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A GENERALIZATION OF THE TWO-VERTEX
THEOREM FOR SPACE CURVES

E. SHARON JONES

1. The classical four-vertex theorem asserts that for a sufficiently smooth
simple closed plane curve the curvature has at least four relative extrema. At
such a relative extremum of the curvature, or "vertex", the curve has higher
contact with its osculating circle. If such a plane curve now is projected stereo-
graphically onto the sphere, a vertex goes into a point at which the image
curve has higher contact with the osculating plane, i.e., a point at which the
torsion vanishes. The four-vertex theorem thus leads naturally to the question:
at how many points does the torsion of a closed space curve vanish?

There are closed space curves with nowhere vanishing torsion, for example,
a long coil spring which is bent around and connected together. The four-
vertex theorem may be interpreted as saying that for a sufficiently smooth
simple closed curve on the sphere the torsion vanishes at at least four points.
Barner [2] has shown that the conclusion remains true provided only that the
curve is simple and lies on a convex surface. A number of similar theorems
are known; see Segre [5], [6], and [7].

In this paper we show that a simple closed space curve, which has no tangent
lines meeting the curve again (no "cross tangents") and has a point lying on
the boundary of the convex hull of the curve though which passes no line
meeting the curve in two other points, has at least two points at which the
torsion is zero. In fact, if the curve does not lie in a plane, we show that the
torsion changes sign.

Two ideas are used in the proof. One is an analysis of certain singularities
of the Gauss secant map, and the other is a projection of the curve onto a
plane parallel to a plane of support of the convex hull of the space curve. The
condition that the curve has a point lying on the boundary of the convex hull
of the curve through which passes no line meeting the curve in two other
points is required for the projection. The assumption that X has no cross
tangents is used in the Gauss secant map. We define three closed one-dimen-
sional submanifolds using singularities of the Stieltjes function
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studied by Pohl [4]. These curves are well-behaved if X has no cross tangents.
Throughout this paper, when we speak of a closed curve having some

smoothness property we will mean a mapping of the circle having that smooth-
ness property. However, in studying them we will usually find it more con-
venient to take such a curve as parametrized by an interval. Our curves will
have no cusps.

In a Euclidean 3-space E\ let X : [0, 2π] —> E3 be a space curve which is
differentiate of class C4. The osculating plane of X at t is the plane through
X(i) parallel to X'(f) and X"(t). We assume throughout this paper that X'(J)
and X"(t) are in general position at each point so that the curvature never
vanishes. An inflection point of I is a point / at which the torsion vanishes.
At such a point X'"(t) lies in the osculating plane, which is then called an
inflectionary osculating plane. By a generic inflection point of X we mean a
point t at which the torsion vanishes, but its derviative does not. At a generic
inflection point the torsion changes sign, and the third derivative of X lies in
the osculating plane, but as may easily be seen, the fourth derivative does not.
By a double osculating plane we mean a pair of points (tx, t2), tγ Φ t2, such
that the osculating plane at tγ is the osculating plane at t2. X has a cross tangent
at (t19 t2), txΦ t2, if the tangent line to X at tλ meets X at t2. A trisecant of X

is any line which meets X at three or more points. Let τ denote the torsion of
X, and ^ the curvature.

2. Theorem I. Let X : [0, 2π] —> E3 be a simple closed nonplanar C4

space curve. Assume X has nonvanίshίng curvature (say 3? > 0) and has no
cross tangents, and assume the torsion of X changes sign only a finite number
of times. Then, for any ε > 0, there exists Y : [0, 2π] —> E3 such that Y is a
simple closed nonplanar C4 space curve which is arbitrarily close to X (i.e.,
\X%t) - Yl(t)\ < ε, i = 0, , 4, / e [0, 2π]). Also all inflection points of Y
are generic the torsion of Y has no more sign changes than that of X; if P is
an inflectionary osculating plane of Y at t, then P is tangent to Y only at t
and Y has no double osculating planes.

The proof of this theorem, which is not given here, is a general position
argument. "In general", at an inflection point of a curve the torsion vanishes
but its derivative does not, an inflectionary osculating plane of a curve at one
point is not also tangent to the curve at another point, and the osculating plane
of a curve at one point is not also the osculating plane at another point. Such
a curve is said to be in general position. Theorem I states that we can replace
our curve X by a curve in general position which is arbitrarily close to X and
has the properties of X which we desire.

Arguments such as these are illustrated by the Thorn transversality theorem
and use an approximation approach in the construction of the general position
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curves. References to the general position theory include the discussion of the
Thorn transversality theorem in [8, pp. 45-69] and [1], [1, Chapter 4] is a
generalization by Abraham of Thorn's work. Two of Thorn's articles on the
topic are [9] and [10].

3. Let C denote a circle with coordinate t defined modulo integral multiples
of 2π, and X : C —> E3 be a simple closed space curve, difϊerentiable of class
C4, with nonvanishing curvature and no cross tangents. We assume that X
satisfies the following general position requirements:

i) all inflection points of X are generic,
ii) X has no inflectionary osculating plane which is tangent to the curve

at any point other than the point of inflection,
iii) X has no double osculating planes.

We consider the torus C X C and its representation in a plane. Let (x, y) be
the Cartesian coordinates in the plane we identify all points (x + 2πn, y + 2ττra),
m and n integers, with the point (x, y). In particular, the y-axis of the plane
and all lines x = ± 2πn are identified with the set of points (0, C), and the x-
axis is identified with the points (C, 0). Thus we speak of the horizontal axis
{(x, 0)} and of the vertical axis {(0, y)}. Let Δ = {(/, 0} denote the diagonal of
C xC.

We define three closed one-dimensional submanifolds of C X C. Let D* be
the closure in C x C of the set of pairs of points (t1912), tλφt2, such that there
is a plane tangent to X at both points, i.e., the secant X(t^) — X(t2), the
tangent X\t^ and the tangent X'(Q all lie in a plane. D* is locally the zero
locus of a smooth function. For

D* - Δ = {(*„ t2) € C X C - ΔI\X{tx) - X(t2),X'(ti),X\Q\ - 0} ,

where |, , | denotes the determinant.
Let

D(t1912) = \X(O - I f e ) , ! ^ ) , ^ ) ! .

At a point (tί912), tx Φ t2, such that D(t1912) = 0 and (dDjdt^(fl912) = 0, the
osculating plane of X at tλ contains the tangent Xf(t2) and the secant X(t^) —
X(t2). Since X has no double osculating planes, D(t1912) = 0 and (dD/dtJit^ t2)
= 0 implies (dD/dt2)(t1912) Φ 0. Thus the zero locus of D{tl912) is a curve in
C xC - Δ.

To represent D * o n a set which includes points of the diagonal we use the
function studied by Pohl [4], which he calls the Stieltjes function of four varia-
bles. Choose homogeneous coordinates (x0, xl9 x2, x3) in£ 3, and let (Xι(f)9x2(t)9

x3(t)) be a local representation of X in nonhomogeneous coordinates so that
X(f) = (1,^(0,^2(0^3(0) is local representation of X in the homogeneous
coordinates. We suppose that the xt are difϊerentiable of class C4 and defined
on an open interval /. Consider the expression
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It is not hard to see that

K(t, t, t, t) = \X(t)9 X'{t\ X"(f), X'"(t)\ .

Pohl [4, p. 359] shows that K is differentiable of class C1. We consider

Kit ί)-K(t t t t ) - W
(t2 - ty

which is the Stieltjes function with pairs of coincident points.
For tλ Φ t2, KD(t1912) = 0 if and only if D(t1912) = 0. At a point (t1912),

tλ Φ t29 such that KD(t1912) = 0, we have

3tί)(t, t2) = 2131(80/80(^4) , i = 1 ? 2 .
(t2 - 0*

For tλ = t2 = t,

(dKD/dt)(t,t) = \X(t),X'(t),£"(t),X""(t)\ = |Z '(0,*"( ' ) ,*""(01

Thus KD(t, t) = 0 if and only if X has an inflection point at t. Since all inflec-
tion points are generic, dKD/dt Φ 0, so that if KD(t9 i) = 0, {dKDldt^{t91) Φ 0.
Thus we see that the zero loci of KD(t1912) and of D{tλ, t2) are locally curves,
and that these loci agree at all points in C X C for which they are both defined.
So D*9 the closure in C x C of the set of pairs of points (t1912), tλ Φ t2, such
that D(t1912) = 0, is a one-dimensional submanifold of C X C.

Similarly, we define /* to be the closure in C X C of the set of pairs of
points (ί1? t2), tλΦ t2, such that the osculating plane of X at tx contains the
secant X(tλ) — X(t2). As above, we can show that the set /* is a one-dimen-
sional submanifold of C X C. To see this we consider the zero loci of the
following functions:

J(t1912) = \X(tλ) - X(t2), Z ' ( O , X " ( t λ ) \ , txφt2,

κ ( t n _ 3

(t2 - O3

We define TV* to be the closure in C X C of the set of pairs of points (t1912),
tx φ t2, such that the osculating plane of X at t2 contains the secant Z(^) —
X(t2). N*, also, is a one-dimensional submanifold of C X C as may be seen
by considering the zero loci of the functions:

N ( t 1 9 1 2 ) = \ X ( O - X ( t 2 ) , Γ ( / 2 ) , X " ( t 2 ) \ , t λ φ t 2 ,
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Notice that N(t1912) = —J(t2, tλ), and that KN(t91) = 0 if and only if X has an
inflection point at t.

Remark. £>*, TV* and /* can be shown to be closed one-dimensional sub-
manifolds of C X C even if X has cross tangents.

Suppose that the osculating plane of X at t2 contains the tangent X\tι),
tλ Φ t2. Then it is easy to show that D* intersects TV* at (t1912), D* has a
vertical tangent, and TV* has a horizontal tangent at this point. In the same
way, if the osculating plane of X at tx contains the tangent X'(t2)9 then D*
intersects /*. D* has a horizontal tangent, and /* has a vertical tangent. The
inflectionary osculating plane of X at t2 contains the secant X(t^ — X(t2) if and
only if TV* has a vertical tangent.

Suppose D{tl912) = 0 and (dD/dt2)(t1912) Φ 0. Then in some neighborhood
of (t1912) the slope mD of D* is given by

3D /dD

Since D(t1912) = 0, we can write X\tλ) = A(X{tλ) - X{t2)) + BX'{t2) where
A and B are nonzero. Then

m -

For each of the curves D*9 /* and N*9 the curve is entirely on one side of
the tangent in some neighborhood of a point at which the curve has a horizontal
or vertical tangent. That is to say, for example, if the D* curve has a vertical
tangent at a point, then at this point the curve changes direction either from
left to right or from right to left. We say the curve has an extremum at such
a point.

Let D(t1912) = 0 and (dD/dt.Xt,, t2) = 0. Then

(d'D/dt^it^Q = \X{tx) - X{t2\X'"itι\Xr(t2)\ Φ 0 ,

since X has no inflectionary osculating plane tangent to the curve at a point
other than the inflection point. Thus D* has an extremum whenever it has a
horizontal tangent and, by the symmetry of the arguments, whenever it has a
vertical tangent. Similarily, since X has only generic inflection points, /* has
an extremum whenever it has a vertical tangent. Since X has no double osculat-
ing planes, /* has an extremum whenever it has a vertical tangent. Since
J(t1912) = —N(t19 ί2), TV* also changes direction at horizontal or vertical tangents.

Suppose X has no inflection points. Let T, 0 < T < 2τr, be the smallest t
such that N(t9 0) = 0. Consider the set of points (ti9 0) such that 0 < tt < T
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and D{t^ 0) = 0; the D* curve has either negative or positive slope at each
of these points. Then there are at least as many points where the slope of D*
is positive as where it is negative.

To see this recall that if X has no inflection points, then D* and N* never
meet the diagonal and N* has no vertical tangents. So D* cannot have a
vertical tangent in the triangle bounded by y = 0, x = T and x = y. Suppose
the opposite, let D(x,y) = 0 and (dD/dy)(x,y) = 0 where 0 < x < T and
y < x. Then N(x, y) = 0. iV* has no vertical tangents, so the branch of N*
through (x, y) can be written as g(x) = y. Since iV* cannot cross the diagonal,
g(x) < x. Now g(x) > 0 since TV* crosses the x-axis transversally. Thus there
is a value α, 0 < a < x < T, such that N(a, 0) = 0. But this contradicts the
choice of T.

The intersections of D* with the c-axis are finite in number since each inter-
section is transversal. Thus it is easy to give a relationship such that for each
intersection for which the slope of D* is negative there is at least one intersec-
tion for which the slope of D* is positive.

4. Let X : [0, 2π] —> Ez be a simple closed space curve, diίferentiable of
class C4, with nonvanishing curvature and no cross tangents. Let X have an
arc A on the surface of the convex hull of X such that through a point on the
arc, say 0, X has no trisecants. We assume that X does not lie in a plane and
that:

i) X does not have an inflection point at 0,
ii) X(0) has a plane P of support which meets the curve at no other point,

iii) the determinant \X(t) - X(0), ^ ( 0 ) , X"(0) | > 0 for 0 < t < ε,
iv) for / e [0, 2π] if one of the functions D(t, 0), J(t, 0) or N(t, 0) is zero,

then the other two are not zero at this point.
The assumptions i), ii), iii) and iv) do not restrict the curve. It is easy to see

that some point in the neighborhood of 0 satisfies i) and iv). After a reflection
of X through the osculating plane of X at 0, some point in the neighborhood
of 0 satisfies i), iii) and iv). Suppose at the point t0 satisfying i), iii) and iv) a
plane P of support meets X at other points. P meets X tangentially at these
points since X is on the surface of its convex hull at t0. A small deformation
of X in the direction of the outer normal to P at X(t0) gives a curve which
satisfies all assumptions.

For convenience of representation we suppose X(0) is the origin in E3, the
plane P of support is the plane z = 0, and X(t) lies in the half space z > 0.
Consider the plane Pr: z = C > 0. The osculating plane of X at 0 and the
plane Pf intersect in a line L which we picture as a directed horizontal line in
Pf increasing to the left. Let X(t) denote the central projection of X(ί) through
X(0) onto the plane P''. Then we may write

X(t) = A{t)X(t) where A(t) > 0 .

(See, for example, [3, pp. 112-114].)
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X(t) is simple since X has no trisecants at 0. The osculating plane crosses
X at 0 and so crosses X at an odd number of other points. Thus X(t) crosses
the line L an odd number of times. X(f) is asymptotically tangent to L as t—>0,
for projection preserves the order of contact. We have X(t), 0 < / < e, above
the line L and going left, for the determinant \X(t) - X(0)9X'(0),X"(<a)\ > 0
for 0 < t < ε. The points t at which D* meets the horizontal axis of the torus,
i.e., D(t, 0) = 0, are also the points t at which X(t) has a horizontal tangent.
Since the projection preserves the order of contact, \X(i),X'(f),X\ϋ)\ = 0 if
and only if X'(t) is parallel to L. X has an inflectionary tangent at / if and only
if J(t, 0) = \X(t), X'(t), X"(t)\ = 0, that is, if and only if the osculating plane
at / projects into the tangent line of X at t. X meets the line L at t if and only
if N(t, 0) = 0. X(t) crosses L transversally, and has an extremum whenever
it has a horizontal tangent, by assumption iv) see Fig. 4.1.

X has horizontal
tangent D(t, O) = 0

X has inflection
point /(/, O) = 0

Fig. 4.1

If X has a horizontal tangent at t, then X has a relative maximum or relative
minimum at t, that is, X has no inflectionary horizontal tangents. For X has
a horizontal tangent at t if and only if D(t, 0) = 0, and X has an inflection
point at t if J(t, 0) = 0 by construction D(t, 0) = 0 implies J(ί, 0) ψ 0. There
are four possibilities for a horizontal tangent of X at a point t:

(a) Z(ί) is a maximum and -XΓ'ίO is parallel to L,
(b) AΓ(ί) is a maximum and ^ ( ί ) is opposite to L,
(c) X(t) is a minimum and X\t) is opposite to L,
(d) X(t) is a minimum and X'{t) is parallel to L.
As before, let Γ be the smallest value so that N(t, 0) = 0 for 0 < t <2π.

Thus T is the smallest value such that X(t) meets L. Let a, b, c, and d be the
numbers of horizontal tangents of type (a), (b), (c), and (d) respectively, for
0 < t < T. Thus these are the numbers of horizontal tangents of X before X
meets L. With this notation we state a proposition:

Proposition. Let X : [0, 2π] —> E3 be a simple closed space curve, which
does not lie entirely in a plane, is differentiable of class C\ and has nonvanίsh-
ing curvature and no cross tangents. Also let X have an arc on the surface of
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the convex hull of X such that at some point on the arc X has no trisecants.
Then

a + c - (b + d) = 1 .

Also, for 0 < t < T, the horizontal tangents of types (a) and (c) correspond
to points in C X C at which £>* meets the x-axis with negative slope, and
horizontal tangents of types (b) and (d) correspond to D* intersections with
positive slope.

Proof. The line L divides the plane into two half-planes. We say that
X(0 + ε), ε > 0, is above the line L, and we assume X does not have a
horizontal extremum for 0 < t < ε. Let Y be a line perpendicular to L through
the point X(0 + ε), and consider the sectionally smooth simple closed curve
Z given by the three arcs, X(t), ε < t < T, L between X(T) and Y, and Y
between L and X(ε). For example Z might look like the following:

Fig. 4.2

Z is a sectionally smooth closed curve with rotation index 1.
Now we can "smooth out" the corners of Z to obtain a smooth simple closed

curve which we shall also denote by Z. This construction can be performed
without altering the number of horizontal tangents of X for t < T.

Let Γ : Z —> S1 be the tangent map, which maps a point of Z into the unit
vector through the origin parallel to the tangent vector of Z. The index of
rotation of Z is also the degree of the map Γ, and Γ is a differentiable map
of Z into S1.

By [8, p. 127, Theorem 4.2] the local degree of the map Γ is also one.
The curve Z has no more horizontal tangents directly parallel to L than X has.
Thus since Γ~\π) = 1 we have a — d — 1. The curve Z has one more
horizontal tangent oppositely parallel to L, namely, the strip — L which is in
the curve Z. Thus since Γ~K0) = 1 we have —b + c+l = l.

Combining these equations we have

a + c — (b + d) = 1 .

Recall that the slope of D(t, 0) = 0 is given by

*, 0)
mn =

B2N(t, 0)
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where B is a constant. At a tangent of type (a) mD < 0. To see this we apply
an affine transformation to E3 so that the support plane P is perpendicular to
the osculating plane Q of X at 0. We define three vectors A = X'(0), B =
projection of X(t) into Q, and C = projection of ^(/) into P. ^4, B, C are
independent since X(t) lies in neither F o r Q We apply an affine transforma-
tion with positive determinant so that A, B, C are orthonormal. Now we con-
sider the following in terms of the vectors A, B, C : X'(0) = a A X(t) = /3£
+ rC ? <̂ 9 ^

 a n d f are positive, by our choice of transformation.

Z"(0) = Jfi* where J? > 0 if we use the arc length as the parameter.
X\t) = &Y(ί) + ε̂ 4 ε is negative for the tangents of type (a). X'\t) = ηX(t)
+ ΘC + λA θ is negative also for type (a). Thus the slope

which is negative.
Likewise for horizontal tangents of type (c) mD < 0 and for (b) and (d) mD

> 0. This completes the proof of the proposition.
Now we state and prove the main theorem of this paper.
Theorem II. Let X : [0, 2π] —> E3 be a simple closed space curve, which

does not lie entirely in a plane, is diβerentiable of class C\ and has non-
vanishing curvature and no cross tangents. Also let X have an arc on the
surface of the convex hull of X such that at some point on the arc X has no
trisecants. Then τ has at least two sign changes.

The proof is immediate. By Theorem I we may assume that X satisfies the
general position requirements. If X has no inflection points, then preceding
the first TV* intersection the number of £>* intersections with negative slope is
always less than or equal to the number with positive slope. (See § 3.) How-
ever, by the proposition in this section we see that preceding the first N* inter-
section the number of D* intersections with negative slope is always one larger
than the number with positive slope. Thus X must have at least one inflection
point. However, by the general position argument the torsion changes sign at
this point. So, since X is closed it must have at least two inflection points.
This completes our proof.
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