembering that θω=Da*0)oDθ we need only to prove

(θα))'(ΞΞ σ(D'9tl) o (id (g) θ ( ί ) )) = D'9tl o D ( ί ' 0 ) . Hence we prove
Lemma 1.3l σ(D^) o (id (x) θ ( ί ) ) = D'θl o D« 0 ).
Proof. Consider the following diagram:

We know that the outer diagram, the rectangle, and the two triangles commute.
We show that the parallelogram commutes, i.e., that pφ^d°Pi(βa)) =
jy9il o Dίι>0) o p(D0). We already know that

Since D ^ o D ^ = 6>(1W'0)) which is a bundle map, it follow from
) o ^(β")) o jx that
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Composing now on the right with / and in view of the fact that p(Dβ) o / = id,

we have

J Q o (id (8) Θa)) .

This establishes Lemma 1.3 and hence Theorem 1.4.
We now wish to show that essentially the Θa) are covariant derivaties of

the curvature. In fact, we shall find a canonical injection ε: G ι + l f 0 —• J^Gi 0)
such that ύθθ

ω = εoθa+1\
We prove first
Lemma 1.4. The following sequence is exact:

J]+2(E)

w ί/iβ natural projection.

Proof. That pι+ί(Dθ) is defined was proved in the proof of Lemma 1.1,

and exactness at all points but 7J+1(Γ* ® E) is clear. We first prove

piiDΫ'^op^Dg) = 0. Consider a e Jl^iE)^ and choose / <= E X o such that

h+if = «• T n e n

since (/i/)*0 = 0.
To prove exactness at /J+ 1(Γ* ® S) consider the commutative diagram:

0 0 0

Sι+2T* ® E — * — + Sι+1T* g ( D " > 0 ) )

JΪ+i(T* 0 E)

πl \π0

1
o



CURVATURE INVARIANT 479

The columns are clearly exact, and we have seen that the bottom row is exact.
It therefore suffices to prove that the top row is exact.

First, we have the commutative diagram

Sι+1T* ® Γ* ® E

T* <g> SιT* ®T*®E g W ) > Γ* ® G M .

Here ε is the δ map acting as the identity on Γ* ® E. ε: Γ* ® G M -> Γ* ® G M

is the identity.
On the other hand, the image of σ(D^0)) on SιT* ®T*®E is SιT* ®

T* ® E/δ(Sι+1T* ® E) which is contained in G M and injects canonically into
S^T* ® /\2T*®E. The composition of σ(D^0)) and this injection is the δ
map. Thus ker σ^D^) = ker σ(D(

θ

ι>0)) o e = ker δ o e . But the diagram

0 0

T*®E > SιT* ® /\2T*

Γ* ® SιT* ®T*®E • Γ* ® S1-1^ ® Λ2Γ* ® E

commutes and the last column is exact. Therefore ker σ^D^) = ker δ o e =
ker ε o δ = ker δ. Hence exactness of the top row reduces to exactness of the δ
complex.

Corollary. Let k be the isomorphism

k: G ι + l f 0 > 7?+1(Γ* ® E)/Pι+1φΘ)(J]UE))

of Lemma 1.1. Then the sequence

0 > G l + l f 0 - U Λ(G M )

- ^ > / i (σ ϊ f 0 )/^W ϊ f 0 ) ) (^ + i ( r* ® £)) — > o

w ĴCί/cί, >v/ẑ r̂  ε — p^Dtf^) o A:, αftd p^D^1^) is induced on the quotient.
We now state
Theoerm 1.5. We have DθΘ

a) = ε o θ ( i + 1 ) .
Proo/. We start with the defining formula ύθθ

ω = Ί o θ ^ — /o(id(x)
Θα )) o D^. Since both sides of the equation to be proved are bundle maps, their
values on a local section / at a point x0 depend only on f(x0). Let, therefore,
/ € EXo and choose f e EXo such that f(xQ) = 0 and (D,f)(xύ =
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That we can do this is guaranteed by the surjectivity of σ{Dβ).
We have first

- Λ ° Θa\f - /')(*„) - / o (id ® Θa)) o D,(f - /')(*„)

Also ε o 0 « + » ( / ) ( * o ) = £ o 0 « + » ( / - / ' ) ( * „ ) . Since D,(f - /')(*„) = 0, ; ί + 1

£>,(/ - /O(JCβ) e JJ+ 1(Γ* ® E)Xo. Using this fact we have

The last two steps follows from the fact that / ι + 1 o Dβ(j — f')(x0) e J°ι+1(T* ®
E)Xa and hence is a representative of k~1°θa+1) from the definition of
Pn-i(De'0)) considered as acting on /?+1(Γ* <8>E)/pι+1(D,)(J\+i(E)) and from the
commutativity of

It follows that Z),0α )/ = εoθa+ι)f.
Remark 1. Using the definition of θ α ) the equation in Theorem 1.5 can

be written

h o£><<>0) oDθ-io ( id ® θa)) oDθ = εoD«+1>v oDθ .

We are therefore motivated to prove
Corollary. We have

ΊoD".") - io(id(8)θα)) = ε o £ > ™ .

Proof. The equation is equivalent to

Let α? e T* ®E with α:O0) = 0. We prove equality for such <*. We have

(id (g) Θα))<* = 0 and /ι+1αr 6 /?+1(Γ* ®E). It therefore suffices to prove
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Pl(Dίι>°>) - px(D^) o k o p(D(

θ

ι+1>v) = 0 on /?+1(Γ* ® E). But this follows from
the definition of ^ W ' 0 ) ) o jfc = e .

Therefore

^ o D« 0) - i o (id ® θ ( l ) ) - ε o D« + 1 °>

is a zero-order operator, and is identically zero if and only if its composition
on the right by any symbol surjective differential operator vanishes. Composing
with Dθ and comparing to Theorem 1.5 we obtain the corollary.

Remark 2. In the case I = 1 there is a canonical splitting of the exact
sequence

0

i is defined as the composition of the canonical maps

<?i,o -^> Λ3^* ® E — > r* ® Λ 2 ^* ® « — > Ί(

Composing the formula of Theorem 1.5 with p(Dθ) we find

0 o ε o θω = pφθ) o Dθθ

= pΦθ)°h°θ - pφ9) oio (id® θ)oD9

= Dθ o θ - σφθ) o (id ® θ) o Dθ .

Thus the corollary becomes

D<2'0) =DθoDe- σφe) o (id ® θ) .

b) Applications. The above theorem indicates the precise sense in which
the ΘU) are higher-order curvatures. It may be asked, however, if any informa-
tion is contained in the Θω which is not already given by Θ (the classical
curvature) especially since Theorem 4 implies that 0 = 0 implies Θ(l) = 0 for
all /. That they indeed do is settled by

Proposition 1.7. Given a connection θ with curvature θ Φ 0, it is always
possible to find a connection θr with θ' = θ but θ / ( 2 ) Φ θ ( 2 ) .

Proof. Consider a local trivialization of E over an open set U with a local
basis given by e19 , en. Let {θvμ} be the matrix of one-forms for θ. Choose
some nowhere vanishing function g such that g = 1 outside of some compact
set K C U and such that dg is not identically zero. Set θ[μ — θvμ — g~ιdgδvμ,
and let θf agree with g outside U. Then it is easily verified that θ' = θ but
in view of Theorem 1.5 θ / ( 2 ) Φ θ ( 2 ) .

Our next theorem plays a key role in the next chapter.
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Theorem 1.6. Let Dθ have constant rank on E, and let Π ker ΘU)(DΘ)
i

= E'. Then DΘ[E,: Ef -> Γ* ® E' is defined and Θ(DΘ]E,) = 0.
We start with a lemma.
Lemma 1.5. // Dθ has constant rank, there exists anm < fibre dim E such

that ker θ ( m ) = ker 0 ( m + 1 ) . Furthermore for any I > m, ker (9(m) = ker θω =
ker θ{k). // m w so chosen, then Rm+1 is formally integrable.

k

Proof. Since gi+1 = 0 for all i > 0, the maps πs: Rt—*RS, s < /, are all in-
jective. We have ker θa) c ker θa~υ for all Z. Since θ α ) has constant rank and E
is finite dimensional, there is an m < fibre dim E such that ker <9(m) = ker θ ( m + 1 ) .
Then 7r0o;rm+1(flm+2) = πo(Rm+2) = k e r θ ( - + 1 ) = ker<9(-> = τro(i?m+1). Since
τr0 is injective, it follows that πm+1(Rm+2) = Rm+V Since the symbol of Rm+1 is
zero, its <5-cohomology is zero and Rm+1 is formally integrable. It follows from
Theorem 1.1 that ker θ(m) = ker θa) = Π k e r 0 ( J f c ) f o r a 1 1 ; > m

Proof of Theorem 1.6. Let m be chosen such that ker 0 ( m + 1 ) = ker θ ( w ) .
Then Rm+1 is formally integrable and gm+1 = 0. From the discussion in §0,
it follows that there exist f19 , fN of E such that /m+i/v form a basis of i^m + 2

But π0: Rm+1 — -̂> ̂ . and since πQojm+ιfυ = /p and τr0 is an isomorphism, the
/v are a local basis of Ef. We have Dθfv = ^(D^) o / ^ = 0, which guarantees
that the image of Dθ on Er lies in Γ* ® Ef. Indeed, D , ^ ) = ^ ® fv and
θ(^/ v) = DKVJV) = Dθ(dVv (x) /w) = d\ ® fv = 0.

Corollary. We can induce a connection

Dβ[E/E,: EIE1 > Γ* (x) (E/EΊ .

Remark 1. It is not true in general that Dθlkeτθ : k e r θ —> Γ* (g) ker θ is
defined. Consider, for example, the connection on the trivial bundle over an
open set U in the plane defined by Dθeι = dx (x) e2, Dθe2 = ydx (x) ( x̂ + e2).
Then 0ex = 0, θe2 = JJJΛ: ® (^! + e2), so the kernel of θ is generated by ex.
But by definition, ZVX = dx ® e2 & Γ* ® ker θ .

Remark 2. One might hope that Π ker θa)(Dθ{E/E,) = 0. However, con-

sider the connection defined by Dθeι = 0, Dθe2 = ydx (x) eλ. Then £ r is gener-
ated by eλ and under the quotient DθlE/E,e2 = 0. It follows that θ(DβlE/E,) = 0
and hence Π ker θa)(DθlE/E,) = EjEf.

I

Remark 3. However in the Riemannian case E splits into E = Er 0 £ "
and £>„: E / r -> Γ* ® E". {E" is just the orthogonal complement of E'.) In
fact this is part of the de Rham decomposition of T(M) (see, e.g., [4, Theorem
5.4]).

Unless / == 1, the bundles G M depend on the connection, creating a difficulty
in comparing higher curvatures of different connections. However, recall that
given a connection we have an injection εt: G M —• /i(G z_1 0) and in particular
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We adopt the notation Jk(F) = / ^ ( -J^F))). Applying the functor Jλ we

have Jλ(ε2): /1(G2f0) -> /i(/i(Λ 2 Γ* ® £ ) T = Λ ( Λ 2 Γ * ® ^) a n d έ3 Ξ /1(e2) o
ε3: G3>0 —• / 2(Λ 2^* ® ^) Write ε2 = ε2 and define έj inductively by ε̂  =
/ife-i)°er. Glj->Jι_ι(/\2T*®E). Clearly έi in an injection. Set β α ) =
έz o θ ( i ) , and notice that ker θa) = ker Ωa).

Theorem 1.7. Suppose ΩU): E -»J^ί/^T* ® E) are given and
Pi ker Ωa) — 0. Γ/z^π there is at most one connection θ such that Ωa) =Pi

Proof. It is enough to look at a point x0 in the base space. Let ker Ω^ =
ker β ^ + 1 ) = 0. We shall prove that Ω™ and β ^ + 1 ) determine ΘXQ. Recall that
£m+i°6>(m+1) = A θ ( m ) = / i °θ ( m ) - σJβ™)oD9. Composing on the left side
by UεJ, we obtain β<™+1) - em+1oθ^+1) = φ j o ε m + 1 o 0 ^ ^ > = / . ( i j o
^ o @(m _ φ j o σψ^) o Dθ = A o ew o ΘM - σx(em o θ ( w ) ) o Dθ = j , o β<^ -
<τ1(/2Cm>) oD^. Applying both sides to a local section / of EXo gives β ( m + 1 )(/)(x0)
- 7i°β ( m )(β(*o) = - ^ i ( β ( r a ) ) o ^ / W = - /o(id(g)β(-))(D,/)(jc0). This de-
termines Dθf(x0) since / o (id ® β ( m ) ) is injective.

Remark. If the fl(m) has constant rank, it is enough to use β ( m ) and Ωim+1)

where m = fibre dim E.
c) Linear connections. If θ is a linear connection o n E = T(M), then one

can consider the curvature θ as a tensor of type (1,3). The covariant deriva-
tive of θ yields a tensor of type (1,4) and is denoted by FΘ. FkΘ denotes the
Λ th covariant derivative of Θ. In view of the preceding results it is natural to
expect a close connection between Θa) and Vι~ιΘ. (The difference in super-
scripts results from the fact that Θω = Θ.) We wish to make this relationship
explicit.

Recall that V can be characterized in the following way. First, FX9 where
X € Γ(Γ(M)), acts on vector fields by VXY = ίx(DθY) and on functions by
Vxj = Xf = ix{df). Vx extends uniquely to a derivation on the algebra of tensor
fields commuting with contraction.

Now let Xi be a basis of vector fields, Xf the dual basis of cotangent vectors.
Define FA = Xf (g) Vx A. Since the expression VXiA is linear over functions
with respect to the variable Xu one shows easily that FA is well defined.
The symbol of V is the identity, so V is a connection in the usual sense. Further-
more, if A is a tensor valued homomorphism of T(M) and / e Γ(T(M)), then
(FA)f = F(A(f))-σi(A)oDJ.

Our first problem is that ΘU) and Vι~ιθ do not live in the same place. We
solve this problem by replacing the θa) with the Ωa) defined in the previous
section. We may regard the Vkθ as a section in Horn (Γ, ((x) Γ*) ® /\2T* (x) Γ),

k

but since (x) Γ* <g) /\2T* <g) Γ injects canonically into Jk(/\2T* (x) Γ) we will

regard F*θ as a section of Horn (Γ, Jk(f\2T* <g) Γ)).
We can now state
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Theorem 1.8. We have β α + 1 ) | k e r f l cn = F'θ|kβrίϊc«, and keτ Ωa+ι) =
Π kerF*θ.

We need some lemmas.
Lemma 1.6. // F is a tensor bundle, there exists a unique section

B € Horn (F, /^F)) JMC/J ί/wtf /or any A e Horn (Γ, F) we have

φθ - V)Λ = Bo A .

Proof. Notice that

[φ9 - F)A]f = (hoA)(f) - σx(A)Φ.f) ~ (F°A)(f) + σι{A)Φeί)

= «jι-Γ)oA)f.

But /Ί and V are first-order operators with the same symbol, so (/Ί — ί7): Z ->
/^F) is (^-linear, and the lemma follows.

Lemma 1.7. Lei D^ fee Λ connection on E, and let F, G be vector bundles.
Let A e Horn (E, F) and B e Horn (F, G).

Proof. Let / be a section of E. Then

Lemma 1.8. // F is a tensor bundle, there exist sections B[l) e Horn (/^(F),
Jt(F)), i = 1, , I, such that for any A e Horn (T, F) we have

Φ\ - Pι)A = B[l)oDιfιA + B^oύ\-\VA) + + B^oVι~ιA .

Proof. We proceed by induction, and start with Lemma 1.6. Suppose the
statement has been demonstrated for k < I — 1. Then we have

Φ\ - Vι)A

= t>eΦYιA) - FιA

= ϋt[Blι-υ o fy-*A + • + BfcVoP-Ά + Pι-'A] - VιA

= pS.Bi'-^cϋl-'A + ••• + Pι(Blι_-»)oDβ(Pι-2A) + φ, -

Thus the lemma follows with B\l) = pι(Biι-1)) for i < I and B\l} = B.
Lemma 1.9. // F is a tensor bundle, there exist sections Bψ>l) 6 Horn (/j(F),

/ ) , i = I — k, • • •, I — 1, 0 < k < I, such that for any A e Horn (Γ, F)



CURVATURE INVARIANT 485

θ ( ) B[lfoVl'kA + + Bψj$°Vι-χA + FιA .

Proof. First by Lemma 1.6 we have

Dθ{Vι-ιA) = Λ^oΓ 1- 1^ + VιA

for all /. We proceed by induction. Assume the lemma for k < m and for all
Z. Then

-'O o Fι~ιA + B ^ o Γ ^ - U +

This establishes the lemma with

l-m-l 9

for / - m - 1 < / < / - 1,

Dl-1 — Pl\Dl-2 ) T" **2-l

Theorem 1.9. // F is a tensor bundle, then

ker D\A = Π ker FM
A; = O , Z

/or «// /; and if f e ker D^A, then

φ\A)f = (FιA)f .

Proof. Notice that πλoDι

θA = ̂ " U so that kerύι

θA C keri^-U. The
rest follows inductively from Lemma 1.9 with / = k.

Proof of Theorem 1.8. We observe that ύι

θθ = ύ\Ωa) = Ωa+ι). Therefore
the theorem follows from Theorem 1.9.

We also call attention to
Corollary 1 to Lemma 1.9. We have

D\A = B™oA + B[l)oFA + + B[ιlxF
ι-ιA + FιA ,

where we have set B^l) = Bll>l).
We state a final corollary to Lemma 1.9, namely,
Corollary 2 to Lemma 1.9. There exist sections Ql) e Horn (Λ(F), Jt(F))
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such that for any A e Horn (T, F)

FιA = C«>oA + C«>oθM) + * + C&oφ^A) + Ό\A .

Proof, Follows by induction from Lemma 1.9.
It should be noticed that all of the maps B?*l) and Cίl) depend on the connec-

tion. This, of course, may give them a certain amount of interest. On the other
hand, in view of this dependence, it does not follow from the above two corol-
laries that the Ωa) and the FιΘ contain the same information.

It is clear that Ωa+1) = FιΘ only on ker Ωa) because outside the kernel,
Q(i+\) fi0QS n o t i j e j n t ^ e right bundle. Hence Theorem 1.8 is the best one can
hope for in this respect. The definition of FΘ requires that θ be a connection
on the tangent bundle, and it seems unreasonable to expect a generalization
of FΘ, which would reduce to FΘ for linear connections. Hence Θω appears
to be the natural generalization to arbitrary vector bundles.

2. Cohomology of the Z) -complex

We now consider the equation DΘf = a where a e Γ(T (x) E). We will show
that under appropriate compatibility conditions on a this equation can always
be solved locally (in the strong sense) in the C°° category provided Dθ has
constant rank. In fact, we obtain a reduction to the case where Dθ is flat, and
using this reduction we make a preliminary study of the global problem. We
obtain satisfactory answers in two cases: 1) when the base manifold of E is
simply connected, 2) when E = T(M) where M is a Riemannian manifold with
strictly positive or strictly negative sectional curvature.

If θ = 0, the compatibility conditions are provided by Dθa = 0. However,
if Dff is not formally integrable, higher order conditions are required. Hence
the following proposition is of interest.

Proposition 2.1. Dθ is formally integrable if and only if θ = 0.
Proof. This is an immediate consequence of Theorems 1.1 and 1.2.
Remark. This is a special case of a result of Quillen [5], who used the

following diagram:

0 > /\qT* ® ^ > Λ^*®^i-^> /\qT*®E >0

—>o
Here Rλ is assumed to be a first-order equation such that π: Rλ —> E is surjec-
tive. Cq+ι and p are defined by the bottom row. This determines a unique
first-order operator D: /\«T* ® E -+ Cq+1 such that Dπ = pD. Then by de-
finition K(R,) = DD: f\qT:¥®Rι->Cq+\ and K(R,) is /\Γ* linear. Then
Quillen proved



CURVATURE INVARIANT 487

Proposition 2.2 (Quillen [5, Proposition 15.1]). The sequence of Θ-
modules

is exact.
It is easily checked that for Dθ, Θoπ0 = K(R,) and C2 = f\2T* <g) E.
In [26] Goldschmidt proved that there are an essentially unique bundle Gt

and an operator D(

θ

l) such that

is formally exact. We quote his theorem as follows:
Theorem 2.1 (Goldschmidt [2b, Theorem 3]). Let φ: Jk(E) -> F be a

regular differential operator of order k from E to F, and let DQ = φojk. Then
there exists a formally exact complex

(2.1) U > tr > tj_ > C J 0 > Cl! > Cx2 > * * * LZr-l > iZr' ' '

where Gr is a vector bundle, GQ = F19 and Dr = Ψrojlr: Gr_ί —> Gr is a
differential operator of order lr moreover the sequences

Π ^ p j /EΛ j ( Γ Pm-l(Ψ\)

(2 2) K > J ^) > J r ) >

are exact at Rk+m and Jk+m(E) for m > 0, at /TO(G0) for m > /1? and at
/ m _ l l _ . . . - Ϊ Γ ( G r ) f o r m > l 1 + . . . + / r + 1, r > 1 .

Furthermore if the maps πm : .Rm+i —> Rm have constant rank for all m > k19

the cohomology of (2.1) is isomorphic to the Spencer cohomology of Rk.
The operators and bundles are constructed recursively in the following manner.

For the appropriate positive integer lr, Gr = / i r(G r_1)//o ί r(D r_1)(/ ί r +i r_ l(G r_2))
and Dr = ¥r°Jir where Ψr is the natural projection. If Dr_1 is formally in-
tegrable, and its symbol is involutive, then lr may be chosen to be lr = 1. If
Dr_λ has involutive symbol, and its Zth prolonged equation Rk + ι is formally
integrable, then lx may be chosen to be lλ = I + 1, and lr may be chosen to
be/ r = 1 forr > 1.

We now specialize Goldschmidt's theorem to the operator Dθ, and conclude
Corollary. Suppose θa) has constant rank for all Z, and ker θ ( m ) = ker θ ( m " υ .

Set Hλ = Gm = Jm(T*(g)E)/Pm(Dθ)(Jm+1(E)) and Dγ = D™ =ώojm where
ω is the natural projection. Define H2 = / 1(GJ/ /o 1(D^ ))(/m + 1(Γ* (g) £)) and
D2 = ώojι: Gm-^H2. Define Hι and Dt inductively for / > 3 by Hι =
hΦi-dlpiiPi-Wiifli-d) and Dt = ώoj^.H^ -> Ht. Then the complex
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(2.3; tj_ > i * vS) tL >Crm >ti

is formally exact and elliptic, and its cohomology is isomorphic to the coho-
mology of the Spencer complex of Rm.

Proof. That (2.3) is elliptic follows from its formal exactness and the
ellipticity of Dθ (see [2b]). That the operators Dt are all formally integrable
follows for each / by the formal exactness of the preceding stage. Since the
symbol of Dθ is involutive, the symbols of the Dt are involutive (see [lb, Pro-
position 4.3]).

Remark. Let ω be the sheaf of local solutions to Dθf = 0. If m is chosen
so that ker (9(m) = ker 0 ( m ~ υ , then we recall that the Spencer complex associated
to Dθ is

ϋ > ω • Km + l > T W Rm + l > ' * *

where Dt = Doπ^+i, and π" 1 is the inverse of the isomorphism πm: Rm+2 —>

Theorem 2.2. Let ω be as above. If ker θ ( m ) = ker θ ( w " υ = E' is a vector
bundle, then ω C E'. Furthermore the cohomology of

(2.5) 0 > ω > E' -^> T*®E' -^U /\2T* (x) E - ^ >

is isomorphic to the cohomology of (2.4) and hence of (2.3). Since (2.5) is
locally exact, (2.3) is locally exact.

Proof. πQ(Rm) = Ef, and therefore Rm is also the (m — l)th prolonged
equation of DθlE,. Thus the Spencer complex of Dβ{E, is (2.4). (2.5) is formally
exact by Theorem 2.1 (Goldschmidt) and Theorem 1.3.

Since the curvature of DΰχE, is zero by Theorem 1.6, DΘ]AT*ΘE, reduces to
d (by introducing flat frames) so that (2.5) and (2.3) are locally exact.

It is of some interest to make the isomorphism at Γ* ® E explicit. Hence
we state

Theorem 2.3. Let θω be of constant rank for I > 1, and let m be chosen
such that ker <9(m) = ker θ{m~l). Suppose a e Γ(T* <g> E) such that D(

θ

m)a = 0.
Then there is an f e Γ(E) such that a = Dθf + β, where β e Γ(T* <g) £ ' , M)
and Dθβ = O.Ifβ = Dθg, then g <= Γ(M, Ef).

Proof. Since D(

θ

m)a = 0, it follows from Proposition 1.5 that D{

θ

m^a = θ{m)f
for some / e Γ(E, M). Thus

£>(m,0)(α, _ Dgf) = £>(m,0)Qr _ β(m)f = Q .

On the other hand, locally a = Dθh and we have
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θim)(h -f) = D^°\Dθh - Dθf) = D^ia - D9f) = 0 .

Hence h — / <= ker θ ( m ) = E' on the one hand and on the other β = α — D J

= Dβ(Λ - f) e Γ(E/, T* (x) Ef) if Λ is defined on U. It follows from this that

Dθβ = 0. If β = £>,g, then <9(m)g = D{^Q)oDθg = D^\a - Dθf) = 0, so

A few applications are immediate.

Theorem 2.4. // Π ker θa) = 0, (2.3) is globally exact and ω ΞΞ 0.
ί

Corollary. I] E — T(M), and Dθ is a Riemannian connection with strictly

positive or strictly negative sectional curvature, then (2.3) is globally exact.

The interesting case is the case Π ker θa) Φ 0. In this case we have

Theorem 2.5. Let E be a vector bundle with connection over a simply

connected manifold M, and let θa) have constant rank. If fibre dim E' — k,

(£ ' == Π k e r θ m ) , then Hj(M,ω) = @Hj(M,R), where ω is the sheaf of
I k

germs of local solutions of Dθf = 0, and Hj(M, R) is de Rham cohomology

of M.

Proof. In this case one can take global flat frames (see e.g. [4, Corollary

9.2]) and the complex (2.5) is the de Rham complex repeated k times.

For Dθ of constant rank the problem of calculating Hj(M, ω) reduces to the

case where Dθ is flat. Here one could hope to be able to calculate Hj(M, ώ)

from Hj(M, R), TΓ^M) and the holonomy of Dθ.
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