A THEOREM OF GÉOMÉTRIE FINIE

WILLIAM F. POHL

1. Introduction

In a paper in the Kodaira Festschrift R. Thom [6] gave a proof, admittedly incomplete, of the following. Let $V^{2 k} \subset P_{n_{+k}}$ be a real compact embedded submanifold of real dimension $2 k$ of a complex projective space of complex dimension $n+k$. Suppose there exists an everywhere dense subset $U \subset G_{n, k}$ of the Grassmannian of all complex projective subspaces of complex dimension n of P_{n+k}, such that if $u \in U$ then $u \cap V^{2 k}$ consists of exactly m points, where m is independent of u. Then $V^{2 k}$ is an algebraic subvariety of P_{n+k}; the flat case is excluded. In this paper we give a complete and corrected statement and proof of this result. Moreover, we will allow $V^{2 k}$ to have certain singularities.

By a semi-real flat L we mean the closure in P_{n+k} of an affine subspace L_{0} $\subset R^{2(n+k)}$, where we make the canonical identification $R^{2(n+k)}=C^{n+k} \subset P_{n+k}$. These may be classified in the following way. Apply a complex affine transformation (which is also a real affine transformation) to make L_{0} pass through the origin. Let $I: C^{n+k} \rightarrow C^{n+k}$ be the multiplication by $i=\sqrt{-1}$. We call the real dimension of $L_{0} \cap I\left(L_{0}\right)$ the type of L. If a complex projective transformation sends L into a semi-real flat, then it preserves the type, so that a semi-real flat is classified up to a complex projective transformation by its dimension j and its type t, where $0 \leq t \leq j$ with every such even t possible. If $t=j$, then L is a complex projective subspace, and if $t=0$ then L is complex projectively equivalent to the real projective space P^{j} with its canonical embedding $P^{j} \subset P_{j} \subset P_{n+k}$. In the intermediate cases $0<t<j, L$ is singular; in fact it is a kind of cone.

We say that a continuous map $f: X \rightarrow Y$ of topological spaces is proper onto its image if for every compact subset $A \subset f(X), f^{-1}(A)$ is compact. We now state the main result.

Theorem. Let $V \subset P_{n_{+k}}$ be a compact subset. Suppose there exists a closed subset $S \subset V$ such that the closure of $V-S$ is all of V, and an immersion $f: M \rightarrow P_{n_{+k}}$ of class C^{4} of a differentiable manifold M of (real) dimension $2 k$ which maps M onto $V-S$ and which is proper onto its image. Suppose further:

1) there exists an everywhere dense subset $T \subset G_{n_{+1, k-1}}$ such that if $v \in T$
then $v \cap S$ consists of finitely many points and v is transversal to f; and
2) there exists an everywhere dense subset $U \subset G_{n, k}$ such that either
a) $u \cap V$ consists of exactly m points for every $u \in U$, with $0<m<\infty$ and m independent of u, or else
b) $f^{-1}(u)$ consists of exactly m^{\prime} points for every $u \in U$, where m^{\prime} is independent of $u, 0<m^{\prime}<\infty$.

Then V is a finite union of complex projective transforms of semi-real flats of dimension $2 k$ and the closures in P_{n+k} of analytic subvarieties of complex dimension k of $P_{n+k}-S$.

Corollary 1. Suppose $V \subset P_{2}$ satisfies the hypothesis of the Theorem with $k=1$. Then V is a finite union of algebraic curves and complex projective transforms of the real projective plane P^{2} with its canonical embedding in P_{2}.

Corollary 2. Let M be a compact connected differentiable manifold, and $f: M \rightarrow P_{n_{+k}}$ a C^{4} embedding. Suppose that almost every projective subspace of $P_{n_{+k}}$ of complex dimension n meets $f(M)$ in exactly m points, where m is independent of the subspace, $0<m<\infty$. Then $f(M)$ is either an algebraic variety of dimension k or a complex projective transform of the real projective $2 k$-space with its canonical embedding $P^{2 k} \subset P_{2 k} \subset P_{n+k}$.

Corollary 3. Suppose that V satisfies the hypothesis of the Theorem, and in addition that S has Hausdorff $(2 k-1)$-measure zero. Then V is a finite union of complex projective transforms of $2 k$-dimensional semi-real flats and algebraic varieties of complex dimension k.

The corollaries are proved from the Theorem as follows. In the case of Corollary 1, Hypothesis 1) of the Theorem implies that S is finite. Hence the closure in P_{2} of every analytic subvariety of $P_{2}-S$ is an analytic subvariety of P_{2} by a theorem of Remmert and Stein [1], and is an algebraic variety by Chow's theorem. Any semi-real flat of real dimension 2 in P_{2} has type 0 or 2, so is either a projective transform of $P^{2} \subset P_{2}$ or a complex line. In the case of Corollary 2, the hypothesis of the Theorem is fulfilled with $S=0$; the dimension of M must be $2 k$, for if it is smaller there exists an open set of n planes which do not meet $f(M)$, and if it is greater there exists an open set of n-planes which meet $f(M)$ in infinitely many points. If $f(M)$ is a complexprojective transform of a semi-real flat, its type must be 0 or $2 k$, for those of intermediate type are singular. If $f(M)$ is an analytic variety, it must be algebraic by Chow's theorem. In the case of Corollary 3, a theorem of Shiffman [5] asserts that the closure in $P_{n_{+k}}$ of any analytic subvariety of $P_{n_{+k}}-S$ is an analytic subvariety of P_{n+k} and hence an algebraic variety by Chow's theorem. Whether the hypothesis of the Theorem is strong enough by itself to yield the conclusion of Corollary 3, the author does not know.

Let us note that finite unions of algebraic varieties and complex-projective transforms of semi-real flats satisfy the hypothesis of the Theorem, so that Corollary 3 gives a characterization.

We shall prove Corollary 1 directly in this paper, the proof occupying
$\S \S 2-7$. Various parts of this proof are used to prove the general case of the Theorem in §8. The essential part of the hypothesis of the Theorem, namely Hypothesis 2), is used only at the end of the argument, so to speak, so that much of what we prove in this paper is valid in general for real submanifolds of complex projective spaces. Notable are Propositions 2 and 12, which characterize locally those even-dimensional submanifolds of P_{n+k} which are complexprojective transforms of semi-real flats, Proposition 4, concerning the singularity at the diagonal of the secant map, and Proposition 11 (generalized in § 8) on the intersection of linear spaces, near to a tangent linear space, with a submanifold.

2. A separation of cases

Let $f: M \rightarrow C^{N}$ be a C^{2}-immersion of a differentiable manifold into a complex number space. For each $p \in M$ let τ_{p} denote the tangent space to M at p, and T_{p} the space of real lines through the origin of τ_{p}. Let $\pi: T(M) \rightarrow M$ denote the bundle of (real) lines through the origins of the tangent spaces of M. We call the map $l: T(M) \rightarrow G_{1, N-1}$, which assigns to each real tangent line the complex line in P_{N} containing it, the associated map to f.

Let $t \in T(M)$, and let c be a curve on M through $p=\pi(t)$ tangent to t. Now suppose that $l(t)$ is not contained in τ_{p}, so that τ_{p} and $l(t)$ span a real affine subspace $K(t)$ of $C^{N}=R^{2 N}$ of dimension one more than that of τ_{p}. If the curvature vector of c at p is not contained in $K(t)$, we call t an ordinary direction. Note that by Meusnier's theorem the condition that the curvature vector lie in $K(t)$ is independent of the choice of c tangent to t. If $l(t)$ is not contained in τ_{p} but the curvature vector of c at p is contained in $K(t)$, we call t a direction of type F. If T_{p} contains an ordinary direction, we say that p is a point of type O. Note that the set of points of M of type O is open. If $p \in M$ is not a point of type O, then either $l(t) \subset \tau_{p}$ for every $t \in T_{p}$, in which case we say that p is a point of type C, or else, for some $t \in T_{p}, l(t) \not \subset \tau_{p}$, and every $t \in T_{p}$ such that $l(t) \not \subset \tau_{p}$ is a direction of type F, in which case we say that p is a point of type F. Note that if p is a point of type C, then τ_{p} is a complex vector space in C^{N}. We have used the word "type" already in connection with semi-real flats, but we think that no confusion will arise from the two usages of the term. The property of being a point of type C is clearly invariant under complex projective transformations of C^{N}. We show below (Proposition 1) that the properties of being a point of type F or O are also invariant. Consequently these notions make sense for points of submanifolds of P_{N}.

We must next examine the structure of semi-real flats and make some observations needed in the sequel. As in § 1, we will distinguish real and complex projective spaces by raised and lowered indices, so that P^{m} will denote the real projective space of real dimension m and P_{m} the complex projective space of complex dimension m. The canonical inclusions $R^{m} \subset R^{m+j}, C^{m} \subset$
C^{m+j}, taking the subspace as that defined by the vanishing of the last j coordinates, induce inclusions $P^{m-1} \subset P^{m+j-1}$ and $P_{m-1} \subset P_{m+j-1}$. Regarding a real m-tuple as a complex m-tuple gives a canonical inclusion $R^{m} \subset C^{m}$, which induces a canonical inclusion $P^{m-1} \subset P_{m-1}$.

Let $L \subset P_{n_{+k}}$ be a semi-real flat, the closure in $P_{n_{+k}}$ of a real affine subspace $L_{0} \subset R^{2(n+k)}=C^{n+k} \subset P_{n+k}$, (the middle identification arising from the usual identification of R^{2} with C). Apply a translation to bring L to the origin. Let s_{1}, \cdots, s_{r} be a complex basis for $L_{0} \cap I\left(L_{0}\right)$, the latter regarded as a linear subspace of C^{n+k}, I being multiplication by i in C^{n+k}, and $2 r=t$ the type of L, as previously defined. Extend $s_{1}, \cdots, s_{r}, I s_{1}, \cdots, I s_{r}$ to a real basis of L_{0}, $s_{1}, \cdots, I s_{r}, s_{r+1}, \cdots, s_{j-r}$, where j is the real dimension of L. Next we claim that $s_{1}, \cdots, s_{r}, s_{r+1}, \cdots, s_{j-r}$ are linearly independent over the complex numbers. For, if

$$
\sum_{l=1}^{j-r}\left(a_{l}+I b_{l}\right) s_{l}=0, \quad a_{l}, b_{l} \text { real }
$$

then

$$
\sum a_{l} s_{l}=-I \sum b_{l} s_{l}
$$

which implies that $\sum a_{l} s_{l}$ lies in $L_{0} \cap I\left(L_{0}\right)$. Hence we must have $a_{r+1}=\ldots$ $=a_{j-r}=0$, since $s_{1}, \cdots, I s_{r}$ forms a real basis for $L_{0} \cap I\left(L_{0}\right)$ and $s_{1}, \cdots, I s_{r}$, s_{r+1}, \cdots, s_{j-r} a real basis for L_{0}. Multiplying by i on the other hand gives

$$
I \sum a_{l} s_{l}=\sum b_{l} s_{l}
$$

which implies that $b_{r+1}=\cdots=b_{j-r}=0$, by the same argument. Then since s_{1}, \cdots, s_{r} forms a complex basis for $L_{0} \cap I\left(L_{0}\right)$, we must have $a_{l}+i b_{l}=0$ for all $l \leq r$. Hence all a_{l}, b_{l} vanish, which establishes the claim. Apply a complex linear transformation to C^{n+k} to bring $s_{1}, \cdots, s_{r}, s_{r+1}, \cdots, s_{j-r}$ to the first $j-r$ vectors of the standard basis e_{1}, \cdots, e_{n+k} of C^{n+k}. We now say that the semi-real flat lies in standard position, and we have shown that any two semi-real flats of the same dimension and type are complex projectively equivalent. Since the type of a semi-real flat is the same as the type of its tangent spaces, and since a holomorphic transformation preserves the type of the tangent spaces of any real submanifold, we have completely classified semi-real flats. It is also apparent from the form of the basis that if $t=0$ then L is just $P^{j} \subset P_{j} \subset P_{n_{+k}}$.

Using the canonical inclusions, we see that since L contains $e_{1}, \cdots, e_{j_{-r}}$ it contains P^{j-r}. Let c be the intersection of P_{r} with the hyperplane at infinity, so that c is a complex projective space of dimension $r-1$. Since L contains $e_{1}, \cdots, e_{r}, I e_{1}, \cdots, I e_{r}$, it contains P_{r}, which is the complex r-plane spanned by c and the origin. Since $e_{1}, \cdots, e_{r}, I e_{1}, \cdots, I e_{r}, e_{r+1}, \cdots, e_{j-r}$ form a real
basis for $L \cap C^{n+k} \subset P_{n+k}, L$ consists of the locus of all complex r-planes through points of P^{j-r} parallel to P_{r}, or equivalently, L is the locus of all complex r-planes containing c and a variable point of P^{j-r}. Thus we see that in case $0<2 r<j, L$ is a kind of cone as previously asserted.

Let us now assume that $0<2 r<j$. We must next determine which points of L are singular points. Since L is the closure of a real affine subspace of $R^{2(n+k)}$, all points of L not lying at infinity are regular points. Let $p \in L-c$ lie in the hyperplane at infinity. The point p lies in the complex r-plane Q spanned by c and some $q \in P^{j-r}$. Let $c^{\prime}=c \cap P^{r}$, that is to say, the real locus of c. Then c^{\prime} spans c in P_{n+k}, so that Q is spanned by the real r-plane Q^{\prime} spanned in P^{j-r} by c^{\prime} and q. Let us now apply a complex projective transformation to $P_{n_{+k}}$ with real coefficients so that P^{j-r} is sent into itself, so that c^{\prime} is sent into itself, and so that Q^{\prime} is sent into an r-plane which meets the hyperplane at infinity only in c^{\prime}. Since c^{\prime} is preserved, c must be preserved, and then since P^{j-r} is preserved, L must be mapped onto itself. Since Q^{\prime} meets the hyperplane at infinity only in c^{\prime}, Q now meets the hyperplane at infinity only in c. (The complex span of the intersection is the intersection of the complex spans.) Consequently, p must have been sent to a point of L not at infinity, in particular to a regular point. This proves that every point of $L-c$ is a regular point. Since holomorphic transformation preserves the type of the tangent space, the tangent space to L at every point of $L-c$ is of type $t=2 r$.

We claim that all points of c are singular points of L. For let $p \in c$ be an arbitrary point. Let $d \subset c^{\prime}$ be a real ($r-2$)-plane such that the complex ($r-2$)-plane spanned by d does not contain p. Make a complex projective transformation of P_{n+k} with real coefficients in such a way that P^{j-r} is sent into itself, so that c^{\prime} is taken to P^{r-1} (and hence c to $P_{r_{-1}}$), and so that d is taken to the intersection of P^{r-1} with the hyperplane at infinity. The point p is then moved to a point not at infinity. L now consists of the locus of complex r-planes spanned by P_{r-1} and a variable point of $F^{j-r}-P^{r-1}$. The real linear span of these in $R^{2(n+k)}=C^{n+k}$ is all of C^{j-r}, which has real dimension $2(j-r)>j$. Consequently L cannot have a j-dimensional tangent space at p, proving that p is a singular point and establishing the claim.

Next we must study the limiting tangent spaces at the singular locus c. Suppose $\left\{p_{\nu}\right\}$ is a sequence of points of L approaching a point of c, which we may assume to be the point p arbitrarily taken just above. We may assume that the p_{ν} do not lie at infinity. We may write

$$
p_{\nu}=\sum_{l=1}^{r-1} a_{\nu \imath} e_{l}+\sum_{l=1}^{r-1} b_{\nu l} I e_{l}+\left(a_{\nu}+I b_{\nu}\right) \sum_{l=r}^{j-r} c_{\nu l} e_{l},
$$

with the a 's, b 's and c 's real. The tangent space at p_{ν} can be found by differentiating this expression with respect to the parameters $a_{\nu l}, b_{\nu l}, a_{\nu}, b_{\nu}, c_{\nu l}$; it is spanned over the reals by

$$
\begin{aligned}
& e_{1}, \cdots, e_{r-1}, I e_{1}, \cdots, I e_{r-1}, \sum c_{\nu l} e_{l}, I \sum c_{\nu \imath} e_{l} \\
& \left(a_{\nu}+I b_{\nu}\right) e_{r}, \cdots,\left(a_{\nu}+I b_{\nu}\right) e_{j-r}
\end{aligned}
$$

It is just as well spanned by

$$
e_{1}, \cdots, e_{r-1}, I e_{1}, \cdots, I e_{r-1}, f_{\nu}, I f_{\nu}, z_{\nu} e_{r}, \cdots, z_{\nu} e_{j-r}
$$

where

$$
f_{\nu}=\frac{\sum c_{\nu \nu} e_{l}}{\left(\sum c_{\nu l}\right)^{2 / 2}}, \quad z_{\nu}=\frac{a_{\nu}+I b_{\nu}}{\left(a_{\nu}{ }^{2}+b_{\nu}{ }^{2}\right)^{1 / 2}}
$$

Passing to a subsequence if necessary, we find the unit vectors f_{ν} converging to a unit vector f, and the complex numbers (of unit norm) z_{ν} to a complex number (of unit norm) z. Then f has the form

$$
f=\sum_{l=r}^{j-r} c_{l} e_{l}
$$

and the limit of the tangent spaces at p_{ν} is a j-plane spanned by e_{1}, \cdots, e_{r-1}, $I e_{1}, \cdots, I e_{r-1}, f, I f, z e_{r}, \cdots, z e_{j-r}$, which is a j-plane of type $t=2 r$. Thus we have shown that every limiting tangent space is a j-plane of type t. This concludes our remarks on the structure of semi-real flats.

Let $V, S, T, U, f: M \rightarrow P_{n_{+k}}$ satisfy the hypothesis of the Theorem. We show in $\S 7$, Proposition 11, for $k=n=1$, and in $\S 8$ for general k, n, that M can contain no points of type O, so that all points are of type C or F. Let M_{1} be a connected component of M, and suppose that M_{1} contains a point p of type F. Then there must be some neighborhood N of p in M_{1} all of whose points are of type F, for otherwise p is a limit point of points of M_{1} of type C, that is, points at which the tangent space is a complex k-plane, which would imply that the tangent space at p is a complex k-plane. Hence the set of points of type F is open in M_{1}. Let N be the largest connected neighborhood of p in M_{1} consisting of points of type F. We show below (Proposition 2 for $k=1$, and Proposition 12 for general k) that f maps N into a complex projective transform Q of a semi-real flat of dimension $2 k$ in $P_{n_{+k}}$.

We claim that N has no boundary points in M_{1}, so that $M_{1}=N$. For suppose that N has a boundary point $q \in M_{1}$. By continuity $f(q) \in Q$. If $f(q)$ is a regular point of Q, then by continuity the tangent space of f at q is the same as the tangent space of Q at $f(q)$, which is not a complex k-plane, so that q must be a point of type F. If $f(q) \in c$, the singular locus of Q, then the tangent space of f at q is not a complex k-plane, because, as we have shown, the limit of the tangent planes of Q at a sequence of points of Q converging to a point of c is never a complex k-plane, so again q must be a point of type F. But the set of points of type F is open in M, which implies that N contains
a neighborhood of q, and hence q is not a boundary point of N. This contradiction establishes the claim, and shows that every point of M_{1} is of type F, and that $f\left(M_{1}\right) \subset Q$.

We next claim that in this case $f\left(M_{1}\right)$ is everywhere dense in Q. For suppose $Q-f\left(M_{1}\right)$ contains an open set A. Let v^{\prime} be a complex ($n+1$)-plane transversal to Q, c, and to the hyperplane at infinity of P_{n+k}, which contains interior points in Q of both A and $f\left(M_{1}\right)$. By hypothesis we can find $v \in T$ close enough to v^{\prime} that v is transversal to Q, c, and the hyperplane at infinity of $P_{n_{+k}}$ and contains interior points in Q of both A and $f\left(M_{1}\right)$. Then $Q \cap v$ is a semi-real flat of dimension 2. $Q \cap v \cap S$ consists of only finitely many points by hypothesis, and $v \cap c$ consists of finitely many points by the transversality. Hence we can find an arc in $Q \cap v-S-c$ which joins a point of $f\left(M_{1}\right)$ to a point of A. This arc must contain a boundary point of $f\left(M_{1}\right)$ in Q. But since V is compact and f is proper onto its image, all boundary points of $f\left(M_{1}\right)$ in Q must lie in S. This gives a contradiction, which proves the claim that $f\left(M_{1}\right)$ is everywhere dense in Q. Since V is compact and $f\left(M_{1}\right) \subset V, Q \subset V$.

Suppose that M_{1} is a connected component of M which contains a point of type C. Then every point of M_{1} must be of type C because no points of type O can occur, and if M_{1} contained a point of type F then every point of M_{1} would be of type F by the above. But the condition that every point of M_{1} be of type C, that is, the condition that the tangent space of f at every point of M_{1} be a complex k-plane, implies that $f\left(M_{1}\right)$ is a complex-analytic immersed submanifold of P_{n+k}. Since f is proper onto its image, and $f\left(M_{1}\right) \subset V$, and V is compact, all limit points of $f\left(M_{1}\right)$ not lying in $f\left(M_{1}\right)$ must lie in S. Consequently $f\left(M_{1}\right)$ is a complex-analytic subvariety of $P_{n+k}-S$. We have now shown that $f(M)$ is dense in a union of semi-real flats of dimension $2 k$ and complex analytic subvarieties of complex dimension k of $P_{n+k}-S$. Since V is the closure of $f(M)$ in P_{n+k}, V is the union of these semi-real flats and the closures in P_{n+k} of these complex-analytic subvarieties of $P_{n_{+k}}-S$.

We next claim that V is a finite union of such semi-real flats and such closures of analytic subvarieties. To prove this it suffices to show that M has only finitely many components. Let u^{\prime} be an arbitrary complex n-plane in P_{n+k}, and suppose M_{1} is a connected component of M which is mapped by f onto a complex analytic subvariety of $P_{n+k}-S$. Pass a complex $(n+1)$-plane v^{\prime} through u^{\prime} and some point of $f\left(M_{1}\right)$. We may choose a complex $(n+1)$-plane $v^{\prime \prime}$ arbitrarily close to v^{\prime} which meets $f\left(M_{1}\right)$ in at least one point and is transversal to f. By hypothesis we can find a $v \in T$ arbitrarily close to $v^{\prime \prime}$, which also meets $f\left(M_{1}\right)$. Since v is transversal to f by hypothesis, $v \cap f\left(M_{1}\right)$ is a complex-analytic curve, and the limit points of $v \cap f\left(M_{1}\right)$ not in $v \cap f\left(M_{1}\right)$ lie in the set $S \cap v$, which is finite by hypothesis. It follows from the theorems of Remmert-Stein and Chow that the closure K of $v \cap f\left(M_{1}\right)$ is an algebraic curve. Now any complex n-plane contained in v must meet K, which is to say must meet the closure of $f\left(M_{1}\right)$. Since v can be taken arbitrarily close to v^{\prime}, v
can be taken to contain a complex n-plane arbitrarily close to u^{\prime}. It follows that u^{\prime} must meet the closure of $f\left(M_{1}\right)$, where u^{\prime} is an arbitrary complex n plane. But let $u^{\prime \prime}$ be a complex n-plane in $v^{\prime \prime} \in T$ which does not meet the finite set $v^{\prime \prime} \cap S$. Since S is compact, any n-plane sufficiently close to $u^{\prime \prime}$ will not meet S. Hence we can choose $u \in U$ which does not meet S. Since by what we have shown u must meet the closure of the image under f of any component of M mapped by f onto an analytic subvariety of $P_{n_{+k}}-S$, u must meet the image of any such component. If M_{1} is any component of M mapped by f onto an everywhere dense subset of a projective transform of a semi-real flat Q, then clearly u meets Q. Since $f\left(M_{1}\right)$ is closed in $P_{n+k}-S$, u meets $f\left(M_{1}\right)$. Hence we have shown that u meets the image under f of any component of M. Now by hypothesis $u \cap f(M)$ is a finite set. If M contained infinitely many components, then for some point $p \in u \cap f(M), f^{-1}(p)$ would be an infinite set. Since f is proper onto its image, $f^{-1}(p)$ is compact and therefore contains a limit point. But since f is an immersion, and therefore locally one-to-one, $f^{-1}(p)$ cannot contain a limit point. This contradiction proves that M contains only finitely many connected components and thereby establishes the claim that V is a finite union of projective transforms of semi-real flats and closures in P_{n+k} of complex-analytic subvarieties of $P_{n+k}-S$.

To complete the proof of the Theorem, then, it remains only to show that property of being a point of type O and the property of being a point of type F are invariant under complex projective transformations of P_{n+k}; that any immersion of a $2 k$-dimensional connected manifold, all of whose points are of type F in P_{n+k}, is an immersion into a $2 k$-dimensional semi-real flat; and that, under the hypothesis of the theorem, points of type O cannot occur.

3. The rank of the associated map

Let $f: M \rightarrow P_{N}$ be a C^{2} immersion with M of dimension h, and let τ_{p} denote the tangent space at $p \in M, T_{p}$ the space of real lines through the origin of $\tau_{p}, \pi: T(M) \rightarrow M$ the bundle of real lines through the origins of the tangent spaces of M, and $l: T(M) \rightarrow G_{1, N-1}$ the associated map, as before. Let $T^{G}(M)$ consist of those $t \in T(M)$ such that $l(t)$ does not lie in τ_{p}, and let $T_{p}^{G}=T^{G}(M)$ $\cap T_{p}$. Note that every $t \in T^{G}(M)$ is either an ordinary direction or a direction of type F.

Proposition 1. a) l restricted to T_{p}^{G} is one-to-one, and has rank $h-1$ provided T_{p}^{G} is nonempty.
b) l has rank $2 h-2$ at $t \in T^{G}(M)$ if and only if t is a direction of type F, and rank $2 h-1$ if and only if t is an ordinary direction.

Note. We have defined the notions of an ordinary direction and a direction of type F only for immersions in C^{N}. However, the associated map and hence the rank of the associated map are complex-projective-invariant notions. Hence, if we prove the proposition under the assumption that $f(M) \subset C^{N} \subset$
P_{N}, it will follow that the notions of being a direction of type F or an ordinary direction and hence the notions of being a point of type O or F are invariant under complex projective transformations, and hence well-defined for maps $f: M \rightarrow P_{N}$.

Proof of Proposition 1. That l restricted to T_{p}^{G} is one-to-one is almost obvious. If $t, t^{\prime} \in T_{p}^{G}$ and $l(t)=l\left(t^{\prime}\right)$, then t and t^{\prime} lie in the same complex line. If $t \neq t^{\prime}$, this complex line must lie in τ_{p}, contradicting the assumption that $l(t)$ not be contained in τ_{p}.

For the remainder, by the above note we need only consider a $t \in T_{p}^{G}$ with $f(p) \in C^{N} \subset P_{N}$. Let x_{1}, \cdots, x_{h} be local coordinates in a neighborhood of p in M so chosen that t is along $\partial / \partial x_{1}$. In a neighborhood of p the immersion f is represented by

$$
\left(z_{1}\left(x_{1}, \cdots, x_{h}\right), \cdots, z_{N}\left(x_{1}, \cdots, x_{h}\right)\right),
$$

where z_{i} are the complex coordinates in C^{N}. Now introduce homogeneous coordinates w_{0}, \cdots, w_{N} in C^{N} so that $z_{i}=w_{i} / w_{0}$. In these homogeneous coordinates f is represented by

$$
Y\left(x_{1}, \cdots, x_{h}\right)=\left(1, z_{1}\left(x_{1}, \cdots, x_{h}\right), \cdots, z_{N}\left(x_{1}, \cdots, x_{h}\right)\right) .
$$

Hence we may represent l by the complex bivector

$$
l\left(\frac{\partial}{\partial x_{1}}+s_{2} \frac{\partial}{\partial x_{2}}+\cdots+s_{h} \frac{\partial}{\partial x_{h}}\right)=Y \wedge\left(Y_{1}+s_{2} Y_{2}+\cdots+s_{h} Y_{h}\right)
$$

where the subscripts on Y denote partial derivatives. Note that x_{1}, \cdots, x_{h}, s_{2}, \cdots, s_{h} form a local coordinate system on $T(M)$. Differentiating we obtain (Y, Y_{j} and $Y_{j k}$ henceforth being evaluated at p)

$$
\begin{aligned}
\Omega_{0} & \equiv l(t)=Y \wedge Y_{1}, \\
\Omega_{j} & \equiv \partial l /\left.\partial s_{j}\right|_{t}=Y \wedge Y_{j}, \quad 2 \leq j \leq h, \\
\Omega_{h+1} & \equiv \partial l /\left.\partial x_{1}\right|_{t}=Y \wedge Y_{11}, \\
\Omega_{h+j} & \equiv \partial l /\left.\partial x_{j}\right|_{t}=Y_{j} \wedge Y_{1}+Y \wedge Y_{1 j}, \quad 2 \leq j \leq h
\end{aligned}
$$

Now these bivectors are to be regarded as ordinary vectors in the space of homogeneous coordinates of the projective space containing $G_{1, N-1}$. The kernel of the Jacobian of the projection mapping of this space of homogeneous coordinates into the projective space at any point x is the complex line through the origin and x. Consequently to find the rank of l it suffices to find the dimension of the vector space spanned over the reals by $\Omega_{0}, i \Omega_{0}, \Omega_{2}, \cdots, \Omega_{2 h}$ modulo that spanned by Ω_{0} and $i \Omega_{0}$.

We claim that $\Omega_{0}, i \Omega_{0}, \Omega_{2}, \cdots, \Omega_{h}, \Omega_{h+2}, \cdots, \Omega_{2 h}$ are linearly independent over the reals. For if there are real numbers ξ_{l} such that

$$
\xi_{0} \Omega_{0}+\xi_{1} i \Omega_{0}+\sum_{j=2}^{h} \xi_{j} \Omega_{j}+\sum_{j=2}^{h} \xi_{h+j} \Omega_{h+j}=0
$$

then multiplication by Y gives

$$
Y \wedge Y_{1} \wedge \sum_{j=2}^{h} \xi_{h+j} Y_{j}=0
$$

Now Y has leading entry nonzero and the Y_{k} have leading entry 0 . Hence Y_{1} and $\sum \xi_{h+j} Y_{j}$ must be linearly dependent over the complex numbers, which is to say that they lie in the same complex line. But since $t \in T^{G}(M)$ the complex line containing $\partial f / \partial x_{1}$ meets τ_{p} only in a real line, which says that Y_{1} and $\sum \xi_{h+j} Y_{j}$ are already linearly dependent over the reals. But since f is an immersion, $Y_{1}, Y_{2}, \cdots, Y_{h}$ are linearly independent over the reals. Hence $\xi_{h+2}=\cdots=\xi_{2 h}=0$. This gives

$$
0=\xi_{0} \Omega_{0}+\xi_{1} i \Omega_{0}+\sum_{j=2}^{n} \xi_{j} \Omega_{j}=Y \wedge\left(\xi_{0} Y_{1}+\xi_{1} i Y_{1}+\sum_{j=2}^{n} \xi_{j} Y_{j}\right)
$$

Again, since Y has leading entry nonzero and the Y_{k} leading entry zero, this says that $\xi_{0} Y_{1}+\xi_{1} i Y_{1}+\sum \xi_{j} Y_{j}=0$. But again $i Y_{1}$ lies outside the real linear span of $Y_{1}, Y_{2}, \cdots, Y_{h}$, and the latter are linearly independant. Hence $\xi_{0}=\xi_{1}=\xi_{2}=\cdots=\xi_{h}=0$, which proves the claim that $\Omega_{0}, i \Omega_{0}, \Omega_{2}, \cdots$, $\Omega_{h}, \Omega_{h+2}, \cdots, \Omega_{2 h}$ are linearly independent over the reals.

This has two consequences. First, since in particular $\Omega_{0}, i \Omega_{0}, \Omega_{2}, \cdots, \Omega_{h}$ are linearly independent, the restriction of l to T_{p}^{G} has rank $h-1$ at t, which proves Part a) of Proposition 1. Secondly, it shows that the rank of l at t is at least $2 h-2$. The rank of l is then exactly $2 h-2$ if and only if there exist real numbers η, ξ_{l} not all zero such that

$$
\eta \Omega_{h+1}+\xi_{0} \Omega_{0}+\xi_{1} \Omega_{0}+\sum_{j=2}^{n} \xi_{j} \Omega_{j}+\sum_{j=2}^{n} \xi_{h+j} \Omega_{h+j}=0
$$

Multiplication by Y leads to $\xi_{h+2}=\cdots=\xi_{2 h}=0$, as before, which implies that

$$
Y \wedge\left(\eta Y_{11}+\xi_{0} Y_{1}+\xi_{1} i Y_{1}+\sum_{j=2}^{n} \xi_{j} Y_{j}\right)=0
$$

which implies as before that

$$
\eta Y_{11}+\xi_{0} Y_{1}+\xi_{1} i Y_{1}+\sum_{j=2}^{n} \xi_{j} Y_{j}=0
$$

But since $Y_{1}, i Y_{1}, Y_{2}, \cdots, Y_{h}$ are linearly independent over the reals, this is the condition that Y_{11}, which is the curvature vector of a curve on M tangent
to t, (we ignore the first component of Y_{11}, which is zero) lie in the linear span of $l(t)$ and τ_{p}. If the condition does not hold, then the rank of l is $2 h-1$ and t is an ordinary direction. This proves Part b) and completes the proof of the Proposition.

4. Surfaces of type \boldsymbol{F}

Proposition 2. Let $f: M \rightarrow P_{N}$ be an immersion of class C^{3} of a connected real surface. Then $f(M)$ lies in a complex projective transform of a semi-real flat of dimension 2 and type 0 if and only if M consists of points of type F.

Remarks. Such a surface will be called an F-surface or a surface of type F. Note that any F-surface is then complex-projectively equivalent to a portion of the real projective plane with its canonical embedding $P^{2} \subset P_{2} \subset P_{N}$.

Proof of Proposition 2. By a "circle" in P_{1} we mean a euclidean circle lying on the Riemann sphere, the latter being canonically identified with P_{1}. By a "circle" in P_{N} we mean a "circle" lying on some projective line in P_{N}; the definition is good because any (complex) projective transformation of P_{1} takes "circles" to "circles". It follows that any projective transformation of P_{N} takes "circles" to "circles". The canonical identification $R^{2 N}=C^{N} \subset P_{N}$ being made, the "circles" of P_{N}, other than those lying in the hyperplane at infinity, are the euclidean circles in $R^{2 N}$ which lie in complex lines, and the straight lines of $R^{2 N}$ (each of which lies in a unique complex line).

Now consider the standard semi-real flat $P^{2} \subset P_{2} \subset P_{N}$. Ignore the points at infinity. Through each point of P^{2} and in each direction there passes a euclidean line, contained in a unique complex line. If we apply a complex projective transformation to P_{N} this euclidean line will be sent to some "circle". This "circle", together with its tangent lines and curvature vectors, is contained in the image complex line. It follows that any complex projective transform of P^{2} consists of points of type F, which proves the forward implication of Proposition 2. Note that a general complex projective transform of $P^{2} \subset P_{2}$ contains a 2-parameter family of circles. According to the Italians, a surface in R^{4} containing a 2 -parameter family of conics is a Steiner surface, i.e., a projection of the Veronese surface in R^{5}. Such a surface is by no means flat.

The proof of the converse of Proposition 2 parallels the argument of [3, $\S \S 4-6]$. We first show that $f(M)$ lies in a complex 2-plane. Let $f: M \rightarrow P_{N}$ be a C^{3}-immersion of a surface with all points of type F. Since the tangent planes are 2-dimensional and none complex lines, $T^{G}(M)=T(M)$, and the associated map $l: T(M) \rightarrow G_{1, N-1}$ has rank 2 everywhere by Proposition 1, b). For any $t \in T(M), l^{-1}(l(t))$ is therefore an embedded curve in $T(M)$, and such a curve is nowhere tangent to the fibre of $T(M)$ and meets no fibre of $T(M)$ in more than one point by Proposition 1, a). Consequently the projection of such a curve into M gives an embedded curve in M. Such a curve we call an s-curve.

Let $x \in M$, let W_{x} denote the set of all points of M which are joined to x by s-curves, and let $y \in W_{x}$ with $f(y) \neq f(x)$. We claim that W_{x} contains a neighborhood of y. For, consider $l\left(T_{x}\right)$, which is a curve in $G_{1, N-1}$. Then $l^{-1}\left(l\left(T_{x}\right)\right)$ contains a surface S which meets both T_{x} and T_{y}. We claim that S is not tangent to T_{y}. For, S is fibred by the curves $l^{-1}(l(t)), t \in T_{x}$, which are not tangent to T_{y}. Hence, if S were tangent to T_{y} there would be a curve Q in S transversal to the curves $l^{-1}(l(t)), t \in T_{x}$, and tangent to T_{y}. Apply a complex projective transformation to P_{N} to bring $f(x)$ to the origin of $C^{N} \subset P_{N}$ and τ_{x} to the real plane spanned by $\partial / \partial x_{1}$ and $\partial / \partial x_{2}$, where $z_{j}=x_{j}+i y_{j}$ are the coordinate functions of C^{N}. Now the s-curve containing x and y is unique, for otherwise we would have two distinct complex lines in P_{N} meeting in two distinct points. We may assume that the tangent vector to this unique s-curve is $\partial / \partial x_{1}$. The curve $f \pi(Q)$ can be represented in the real coordinates x_{1}, y_{1}, \cdots, x_{N}, y_{N} by

$$
\begin{aligned}
f \pi Q(\theta)= & a(\theta)(\cos \theta, 0, \sin \theta, 0,0, \cdots, 0) \\
& +b(\theta)(0, \cos \theta, 0, \sin \theta, 0, \cdots, 0)
\end{aligned}
$$

so that

$$
\begin{aligned}
d /\left.d \theta\right|_{\theta=0} f \pi Q= & a^{\prime}(0)(1,0, \cdots, 0)+b^{\prime}(0)(0,1,0, \cdots, 0) \\
& +a(0)(0,0,1,0, \cdots, 0)+b(0)(0,0,0,1,0, \cdots, 0)
\end{aligned}
$$

This must vanish in order for Q to be tangent to T_{y}; but this is impossible unless $a(0)=b(0)=0$, which contradicts the assumption that $f(x) \neq f(y)$. Hence the surface S is not tangent to T_{y}, as claimed. It follows that $\pi(S)$ contains a neighborhood of y, and since $\pi(S) \subset W_{x}$, we have established the claim that W_{x} contains a neighborhood of y.

From this it follows that every point of M has a neighborhood whose image under f is contained in a projective subspace of P_{N} of two complex dimensions. For, given $y \in M$, choose $x \in M$ on a connected component of an s-curve through y such that $f(x) \neq f(y)$. Then a neighborhood of y is contained in W_{x}. But W_{x} is mapped by f into the complex 2-plane spanned by the tangent 2plane of f at x. This complex 2-plane is also spanned by the tangent space of f at y, and is therefore uniquely determined by y. It follows by analytic continuation, M being assumed connected, that $f(M)$ lies in a complex 2-plane.

We may now assume that $f: M \rightarrow P_{2}$. Let $t, u \in T(M)$. Then we say that $t \equiv u$ if there is a curve C joining t and u in $T(M)$ such that $l(C)=l(t)$. This is an equivalence relation, and since l has rank 2 everywhere the set M^{*} of equivalence classes forms a differentiable manifold of dimension 2. The map $l: T(M) \rightarrow G_{1,1}$ induces a map $l^{*}: M^{*} \rightarrow G_{1,1}$, which is an immersion. We call l^{*} or $l^{*}\left(M^{*}\right)$ the dual surface. Note that $G_{1,1}=P_{2}^{*}$, the dual projective space.

As we have seen, l embeds any fibre T_{p} of $T(M)$ in P_{2}^{*}, and $l\left(T_{p}\right)$ lies on the dual surface. We shall call $l^{*-1}\left(l\left(T_{p}\right)\right)$ a c-curve. We claim that every $l\left(T_{p}\right)$ is a "circle" in P_{2}^{*}. To show this we bring p to the origin of $C^{2} \subset P_{2}$ as above, so that the tangent plane at p is spanned by $\partial / \partial x_{1}$ and $\partial / \partial x_{2}$. Using complex homogeneous coordinates as in the proof of Proposition 1 we find that for each tangent vector $t(\theta)=\cos \theta \partial / \partial x_{1}+\sin \theta \partial / \partial x_{2}, l(t(\theta))$ is spanned over the complex numbers by

$$
O=(1,0,0), \quad t_{\theta}=(1, \cos \theta, \sin \theta)
$$

so that $l(t(\theta))$ is represented by the complex bivector

$$
O \wedge t_{\theta}=(0,-\sin \theta, \cos \theta)
$$

In suitably chosen nonhomogeneous coordinates in $P_{2}^{*}, l(t(\theta))$ is then represented by $(0,-\tan \theta)$, which is a parametric representation of the real line, which establishes the claim.

For each $x^{\prime} \in M^{*}$ let $U_{x^{\prime}}$ denote the set of those points of M^{*} which are joined to x^{\prime} by c-curves. We claim that $U_{x^{\prime}}-\left\{x^{\prime}\right\}$ is open in M^{*}. For consider the s-curve $\pi\left(l^{-1}\left(x^{\prime}\right)\right)$ of M and let $B=\pi^{-1}\left(\pi\left(l^{-1}\left(x^{\prime}\right)\right)\right)$. By definition $U_{x^{\prime}}=l(B)$. To show that $U_{x^{\prime}}-\left\{x^{\prime}\right\}$ is open it therefore suffices to show that l has rank 2 on $B-l^{-1}\left(x^{\prime}\right)$. So let $t \in B-l^{-1}\left(x^{\prime}\right)$ be arbitrary, and $p=\pi(t)$. Choose local coordinates x, y on M in a neighborhood of p such that $\pi\left(l^{-1}\left(x^{\prime}\right)\right)$ is defined by $x=0, t=\partial / \partial x$, with $y=0$ at p. It follows that we can represent a general point of B in a neighborhood of t by

$$
t(s, y)=\left.\frac{\partial}{\partial x}\right|_{(0, y)}+\left.s \frac{\partial}{\partial y}\right|_{(0, y)},
$$

so that s and y provide local coordinates on B. Using the notation and method of the proof of Proposition 1 we find that

$$
\begin{array}{ll}
l(t(s, y))=Y \wedge\left(Y_{1}+s Y_{2}\right), & \Omega_{0} \equiv l(t(0,0))=Y \wedge Y_{1} \\
\Omega_{2} \equiv \partial l /\left.\partial s\right|_{(0,0)}=Y \wedge Y_{2}, & \Omega_{4} \equiv \partial l /\left.\partial y\right|_{(0,0)}=Y_{2} \wedge Y_{1}+Y \wedge Y_{12}
\end{array}
$$

But as a special case of the computation there we find that $\Omega_{0}, i \Omega_{0}, \Omega_{2}$ and Ω_{4} are linearly independent over the reals, which shows that l has rank 2 on B at t and establishes the claim.

Lemma 3. Let $\varphi: M \rightarrow P_{2}$ be a C^{2} immersion of a surface in a complex projective plane.
a) Let $x \in M$, and $W \subset M$ be an open subset each point of which can be joined to x by a curve which is mapped by φ into a "circle" in P_{2}. Then a complex projective transform of $\varphi(W)$ is contained in a semi-real flat of dimension 2.
b) If two of these "circles" having distinct tangent lines at x are euclidean straight lines in $R^{4}=C^{2} \subset P_{2}$, then $\varphi(W)$ is already contained in a semi-real flat of dimension 2 .

Proof. If x, W are as in Part a), and the tangent plane to φ at x is a complex line, then all the "circles" on M passing through x must lie in this complex line, so in particular $\varphi(W)$ lies in this complex line. Therefore we may henceforth assume that the tangent plane to φ at x is not a complex line; we may also assume that W is nonempty. If all the "circles" in question are mutually tangent at x, then $\varphi(W)$ lies in the complex line spanned by their common tangent, in which case the lemma is proved. So we can assume that two of these circles have distinct tangent lines at x. Take as line at infinity in P_{2} a complex line which meets two of the "circles" in question but does not pass through $\varphi(x)$. These two "circles" are now euclidean straight lines in R^{4} $=C^{2} \subset P_{2}$. To complete the proof of the lemma it suffices now to prove that $\varphi(W)$ lies in a semi-real flat of dimension 2.

Let us next recall some generalities about a surface in R^{4}. Suppose p is a point of such a surface, and C a curve on the surface through p with unit tangent vector t. The orthogonal projection of the curvature vector of C at p into the normal plane at p depends only on t. Hence we have a map $\mathscr{N}: \Sigma_{p}$ $\rightarrow N_{p}$ from the circle of unit tangent vectors at p to the normal plane at p. The properties of \mathscr{N} may be found conveniently in [2]. In particular the image of \mathscr{N} is an ellipse covered twice, which may degenerate to a line segment or a point. Consider now our surface φ, which maps a neighborhood of x into R^{4}. Since there are two distinct real lines lying on it passing through x, the ellipse $\mathscr{N}\left(\Sigma_{x}\right)$ must pass through the origin of N_{x} twice, which implies that $\mathscr{N}\left(\Sigma_{x}\right)$ degenerates, and hence is contained in a real line L through the origin of N_{x}. Now let C be any "circle" lying on M and passing through x, which is not a straight line. The complex line containing C is spanned by its tangent and curvature vectors at x. Consequently the orthogonal projection of this complex line in N_{x} is L, since the tangent space of φ at x is not a complex line. Hence the complex line is contained in the 3 -space spanned over the reals by L and the tangent plane of φ at x. Now this 3 -space contains only one complex line passing through $\varphi(x)$, since any two distinct complex lines passing through a point of R^{4} span R^{4} over the reals. Hence all the "circles" lying on M and passing through x, which are not straight lines, lie in a single complex line. If there are infinitely many such actual circles, then the tangent plane of φ at x is this complex line, a situation already ruled out. Consequently there are only finitely many such circles, and hence none, which implies that the "circles" lying in M and joining x to the points of W are straight lines. These lines lie in the tangent plane of φ at x, of course, so that all of $\varphi(W)$ lies in that semi-real flat which is the closure in P_{2} of the tangent space of φ at x. This completes the proof of Lemma 3.

Now apply this lemma to our immersion $l^{*}: M^{*} \rightarrow P_{2}^{*}$. If y is an arbitrary
point of M^{*}, choose a c-curve on M^{*} passing through y, and x a point on this c-curve such that $l^{*}(x) \neq l^{*}(y)$. As we have already shown, the set of points of M^{*} which can be joined to x by c-curves, U_{x}, is a neighborhood of y. The c-curves are mapped by l^{*} to "circles". From Lemma 3 we conclude that $l^{*}\left(U_{x}\right)$ is contained in a projective transform of a semi-real flat of dimension 2 , so that every point of M^{*} has a neighborhood mapped by l^{*} into a projective transform of a semi-real flat of dimension 2 . Since $T(M)$, and hence M^{*}, are connected, we conclude by analytic continuation that $l^{*}\left(M^{*}\right)$ lies in a single projective transform of a semi-real flat of dimension 2 . This cannot be a complex line; for if so, by duality all the complex lines spanned by real tangent lines of f in P_{2} have a common point. But two such complex lines spanned by two real lines tangent at a point of M have only that point in common. It follows that $f(M)$ is a single point, contradicting the assumption that f be an immersion. Hence some projective transform of $l^{*}\left(M^{*}\right)$ lies in a semi-real flat of dimension 2 and type 0 . Applying the adjoint complex projective transformation to P_{2}, we have $l^{*}\left(M^{*}\right)$ actually lying in such a semi-real flat, which we can take to be $P^{2 *} \subset P_{2}^{*}$.

Now consider $P^{2} \subset P_{2}$. As we have already shown, its points are all of type F; its dual surface consists of those complex lines whose real locus is a line, i.e., $P^{2 *} \subset P_{2}^{*}$, and by its homogeneity and isotropy every real line of $P^{2 *}$ is the c-curve corresponding to some point of P^{2}. This enables us to establish a map $M \rightarrow P^{2}$, by which we assign to every point $p \in M$ the point p^{\prime} in P^{2} such that $l\left(T_{p}\right)=l\left(T_{p}\right)$. The intersection of the complex lines $l\left(T_{p}\right)$ is $f(p)$, the intersection of the complex lines $l\left(T_{p^{\prime}}\right)$ is p^{\prime}. Hence $f(p)=p^{\prime}$, which proves that $f(M) \subset P^{2}$. This completes the proof of Proposition 2. We remark finally that $l^{*}\left(M^{*}\right)$ is a surface of type F and its s-curves are the same as its c-curves.

5. The secant map

Let $f: M \rightarrow C^{2}=R^{4}$ be an embedding of class C^{4} of a real surface. Let $\pi: T(M) \rightarrow M$ denote the bundle of unoriented (real) tangent lines of M, as before. Consider

$$
S(M)=(M \times M-\Delta) \cup T(M),
$$

where $\Delta=\{(x, x)\}$ is the diagonal. It is shown in [4, pp. 1333-1337] that $S(M)$ has a differentiable structure compatible with the canonical differentiable structure on $M \times M-\Delta$, and in which $T(M)$ with its canonical differentiable structure is an embedded submanifold (this is done by blowing up the diagonal in $M \times M)$. Moreover, the mapping L^{\prime} from $S(M)$ into the Grassmann manifold of all (real) lines in R^{4} defined by

$$
\begin{aligned}
L^{\prime}(x, y) & =\text { the real line joining } f(x) \text { and } f(y) \text { in } R^{4},(x, y) \in M \times M-\Delta, \\
L^{\prime}(t) & =t \text { realized as a real line in } R^{4}, t \in T(M),
\end{aligned}
$$

is differentiable of class C^{3}. (Actually in the construction of [4], $T(M)$ is the bundle of oriented tangent lines, and $S(M)$ is a manifold with boundary $T(M)$. But if, in the treatment of [4], one interprets the ξ_{i} 's as homogeneous coordinates in a (real) projective space and ignores the inequalities $X_{i} \xi_{i} \geq 0$, one obtains the construction desired here.) The map $\varpi: S(M) \rightarrow M \times M$ defined by

$$
\begin{aligned}
\widetilde{\varpi}(x, y) & =(x, y), & & (x, y) \in M \times M-\Delta, \\
\widetilde{\sigma}(t) & =(\pi(t), \pi(t)), & & t \in T(M)
\end{aligned}
$$

is called the canonical projection.
For any real line Q in $R^{4}=C^{2}$ let $\lambda(Q)$ denote the (unique) complex line containing Q. Let $L=\lambda L^{\prime}: S(M) \rightarrow P_{2}^{*}$. Note that L restricted to $T(M)$ gives l, the associated map previously defined. Let $\chi: S(M) \rightarrow S(M)$ be defined by

$$
\begin{aligned}
\chi(x, y) & =(y, x), & & (x, y) \in M \times M-\Delta \\
\chi(t) & =t, & & t \in T(M) .
\end{aligned}
$$

Let us take note of some dimensions and ranks: $S(M)$ and P_{2}^{*} have (real) dimension $4, T(M)$ has dimension 3; if $t \in T(M)$ is an ordinary direction for the map f, then by Proposition 1b) l has rank 3 at t; hence L has rank at least 3 at t. But L cannot have rank 4 at t because $L \chi=L$ and the set of fixed points of χ is $T(M)$, which implies that L cannot be one-to-one on any neighborhood of t. Hence L has rank exactly 3 at t.

Definition. Let N_{1}, N_{2} be 4-dimensional differentiable manifolds, Q an embedded submanifold, and $\varphi: N_{1} \rightarrow N_{2}$. We say that φ is a fold with center Q at $p \in Q$ if there exist C^{1} local coordinates x_{1}, \cdots, x_{4} in a neighborhood of p, and y_{1}, \cdots, y_{4} in a neighborhood of $\varphi(p)$ such that in this neighborhood Q is defined by $x_{1}=0$ and φ has the form

$$
y_{1}=x_{1}^{2}, \quad y_{i}=x_{i}, \quad i=2,3,4 .
$$

Proposition 4. Let $t_{0} \in T(M)$ be an ordinary direction. Then L is a fold with center $T(M)$ at t_{0}.

The proof is based on the following criterion.
Lemma 5. Let $Q, \varphi: N_{1} \rightarrow N_{2}$ be as above and differentiable of class C^{3}. Then φ is a fold with center Q at $p \in Q$ if Q has dimension 3 , and

1) there exists a neighborhood U of p in N_{1} such that φ has rank 3 at each point of $U \cap Q$ and the restriction of φ to $U \cap Q$ has rank 3, and
2) there exists a C^{2} real-valued function ψ defined in a neighborhood of $\varphi(p)$ in N_{2} such that the directional derivatives of $\psi \circ \varphi$ along Q at p vanish; and there exists an embedded C^{2} curve $C(s)$ on N_{1} with $C(0)=p$, whose tangent vector at p lies in the kernal of φ_{*}, but such that

$$
\left.\frac{d^{2} \psi \circ \varphi \circ C}{d s^{2}}\right|_{0} \neq 0
$$

Proof of Lemma 5. Suppose $C(s)$ and ψ are given with conditions 1) and 2) satisfied. Choose C^{3} local coordinates $x_{1}^{\prime \prime}, \cdots, x_{4}^{\prime \prime}$ valid in a neighborhood $V \subset U$ of p and vanishing at p, and C^{3} local coordinates y_{1}, \cdots, y_{4} valid in a neighborhood of $\varphi(V)$ and vanishing at $\varphi(p)$, such that $Q \cap V$ is defined by $x_{1}^{\prime \prime}=0$ and $\varphi(Q \cap V)$ is defined by $y_{1}=0$. Since $\varphi \mid V \cap Q$ has rank 3, we must have

$$
0 \neq\left|\left(\partial y_{i} /\left.\partial x_{j}^{\prime \prime}\right|_{p}\right)\right|_{2 \leq i, j \leq 4} .
$$

Hence

$$
x_{1}^{\prime}=x_{1}^{\prime \prime}, \quad x_{i}^{\prime}=y_{i} \circ \varphi, \quad i=2,3,4
$$

is a valid C^{3} change of local coordinates in a neighborhood W of p. In these coordinates the map φ has the form

$$
y_{1}=y_{1}\left(x_{1}^{\prime}, \cdots, x_{4}^{\prime}\right), \quad y_{i}=x_{i}^{\prime}, \quad i=2,3,4 .
$$

Since φ has rank 3 on $Q \cap W$, we must have

$$
\partial y_{1} /\left.\partial x_{1}^{\prime}\right|_{q}=0, \quad \text { for all } q \in Q \cap W,
$$

and since $y_{1} \equiv 0$ on $Q \cap W$,

$$
\partial y_{1} /\left.\partial x_{k}^{\prime}\right|_{q}=0, \quad k=2,3,4, \quad \text { for all } q \in Q \cap W
$$

Since the tangent to C at p lies in the kernal of φ_{*}, we must have

$$
d y_{1} /\left.d s\right|_{0}=0, \quad d y_{i} /\left.d s\right|_{0}=d x_{i}^{\prime} /\left.d s\right|_{0}=0, \quad i=2,3,4
$$

By assumption

$$
\partial \psi /\left.\partial y_{i}\right|_{\varphi(p)}=0, \quad i=2,3,4 .
$$

Using these relations, we obtain

$$
\frac{d^{2} \psi}{d s^{2}}=\sum_{i, j} \frac{\partial^{2} \psi}{\partial y_{i} \partial y_{j}} \frac{d y_{i}}{d s} \frac{d y_{j}}{d s}+\sum_{i} \frac{\partial \psi}{\partial y_{i}} \frac{d^{2} y_{i}}{d s^{2}}=\frac{\partial \psi}{\partial y_{1}} \frac{d^{2} y_{1}}{d s^{2}}
$$

at 0 , which is nonzero at $s=0$ by assumption. Hence at p

$$
0 \neq \frac{d^{2} y_{1}}{d s^{2}}=\sum_{i, j} \frac{\partial^{2} y_{1}}{\partial x_{i}^{\prime} \partial x_{j}^{\prime}} \frac{d x_{i}^{\prime}}{d s} \frac{d x_{j}^{\prime}}{d s}+\sum_{i} \frac{\partial y_{1}}{\partial x_{i}^{\prime}} \frac{d^{2} x_{i}^{\prime}}{d s^{2}}=\frac{\partial^{2} y_{1}}{\partial x_{1}^{\prime 2}}\left(\frac{d x_{1}^{\prime}}{d s}\right)^{2},
$$

so that $\partial^{2} y_{1} / \partial x_{1}^{\prime 2} \neq 0$ at p. Since

$$
y_{1} \equiv \partial y_{1} / \partial x_{1}^{\prime} \equiv 0 \quad \text { on } Q \cap W,
$$

by elementary methods we have

$$
y_{1}\left(x_{1}^{\prime}, \cdots, x_{4}^{\prime}\right)=x_{1}^{\prime 2} g\left(x_{1}^{\prime}, \cdots, x_{4}^{\prime}\right)
$$

with g of class C^{1} in some neighborhood of $Q \cap W$ and

$$
g(0, \cdots, 0)=\frac{1}{2} \partial^{2} y_{1} /\left.\partial x_{1}^{\prime 2}\right|_{p} \neq 0
$$

Let

$$
x_{1}=x_{1}^{\prime} g^{1 / 2}\left(x_{1}^{\prime}, \cdots, x_{4}^{\prime}\right), \quad x_{i}=x_{i}^{\prime}, \quad i=2,3,4
$$

This is a valid C^{1} change of local coordinates in some neighborhood of p, since

$$
\partial x_{1} /\left.\partial x_{1}^{\prime}\right|_{p}=g^{1 / 2}(0, \cdots, 0) \neq 0
$$

In these coordinates the map φ takes the form

$$
y_{1}=x_{1}^{2}, \quad y_{i}=x_{i}, \quad i=2,3,4
$$

This completes the proof of Lemma 5.
Proof of Proposition 4. Let t_{0} be an ordinary direction. By continuity there is a neighborhood of t_{0} in $T(M)$ consisting of ordinary directions, and hence, by the remarks just preceeding the definition of "fold", L satisfies Condition 1) of Lemma 5. We proceed to construct ψ and C satisfying Condition 2).

Let $x(s)$ be a C^{3} embedded curve on M parametrized by arc length such that $x(0)=\pi\left(t_{0}\right)$ and such that t_{0} is the tangent line of x at 0 . Let $C(s)$ be the curve on $S(M)$ defined by

$$
C(s)= \begin{cases}(x(s), x(-s)) \in M \times M-\Delta, & s \neq 0 \\ t_{0} \in T(M), & s=0\end{cases}
$$

That $C(s)$ is embedded and C^{2} follows from properties of the $S(N)$-construction established in [4]. Since $L C(s)=L C(-s)$, the tangent to C at 0 lies in the kernal of L_{*}.

Since t_{0} is an ordinary direction, the tangent space to f at $\pi\left(t_{0}\right)$ and $L\left(t_{0}\right)$ span a hyperplane G of R^{4}. Choose a point $P \neq f \pi\left(t_{0}\right)$ on the real line through $f \pi\left(t_{0}\right)$ perpendicular to G. For each complex line $y \in P_{2}^{*}$ let $\psi(y)$ denote the euclidean distance in R^{4} from y to P. Clearly ψ is infinitely differentiable on some neighborhood of $L\left(t_{0}\right)$ in P_{2}^{*}; ψ may be computed as follows. For each $y \in P_{2}^{*}$ near $L\left(t_{0}\right)$ let $n(y)$ denote the unit vector along the unique line through P meeting y perpendicularly and oriented from P toward y. (Note that $n\left(L\left(t_{0}\right)\right)$
is perpendicular to G.) Take P as the origin, and let X be the position vector of a point on y. Then $\psi(y)=X \cdot n(y)$.

For each $t \in T(M)$ let $X(t)=f \pi(t)$. If $t(u)$ is any curve on $T(M)$ with $t(0)$ $=t_{0}$, we have

$$
(d \psi \circ L) /\left.d u\right|_{u=0}=d X /\left.d u\right|_{0} \cdot n(0)+X(0) \cdot d n /\left.d u\right|_{0} .
$$

But the first term on the right-hand side of the equation vanishes because $(d X / d u)(0)$ is a tangent vector of M at $\pi\left(t_{0}\right)$, while $n(0)$ is normal to f at $\pi\left(t_{0}\right)$. And the second term on the right vanishes because $d n / d u$ is perpendicular to n since n is a unit vector, and $X(0)$ is a multiple of $n(0)$. Hence the directional derivatives of $\psi \circ L$ are zero along $T(M)$ at t_{0}.

Now let $X(s)=f x(s)$. Since the kernal of L_{*} contains the tangent of C at 0 , we must have

$$
d n /\left.d s\right|_{0}=0
$$

Consequently, since n is a unit vector,

$$
0=\left(d^{2} n \cdot n\right) /\left.d s^{2}\right|_{0}=2 d^{2} n /\left.d s^{2}\right|_{0} \cdot n(0)+2\left(d n /\left.d s\right|_{0}\right)^{2}
$$

which implies that $d^{2} n /\left.d s^{2}\right|_{0} \cdot n(0)=0$. Hence, using the fact that $X(0)$ is a multiple of $n(0)$, we obtain
$\left.\frac{d^{2} \psi \circ L \circ C}{d s^{2}}\right|_{0}=\left.\frac{d^{2} X}{d s^{2}}\right|_{0} \cdot n(0)+\left.\left.2 \frac{d X}{d s}\right|_{0} \cdot \frac{d n}{d s}\right|_{0}+\left.X(0) \cdot \frac{d^{2} n}{d s^{2}}\right|_{0}=\left.\frac{d^{2} X}{d s^{2}}\right|_{0} \cdot n(0)$.
But this last cannot vanish because $d^{2} X / d s^{2}(0)$ is the curvature vector of $f x(s)$ at 0 , and this cannot lie in G because t_{0} is an ordinary direction. Hence L, ψ, C satisfy Condition 2) of Lemma 5, from which we obtain the conclusion of Proposition 4.

6. Maps proper onto their images

Let $f: N_{1} \rightarrow N_{2}$ be a differentiable map of differentiable manifolds. We say that $p_{1} \in N_{1}$ is a good point of f if $f\left(p_{1}\right)$ has an open neighborhood $X \subset N_{2}$ such that $f^{-1}(X)=U_{1} \cup \cdots \cup U_{m}$, where each U_{i} is open and is embedded diffeomorphically by f onto $f\left(U_{1}\right)$, with the U_{i} pairwise disjoint. Note that every point of U_{i} is then a good point.

Lemma 6. Suppose $f: N_{1} \rightarrow N_{2}$ is proper onto its image, and $p \in N_{2}$. Let W be a neighborhood of $f^{-1}(p)$ in N_{1}. Then there exists a neighborhood C of p in N_{2} such that $f^{-1}(C) \subset W$.

Proof. Suppose not. Then there exists a sequence $p_{\nu} \rightarrow p$ such that $f^{-1}\left(p_{v}\right)$ $\not \subset W$. Since f is proper onto its image $f^{-1}\left(\cup_{\nu}\left\{p_{\nu}\right\} \cup\{p\}\right)$ is compact. Choose $q_{\nu} \in f^{-1}\left(p_{\nu}\right)-W$; then $\left\{q_{\nu}\right\}$ has a convergent subsequence $q_{\mu} \rightarrow q$, so that by
continuity $f\left(q_{\mu}\right) \rightarrow f(q)$. But $f\left(q_{\mu}\right) \rightarrow p$. Hence $q \in f^{-1}(p)$ and q_{μ} is eventually inside W, a contradiction.

Lemma 7. Suppose $f: N_{1} \rightarrow N_{2}$ is a differentiable map of differentiable manifolds, which is proper onto its image, and $q \in N_{1}$ a point at which f is an immersion, i.e., such that the rank of f at q equals the dimension of N_{1}. Then there exists a good point of f arbitrarily close to q in N_{1}.

Proof. Let V be an arbitrary neighborhood of q in N_{1}, where q is a point at which f is an immersion; we will show that V contains a good point of f. Let $V^{\prime} \subset V$ be a neighborhood of q, and C a cubical coordinate neighborhood of $f(q)$ such that $f\left(V^{\prime}\right) \subset C$ and such that $f\left(V^{\prime}\right)$ appears as a linear space in C parallel to a side of C of the same dimension, with the boundary of $f\left(V^{\prime}\right)$ lying in the boundary of C. Let $\pi_{C}: C \rightarrow f\left(V^{\prime}\right)$ denote orthogonal projection in C onto $f\left(V^{\prime}\right)$. Now $f^{-1}(C)$ is an open subset of N_{1} of dimension equal to that of $f\left(V^{\prime}\right)$. Consequently by Sard's theorem there is a point $q_{1} \in V^{\prime}$ such that $f\left(q_{1}\right)$ is a regular value of $\pi_{c} f \mid f^{-1}(C)$. At each point of $f^{-1}\left(f\left(q_{1}\right)\right), f$ is then an immersion. Hence $f^{-1}\left(f\left(q_{1}\right)\right)$ is finite, for otherwise $f^{-1}\left(q_{1}\right)$ would contain a limit point, at which point f could not be an immersion. Let $f^{-1}\left(f\left(q_{1}\right)\right)=\left\{q_{1}, \cdots, q_{n}\right\}$, and W_{i} be a neighborhood of q_{i} such that W_{i} is mapped by $\pi_{c} f$ diffeomorphically onto its image, with the W_{i} pairwise disjoint. By Lemma 6 there exists a neighborhood C^{\prime} of $f\left(q_{1}\right)$ such that $f^{-1}\left(C^{\prime}\right) \subset W_{1} \cup \cdots \cup W_{n}$. Let p_{1} be a point of $f^{-1}\left(C^{\prime}\right) \cap V^{\prime}$ such that $f^{-1}\left(f\left(p_{1}\right)\right)$ consists of the smallest number of points for all $p \in f^{-1}\left(C^{\prime}\right) \cap V^{\prime}$.

We claim that p_{1} is a good point of f. For since $f^{-1}\left(f\left(p_{1}\right)\right) \subset W_{1} \cup \cdots \cup$ W_{n}, it is finite: $f^{-1}(f(p))=\left\{p_{1}, \cdots, p_{m}\right\}$, and after some renaming we can take $p_{i} \in W_{i}$. By Lemma 6 there exists a neighborhood $C^{\prime \prime} \subset C^{\prime}$ of $f\left(p_{1}\right)$ such that $f^{-1}\left(C^{\prime \prime}\right) \subset W_{1} \cup \cdots \cup W_{m}$. Now $f\left(W_{i}\right)$ must contain an open neighborhood $D_{i} \subset f\left(V^{\prime}\right)$ of $f\left(V^{\prime}\right) \cap C^{\prime \prime}, 1 \leq i \leq m$, for otherwise we could find a point $p \in f^{-1}\left(C^{\prime \prime}\right) \cap V^{\prime}$ with $f^{-1}(f(p))$ consisting of strictly fewer than m points. Let $D=D_{1} \cap \cdots \cap D_{m}$, and $U_{i}^{\prime}=\left(\pi_{C} f\right)^{-1}(D) \cap W_{i}$. Then U_{i}^{\prime} is open, and f must map U_{i}^{\prime} diffeomorphically onto $D, 1 \leq i \leq m$. For if $x \in U_{i}^{\prime}$, let $y \in W_{i}$ be the unique point such that $f(y)=\pi_{c} f(x)$. Then $\pi_{c} f(y)=\pi_{c} f(x)$, which implies that $x=y$, showing that f maps U_{i}^{\prime} into D. And f maps U_{i}^{\prime} onto D; for let $x \in D$, and $y \in W_{i}$ be the unique point such that $f(y)=x$. Then $\pi_{c} f(y)$ $=x$, which implies that $y \in\left(\pi_{C} f\right)^{-1}(D) \cap W_{i}=U_{i}^{\prime}$. By Lemma 6 there exists an open neighborhood X of $f\left(p_{1}\right)$ in N_{2} such that $f^{-1}(X) \subset U_{1}^{\prime} \cup \cdots \cup U_{m}^{\prime}$. Let $U_{i}=f^{-1}(X) \cap U_{i}^{\prime}$. Then the U_{i} are open and $f^{-1}(X)=U_{1} \cup \cdots \cup U_{m}$, f maps each U_{i} diffeomorphically onto $f\left(U_{1}\right)=X \cap D$, and the U_{i} are pairwise disjoint because $U_{i} \subset W_{i}$ and the W_{i} are pairwise disjoint. This completes the proof.

7. Ordinary directions

Let $V \subset P_{2}$ be a compact subset, $S \subset V$ a finite set of points, and $f: M \rightarrow$ P_{2} a C^{4} immersion of a surface which is proper onto its image, with $f(M)=$ $V-S$. We will suppose that there is an ordinary direction $t_{1} \in T(M)$. Let W be an arbitrary neighborhood of t_{1} in $T(M), W_{1} \subset W$ a neighborhood of t_{1} consisting of ordinary directions, and $l: T(M) \rightarrow P_{2}^{*}$ the associated map. By Proposition 1, b), l is an immersion on W_{1}.

Let Λ_{S} denote the set of all complex lines in P_{2} which pass through points of S. We claim that it is impossible to have an open set $W^{\prime} \subset T(M)$ such that $l\left(W^{\prime}\right) \subset \Lambda_{S}$. For if so there exists an open set $W^{\prime \prime} \subset W^{\prime} \subset T(M)$ such that every line $l(t), t \in W^{\prime \prime}$, passes through some fixed point P. If $p \in M$ is any point such that the fibre T_{p} meets $W^{\prime \prime}$, choose $t, t^{\prime} \in T_{p} \cap W^{\prime \prime}, t \neq t^{\prime}$. Then $l(t) \cap l\left(t^{\prime}\right)=\{f(p)\}$, so that $f(p)=P$. It follows that f maps the whole open set $\pi\left(W^{\prime \prime}\right)$ into P, which is impossible. This establishes the claim. Thus $l^{-1}\left(\Lambda_{S}\right)$ is a closed set with empty interior, and we choose an open subset $W_{2} \subset W_{1}$ such that $W_{2} \cap l^{-1}\left(\Lambda_{S}\right)=0$.

Let $T^{\prime}=T(M)-l^{-1}\left(\Lambda_{S}\right)$. We claim that $l \mid T^{\prime}$ is proper onto its image. For let $A \subset l\left(T^{\prime}\right)$ be compact. Then

$$
A^{\prime}=\bigcup_{\lambda \in A} \lambda \subset P_{2}
$$

is compact, and $A^{\prime} \cap S=0$. Consequently $A^{\prime} \cap V \subset f(M)$ is compact. Since f is proper onto its image $f^{-1}\left(A^{\prime}\right)$ is compact, and since the fibres of $T(M)$ are compact $\pi^{-1} f^{-1}\left(A^{\prime}\right)$ is compact. But $l^{-1}(A)$ is closed and contained in $\pi^{-1} f^{-1}\left(A^{\prime}\right)$. Hence $l^{-1}(A)$ is compact, which establishes the claim. By Lemma 7, then, there exists an open subset $W_{0} \subset W_{2}$ consisting of good points for $l \mid T^{\prime}$. Since $l\left(W_{2}\right) \cap \Lambda_{S}=0$ and Λ_{S} is closed, W_{0} consists of good points for the whole mapping $l: T(M) \rightarrow P_{2}^{*}$.

Suppose $t_{0} \in W_{0}$ and $t_{1} \in T(M)$ are such that $l\left(t_{0}\right)=l\left(t_{1}\right), t_{0} \neq t_{1}$. We claim that then $f \pi\left(t_{0}\right)=f \pi\left(t_{1}\right)$, which is to say that " $f(M)$ has no 3-parameter family of bitangent complex lines". To show this we choose as line at infinity in P_{2} a line which meets neither $f \pi\left(t_{0}\right)$ nor $f \pi\left(t_{1}\right)$. Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2}$ be the complex coordinates in $R^{4}=C^{2} \subset P_{2}$. Apply a complex affine transformation to bring $f \pi\left(t_{0}\right)$ to the origin of R^{4} so that the tangent plane of f at $\pi\left(t_{0}\right)$ is defined by $y_{1}=y_{2}=0$, with t_{0} in the x_{1} direction. To each t in a neighborhood of t_{0} in $T(M)$ associate an orthonormal frame $X e_{1} e_{2} e_{3} e_{4}$ in R^{4} such that $X(t)$ $=f \pi(t), e_{1}(t)$ is directed along t, e_{2} is in the tangent plane of f at $\pi(t)$, and e_{3} and e_{4} are normal, so that $e_{3}\left(t_{0}\right)$ and $e_{4}\left(t_{0}\right)$ are along the increasing y_{1} and y_{2} directions, and $e_{1}\left(t_{0}\right)$ and $e_{2}\left(t_{0}\right)$ along the increasing x_{1} and x_{2} directions. If I denotes multiplication by $i=\sqrt{-1}$, we have

$$
\begin{array}{ll}
I\left(e_{1}\left(t_{0}\right)\right)=e_{3}\left(t_{0}\right), & I\left(e_{2}\left(t_{0}\right)\right)=e_{4}\left(t_{0}\right), \\
I\left(e_{3}\left(t_{0}\right)\right)=-e_{1}\left(t_{0}\right), & I\left(e_{4}\left(t_{0}\right)\right)=-e_{2}\left(t_{0}\right),
\end{array}
$$

which relations, we must emphasize, hold only at t_{0}.
Let $\omega_{i}=d X \cdot e_{i}, \omega_{i j}=d e_{i} \cdot e_{j}$. Since e_{1} and e_{2} span the tangent plane of f at each point, we must have ω_{1}, ω_{2} linearly independent and $\omega_{3}=\omega_{4}=0$. If we restrict these differential forms to a fibre T_{p}, we find that $\omega_{1}=\omega_{2}=0$, and that ω_{12} is the differential of the angle of turning. Hence $\omega_{1}, \omega_{2}, \omega_{12}$ are everywhere linearly independent. By the structure equations of Maurer-Cartan we have

$$
0=d \omega_{4}=\omega_{1} \wedge \omega_{14}+\omega_{2} \wedge \omega_{24}
$$

and by a lemma of Cartan we can write

$$
\omega_{14}=e \omega_{1}+g \omega_{2}
$$

Since t_{0} is a good point of l, there exists a diffeomorphism φ of some neighborhood of t_{0} to some neighborhood of t_{1} such that $l \varphi=l$. Let $Y(t)=f \pi \varphi(t)$. Since $Y(t)$ lies in the complex line $l(t)$, we can write

$$
Y=X+\lambda e_{1}+\mu I e_{1}
$$

where λ and μ are real-valued functions on a neighborhood of t_{0} whose differentiability follows from that of Y. Calculating, we obtain

$$
\begin{aligned}
& d Y \cdot e_{2}=\omega_{2}+\lambda \omega_{12}+d \mu\left(I e_{1}\right) \cdot e_{2}+\mu I\left(\omega_{12} e_{2}+\omega_{13} e_{3}+\omega_{14} e_{4}\right) \cdot e_{2}, \\
& d Y \cdot e_{4}=\lambda \omega_{14}+d \mu\left(I e_{1}\right) \cdot e_{4}+\mu I\left(\omega_{12} e_{2}+\omega_{13} e_{3}+\omega_{14} e_{4}\right) \cdot e_{4} .
\end{aligned}
$$

Evaluating at t_{0}, we obtain

$$
\begin{aligned}
& d Y \cdot e_{2}=-\mu e \omega_{1}+(1-\mu g) \omega_{2}+\lambda \omega_{12}, \\
& d Y \cdot e_{4}=\lambda e \omega_{1}+\lambda g \omega_{2}+\mu \omega_{12} .
\end{aligned}
$$

Since Y has rank 2, there must be a tangent vector τ of $T(M)$ at t_{0} for which $d Y=0$, and since the plane $l\left(t_{0}\right)$, which is spanned by e_{1} and e_{3} at t_{0}, contains a tangent line of Y at t_{0}, we must have $d Y \cdot e_{2}=d Y \cdot e_{4}=0$ for a tangent vector of $T(M)$ at t_{0} independent of τ. Hence there exist two linearly independent triples of numbers $\xi_{1}, \xi_{2}, \xi_{3}$ such that

$$
-\mu e \xi_{1}+(1-\mu g) \xi_{2}+\lambda \xi_{3}=0, \quad \lambda e \xi_{1}+\lambda g \xi_{2}+\mu \xi_{3}=0
$$

the functions being evaluated at t_{0}. But this implies the vanishing of a subdeterminant of the system :

$$
0=-\mu^{2} e-\lambda^{2} e=-\left(\mu^{2}+\lambda^{2}\right) e
$$

Take a curve on M passing through $\pi\left(t_{0}\right)$ with tangent line t_{0} at $\pi\left(t_{0}\right)$, and consider the curve of its tangent lines in $T(M)$. On this curve $\omega_{2}=0$ and $d^{2} X \cdot e_{4}$
$=\omega_{1} \omega_{14}=e \omega_{1}^{2}$, which is nonzero at t_{0} because the curvature vector of the curve does not lie in the linear span of e_{1}, e_{2}, e_{3}, since t_{0} is an ordinary direction. Hence $\lambda^{2}+\mu^{2}=0$ at t_{0}, which proves that $\pi\left(t_{0}\right)=\pi\left(t_{1}\right)$, as claimed.

We can obtain something more. Let

$$
Z(t, \lambda, \mu)=X(\pi(t))+\lambda e_{1}(t)+\mu I e_{1}(t) .
$$

By the above calculations, $d Z \cdot e_{2}$ and $d Z \cdot e_{4}$ are linearly independent combinations of ω_{1}, ω_{2} and ω_{12}, provided $(\lambda, \mu) \neq(0,0)$ and t is an ordinary direction. From the structure equation

$$
0=d \omega_{3}=\omega_{1} \wedge \omega_{13}+\omega_{2} \wedge \omega_{23}
$$

we find by the lemma of Cartan that ω_{13} is a linear combination of ω_{1} and ω_{2}. A short calculation then gives

$$
d Z \cdot e_{1}=d \lambda+\cdots, \quad d Z \cdot e_{3}=d \mu+\cdots
$$

where the dots stand for combinations of ω_{1}, ω_{2} and ω_{12}. Hence $d Z \cdot e_{1}, d Z \cdot e_{2}$, $d Z \cdot e_{3}, d Z \cdot e_{4}$ are linearly independent, provided $(\lambda, \mu) \neq(0,0)$ and t is an ordinary direction. This proves

Lemma 8. $Z(t, \lambda, \mu)$ has rank 4 at (t, λ, μ), provided t is an ordinary direction and $(\lambda, \mu) \neq(0,0)$.

Now since f is proper onto its image, by Lemma 7 there exists a point p_{0} in the open set $\pi\left(W_{0}\right)$ which is a good point for f. Let $f^{-1}\left(f\left(p_{0}\right)\right)=\left\{p_{0}, \cdots, p_{a}\right\}$, and let A_{i} be an open neighborhood with compact closure of p_{i} in M, such that the A_{i} are pairwise disjoint, $0 \leq i \leq a, A_{i}$ consists of good points for f, and f maps each A_{i} diffeomorphically onto $f\left(A_{0}\right)$. Let $t_{0} \in T_{p_{0}} \cap W_{0}$, and $\lambda_{0}=$ $l\left(t_{0}\right)$. We claim that $f^{-1}\left(\lambda_{0}\right)$ is finite. We first show the following

Lemma 9. Suppose that $\varphi: A \rightarrow P_{2}$ is an embedding of a surface, and $A^{\prime} \subset A$ an open submanifold with compact closure. Suppose $\lambda=l(t), t \in T_{p}$ $\subset T\left(A^{\prime}\right)$, and p is a point of type O. Suppose $\left\{x_{\nu}\right\},\left\{y_{\nu}\right\}$ are sequences of points of $A, x_{\nu} \neq y_{\nu}$, such that $L\left(x_{\nu}, y_{\nu}\right) \rightarrow \lambda$, where L is the secant map of $\S 5$. Suppose that either $x_{\nu} \rightarrow p$ and $y_{\nu} \rightarrow p$, or else λ meets $\varphi(A)$ only in p. Then $\left\{\left(x_{\nu}, y_{\nu}\right)\right\}$, considered as lying in $S\left(A^{\prime}\right)$, has a subsequence converging to t.

Proof. Since $S\left(A^{\prime}\right)$ has compact closure in $S(A),\left\{\left(x_{\nu}, y_{\nu}\right)\right\}$ has in either case a convergent subsequence $\left\{\left(x_{\mu}, y_{\mu}\right)\right\}$. Hence $\widetilde{\sigma}\left(x_{\nu}, y_{\nu}\right)$ converges in $A \times A$, where ϖ is the canonical projection of $\S 5$. By continuity $\varphi\left(\lim x_{\mu}\right), \varphi\left(\lim y_{\mu}\right) \in \lambda$. Hence $\lim x_{\mu}=\lim y_{\mu}=p$ is either case. It follows that $\left\{\left(x_{\mu}, y_{\mu}\right)\right\}$ converges to $t^{\prime} \in T_{p}$. By continuity $L\left(t^{\prime}\right)=l\left(t^{\prime}\right)=\lambda=l(t)$; since l maps T_{p} in a one-toone fashion, by Proposition 1, we have $t=t^{\prime}$, which completes the proof.

Suppose that $f^{-1}\left(\lambda_{0}\right)$ is infinite. Then since λ_{0} and V are compact, $\lambda_{0} \cap V \subset$ $f(M)$ is compact, and since f is proper onto its image $f^{-1}\left(\lambda_{0}\right)=f^{-1}\left(\lambda_{0} \cap V\right)$ is compact. It follows that $f^{-1}\left(\lambda_{0}\right)$ contains a convergent sequence of distinct
points $\left\{x_{\nu}\right\}$. At the limit point p of x_{ν}, f cannot be transversal to λ_{0}. Hence $\lambda_{0}=l(t)$ for some $t \in T_{p}$. But then, as we have shown, $f(p)=f\left(p_{0}\right)$, which is to say that $p=p_{i}$ for some $i \leq a$. Hence x_{ν} is eventually inside A_{i}. Now since A_{i} is identified with A_{0} under the mapping f, we may as well assume that x_{v} lies in $A_{0}-\left\{p_{0}\right\}$ and $x_{\nu} \rightarrow p_{0}$. Note that we have $L\left(x_{\nu}, p_{0}\right)=\lambda_{0}$. It follows from Lemma 9 that $\left\{\left(x_{\nu}, p_{0}\right)\right\}$ has a subsequence $\left\{\left(x_{\mu}, p_{0}\right)\right\}$ converging to t_{0}. Of course $L\left(x_{\mu}, p_{0}\right)=\lambda_{0}$. But this is impossible because L is a fold in a neighborhood of t_{0} by Proposition 4, so that t_{0} has a neighborhood which is mapped by L in a two-to-one or one-to-one fashion. This proves the claim that $f^{-1}\left(\lambda_{0}\right)$ is finite.

For later use we summarize in the following lemma a few of the results which we have proved so far.

Lemma 10. Let $V \subset P_{2}$ be a compact subset, $S \subset V$ a finite set, and $f: M \rightarrow P_{2}$ a C^{4} immersion of surface which is proper onto its image with $f(M)=V-S$. Let $t \in T(M)$ be an ordinary direction, and W a neighborhood of t in $T(M)$. Then W contains an ordinary direction t_{0} which is a good point for l, such that $p_{0}=\pi\left(t_{0}\right)$ is a good point for f, and such that $l\left(t_{0}\right)$ does not meet S. Such a t_{0} has the properties that $f^{-1}\left(l\left(t_{0}\right)\right)$ is finite, and if $t \in l^{-1}\left(l\left(t_{0}\right)\right)$, then $f \pi(t)=f\left(p_{0}\right)$.

Let $f^{-1}\left(\lambda_{0}\right)=\left\{p_{0}, \cdots, p_{a}, p_{a+1}, \cdots, p_{b}\right\}$ with f transversal to λ_{0} at p_{a+1}, \cdots, p_{b}, and p_{0}, \cdots, p_{a} as before. For all $i \leq b$ let A_{i}^{\prime} be an open neighborhood of p_{i} such that the A_{i}^{\prime} have pairwise disjoint closures, such that $A_{i}^{\prime} \subset A_{i}$ if $i \leq a$, and such that f maps each A_{i}^{\prime} diffeomorphically onto $f\left(A_{0}^{\prime}\right)$ for $i \leq a$. By Lemma 6 there exists an open neighborhood B of $\left\{f\left(p_{0}\right), \cdots, f\left(p_{b}\right)\right\}$ in P_{2} such that $f^{-1}(B) \subset A_{0}^{\prime} \cup \cdots \cup A_{b}^{\prime}$. Since the compact sets λ_{0} and $V-B$ are separated, there exists an open neighborhood C_{1} of λ_{0} in P_{2}^{*} such that if $\lambda \in C_{1}$ then $f^{-1}(\lambda) \subset A_{0}^{\prime} \cup \cdots \cup A_{b}^{\prime}$. Since f is transversal to λ_{0} at p_{a+1}, \cdots, p_{b}, there exists a neighborhood $C_{2} \subset C_{1}$ of λ_{0} such that if $\lambda \in C_{2}$ then λ meets $f\left(A_{i}^{\prime}\right)$ transversally in a single point, $a+1 \leq i \leq b$.

Let $W_{00} \subset W_{0}$ be a neighborhood of t_{0} in $T(M)$ such that $l\left(W_{00}\right) \subset C_{2}$. By Lemma 8, since t_{0} is a good point of l (so that $f\left(p_{i}\right) \neq f\left(p_{0}\right), i>a$) as t varies in $W_{00} l(t) \cap f\left(A_{i}^{\prime}\right), i>a$, will describe some open subset of $f\left(A_{i}^{\prime}\right)$. Since the good points of f are open and dense in M, we can find a $t \in W_{00}$ such that $l(t)$ meets $f\left(A_{i}^{\prime}\right)$ in the image of a good point of f for all $i>a$. Since A_{0}^{\prime} consists of good points for f and $l(t) \cap f(M) \subset f\left(A_{0}^{\prime}\right) \cup \cdots \cup f\left(A_{b}^{\prime}\right), l(t)$ meets $f(M)$ only in the images of good points. This new t, we now call $t_{0}, l\left(t_{0}\right)$ we call λ_{0}, and $\pi\left(t_{0}\right)$ we call p_{0}. Since $t_{0} \in W_{00}, t_{0}$ is a good point for l and $\lambda_{0} \cap S=0$. It follows from Lemma 10 that $f^{-1}\left(l\left(t_{0}\right)\right)$ is finite. We redefine a, b, and p_{i} so that $f^{-1}\left(\lambda_{0}\right)=\left\{p_{0}, \cdots, p_{a}, p_{a+1}, \cdots, p_{b}\right\}$, where λ_{0} is transversal to f at p_{a+1}, \cdots, p_{b}, and has a real line in common with the tangent plane of f at p_{0}, \cdots, p_{a}. By Lemma 10, $f^{-1}\left(f\left(p_{0}\right)\right)=\left\{p_{0}, \cdots, p_{a}\right\}$. Let $A_{0}^{\prime \prime}, \cdots, A_{b}^{\prime \prime} \subset M$ be pairwise-disjoint open sets with compact closure and smooth boundary such that $A_{i}^{\prime \prime}$ is a neighborhood of $p_{i}, 0 \leq i \leq b$, such that the $A_{i}^{\prime \prime}$ consist of good points for f, and such
that f maps $A_{i}^{\prime \prime}$ diffeomorphically onto $f\left(A_{0}^{\prime \prime}\right), 0 \leq i \leq a$. Let $C_{3} \subset C_{2}$ be a neighborhood of λ_{0} such that if $\lambda \in C_{3}$ then $\lambda \cap V \subset f\left(A_{0}^{\prime \prime}\right) \cup \cdots \cup f\left(A_{b}^{\prime \prime}\right)$ and λ meets each $f\left(A_{i}^{\prime \prime}\right)$ transversally in a single point, $a+1 \leq i \leq b$. (That such a C_{3} exists is proved by the argument for the existence of C_{2}.)

Now by Proposition 4, the secant map L is a fold at t_{0} with center $T(M)$. That is to say, there exist a coordinate neighborhood $C_{4} \subset C_{3}$ of λ_{0} in P_{2}^{*} with coordinates y_{1}, \cdots, y_{4}, and a coordinate neighborhood X of t_{0} in $S\left(A_{0}^{\prime \prime}\right)$ with coordinates x_{1}, \cdots, x_{4} such that $T(M)$ in X is defined by $x_{1}=0$, and L takes the form

$$
y_{1}=x_{1}^{2}, \quad y_{i}=x_{i}, \quad i=2,3,4 .
$$

Let

$$
\begin{aligned}
C_{4}^{+} & =\left\{\left(y_{1}, \cdots, y_{4}\right) \in C_{4} \mid y_{1}>0\right\}, \\
C_{4}^{T} & =\left\{\left(y_{1}, \cdots, y_{4}\right) \in C_{4} \mid y_{1}=0\right\}, \\
C_{4}^{-} & =\left\{\left(y_{1}, \cdots, y_{4}\right) \in C_{4} \mid y_{1}<0\right\} .
\end{aligned}
$$

By shrinking C_{4} if necessary, we arrange that L maps X onto C_{4}^{+}. For any subset $Q \subset P_{2}^{*}$ let $Q^{+}=Q \cap C_{4}^{+}, Q^{T}=Q \cap C_{4}^{T}, Q^{-}=Q \cap C_{4}^{-}$.

We claim that there is a neighborhood $C_{5} \subset C_{4}$ of λ_{0} such that if $\lambda \in C_{5}^{+}$then λ meets $f\left(A_{0}^{\prime \prime}\right)$ in just the unique pair of points $f(p)$ and $f\left(p^{\prime}\right)$ such that $L\left(p, p^{\prime}\right)$ $=\lambda$. For otherwise there exists a sequence of lines $\lambda_{\nu} \rightarrow \lambda_{0}, \lambda_{\nu} \in C_{4}^{+}$, such that $f^{-1}\left(\lambda_{\nu}\right)$ contains three distinct points $p_{\nu}, p_{\nu}^{\prime}, p_{\nu}^{\prime \prime} \in A_{0}^{\prime \prime}$ for each ν with $\left(p_{\nu}, p_{\nu}^{\prime}\right) \in X$. It follows from Lemma 9 that $\left\{\left(p_{\nu}, p_{\nu}^{\prime \prime}\right)\right\}$ has a subsequence $\left\{\left(p_{\pi}, p_{\pi}^{\prime \prime}\right)\right\}$ converging to t_{0}, and then that $\left\{\left(p_{\pi}^{\prime}, p_{\pi}^{\prime \prime}\right)\right\}$ has a subsequence $\left\{\left(p_{\rho}^{\prime}, p_{\rho}^{\prime \prime}\right)\right\}$ converging to t_{0}. It follows that $\left\{\left(p_{\rho}, p_{\rho}^{\prime \prime}\right)\right\}$ and $\left\{\left(p_{\rho}^{\prime}, p_{\rho}^{\prime \prime}\right)\right\}$ are eventually inside X. Hence, for some value of the index $\rho, L\left(p_{\rho}, p_{\rho}^{\prime}\right)=L\left(p_{\rho}, p_{\rho}^{\prime \prime}\right)=L\left(p_{\rho}^{\prime}, p_{\rho}^{\prime \prime}\right)$, which contradicts the fact that L is two-to-one on $X-T(M)$. This establishes the claim.

Now since t_{0} is a good point for l, there exists a connected neighborhood $C_{6} \subset C_{5}$ of λ_{0} in P_{2}^{*} such that $l(T(M)) \cap C_{6} \subset C_{6}^{T}$. It follows that every line in C_{6}^{+}or C_{6}^{-}meets $f(M)$ transversally. Since any line λ in C_{6}^{+}meets $f\left(A_{0}^{\prime \prime}\right)$ transversally in exactly two points and does not meet $\partial f\left(A_{0}^{\prime \prime}\right)$, its linking number with $\partial f\left(A_{0}^{\prime \prime}\right)$ must be even. Since C_{6} is connected and no $\lambda \in C_{6}$ meets the $\partial f\left(A_{0}^{\prime \prime}\right)$, the linking number of any $\lambda \in C_{6}$ with $\partial f\left(A_{0}^{\prime \prime}\right)$ is even. Hence no $\lambda \in C_{6}$ meets $f\left(A_{0}^{\prime \prime}\right)$ transversally in a single point, and there must be an open neighborhood $C_{7} \subset C_{6}$ of λ_{0} such that if $\lambda \in C_{7}^{-}$then λ does not meet $f\left(A_{0}^{\prime \prime}\right)$ in more than one point. For otherwise there would exist a sequence of lines $\lambda_{\nu} \rightarrow \lambda_{0}, \lambda_{\nu} \in C_{6}^{-}$, such that λ_{ν} meets $f\left(A_{0}^{\prime \prime}\right)$ in two distinct points $f\left(x_{\nu}\right), f\left(y_{\nu}\right)$. Lemma 9 gives a convergent subsequence of $\left\{\left(x_{\nu}, y_{\nu}\right)\right\}$ which eventually lies inside X, so that for some $\nu, \lambda_{\nu}=L\left(x_{\nu}, y_{\nu}\right) \in C_{6}^{+}$, which is a contradiction.

We have constructed, therefore, two open subsets $C_{7}^{+}, C_{7}^{-} \subset P_{2}^{*}$ such that each line in C_{7}^{-}does not meet $f\left(A_{0}^{\prime \prime}\right)$, and each line in C_{7}^{+}meets $f\left(A_{0}^{\prime \prime}\right)$ trans-
versally in exactly two points. Recall that each $A_{i}^{\prime \prime}, i \leq a$, is identified with $f\left(A_{0}^{\prime \prime}\right)$ under the map f. Each line in C_{7} meets $f\left(A_{i}^{\prime \prime}\right)$ transversally in a single point, $i>a$. Consequently the number of points in $f^{-1}(\lambda) \cap\left(A_{a+1}^{\prime \prime} \cup \cdots \cup A_{b}^{\prime \prime}\right)$ does not vary as λ varies in C^{7}. Since $A_{a+1}^{\prime \prime}, \cdots, A_{b}^{\prime \prime}$ consist of good points, the number of points in $\lambda \cap\left(f\left(A_{a+1}^{\prime \prime}\right) \cup \cdots \cup f\left(A_{b}^{\prime \prime}\right)\right)$ does not vary as λ varies in C^{7}. Finally, C_{7} may be made arbitrarily small. We have proved the following.

Proposition 11. Let $t \in T(M)$ be an ordinary direction, and C a neighborhood of $l(t)$ in P_{2}^{*}. Then there exist nonempty open subsets $C^{+}, C^{-} \subset C$ and positive integers c, d, and e, such that if $\lambda \in C^{+}$, then $\lambda \cap V$ consists of c points and $f^{-1}(\lambda)$ consists of d points, and such that if $\lambda \in C^{-}$, then $\lambda \cap V$ consists of $c-2$ points and $f^{-1}(\lambda)$ consists of $d-e$ points. Furthermore each line in $C^{+} \cup C^{-}$is transversal to f and does not meet S.

The conclusion of this proposition is clearly incompatible with Hypothesis 2 of the Theorem. We conclude that if $n=k=1$ and the hypotheses of the Theorem are fulfilled, then $T(M)$ contains no ordinary directions. The proof of the case $n=k=1$ of the Theorem, that is to say Corollary 1, now stands complete.

Remark. If it is desired to prove Lemma 2 of Thom [6], one cuts $L(X)$ by a complex line in P_{2}^{*} transversal to $L(T(M) \cap X$), which line corresponds to a pencil of lines in P_{2}.

8. The higher-dimensional case

We next generalize Proposition 11 to higher dimensions. Let $V \subset P_{n+k}$ be a compact subset, M a differentiable manifold of (real) dimension $2 k$, and $f: M \rightarrow P_{n+k}$ a C^{4} immersion which is proper onto its image, with $f(M) \subset V$. Let $S=V-f(M)$, and suppose there exists an everywhere dense subset $T \subset$ $G_{n_{+1, k-1}}$ such that if $v \in T$ then $v \cap S$ consists of finitely many points and v is transversal to f. Suppose that $T(M)$ contains an ordinary direction t_{1}. By Lemma 7 there exists a good point for f arbitrarily close to $\pi\left(t_{1}\right)$, and hence there exists an ordinary direction t_{2} such that $\pi\left(t_{2}\right)$ is a good point of f. Finally we can find a $v \in T$ containing an ordinary direction t_{3} so close to t_{2} that $p_{3}=$ $\pi\left(t_{3}\right)$ is a good point for f.

Let $M^{\prime}=f^{-1}(v)$. Then M^{\prime} is an embedded submanifold of M of dimension 2 ; let f^{\prime} denote the restriction of f to M^{\prime}. We claim that $t_{3} \in T\left(M^{\prime}\right)$ is an ordinary direction for f^{\prime}. For consider a curve $p(s)$ on M^{\prime} tangent to t_{3}; since its curvature vector at p_{3} does not lie in the tangent space to f at p_{3}, a fortiori it does not lie in the tangent space of f^{\prime} at p_{3}. Since $l\left(t_{3}\right)$ does not lie in the span of this curvature vector and the tangent space to f at p_{3}, a fortiori it does not lie in the span of the curvature vector and the tangent space of f^{\prime} at p_{3}, which establishes the claim.

Let $A(v)$ denote the locus swept out in v by all the complex lines joining points of the finite set $S \cap v$ to points of $f^{\prime}\left(M^{\prime}\right)$; it depends on 4 real
parameters. Let $B(v)$ denote the locus swept out in v by the complex lines each of which meets a tangent plane of f^{\prime} in a real line at least; it depends on 5 real parameters. Let $C\left(v, t_{3}\right)$ denote the complex 2-plane spanned by the tangent space of f^{\prime} at p_{3}. Now choose as hyperplane at infinity in $P_{n_{+k}}$ a hyperplane which does not pass through $f\left(p_{3}\right)$, and identify its complement with $C^{n+k}=R^{2(n+k)}$ in the canonical way. Let L be the real line in $R^{2(n+k)}$ through $f\left(p_{3}\right)$ in the direction of the curvature vector of a curve $p(s)$ on M^{\prime} tangent to t_{3}. Choose a point P on L distinct from $f\left(p_{3}\right)$, and let $D\left(v, t_{3}\right)$ denote the closure of the locus of complex lines joining P to the points of the real 3-plane spanned by the tangent plane of f^{\prime} at p_{3} and $l\left(t_{3}\right) ; D\left(v, t_{3}\right)$ depends on 5 real parameters. Let $E\left(v, t_{3}\right)$ denote the closure of the locus of points swept out by the complex lines joining the points of $f\left(M^{\prime}\right)$ to $f^{\prime}\left(p_{3}\right) ; E\left(v, t_{3}\right)$ depends on 4 real parameters. It follows that we can find a complex $(n-2)$-plane H in v which does not meet $A(v), B(v), C\left(v, t_{3}\right), D\left(v, t_{3}\right)$, nor $E\left(v, t_{3}\right)$. Let $P_{2} \subset v$ be so situated that $P_{2} \cap H=0$, and let $\widetilde{\pi}$ denote projection of v into P_{2} with H as center. Let S^{\prime} denote the finite set $\widetilde{\varpi}(v \cap S)$.

Since H does not meet $B(v)$, $\not f^{\prime}: M^{\prime} \rightarrow P_{2}$ is an immersion. Since H does not meet $A(v), \varpi f^{\prime}\left(M^{\prime}\right) \cap S^{\prime}=0$. Since $v \cap V$ is compact, so is $V^{\prime}=$ $\widetilde{\sigma}(v \cap V)$. Since H does not meet $C\left(v, t_{3}\right)$, the tangent space of ϖf^{\prime} at p_{3} is not a complex line, so that this tangent plane does not contain the complex line spanned by $\left(\varpi f^{\prime}\right)_{*}\left(t_{3}\right)$. Since H does not meet $D\left(v, t_{3}\right)$, the curvature vector of $\widetilde{\sigma} f^{\prime} p(s)$ is in general position at p_{3} with this complex line and tangent space, so that t_{3} is an ordinary direction for ϖf^{\prime}. Let $K \subset \varpi f^{\prime}\left(M^{\prime}\right)$ be a compact set. Then $\widetilde{\varpi}^{-1}(K) \cup H$ is compact, and $\left(\varpi^{-1}(K) \cup H\right) \cap V \subset f^{\prime}\left(M^{\prime}\right)$. Since f is proper onto its image, $f^{-1}\left(\left(\varpi^{-1}(K) \cup H\right) \cap V\right)=\left(\varpi f^{\prime}\right)^{-1}(K)$ is compact, which proves that ϖf^{\prime} is proper onto its image. By Lemma 10 we conclude that there is a $t_{4} \in T\left(M^{\prime}\right)$ such that the complex line λ in P_{2} generated by $\left(\varpi f^{\prime}\right)_{*}\left(t_{4}\right)$ meets V^{\prime} in only finitely many points, does not meet S^{\prime}, and such that if λ is nontransversal to ϖf^{\prime} at p then $\varpi^{\prime}(p)=\varpi f^{\prime} \pi\left(t_{4}\right)$. Since t_{4} can be taken arbitrarily close to t_{3}, we can arrange that in addition t_{4} is an ordinary direction for f and $p_{4}=\pi\left(t_{4}\right)$ is a good point for f. Since H does not meet the compact set $E\left(v, t_{3}\right)$, no complex line joining $f\left(p_{3}\right)$ to any other point of V meets H, so we can take t_{4} so close to t_{3} that no complex line joining $f\left(p_{4}\right)$ to any other point of V meets H.

It follows that the complex n-plane $h=\widetilde{क}^{-1}(\lambda) \cup H$ meets V in finitely many points, does not meet S, contains t_{4}, and has the property that if it is not transversal to f at p, then $f(p)=f\left(p_{4}\right)$. It may happen that the points in which h meets V, other than $f\left(p_{4}\right)$, are not good points of f. We must therefore vary t_{4} and h containing t_{4} so that $f^{-1}(h \cap V)$ will consist only of good points of f and $h \cap S=0$. To show that this is possible we observe first that if t_{4} and h are varied by sufficiently small amounts then t_{4} will remain an ordinary direction of f, p_{4} will remain a good point of f, h will remain transversal to $f(M)$ at all points other than an open neighborhood of good points
of $f\left(p_{4}\right)$, and $h \cap S=0$. Since there is a good point for f arbitrarily close to any point of M, and since $h \cap V$ consists of finitely many points, it suffices to show that any point $q \in h-f\left(p_{4}\right)$ can be varied in any direction transversal to h by an appropriate variation of t_{4} and h, which may be shown by showing that q can be varied in any one of a maximal linearly independent set of directions transversal to h by varying t_{4} and h. Now if $q \in h, q \notin l\left(t_{4}\right), q$ can be varied in any direction perpendicular to h by a kind of rotation of h about $l\left(t_{4}\right)$. Suppose $q \in l\left(t_{4}\right)-f\left(p_{4}\right)$, and $f\left(p_{4}\right) \in R^{2(n+k)}=C^{n+k} \subset P_{n_{+k}}$. Since v is transversal to the tangent space of f at p_{4}, we can choose tangent vectors e_{1}, \cdots, $e_{2 k-2}$ which, together with v, span $R^{2(n+k)}$. Then the rotations of t_{4} about p_{4} in the tangent space of f at p_{4} in the directions e_{i} give rise to linearly independent movements of $q \in l\left(t_{4}\right)$ transversal to v, as can be shown by an elementary computation. Finally, by Lemma $8, \widetilde{\varpi}(q)$ may be varied in any direction in P_{2} by varying t_{4} and leaving H fixed. Hence q may be varied in any direction transversal to h in v by varying t_{4}.

Thus we find $t_{5} \in T(M)$ and a complex n-plane $h^{\prime} \subset P_{n_{+k}}$ such that t_{5} is an ordinary direction for $f, p_{5}=\pi\left(t_{5}\right)$ is an ordinary point of f, h^{\prime} contains t_{5}, $h^{\prime} \cap S=0$, and $f^{-1}\left(h^{\prime}\right)$ consists of good points for f. Since all these properties remain unchanged under small changes of t_{5} and h^{\prime} containing t_{5}, we may assume that $h^{\prime} \subset v^{\prime} \in T \subset G_{n_{+1, k-1}}$. We now repeat the construction of this section beginning with the second paragraph. Let $M^{\prime \prime}=f^{-1}\left(v^{\prime}\right)$, and $f^{\prime \prime}$ be the restriction of f to $M^{\prime \prime}$. Then t_{5} is an ordinary direction for $f^{\prime \prime}$. Let H^{\prime} be a complex ($n-2$)-plane in v^{\prime} which does not meet $A\left(v^{\prime}\right), B\left(v^{\prime}\right), C\left(v^{\prime}, t_{5}\right)$, $D\left(v^{\prime}, t_{5}\right)$, nor $E\left(v^{\prime}, t_{5}\right)$, and which is sufficiently close to h^{\prime} that the projective span of H^{\prime} and $l\left(t_{5}\right)$ meets $f(M)$ only in good points for f. Let $P_{2} \subset v^{\prime}$ be chosen so that $P_{2} \cap H^{\prime}=0$, and let $\widetilde{\sigma}^{\prime}$ denote the projection into P_{2} with H^{\prime} as center. Let $V^{\prime \prime}=\varpi^{\prime}\left(v^{\prime} \cap V\right), S^{\prime \prime}=\varpi^{\prime}\left(v^{\prime} \cap S\right)$. Then $S^{\prime \prime}$ consists of finitely many points, $V^{\prime \prime}$ is compact, $\varpi^{\prime} f^{\prime \prime}$ maps $M^{\prime \prime}$ onto $V^{\prime \prime}-S^{\prime \prime}, \varpi^{\prime} f^{\prime \prime}$ is an immersion proper onto its image, and t_{5} is an ordinary direction for $f^{\prime \prime}$. It follows by Proposition 11 that there exist complex lines λ_{1} and λ_{2} in P_{2} which meet $V^{\prime \prime}$ in different numbers of points, which do not meet $S^{\prime \prime}$, which are transversal to $\varpi^{\prime} f^{\prime \prime}$ and which may be taken so close to $\varpi^{\prime} l\left(t_{5}\right)$ that the complex n-planes $h_{1}=\left(\varpi^{\prime}\right)^{-1}\left(\lambda_{1}\right)$ and $h_{2}=\left(\sigma^{\prime}\right)^{-1}\left(\lambda_{2}\right)$ are so close to the projective span of H^{\prime} and $l\left(t_{5}\right)$ that h_{1} and h_{2} meet V only in good points of f. Moreover h_{1} and h_{2} are transversal to f. It follows that h_{1} and h_{2} have open neighborhoods U_{1}, U_{2} in $G_{n, k}$ such that for each $i=1,2$, each $h \in U_{i}$ meets V in the same number of points and each $f^{-1}(h)$ consists of the same number of points, and these numbers are distinct for $h \in U_{1}$ and $h \in U_{2}$. But this situation is incompatible with the hypotheses of the Theorem. Hence, if the hypotheses of the Theorem are satisfied, M can have no ordinary directions. To complete the proof of the Theorem, we then need only prove the following.

Proposition 12. Let $f: M \rightarrow P_{n_{+k}}$ be an immersion of class C^{3} of a connected differentiable manifold of dimension $2 k$. Then $f(M)$ lies in a complex
projective transform of a semi-real flat of dimension $2 k$ and type strictly less than $2 k$ if and only if every point of M is of type F.

Proof. The proof of the forward implication goes as in the proof of Proposition 2. To prove the converse, we first note that by the argument of that proof if every point of M is of type F, then through every point x and tangent to every direction $t \in T_{x}^{G}$ there passes a unique curve on M whose image under f lies in a complex line. These curves are called s-curves, and by an argument essentially that found in the proof of Proposition 2, if $x, p \in M$ are joined by an s-curve, $f(x) \neq f(p)$, then the set of points of M which may be joined to x by s-curves contains a neighborhood of p in M. Assume that every point of M is of type F.

We prove the local form of the converse first, so we assume for the time being that f is an embedding. Let $t \in T_{y}^{G}$, let C be the s-curve on M tangent to t, and let $Q \subset P_{n_{+k}}$ be a complex ($n+1$)-plane which meets f transversally at y and contains t (explicit construction below). Then $f^{-1}(Q)$ contains a surface R passing through y, and Q contains all s-curves of M tangent to tangent directions of R. Since $t \in T_{y}^{G}$, the tangent space of R at y is not a complex line. We restrict R to a connected neighborhood of y small enough that the tangent space at every point of R is not a complex line. It follows that tangent to every direction in $T(R)$ there lies on R a portion of an s-curve of M. It follows that every point of R is of type F, from which it follows by Proposition 2 that R is a surface of type F. Hence all the portions of s-curves of M lying on R are portions of "circles". It follows that C, in particular, contains a portion of a "circle" passing through y. Since y and $t \in T_{y}^{G}$ were arbitrary, we conclude that all the s-curves of M are portions of circles.

Let $p \in M$ be an arbitrary point, and let $x \in M, x \neq p$, be a point which is joined to p by an s-curve in $M ; p, x$ will remain fixed for the remainder of the discussion. We will show that all the s-curves on M through x can be turned into straight lines simultaneously by a complex projective transformation of P_{n+k}. We first apply a complex projective transformation to bring $f(x)$ to the origin of $C^{n+k} \subset P_{n+k}$.

Let τ_{x}^{C} denote the complex part of the tangent space of f at x, i.e., $\tau_{x}^{C}=\tau_{x}$ $\cap I \tau_{x}$, where I denotes multiplication in C^{n+k} by $\sqrt{-1}$. Let s_{1}, \cdots, s_{r} form a complex basis of τ_{x}^{c}. We say that $s_{r+1}, s_{r+2} \in \tau_{x}-\tau_{x}^{C}=\tau_{x}^{G}$ form a generic pair if $s_{1}, \cdots, s_{r}, i s_{1}, \cdots, i s_{r}, s_{r+1}, s_{r+2}$ are linearly independent over the reals. Let s_{r+1}, s_{r+2} be an arbitrary generic pair, and extend to a real basis s_{1}, \cdots, s_{r}, $i s_{1}, \cdots, i s_{r}, s_{r+1}, s_{r+2}, \cdots, s_{2 k-r}$ of τ_{x} and to a complex basis s_{1}, \cdots, s_{r}, $s_{r+1}, \cdots, s_{2 k-r}, s_{2 k-r+1}, \cdots, s_{k_{+n}}$ of C^{n+k}. The complex $(n+1)$-plane Q through the origin spanned by $s_{r+1}, s_{r+2}, s_{r+3}+i s_{r+4}, \cdots, s_{2 k-r-1}+i s_{2 k-r}$, $s_{2 k-r+1}, \cdots, s_{k+n}$ is transversal to f at x. Note that any tangent vector in τ_{x}^{G} can be made a member of a generic pair, since M is even-dimensional, so that the construction of the previous Q is now explicit. Since our new Q contains s_{r+1} and $s_{r+2}, Q \cap f(M)$ contains an F-surface R tangent to s_{r+1} and s_{r+2},
according to our previous remarks.
Suppose $r \geq 1$, and let $s \in \tau_{x}^{C}, s \neq 0$. We change the complex basis s_{1}, \cdots, s_{r} of τ_{x}^{C} so that $s=s_{1}$. Now apply a complex linear transformation to C^{n+k} to bring s_{j} to $\partial / \partial x_{j}, 1 \leq j \leq k+n$, where $z_{j}=x_{j}+i y_{j}$ are the complex coordinates of C^{n+k}. Consider the four vectors

$$
s_{r+1}, s_{r+2}, s_{1}+2 s_{r+1}+s_{r+2}, i s_{1}+s_{r+1}+s_{r+2} .
$$

As one checks, each pair of these is a generic pair. Since each lies in τ_{x}^{G}, there lies on M an s-curve tangent to each.

On each of the s-curves tangent to s_{r+1}, s_{r+2} and $s_{1}+2 s_{r+1}+s_{r+2}$, choose a point distinct from x. Through these three points, pass a hyperplane in P_{n+k} which does not contain x. (Such a hyperplane exists, since otherwise s_{1}, s_{r+1} and s_{r+2} would lie in a 2-complex-dimensional complex plane.) Take this hyperplane as hyperplane at infinity in $P_{n_{+k}}$ without disturbing the tangent space at the origin of C^{n+k}. The s-curves tangent to s_{r+1}, s_{r+2} and $s_{1}+2 s_{r+1}$ $+s_{r+2}$ are now straight lines in C^{n+k}. Choose a point q distinct from x on the s-curve on M tangent to $i s_{1}+s_{r+1}+s_{r+2}$. Its coordinates in C^{n+k} have the form $z_{1}=-b+i a, z_{r+1}=a+i b, z_{r+2}=a+i b, z_{j}=0, j \neq 1, r+1, r+$ 2 , with a, b real, $(a, b) \neq(0,0)$, since the s-curve lies in the complex line through the origin spanned by $i s_{1}+s_{r+1}+s_{r+2}$. Consider the complex hyperplane

$$
H:-b z_{1}+a z_{r+1}=a^{2}+b^{2}
$$

One verifies that H meets the real lines through the origin tangent to s_{r+1}, s_{r+2}, and $s_{1}+2 s_{r+1}+s_{r+2}$ (the points of intersection are at infinity possibly), that it passes through q, and that it does not pass through the origin. Take H as hyperplane at infinity in P_{n+k} without disturbing the tangent space at the origin of C^{n+k}. The s-curves tangent to $s_{r+1}, s_{r+2}, s_{1}+2 s_{r+1}+s_{r+2}$ and $i s_{1}+$ $s_{r+1}+s_{r+2}$ are now all straight lines. Since each pair of these vectors is a generic pair, there passes tangent to each pair an F-surface lying in M, with each such F-surface containing a portion, containing the origin, of the straight line in C^{n+k} tangent to each vector of the pair. From Lemma 3, b) we conclude that each of these F-surfaces is now contained in a semi-real flat of dimension 2.

Let S be the complex $(n+2)$-plane through the origin of C^{n+k} spanned by $s_{1}, s_{r+1}, s_{r+2}, s_{r+3}+i s_{r+4}, \cdots, s_{2 k-r-1}+i s_{2 k-r}, s_{2 k-r+1}, \cdots, s_{k+n}$. It meets $f(M)$ transversally at x, so that its intersection with $f(M)$ contains a 4-real-dimensional manifold N containing the origin of C^{n+k}. The vectors $s_{r_{+1}}, s_{r+2}, s_{1}+$ $2 s_{r+1}+s_{r+2}$ and $i s_{1}+s_{r+1}+s_{r+2}$ form a (real) basis for the tangent space of N at the origin. Since S is a linear space, it contains the semi-real flats tangent to these vectors in pairs. Hence N contains an open set, containing the origin, of each of these semi-real flats. Choose local coordinates x_{1}, \cdots, x_{4} on N, for
example geodesic normal coordinates, such that these semi-real flats are defined in N by $x_{j}=x_{k}=0$, for pairs $j, k, 1 \leq j<k \leq 4$, and represent $f \mid N$ by a vector function $X\left(x_{1}, \cdots, x_{4}\right)$ in $C^{n+k}=R^{2(n+k)}$. We must have that the component of $X_{j k}(0, \cdots, 0)$ normal to N vanishes for all $j, k, 1 \leq j, k \leq 4$, because N contains these semi-real flats. Consequently the second fundamental form of N in C^{n+k} vanishes identically at x, which implies that all the s-curves on N through x are straight lines lying in the tangent space to N at x.

Let $y \in N, y \neq x$, be a point which is joined to x by an s-curve lying in N. The set of all points in N distinct from x which may be joined to x by s-curves lying in N contains an open subset of y in N, by the argument of the proof of Proposition 2. This open set lies in the tangent space of N at x in $R^{2(n+k)}=$ C^{n+k}, as we have just shown, which is to say that a neighborhood of y in N is contained in a semi-real flat of dimension 4 . Now, by the argument of the proof of Proposition 2, the set of points of N which can be joined to y by s-curves contains an open neighborhood of x. Since all these s-curves lie in the tangent space of N at y, we have shown that a neighborhood of x in N lies in a semi-real flat of dimension 4.

From this we draw two conclusions, which we formulate in a form invariant under complex projective transformations of $P_{n_{+k}}$, taking cognizance of the fact that s_{1} was an arbitrary nonzero vector in τ_{x}^{c} and $s_{r+1}, s_{r+2} \in \tau_{x}^{G}$ an arbitrary generic pair. First, given any $s \in \tau_{x}^{C}, s \neq 0$, an open neighborhood of x in the complex line in C^{n+k} spanned by s is contained in $f(M)$. Secondly, given any $s \in \tau_{x}^{C}, s \neq 0$, and any generic pair $s^{\prime}, s^{\prime \prime} \in \tau_{x}^{G}$, there exist unique F-surfaces $S_{1}, S_{2} \subset f(M)$ tangent to s, s^{\prime}, and $s, s^{\prime \prime}$ respectively. The intersection of either with the complex line spanned by s is an open subset of a single "circle" tangent to s, which circle also contains $S_{1} \cap S_{2}$. We now drop the assumption $r>0$.

Consider again the real basis $s_{1}, \cdots, i s_{r}, \cdots, s_{2 k-r}$ of τ_{x}. We make the following index convention: $1 \leq j \leq r ; r+1 \leq \alpha, \beta \leq 2 k-r$. Let L_{j} denote the complex line through the origin of C^{n+k} spanned by s_{j}, and let C_{j} denote the "circle" tangent to s_{j} which contains the intersection of L_{j} with the unique F-surface contained in M tangent to s_{j} and s_{r+1}. For each $\alpha \geq r+2, s_{r+1}$ and s_{α} are a generic pair, from which it follows that the unique F-surface lying on M tangent to s_{j} and s_{α} passes through C_{j}. Similarly, there lies in L_{j} a "circle" C_{j}^{\prime} tangent to $i s_{j}$ which contains the intersection of L_{j} with the unique F-surface on M tangent to $i s_{j}$ and s_{α} for all α. Since the two "circles" C_{j} and C_{j}^{\prime} lie in a complex line L_{j} and intersect at the origin with distinct tangents, they must intersect in one further point q_{j}. On the unique s-curve of M tangent to s_{α}, choose a point p_{α} distinct from x. Then there must exist a complex hyperplane H in $P_{n_{+k}}$ passing through the $2 k-r$ points q_{j}, p_{α} and not passing through the origin, since otherwise τ_{x} lies in a complex projective subspace of complex dimension $2 k-r-1$, which is clearly impossible. Take H as hyperplane at infinity in $P_{n_{+k}}$ without disturbing the tangent space at the origin. The "circles"
C_{j}, C_{j}^{\prime}, as well as the s-curves tangent to s_{α} are now euclidean straight lines, and by Lemma 3, b) the F-surfaces tangent to pairs s_{j}, s_{α}; is s_{j}, s_{α}; and s_{α}, s_{β} and lying in $f(M)$ are now contained in semi-real flats of dimension 2.

Take local coordinates $u_{1}, \cdots, u_{r}, u_{1}^{\prime}, \cdots, u_{r}^{\prime}, u_{r+1}, \cdots, u_{2 k-r}$ on M in a neighborhood of x, for example geodesic normal coordinates, such that these F surfaces are defined by conditions $u_{A}^{\prime}=0, u_{B}=0, B \neq j, \alpha ; u_{A}^{\prime}=0, A \neq j$, $u_{B}=0, B \neq \alpha ; u_{A}^{\prime}=0, u_{B}=0, B \neq \alpha, \beta$; and such that $L_{j} \cap f(M)$ is defined in a neighborhood of the origin by $u_{A}^{\prime}=0, u_{B}=0, A, B \neq j$. Represent f by a position vector function

$$
X\left(u_{1}, \cdots, u_{r}, u_{1}^{\prime}, \cdots, u_{r}^{\prime}, u_{r+1}, \cdots, u_{2 k-r}\right) \quad \text { in } C^{n+k}
$$

Then the components of

$$
\frac{\partial X}{\partial u_{j} \partial u_{\alpha}}, \frac{\partial X}{\partial u_{j}^{\prime} \partial u_{\alpha}}, \frac{\partial X}{\partial u_{\alpha} \partial u_{\beta}}
$$

at the origin normal to $f(M)$ vanish for all j, α, β. Since for every $s \in \tau_{x}^{C}, s \neq 0$, M contains a portion of a straight line tangent to s, the second fundamental form of M must vanish identically on τ_{x}^{C} and therefore vanishes identically on all of τ_{x}. Thus all the s-curves of M through x are now straight lines, and hence lie in the tangent space to M in $R^{2(n+k)}$, which is a semi-real flat of dimension $2 k$. It follows that a neighborhood in M of the arbitrary point $p \in M$ lies in this semi-real flat. By analytic continuation (f no longer assumed to be an embedding) we conclude that all of M lies in this semi-real flat. This completes the proof of Proposition 12 and therewith the proof of the Theorem.

References

[1] R. C. Gunning \& H. Rossi, Analytic functions of several complex variables, Prentice Hall, Englewood Cliffs, N. J., 1965, 169.
[2] J. A. Little, On singularities of submanifolds of higher dimensional Euclidean spaces, Ann. Mat. Pura Appl. (IV) 83 (1969) 261-336.
[3] J. A. Little \& W. F. Pohl, On tight immersions of maximal codimension, Invent. Math. 13 (1971) 179-204.
[4] W. F. Pohl, Some integral formulas for space curves and their generalization, Amer. J. Math., 90 (1968) 1321-1345.
[5] B. Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968) 111-120.
[6] R. Thom, Sur les variétés d'ordre fini, Global Analysis, D. C. Spencer and S. Iyanaga ed., Princeton University Press, Princeton, 1969, 397-401.

