SMOOTHNESS OF HOROCYCLE FOLIATIONS

MORRIS W. HIRSCH & CHARLES C. PUGH

1. Introduction

Let SM denote the unit tangent bundle of a compact C^{∞} Riemannian manifold M. Suppose that M has everywhere negative sectional curvature. In [1] Anosov proved that the geodesic flow φ on SM is of a certain type, called "Anosov" by later writers, and defined below.

Associated with any Anosov flow φ is a foliation by "strong stable manifolds"; this is called the *horocycle foliation* in the special case where φ is the geodesic flow on *SM* and *M* has negative curvature. The strong unstable manifolds provide another isomorphic horocycle foliation.

The *leaves* of these foliations are as smooth as the Anosov flow φ , but Anosov showed that the *foliations* are not in general of class C^1 , even when φ is real analytic.¹ However, when *M* has dimension two or the curvature is $\frac{1}{4}$ pinched, we shall prove that the horocycle foliations (and even their tangent plane fields) *are* of class C^1 . In the course of the proof, the fact that "negative curvature \Rightarrow Anosov geodesic flow" falls out naturally. Our methods in §§ 5, 6 resemble those of Anosov and Sinai [2].

This smoothness result was suggested to us by an analogous situation we encountered in [8]; there, we showed that the strong stable manifold foliation of an Anosov diffeomorphism f is of class C^1 provided that either the strong stable manifolds have codimension one in M or the spectrum of Tf is "bunched". These cases are analogous to (i), (ii) below.

Thanks are due to Pat Eberlein, Rob Gardiner, Leon Green, and Joe Wolf for helpful conversations.

2. The smoothness theorem

Let *M* be a C^{∞} compact boundaryless manifold with a C^{∞} Riemann structure \mathscr{R} . The geodesics of \mathscr{R} give rise to the geodesic flow φ on the tangent bundle *TM* of *M*:

Received February 22, 1974. The work of the first author was partially supported by NSF grant #GP-29073, and that of the second author by NSF grant #GP-14519.

¹It is amusing that, to mean "generic", Russian mathematicians, such as Anosov, use a word translated from Russian to English as "rough". Here is an example where roughness is likely to be generic.

if $v \in TM$ and $t \to \gamma_v(t)$ is the unique \mathscr{R} -geodesic with $\dot{\gamma}_v(0) = v$, then $\varphi_t(v) = \dot{\gamma}_v(t) \in T_{\tau_v(t)}M$.

 φ is tangent to a vector field X, called the *geodesic spray*. Geodesics have constant speed, so φ preserves the unit sphere bundle SM of TM.

The geodesic flow φ on *SM* is *Anosov* if there is a continuous splitting $T(SM) = E^u \oplus E^\varphi \oplus E^s$, invariant under the tangent flow $T\varphi$ on T(SM), such that E^φ is the subbundle spanned by the geodesic spray X, $T\varphi$ exponentially expands E^u , and $T\varphi$ exponentially contracts E^s . This means that for some (hence any) Riemann structure or Finsler on T(SM), there are constants $C, c > 0, \lambda > 1$ such that

$$\begin{aligned} |T\varphi_t(x)| &\geq c\lambda^t \, |x| & \text{if } x \in E^u \text{ and } t \geq 0 , \\ |T\varphi_t(x)| &\leq C\lambda^{-t} \, |x| & \text{if } x \in E^s \text{ and } t \geq 0 . \end{aligned}$$

The subbundle E^u , E^s are known to be uniquely integrable. They are tangent to the horocycle foliations. Thus, to prove the horocycle foliations are of class C^1 , it suffices to prove E^u , E^s are of class C^1 .

The sectional curvature of \mathscr{R} at a 2-plane $\Pi \subset T_p M$ is $K_p(\Pi) =$ the Gaussian curvature of $\exp_p(\Pi)$ at p relative to the inclusion-induced Riemann structure. If $K_p(\Pi) < 0$ for all $p \in M$ and all 2-planes $\Pi \subset T_p M$, then \mathscr{R} is said to have negative curvature.

Definition. The curvature of \mathcal{R} is absolutely α -pinched iff

$$\alpha < \inf |K_p(\Pi)/K_{p'}(\Pi')|.$$

The inf is taken over all $p, p' \in M$ and all 2-planes \prod, \prod' in $T_pM, T_{p'}M$. The curvature of \mathcal{R} is *relatively* α -*pinched* iff

$$\alpha < \inf |K_p(\Pi)/K_p(\Pi')|$$

The inf is taken over all $p \in M$ and all 2-planes \prod, \prod' in T_pM .

Smoothness Theorem. Let \mathcal{R} be a Riemann structure on TM. If either

(i) the curvature of \mathcal{R} is negative and M has dimension two or

(ii) the curvature of \mathscr{R} is negative and absolutely $\frac{1}{4}$ -pinched, then the Anosov splitting $T(SM) = E^u \oplus E^{\circ} \oplus E^s$ for the geodesic flow is of class C^1 . In particular, the horocycle foliations are of class C^1 . Under natural uniformity assumptions on the curvature, compactness of M can be relaxed to completeness.

Under assumption (i), E. Hopf [10] proved this theorem. Under assumption (ii) Leon Green [4] announced the result, but later [3] found an error in its proof.

Question. Is this theorem true for relative $\frac{1}{4}$ -pinching? If it is, then it includes (i) and (ii) as special cases. For negative curvature on a 2-manifold is

HOROCYCLE FOLIATIONS

always relatively α -pinched for all $\alpha < 1$. Originally we were sure this would "follow easily" from the C^r section theorem (see below), but now we doubt it. Also we conjecture that there are many cases when the horocycle foliation is *not* of class C^1 . Even if the curvature is $\frac{1}{4}$ -pinched, we expect the horocycle foliations are hardly ever of class C^2 . Such results might follow from methods of R. Mañé who proved a converse to the C^r section theorem [13]. Anosov said the horocycle foliation is "obviously not smooth in general" [1, p. 12].

3. Background

In [9] we proved, with Mike Shub, a general theorem giving sufficient conditions for an invariant section of a bundle to be smooth. Let E be a C^r finite dimensional vector bundle over the compact C^r manifold M. Assume E has a Finsler (= continuous family of norms on fibres). Let D be a disc subbundle of E.

Definition. The minimum norm (also called the conorm) of an operator A is $m(A) = \inf_{|x|=1} |Ax| = ||A^{-1}||^{-1}$.

Definition. An *r*-fiber contraction is a C^r fiber map $F: D \to D$ covering a C^r diffeomorphism $f: M \to M$ such that for some Finslers on E and TM

$$\sup_{p \in \mathcal{M}} k_p \alpha_p^{-j} < 1 , \qquad 0 \le j \le r ,$$

where k_p is the Lipschitz constant of $F|D_p, D_p$ is the *D*-fiber at $p \in M$, and $\alpha_p = m(T_p f)$.

 k_p is the fiber contraction rate; α_p is the base contraction rate. The assumption $\sup k_p \alpha_p^{-j} < 1$ implies F uniformly contracts the D-fibers (let j=0) and contracts D_p more sharply than f contracts the base at p (let j = 1).

 C^r section theorem. If F is an r-fiber contraction of D, $r \ge 0$ then there is a unique F-invariant section $\sigma: M \to D$. Besides, σ is of class C^r . This is a central result of [9]

This is a central result of [9].

A second concept we use from [8], [9] is that of the "graph-transform" F_{\sharp} . If $F: D \to D$ is a fiber map as above, then F induces a natural map $F_{\sharp}: \text{Sec}(D) \stackrel{\frown}{\supset}$ on the sections of D defined by $F_{\sharp}\sigma(x) = F \circ \sigma \circ f^{-1}(x)$. This can be re-expressed as

image
$$(F_{\sharp}\sigma) = F$$
 (image σ).

Finally, we use the uniqueness of the hyperbolic splitting of a hyperbolic bundle automorphism. This result is part of [9, 2.9].

4. Proof of (i)

Let X be the geodesic spray generating the geodesic flow φ . Then $T\varphi$ preserves the subbundle of T(SM) orthogonal to X and, since the Anosov splitting is unique,

$$E = E_v^u \oplus E_v^s = X(v)^{\perp} , \qquad v \in SM .$$

Since E is a smooth bundle, we can approximate E^u , E^s by smooth subbundles \tilde{E}^u , \tilde{E}^s of E. Let \mathscr{G} be the smooth bundle over SM whose fiber at v is

$$\mathscr{G}_v = \{ G \in L(\tilde{E}_v^u, \tilde{E}_v^s) : \|G\| \leq 1 \}$$
.

Put the "max Finsler" on T(SM) so that

$$|z| = \max\left(|x|_{\mathfrak{A}}, |w|_{\mathfrak{A}}, |y|_{\mathfrak{A}}\right),$$

where $z = x \oplus w \oplus y \in E_v^u \oplus \text{span } X(v) \oplus E_v^s$, and $|\cdot|_{\mathscr{S}}$ is length respecting \mathscr{R} . This is a Finsler on the base-space of \mathscr{G} .

Since $T\varphi_t$ preserves $E^u \oplus E^s = \tilde{E}^u \oplus \tilde{E}^s$, the $T\varphi_1$ -graph transform $(T\varphi_1)_{\sharp}$ is a fiber map $\mathscr{G} \to \mathscr{G}$ covering φ_1 , the time-one map of the geodesic flow. $(T\varphi_1)_{\sharp}$ is defined by

$$(T_v \varphi_1)(\operatorname{graph} G) = \operatorname{graph}((T \varphi_1)_{\sharp})G), \qquad G \in \mathscr{G}_v,$$

where graph $G = \{x + G(\tilde{x}) \in \tilde{E}_v^u \oplus \tilde{E}_v^s\}$. Let $T^u \varphi = T\varphi | E^u$, $T^s \varphi = T\varphi | E^s$. The fiber \mathscr{G}_v is contracted at a rate $\doteq ||T_v^s \varphi_1|| \cdot m(T_v^u \varphi_1)^{-1}$, and the base is contracted at the rate $\doteq m(T_v^s \varphi_1)$. (To say this about the base-map we need the max Finsler.) The hypothesis of the C^r section theorem (r = 1) is that (fiber contraction) \times (base contraction)⁻¹ < 1, and we have shown this product to be \doteq

$$||T_{v}^{s}\varphi_{1}|| m(T_{v}^{u}\varphi_{1})^{-1} \cdot (m(T_{v}^{s}\varphi_{1}))^{-1} = m(T_{v}^{u}\varphi_{1})^{-1} < 1 ,$$

since E^s is one-dimensional. Hence the unique $(T\varphi_1)_{\sharp}$ -invariant section of \mathscr{G} is of class C^1 . The section whose graphs give E^u is clearly invariant, since E^u is $T\varphi_1$ -invariant. Hence $E^u \in C^1$. Symmetrically, $E^s \in C^1$.

Remarks. If for any other reason bol $(T_v^s \varphi_1)m(T_v^u \varphi_1)^{-1} < 1$, then we get $E^u \in C^1$. By bol() we mean the "bolicity" which measures how nonconformal an isomorphism is:

bol
$$(T) = \frac{||T||}{m(T)} = \sup_{|x|=1=|y|} \frac{|Tx|}{|Ty|} = ||T|| ||T^{-1}||.$$

5. Second order linear differential equations

To prove (ii) we need good norm-estimates on $T^u \varphi_t$, $T^s \varphi_t$; the next lemma will provide them. By $\mathscr{S}(\mathbb{R}^n) = \mathscr{S}$ we mean symmetric linear endomorphisms of \mathbb{R}^n , i.e., self adjoint operators. By $\mathscr{S}^{\pm}(\mathbb{R}^n)$ we mean the convex cone of positive or negative definite ones.

Lemma 1. Suppose $t \mapsto P_t$ is a continuous map $\mathbf{R} \to \mathscr{S}_+(\mathbf{R}^n)$, and α, β are positive constants with

$$\alpha < \inf m(P_t) , \qquad \sup \|P_t\| < \beta .$$

Let Φ be the flow on $\mathbf{R} \times \mathbf{R}^n \times \mathbf{R}^n$ generated by the artificially autonomous differential equation

$$\dot{\tau} = 1, \ \dot{x} = y, \ \dot{y} = P_{\tau}x; \qquad \tau \in \mathbf{R}, \ x, y \in \mathbf{R}^n.$$

Then there exists a unique Φ -invariant splitting $E^u_{\tau} \oplus E^s_{\tau} = \tau \times R^{2n}$ such that E^u_{τ}, E^s_{τ} are graphs of uniformly bounded linear maps $\mathbf{R}^n \to \mathbf{R}^n$. Besides

$$\begin{split} E^{u}_{\tau} &= \operatorname{graph} G^{u}_{\tau}, \ G^{u}_{\tau} \in \mathscr{S}^{+}(\mathbf{R}^{n}) , \qquad \alpha^{1/2} < \langle G^{u}_{\tau}x, x \rangle < \beta^{1/2} , \\ E^{s}_{\tau} &= \operatorname{graph} G^{s}_{\tau}, \ G^{s}_{\tau} \in \mathscr{S}^{-}(\mathbf{R}^{n}) , \qquad \alpha^{1/2} < \langle -G^{s}_{\tau}x, x \rangle < \beta^{1/2} \end{split}$$

for all $x \in \mathbb{R}^n$ with |x| = 1. This splitting $E^u \oplus E^s$ of the product bundle $\mathbb{R} \times \mathbb{R}^{2n}$ exhibits the hyperbolicity of Φ . Norms on E^u , E^s can be chosen, which are uniformly equivalent to the induced norms and make

$$e^{ta^{1/2}} \leq m(\Phi^u_t) \leq \|\Phi^u_t\| \leq e^{t\beta^{1/2}}, \qquad e^{-t\beta^{1/2}} \leq m(\Phi^s_t) \leq \|\Phi^s_t\| \leq e^{-ta^{1/2}}$$

for all t > 0. If P_{τ} has period ω , then so do E^{u} and E^{s} .

Remark. A special case of this lemma is enlightening. Consider the autonomous constant coefficient linear differential equation:

 $\dot{x} = y$, $\dot{y} = px$, p > 0

arising from the second order equation $\ddot{x} = px$. This vector field on \mathbf{R}^2 generates the linear flow

$$t \to \Phi_t = \begin{bmatrix} \cosh(pt) & \frac{\sinh(pt)}{p} \\ p \sinh(pt) & \cosh(pt) \end{bmatrix},$$

which has the constant invariant splitting

$$E^{u} = \{(x, px) : x \in \mathbf{R}\}, \qquad E^{s} = \{(x, -px) : x \in \mathbf{R}\}.$$

It is a delightful coincidence that the hyperbolic trigonometric functions occur in a hyperbolic flow, and that this flow represents the tangent flow on the standard Poincaré hyperbolic plane (when p = 1).

Proof of Lemma 1. The flow Φ on $\mathbb{R} \times \mathbb{R}^n \times \mathbb{R}^n$ naturally induces a (local) flow Φ_* on $\mathbb{R} \times \operatorname{GL}(n)$ as follows. Fix $\tau \in \mathbb{R}$. For each $S \in \operatorname{GL}(n)$ put $\Phi_{*t}(\tau, S) = (\tau + t, S_t)$. Here S_t is the unique linear map $\mathbb{R}^n \to \mathbb{R}^n$ such that

$$(\tau + t) \times \operatorname{graph}(S_t) = \Phi_t(\tau \times \operatorname{graph} S)$$
.

When $S = S_0$ is fixed and t is small, S_t is well defined. Fix τ and consider the solution $W_t \equiv \begin{bmatrix} A_t & B_t \\ C_t & D_t \end{bmatrix}$ of

$$\dot{W} = \begin{bmatrix} 0 & I \\ P_{t+ au} & 0 \end{bmatrix} W , \qquad W_{\scriptscriptstyle 0} = I \; .$$

Thus $\Phi_t | \tau \times \mathbf{R}^n \times \mathbf{R}^n = W_t$. If $t \ge 0$ is small, then

$$S_t = (C_t + D_t S) \circ (A_t + B_t S)^{-1}$$

The tangent to the curve S_t is

$$\frac{dS_t}{dt} = (\dot{C} + \dot{D}S_0)(A + BS_0)^{-1} - (C + DS_0)(A + BS_0)^{-1}(\dot{A} + \dot{B}S_0)(A + BS_0)^{-1}.$$

At t = 0 this reduces to $P_{\tau} - S^2$ since

$$\begin{bmatrix} \dot{A} & \dot{B} \\ \dot{C} & \dot{D} \end{bmatrix} = \begin{bmatrix} C & D \\ PA & PB \end{bmatrix}, \qquad \begin{bmatrix} A_0 & B_0 \\ C_0 & D_0 \end{bmatrix} = \begin{bmatrix} I & 0 \\ 0 & I \end{bmatrix}.$$

Thus the flow Φ_* is tangent to the vector field (on $\mathbf{R} \times \operatorname{GL}(n)$) given by $(\tau, S) \mapsto (1, P_{\tau} - S^2)$. (Note that its integral curves are solutions to the Ricatti equation $\dot{S} = P - S^2$.) Since this vector field is tangent to $\mathbf{R} \times \mathscr{S}(\mathbf{R}^n)$ by inspection, the flow Φ_* leaves $\mathbf{R} \times \mathscr{S}(\mathbf{R}^n)$ invariant.

We claim that all points of the boundary $\partial(\mathbf{R} \times \mathscr{S}_{\alpha\beta})$ are strict ingress points for Φ_{\sharp} where

$$\mathscr{S}_{\scriptscriptstyle \alpha\beta} = \{S \in \mathscr{S} \colon \alpha^{1/2} \leq \langle Sx, x \rangle \leq \beta^{1/2} \text{ for all } x \in \mathbf{R}^n, \, |x| = 1\} \ .$$

A boundary point p of a region U is a strict ingress point for a local flow φ if $\varphi_t p \in \text{Int}(U)$ for all small t > 0. This is an idea due to Ważewski.

For $x \in \mathbb{R}^n$ and $S \in \mathcal{S}$ we have

$$\begin{aligned} \dot{x}_t &= y_t , \qquad x_0 = x \in \mathbf{R}^n , \\ \dot{y}_t &= P_{t+\tau} x_t , \qquad y_0 = S_0 x_0 , \end{aligned}$$

and compute

$$(1) \qquad \frac{d}{dt} \Big|_{t=0} \frac{\langle S_t x_t, x_t \rangle}{\langle x_t, x_t \rangle} \\ = \{ [\langle \dot{S}_0 x_0 + S_0 \dot{x}_0, x_0 \rangle + \langle S_0 x_0, \dot{x}_0 \rangle] \langle x_0, x_0 \rangle \\ - \langle S_0 x_0, x_0 \rangle [2 \langle x_0, \dot{x}_0 \rangle] \} / \langle x_0, x_0 \rangle^2 \\ = [\langle (P_\tau - S^2) x + S(Sx), x \rangle + \langle Sx, Sx \rangle - 2 \langle Sx, x \rangle^2] / |x|^4 \\ = [\langle P_\tau x, x \rangle + \langle Sx, Sx \rangle - 2 \langle Sx, x \rangle^2] / |x|^4 .$$

For small $t, x \mapsto x_t$ defines an embedding of the unit sphere S^{n-1} of \mathbb{R}^n into \mathbb{R}^n which is near the inclusion. Thus the mapping $S^{n-1} \stackrel{\frown}{\supset}$

 $x \longmapsto x_t / \langle x_t, x_t \rangle^{1/2}$

is near the identity; therefore it is surjective. This implies that

(2)
$$\inf_{|x|=1} \langle S_t x, x \rangle = \inf_{|x|=1} \frac{\langle S_t x_t, x_t \rangle}{\langle x_t, x_t \rangle}$$

for small t.

Choose $\alpha_1, \alpha_2, \beta_1, \beta_2$ such that

$$lpha < lpha_1 < lpha_2 \le \inf_{ au} m(P_{ au}) , \qquad \sup \|P_{ au}\| \le eta_2 < eta_1 < eta , \ lpha_1 - lpha < lpha_2 - lpha_1 , \qquad eta - eta_1 < eta_1 - eta_2 .$$

Since P_{τ} is symmetric, $\langle P_{\tau}x, x \rangle \geq \alpha_2 |x|^2$.

Suppose $S \in \partial_{\alpha\beta}$ and consider the sets

$$egin{aligned} &X_{a}(S)=\{x\in S^{n-1}\colon lpha^{1/2}\leq \langle Sx,x
angle < lpha_{1}^{1/2}\}\ ,\ &X_{eta}(S)=\{x\in S^{n-1}\colon eta_{1}^{1/2}<\langle Sx,x
angle \leq eta^{1/2}\}\ . \end{aligned}$$

For each $x \in X_{\alpha}(S)$ we have from (1)

$$\frac{d}{dt}\Big|_{t=0}\frac{\langle S_t x_t, x_t \rangle}{\langle x_t, x_t \rangle} = \langle P_x x, x \rangle + \langle S x, S x \rangle - 2 \langle S x, x \rangle^2 .$$

It follows from (2) that if $x \in X_{\alpha}(S)$, then

(3)
$$\langle S_t x, x \rangle > \alpha^{1/2}$$
 for all small $t > 0$.

But if $x \in S^{n-1} - X_{\alpha}(S)$ and t is small, then

$$\langle S_t x_t, x_t \rangle \doteq \langle S x, x \rangle > \alpha^{1/2}$$

by continuity. Thus (3) holds for all $x \in S^{n-1}$, that is,

$$\inf_{|x|=1} \langle S_t x, x \rangle > \alpha^{1/2} \qquad \text{for all small } t > 0$$

The same reasoning proves that also

$$\sup_{|x|=1} \langle S_t x, x
angle \leq eta^{1/2} \qquad ext{for all small } t > 0 \; .$$

This shows that $\tau \times S$ is a strict ingress point of $\partial(\mathbf{R} \times \mathscr{S}_{\alpha\beta})$ for the local flow Φ_{\sharp} .

The set $\mathscr{S}_{\alpha\beta}$ is a compact convex subset of the (finite dimensional) linear space \mathscr{S} . All the points of its boundary were shown to be strict ingress points. Since $\partial(\mathbf{R} \times \mathscr{S}_{\alpha\beta})$ is not a retract of $\mathscr{S}_{\alpha\beta}$, Ważewski's Principle [6, p. 279] says there must be a trajectory of Φ_{*} remaining in $\mathbf{R} \times \mathscr{S}$ for all time. Let $\tau \mapsto \tau$ $\times G^{u}_{\tau}$ be such a trajectory, and set $E^{u}_{\tau} = \operatorname{graph} G^{u}_{\tau}, \tau \in \mathbf{R}$. Clearly G^{u}_{τ} is interior to $\mathscr{S}_{\alpha\beta}$, and $\Phi_{t}(E^{u}_{\tau}) = E^{u}_{t+\tau}$.

Let $\mathscr{P}_{\alpha\beta}^- = \{S \in \mathscr{S} : \alpha^{1/2} \le \langle -Sx, x \rangle \le \beta^{1/2} \text{ for all } x \in \mathbb{R}^n, |x| = 1\}$. Then all points of $\partial(\mathbb{R} \times \mathscr{P}_{\alpha\beta}^-)$ are strict egress points. This can be seen by some reasoning similar to the above. Again by Ważewski's Principle, there is a Φ_{\sharp} trajectory remaining in $\mathscr{P}_{\alpha\beta}^-$ for all time. This gives G_{τ}^s, E_{τ}^s as claimed and completes the existence part of Lemma 1.

Uniqueness of E^u , E^s follows from hyperbolicity of Φ and Hirsch-Pugh-Shub [9, 2.9]. To prove hyperbolicity and the asserted estimates on its strength, we introduce the new inner product in $\mathbb{R}^n \times \mathbb{R}^n$ by setting

$$\langle z^1, z^2
angle_* = \langle x^1, x^2
angle, \ z^j = (x^j, y^j) \in {\pmb R}^n imes {\pmb R}^n \ ; \qquad j=1,2$$
 .

By restriction we get new inner products on each $E_{\tau}^{u}, E_{\tau}^{s}$ ($\tau \in \mathbf{R}$). This makes $x \mapsto (x, G^{u}x), x \mapsto (x, G^{s}x)$ isometries of \mathbf{R}^{n} onto $E_{\tau}^{u}, E_{\tau}^{s}$.

Denote $\Phi_{\tau}(t, z)$ by $(\tau + t, z_t)$ and put $z_t = (x_t, y_t) \in \mathbb{R}^n \times \mathbb{R}^n$. Then

$$\dot{x}_t = y_t$$
, $\dot{y}_t = P_{\tau+t} x_t$,

and so

$$egin{aligned} rac{d}{dt}\langle z_t,z_t
angle_*&=rac{d}{dt}\langle x_t,x_t
angle=2\langle x_t,\dot{x}_t
angle\ &=2\langle x_t,y_t
angle=2\langle x_t,G^u_{ au+t}(x_t)
angle \end{aligned}$$

by invariance of E_{τ}^{u} . Since $G_{\tau}^{u} \in \mathscr{S}_{\alpha\beta}^{+}$, this last quantity lies between $2\alpha^{1/2}$ and $2\beta^{1/2}$. Hence $\langle z_{t}, z_{t} \rangle_{*}$ satisfies the differential inequality

$$2lpha^{\scriptscriptstyle 1/2} < rac{d}{dt} \langle z_t, z_t
angle < 2eta^{\scriptscriptstyle 1/2} \;, \qquad t > 0 \;,$$

while

$$ig\langle z_0,z_0ig
angle_*=|z|_*^2\;,\qquad 0
eq z\in E^u_t\;.$$

From Hartman [6, p. 24] we conclude that

$$e^{2t lpha^{1/2}} |z|^2_* < \langle z_t, z_t
angle_* < e^{2t eta^{1/2}} |z|^2_*$$

for all t > 0. Taking square roots gives the growth estimate on Φ_t^u in Lemma 1. Similarly, if $z \in E_{\tau}^s$ then

$$\frac{d}{dt}\langle z_t, z_t\rangle_* = 2\langle x_t, G^s_{\mathfrak{r}+t}(x_t)\rangle,$$

which lies between $-2\alpha^{1/2}$ and $-2\beta^{1/2}$ since $G^s_{\tau} \in \mathscr{S}^-_{\alpha\beta}$. This gives the growth estimate on Φ^s_t in Lemma 1.

As remarked before, hyperbolicity of Φ implies the uniqueness of E^u, E^s . Suppose P_{τ} has period ω . Set $F_{\tau}^u = E_{\tau+\omega}^u$, $F_{\tau}^s = E_{\tau+\omega}^s$. Then $F^u \oplus F^s$ is a Φ -invariant splitting of $\mathbf{R} \times \mathbf{R}^{2n}$ since $\Phi_t(\tau + \omega, z) \equiv \Phi_t(\tau, z) + (\omega, 0)$. Clearly $F^u \oplus F^s$ also exhibits the hyperbolicity of Φ so by [9, 2.9] $E^u \equiv F^u$, $E^s \equiv F^s$, and ω -periodicity of E^u, E^s is proved. This completes the proof of Lemma 1.

Remark. An alternative proof that E^u , E^s exist can be devised by showing that the flow Φ_{\sharp} contracts $\mathscr{G}_{\alpha\beta}^+$, instead of using Ważewski's principle. Contractiveness of Φ_{\sharp} on $\mathscr{G}_{\alpha\beta}^+$ follows from considering the first variation equation of $\dot{S} = P - S^2$, along a Φ -trajectory S_t , namely, $\dot{V} = -(VS_t + S_tV)$. While S_t is in $\mathscr{G}_{\alpha\beta}$, it is a positive operator so the above \dot{V} is "negative", showing that $\Phi_{\sharp t}$ contracts infinitesimally, t > 0. Contractiveness of $\Phi_{\sharp t}$ in the large follows by the mean value theorem since $\mathscr{G}_{\alpha\beta}$ is convex. The details of this argument involve use of the inner product

$$\langle A, B \rangle = \text{trace} (A^t B)$$

on $L(\mathbb{R}^n, \mathbb{R}^n)$ and its corresponding norm. This is not the operator norm on $L(\mathbb{R}^n, \mathbb{R}^n)$, and it does not have an analogue for an infinite dimensional real Hilbert space E. The estimates in the proof of Lemma 1 remain valid for E, but Ważewski's Principle fails because $\partial \mathscr{G}_{\alpha\beta}$ probably is a retract of $\mathscr{G}_{\alpha\beta}$; compare Klee [11]. Thus the generalization of Lemma 1 to Hilbert space remains unproved by us.

6. Fermi coordinates

The next lemma concerns a special coordinate system along a geodesic, called a "Fermi chart". For the geodesic flow, the bundle-chart over a Fermi chart serves the same purpose as a flowbox does for a flow. Let \mathscr{R} be a smooth Riemann structure on TM, and let $v \in S_pM$ be given, $p \in M$. Let \mathscr{X} be the geodesic spray of \mathscr{R} . Let e_1, \dots, e_m be an orthonormal basis for T_pM with $v = e_1$, and let γ be the geodesic initially tangent to v. Parallel translation down γ gives smooth orthonormal vector fields $e_1(t), \dots, e_m(t)$ on γ such that $e_1(t) \equiv \dot{\gamma}(t)$. Since exp is tangent to the identity,

$$f_v(\sum a_i e_i) = \exp_{\tau(a_1)}\left(\sum_{i\geq 2} a_i e_i(t)\right)$$

defines an immersion f_v , called the *Fermi chart* associated with \mathscr{R} and $v \in S_p M$. The domain of f_v includes

$$\mathscr{D}_{v} = \{\tau v + v' \in T_{p}M : v' \perp v, |v'| \le c, \ \tau \in \mathbf{R}\},\$$

where c is some positive constant. f_v sends span (v) isometrically onto γ . Since f_v is an immersion, \mathscr{R} pulls back to a Riemann structure $f_v^*\mathscr{R}$ on $T\mathscr{D}_v = \mathscr{D}_v \times T_p M$. Thus $f_v^*\mathscr{R}$ is \mathscr{R} expressed in the f_v -chart. Let g_{ab} , $\Gamma_{\alpha\beta}^*$ and R_{kjl}^i be the components of $f_v^*\mathscr{R}$, its Christoffel symbols and its Riemannian curvature tensor in the f_v -chart.

Lemma 2. The Fermi chart f_v has the following properties at all points of span (v):

(0-th order)
$$g_{ab} = \delta_{ab}$$
,
(1st order) $\Gamma^{\sigma}_{\alpha\beta} = 0$,
(2nd order) $R^{1}_{k1l} = -\frac{1}{2} \frac{\partial^{2}g_{11}}{\partial x^{k}\partial x^{l}} = \frac{\partial\Gamma^{k}_{11}}{\partial x^{l}}$

Proof. The 0-th and 1st order assertions are proved in Gromoll-Klingenberg-Mayer [5]. In any chart

$$\Gamma^{\sigma}_{\alpha\beta} = \frac{1}{2} \sum_{r} g^{\sigma r} (\partial_{\alpha} \beta_{r\beta} + \partial_{\beta} g_{r\alpha} - \partial_{r} g_{\alpha\beta}) ,$$

where $(g^{\sigma r})$ is the matrix inverse to (g_{ab}) . By ∂_{α} etc. we mean $\partial/\partial x^{\alpha}$ where x^1 , \cdots, x^m are the coordinates in the chart. Juggling indices and summing as in Weatherburn [15] we get

$$\partial_{\sigma}g_{\alpha\beta}=0, \qquad 1\leq \alpha, \beta, \sigma\leq m$$

at any point of a chart where $\Gamma = 0$ and $(g_{ab}) = (\delta_{ab})$. This means the map

 $x \longmapsto (g_{ab}(x)) \in \{\text{real } m \times m \text{ matrices}\}$

has zero derivative at all points of span (v) in the Fermi chart. By the chain rule the same is true of

$$x \longmapsto (g_{ab}(x))^{-1} = (g^{\sigma r}(x))$$
.

Thus all first partials of g_{ab} and $g^{\sigma r}$ vanish along span (v). From this constancy we conclude $\partial_i \partial_i g_{ab} = \partial_i \partial_i g^{\sigma r} = 0$ along span (v) = x¹-axis.

In any chart the components R^{i}_{kjl} are related to the $\Gamma^{\sigma}_{\alpha\beta}$ by

$$R^{i}_{kjl} = \partial_{j}\Gamma^{i}_{kl} - \partial_{l}\Gamma^{i}_{kj} + \sum \left(\Gamma^{i}_{rj}\Gamma^{r}_{kl} - \Gamma^{i}_{rl}\Gamma^{r}_{kj}\right)$$

(see Hicks [7]), so in the Fermi chart along span (v)

$$\begin{aligned} R^{1}_{kll} &= \partial_{1} \Gamma^{1}_{kl} - \partial_{l} \Gamma^{1}_{kl} \\ &= \frac{1}{2} \sum_{r} \partial_{1} (g^{1r}) (\partial_{k} g_{rl} + \partial_{l} g_{rk} - \partial_{r} g_{kl}) \\ &+ \frac{1}{2} \sum_{r} g^{1r} (\partial_{1} \partial_{k} g_{rl} + \partial_{1} \partial_{l} g_{rk} - \partial_{1} \partial_{r} g_{kl}) \\ &- \frac{1}{2} \sum_{r} \partial_{l} (g^{1r}) (\partial_{k} g_{r1} + \partial_{1} g_{rk} - \partial_{r} g_{1k}) \\ &- \frac{1}{2} \sum_{r} g^{1r} (\partial_{l} \partial_{k} g_{r1} + \partial_{l} \partial_{1} g_{rk} - \partial_{l} \partial_{r} g_{1k}) \\ &= -\frac{1}{2} (\partial_{l} \partial_{k} g_{11} + \partial_{l} \partial_{1} g_{1k} - \partial_{l} \partial_{1} g_{1k}) = -\frac{1}{2} \frac{\partial^{2} g_{11}}{\partial x^{l} \partial x^{k}} \end{aligned}$$

For along span (v): $\partial_1(g^{1r})$ vanishes, $\partial_1\partial_k g_{rl}$ etc. vanish, $\partial_l(g^{1r})$ vanishes, and $g^{1r} = \delta^{1r}$. For the same reasons

$$\frac{\partial \Gamma_{11}^k}{\partial x^l} = \frac{1}{2} \sum_r \partial_l (g^{kr}) (\partial_1 g_{r1} + \partial_1 g_{1r} - \partial_r g_{11}) \\ + \frac{1}{2} \sum_r g^{kr} (\partial_l \partial_1 g_{r1} + \partial_l \partial_1 g_{1r} - \partial_i \partial_r g_{11}) \\ = -\frac{1}{2} \partial_l \partial_k g_{11} = -\frac{1}{2} \frac{\partial^2 g_{11}}{\partial x^l \partial x^k}$$

along span (v). This completes the proof of Lemma 2.

7. Proof of (ii)

Let \mathscr{R} be the given Riemann structure on TM. Let $v \in S_pM$, $p \in M$, and choose an orthonormal basis of T_pM , e_1, \dots, e_m with $e_1 = v$. Let f_v be the Fermi chart determined by e_1, \dots, e_m , and let F_v be the bundle chart of TM tangent to f_v :

$$\begin{aligned} \mathscr{D}_v \times T_p M & \xrightarrow{F_v} TM \\ (x, \xi) & \longmapsto T_x f_v(\xi) \in T_{f_v x} M . \end{aligned}$$

 \mathcal{D}_v is the domain of f_v . The geodesic spray X is represented in any TM-bundlechart for TM as the first order ordinary differential equation

(1)
$$\begin{bmatrix} \dot{x} \\ \dot{\xi} \end{bmatrix} = \begin{bmatrix} \xi \\ -\Gamma(x)(\xi,\xi) \end{bmatrix},$$

where $\Gamma(x): T_p M \times T_p M \to T_p M$ is the symmetric bilinear map such that

$$\Gamma(x)(e_i, e_j) = \sum_k \Gamma^k_{ij}(x)e_k , \qquad x \in \mathscr{D}_v .$$

The Γ_{ij}^k are the Christoffel symbols of \mathscr{R} expressed in the f_v -chart.

The geodesic flow φ of \mathscr{R} , represented in the F_v -chart, is the solution of (1). The assertion of the smoothness theorem concerns the tangent flow $T\varphi$ on

T(TM). When represented in the TF_v -chart, $T\varphi$ is the solution of the first variation equation of (1):

(2)
$$\dot{W} = D(F_v^*X)_{w_t}W$$
, $W(0) = I$

for $w_t = F_v^{-1} \circ \varphi_t \circ F_v(w)$, $w \in \mathcal{D}_v \times T_p M$. By $F_v^* X$ we mean the vector field $X \circ TF_v^{-1}$ on $\mathcal{D}_v \times T_p M$. At $F_v^{-1}(\varphi_t v) = (tv, e_1)$ we calculate

$$D(F_v^*X)_{(tv,e_1)} = D\begin{pmatrix} \xi \\ -\Gamma(x)(\xi,\xi) \end{pmatrix}_{(tv,e_1)} = \begin{bmatrix} 0 & I \\ -\frac{\partial\Gamma}{\partial x}(\cdot,\xi,\xi) & -2\Gamma(x)(\cdot,\xi) \end{bmatrix}_{(tv,e_1)}$$
$$= \begin{bmatrix} 0 & I \\ \frac{1}{2} \frac{\partial^2 g_{11}(x)}{\partial x^i \partial x^k} & 0 \end{bmatrix}_{x=tv} = \begin{bmatrix} 0 & I \\ -R_{k1l}^1(tv) & 0 \end{bmatrix}$$

by Lemma 2 since

$$\left(\frac{\partial\Gamma}{\partial x}(e_l,\xi,\xi)\right)_{(x,\xi)=(tv,e_1)}=\sum_k\left(\frac{\partial\Gamma_{11}^k(x)}{\partial x^l}\right)_{x=tv}e_k$$

(The R^i_{kjl} are the components of the curvature tensor in the f_v -chart.) Thus, along $F_v^{-1}(\varphi_t v)$, (2) becomes

(3)
$$\dot{W} = \begin{bmatrix} 0 & I \\ -R^{1}_{kll}(tv) & 0 \end{bmatrix} W, \qquad W(0) = I.$$

In general, R^{i}_{kjl} is skew-symmetric in *jl* and $R^{i}_{ijl} = 0$, so we see that

$$(R_{k1l}^{1}) = \begin{bmatrix} 0 & \cdots & 0 \\ \vdots & R_{k1l}^{1} \\ 0 \end{bmatrix}, \qquad 2 \leq k, \ l \leq m.$$

These extra zeros indicate that $T\varphi$ preserves X (as does any tangent flow) and that $T\varphi$ preserves X^{\perp} (as does any tangent geodesic flow). Let $E = X^{\perp} \cap T(SM)$. Then $T\varphi$ preserves E and $\Phi_t = T_v \varphi_t | E$, expressed in the F_v chart, solves

$$\dot{\Phi} = \begin{bmatrix} 0 & I \\ P_t & 0 \end{bmatrix} \Phi , \qquad \Phi_0 = I ,$$

where

$$P_t = [-R^1_{k1l}(tv)]_{2 \le k, l \le m}$$
.

 Φ is a linear flow on span $(v) \times H_v \times V_v \approx \mathbf{R} \times \mathbf{R}^{m-1} \times \mathbf{R}^{m-1}$ where $H_v = \{(x, 0) \in T_p M \times T_p M, x \perp v\}, V_v = \{(0, \xi) \in T_p M \times T_p M : \xi \perp v\}.$

In any chart at a point where the coordinates are orthonormal, the sectional curvature of a pair of vectors $Y, Z \in T_pM$ is

$$egin{aligned} &K_p(Y,Z) = \left< R(Y,Z)Z,Y \right>, &Y = \sum y_i e_i \ , \ &= \sum\limits_{i,j,k,l} R^i_{kjl} y_i y_j z_k z_l \ , &Z = \sum z_i e_i \ , \end{aligned}$$

and thus finally using the negative curvature hypothesis we have

$$(4) \qquad \langle P_t Z, Z \rangle = -\sum_{k,l} R^{l}_{kll} z_k z_l = -K(e_l, Z) > 0 ,$$

where $R_{k1l}^{1} = R_{k1l}^{1}(tv)$.

Choose constants K > k > 0 such that every sectional curvature lies strictly between $-K^2$ and $-k^2$. By (4), in applying Lemma 1 we can take $\alpha = k$, $\beta = K$.

By Lemma 1, Φ is hyperbolic and the strength of its hyperbolicity can be estimated. Using the F_v -chart we get a well defined $T\varphi$ -invariant splitting $E^u \oplus E^s$ of E over the φ -orbit of v. (If $t \mapsto \varphi_t v$ is periodic in t, then P_t is periodic and, by Lemma 1, so is the Φ -invariant-splitting. Hence $E^u \oplus E^s$ is well defined.) Choose one v on each φ -orbit and make the preceding construction. This gives a well defined $T\varphi$ -invariant splitting of E over all SM.

Since the Finsler on span $(v) \times H_v \times V_v$ adapted to Φ is uniformly equivalent to the standard Finsler, and since f_v is a Fermi-chart, we see that the estimates

$$e^{tk} < m(\Phi_t^u) \le \|\Phi_t^u\| < e^{tK}, \qquad e^{-tK} < m(\Phi_t^s) \le \|\Phi_t^s\| < e^{-tk},$$

which are valid for all t > 0—when the adapted Finsler is used—imply

$$(5) \quad e^{tk} < m(T^u_v \varphi_t) \leq \|T^u_v \varphi_t\| < e^{tK} , \quad e^{-tK} < m(T^s_v \varphi_t) \leq \|T^s_v \varphi_t\| < e^{-tK}$$

respecting the \mathscr{R} -norms for all *large t*. By $T_v^u \varphi_t$, $T_v^s \varphi_t$ we mean $T\varphi_t | E_v^u$, $T\varphi_t | E_v^s$. Thus, respecting the fixed \mathscr{R} -norms, $T\varphi | E$ is a linear uniformly hyperbolic flow and so, by [9, (2.9)], E^u and E^s are automatically continuous and independent of which v was chosen on each φ -orbit. Hence φ is Anosov.

By (5) we get

$$egin{aligned} & ext{bol} \left(T^u_v arphi_t
ight) < e^{t(K-k)} \;, & m(T^u arphi_t) > e^{t\,k} \;, \ & ext{bol} \left(T^s_v arphi_t
ight) < e^{t(K-k)} \;, & \|T^s_v arphi_t\| < e^{-t\,k} \end{aligned}$$

for all large t. Now return to the proof of (ii). Since E is a smooth bundle we can approximate E^u, E^s by smooth subbundles \tilde{E}^u, \tilde{E}^s of E. Then we can consider, for a large fixed t, the \mathscr{G} -map $(T\varphi_t)_{\sharp} : \mathscr{G} \to \mathscr{G}$ where $\mathscr{G}_v = \{G \in L(\tilde{E}^u_v, \tilde{E}^s_v) : ||G|| \leq 1\}$. As in the proof of (i), $(T\varphi_t)_{\sharp}$ is a fiber contraction with

(fiber contraction) \cdot (base contraction)⁻¹

 $\doteq (\|T_v^s\varphi_t\|(m(T^u\varphi_t))^{-1})(m(T_v^s\varphi_t))^{-1}$

$$= \operatorname{bol}(T_v^s \varphi_t) / m(T^u \varphi_t) < e^{t(K-k)} / e^{tk} = e^{t(K-2k)}$$

Since the curvature is $\frac{1}{4}$ -pinched, we have K - 2k < 0 and the hypothesis of the C^r section theorem is satisfied; therefore the unique $(T\varphi_t)_{\sharp}$ -invariant section of \mathscr{G} is of class C^1 . Since E^u gives such a section, E^u is of class C^1 . Working with the reverse flow and $\mathscr{G}_n^- = \{G \in L(\tilde{E}_n^s, \tilde{E}_n^u) : ||G|| \le 1\}, (5)$ gives the same result for E^s . This completes the proof of (ii).

Remarks on the smoothness of \mathcal{R} . For simplicity, we assumed the Riemann structure \mathscr{R} was C^{∞} . However, the above constructions work equally naturally when \mathscr{R} is C^4 , the smoothness theorem holds when \mathscr{R} is C^3 , and φ is Anosov when \mathscr{R} is C^2 with negative curvature. This can be seen by C^2 -approximating \mathscr{R} by a C^{∞} Riemann structure $\widetilde{\mathscr{R}}$ and using the uniformities in the hyperbolicity estimates. Alternatively, the Fermi chart could be smoothed as were flow boxes in Pugh-Robinson [14].

Standard question. If the geodesic flow φ of \mathcal{R} is Anosov, then does M admit a Riemann structure \mathcal{R}' with negative curvature? Wilhelm Klingenberg showed in [12], [16] that all known topological properties of M which are implied by negative curvature are equally implied by φ being Anosov.

References

- [1] D. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature, Trudy Mat. Inst. Steklov 90 (1967), (Russian); Proc. Steklov Inst. Math., Amer. Math. Soc., 1969, (English translation).
- D. Anosov & Y. Sinai, Some smooth ergodic systems, Upseki Mat. Nauk 22 (1967) [2] 107-172=Russian Math. Surveys 22 (1967) 103-167.
- L. Green, The generalized geodesic flow, Duke Math. J. 41 (1974) 115-126. [3]
- [4] -, Group-like decompositions of Riemann bundles, Proc. Conf. in Topological
- Dynamics, Lecture Notes in Math. Vol. 318, Springer, Berlin, 1973, 126-139.
 D. Gromoll, W. Klingenberg & W. Mayer, *Riemannsche Geometrie im Grossen*, Lecture Notes in Math. Vol. 55, Springer, Berlin, 1968, 113-114. [5]
- P. Hartman, Ordinary differential equations, John Wiley and Sons, New York, 1964. [6]
- N. Hicks, Notes on differential geometry, van Nostrand, Princeton, 1965, 63. [7]
- [8] M. Hirsch & C. Pugh, Stable manifolds and hyperbolic sets, Proc. Sympos. Pure Math. Vol. 14, Amer. Math. Soc., 1970, 133-163.
- [9] M. Hirsch, C. Pugh & M. Shub, Invariant Manifolds, Lecture Notes in Math., Springer, Berlin.
- [10] E. Hopf, Statistik der Lösungen geodätischer Probleme vom unstabilen Typus II, Math. Ann. 117 (1940) 590-608.
- [11] V. Klee, Convex bodies and periodic homeomorphism in Hilbert space, Trans. Amer. Math. Soc. 74 (1953) 10-43.
- W. Klingenberg, Riemannian manifolds with geodesic flow of Anosov type, Ann. [12] of Math. (2) 99 (1974) 1-13.
- [13] R. Mañé, Persistent manifolds are normally hyperbolic, IMPA Rio de Janeiro, preprint.
- [14] C. Pugh & R. C. Robinson, The C^1 closing lemma including Hamiltonians, to appear in Pacific J. Math.
- [15] C. Weatherburn, An introduction to Riemannian geometry and the tensor calculus, Cambridge University Press, Cambridge, 1938.
- [16] M. Peixoto (Ed.), Dynamical systems, Academic Press, New York, 1973, 155-164.

UNIVERSITY OF CALIFORNIA, BERKELEY