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SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS
TO HYPERSURFACES OF Sn x Sn

GERALD D. LUDDEN & MASAFUMI OKUMURA

In his recent paper [4], Simons has established a fundamental formula for
the Laplacian of the length of the second fundamental tensor of a submanifold
of a Riemannian manifold and has obtained an application in the case of a
minimal hyper surf ace of a sphere. Nomizu and Smyth [2] then obtained an
important application of the formula of Simons' type to a hypersurface of con-
stant mean curvature immersed in a space of nonnegative constant curvature.

On the other hand, Chern-do Carmo-Kobayashi [1] have obtained a classi-
fication theorem for submanifolds with the second fundamental tensor of con-
stant length which is immersed in a sphere.

In this paper we discuss the same type of problem for compact orientable
hypersurfaces with constant mean curvature immersed in Sn X Sn.

In § 1 we review some fundamental formulas for a hypersurface of Sn χSn.
In § 2, using the formulas obtained in § 1 we establish an integral formula

of Simons' type and obtain a theorem corresponding to that of Simons' paper.
In § 3 we consider an invariant hypersurface of Sn X Sn and prove some

classification theorems corresponding to those of Chern-do Carmo-Kobayashi
and of Nomizu-Smyth.

1. Hypersurfaces of Sn x Sn

Let Sn be an n-dimensional sphere of radius 1, and consider Sn x Sn. We
denote by P and Q the projection mappings of the tangent space of Sn x Sn

to each component Sn respectively. Then we have

(1.1) P+Q=l,

(1.2) P2 = P, Q2 = Q,

(1.3) PQ = QP = 0 .

We put

(1.4) J = P-β.
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Then by virtue of (1.1), (1.2) and (1.3), we can easily see that

(1.5) P = I ,

(1.6) t r/ = O,

where tr / denotes the trace of /. We call / an almost product structure on
Sn x Sn.

We define a Riemannian metric on Sn X Sn by

g(X, F) = gXPX,PΫ) + gXQX, QΫ) ,

where g' is the Riemannian metric of Sn. Then it follows that

(1.7) g(JX,Ϋ) = g(X,JΫ),

(1.8) Γ*/ = 0 ,

where F denotes the operator of covariant differentiation with respect to the
Riemannian connection of g.

Since the curvature tensor of Sn is of the form

R'(X', Y')Zf = g\Y\Zf)Xr - g\X\Zf)Yf ,

the curvature tensor of Sw x Sn is given by [5], [6]

(1.9)

u(γ, z)x - g(x, z)γ + g(jγ, zyjx - g(jχ,

from which we can easily see that Sn X Sn is an Einstein manifold because of
(1.6) and (1.7).

Now, let M be a hyper surf ace of Sn X Sn, and B the differential of the
imbedding i of M into S7* X Sn. Let X be a tangent vector field of M. Apply-
ing / to BX and to the unit normal vector N of M, we obtain vector fields
JBX and /iV which can be written in the following way:

(1.10) JBX = BfX + u(X)N ,

(1.11) JN = BU + λN .

Then /, w, [/ and λ define a symmetric linear transformation of the tangent
bundle of M, a 1-form, a vector field and a function on M respectively. More-
over, we easily see that

where g is the induced Riemannian metric on M.
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If u is identically 0, then M is said to be an invariant hypersurface, that is,
the tangent space TX(M) is invariant under /. We will see later (1.20) that this
is equivalent to λ2 = 1.

We denote by V the operator of covariant differentiation with respect to the
Riemannian connection of g. Then the Gauss and Weingarten equations are
given by

(1.12) VBXBY = BVXY + h(X, Y)N ,

(1.13) ΓBχN= -BHX ,

where h is the second fundamental tensor of the hypersurface and satisfies

h(X, Y) = g(HX, Y) = s(X, HY) = h(Y, X) .

The relation between the curvature tensors of Sn x Sn and of M is given by

R(BX, BY)BZ = B{R(X, Y)Z - h(Y, Z)HX + h(X, Z)HY}
( 1 ' 1 4 ) + {FxKY, Z) - Fτh(X9 Z)}N .

Substituting (1.9) into (1.14) and making use of (1.10), we obtain

R(X, Y)Z = i{g(Y, Z)X - g(X, Z)Y + g(fY, Z)fX - g(fX, Z)fY}

+ h(Y, Z)HX - h(X, Z)HY ,

(1.16) (FXH)Y - iVγH)X = i(u(X)fY - u(Y)fX) .

We apply / to both sides of (1.10). Then by virtue of (1.10) and (1.11) we get

BX = B{fX + u(X)U) + (u(fX) + λu(X))N ,

which implies that

(1.17) fX = X - u(X)U ,

(1.18) uiίX) = -λu(X) .

Applying / to both sides of (1.11), we obtain

N = B(fU + λU) + (u(ϋ) + λ2)N ,

that is,

(1.19) fU= -λU ,

(1.20) u(U) =g(U,U) = 1 -λ2 .
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Pick an orthonormal frame Ea, a — 1, ,2n in such a way that the first
In - 1 E.'s satisfy J?< = BEt, and£2 7 ! = N. Then because of (1.6) and (1.10)
we have

(1.21)
tr/ =

= Σ {IE., EJ - g(JN, N) = tr / - λ = -X .

Differentiating (1.10) convariantly and making use of (1.10), (1.11), (1.12)
and (1.13), we have

J(BFYX + h(X, Y)N)

= BFγ(fX) + h(fX, Y)N + (Fγu)(X)N + u(FrX)N - u(X)BHY ,

from which we have

(1.22) (Fyf)X = h(X, Y)V + u(X)HY ,

(1.23) (Fru)(X) = MX, Y) - KfX, Y) .

Similarly differentiating (1.11) covariantly, we get

(1.24) FXU = -fHX + λHX ,

(1.25) Xλ = -2h(JJ,X) = -2u(HX) .

We also have

(1.26) tr FXH = FΣtτH=Σ g((FEiH)X, Et) ,
i

where Ei9i = 1, , In — 1 are the vector fields which extend to an ortho-
normal basis in TX{M) in a neighborhood of x.

2. Integral formulas for the hypersurface

Consider the function S = tr H2. Since the unit normal vector N is defined
up to a sign, S is defined globally on M. We will now compute the Laplacian
AS. We have

XS = VXS = Vx tr H2 = tr VZH
2

= tr (FXH)H + tr H(VXH) = 2 tr (VXH)H ,

from which we have
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YXS = 2 tr (FY(FXH))H + 2 tr (VXH)(VYH) ,

(VYX)S = 2tr (FFγXH)H .

Hence

(2.1) \Δ

Putting

2n-l

i = l

K(X, Y) = vY

- VrEtEt
mm + tr

- VrτZH ,

we have

(2.2) K(X, Y)Z = K(Y, X)Z + R(X, Y)(HZ) - H(R(X, Y)Z) .

Let Ei9i = 1, , In — 1 be an orthonormal basis in TX(M), and extend the
Ei to vector fields in a neighborhood of x in such a way that VγEi — 0 at x.
Let Z b e a vector field such that VYX = 0 at x. Replacing X, Y, and Z in
(2.2) by Eί9 X and Et respectively and taking account of (1.16) and the fact
that VγEi = 0, FYX = 0, we obtain

K(Ei,X)Ei = (VESFZH^E, -

= VEί{(VxH)Ez) -

= VEi{{VEiH)X + i(u(X)fEi - u(Et)fX)} .

Continuing this computation and making use of (1.22), (1.23), we have at x

K(Eί,X)Eί - {VEί(VEίH))X + i{α/*(X,£,) - h(iX9Et))fEt

from which we get

- h(fEi9Et))fX - u(X)HEt)} ,

2

K(Ei,X)Ei =

i{«(Z)(trH)C7 + u

- λox mfx +

-*Σ u(E;,u{X)HEλ
i=l J

Here
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Zh{X,EMt = fCEg(HX,EdE) = fHX ,

2n-l 2n-l

Σ g{υ,EMEt,X) = Σ g{U,EMHX,Ez)
ί=l i=l

= HU ,

ϊt)Et) = g(HX, U) .
ί = l

Hence

t,X)Ei =nΣ K(Ei9Eτ)X + \{λfHX - fHfX + u(x)(trH)U
(2.3) i=l

+ (tr Hf)fX - λ(tτ H)fX - g(HX,

Thus we get from (2.2) and (2.3) that

* {λfHX - ftyX + u(X)(tτH)U + (tr Hf)fX

- λ(tΐ H)fX - g(HX, U)U}

JEi + R(Ei9X)(HEt) - H(R(Eί,X)Eί)} .
2n-l

i = l

We now assume that the hypersurface M has constant mean curvature, that is,
tr H = const. Then (1.26) and the choice of Et and X show that

27Z-1 2n-l 2n-l

Σ KpCEdE,, = Σ WX(VE(H) - VPΣEiH)Ei = Σ {Vx{VEiH))Ei = 0 .
i=l i=l ί=l

Hence we get

* E J X = -\{λfHX - fHfX + u(X)(trH)U

(2.4) + (tr Hf)fX ~ Λ(tr H)fX - g(HX, U)U}

" - H(R(Ei,X)Ei)} .

On the other hand, by (1.15) we have

2n-l

Σ R(EifX)(.HEt) = #g(.X,HEt)Et - giE^HEJX + g(fX,HE{)fEt

- hiX^EJHEi - hiE^HEJHX
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= ±{HX - (tr H)X + fHfX - (tr Hf)fX}

+ H3X - (tr H2)HX ,

*Σ H(R(Ei,X)Ei) = ί{g{.X,Eί)HEi - giE^EJHX + g(fX,Ei)HfEι
ί = l

- gifE^EJHFX} + KXiEJHEt - h(EuE%)HX

= J{2(1 - ή)HX + HfX - (tr f)HfX}
+ WX - (tr H)H2X .

Substituting the above two equations into (2.4) and making use of (1.17), we
have

*ΣK(Ei9Et)X = -i{λfHX - 2fHX - u(X)(trH)U + 2(tτHf)fX

which implies that

- λ(tr H)fX - g(HX, U)U + (tr H)X + 2(tr H2)HX

- 2(n - l)HX - u(X)HU + λHfX - 2(tr H)H2X} ,

2 Σ K(Ei9Et)HX = -λfH2X + 2fHfHX + u(HX)(tτ H)U
i = l

- 2(tr HfifHX + λ(tr H)fHX + g(HU,HX)U

- (tr H)HX - 2(tr H2WX + 2(n - 1)H2Z

+ u(HX)HU - λHjHX + 2(tr ^ f l ' Z .

Thus we have

J 5 = 2 ' Σ 1 {gίKiEt, EJHE,, Ej) + tr (V E{W}

(2.5) = -2λ tr /fl2 + 2 tr (/fl)2 + (tr H)g(HU, U) - 2(tr Hf)2

+ λ(ti H) tr fH + 2g(HU, HU) - (tr H)2

- 2S(S - (it - 1)) + 2(tr fl) tr ί?3 + 2g(Ffl,

where the metric g is extended to the tensor space in the standard fashion. In
particular, if the hypersurface M is minimal, that is, if tr H = 0, then

±ΔS=-λ tr fH2 + tr (/i?)2 - (tr Hf)2 + g(HU, HU)

+ S((l)S)

Next we want to compute div ((tr fH)U - fHU). Since div Z = ZT=Y g(VEiZ,
Et) for any vector field Z, we first have
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Fx(tr (fH)V) = {Vx{tτ1H))U 4- (tr/fl)FxC7
(2.7) 2»-i

= Σ Fz(g(JHEt,Et))U - Oxfmmx + λ(tτfH)HX ,

because of (1.24). Remembering the choice of Et and (1.22), we have a t *

= g(H2Ei,X)g(U,Ei)

= gVPX,Et)g(U,Et) + g(HU,Et)g(.HX,EJ

Therefore

2 κ - l

Σ FxgifHEi, EJ = 2g(H*X, V) + tr /(Fτfl) .
i = l

Substituting this into (2.7), we have

Γx(tr (/fl)ϋ) = 2^(H2Z, C/)C/ + (tr fFXH)U - (tτfH)fHX + λ(tr fH)HX

from which it follows that

2 n - ln

div (tr (/fl)ϋ) = Σ {2g(fl2£i; V)g(υ,Eτ) + (fxWEJί)g(.Et, V)}

- (tr jHf + A(tr /fl) tr H .

Here

7, ϋ) = g(HU,HU) ,
i i , U) = g

Hence

div ((tr tffl))ϋ) = 2g(HC7, HU) + tr (/Fσfl) - (tr fH)2

+ λ(tτ fH) tr H .

On the other hand we have, from (1.22), (1.24) and (1.16),

= (Vzf)HU + KVXH)U + fHVxV

= g(H2U,X)U + g(HU,U)HX + WVH)X

= g(H*U, X)U + g(HU, U)HX + WΏH)X -
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+ i ( l - ^2)(X - U(X)U) - (fH)2X + λfH2X ,

from which it follows that

div (SHU) = 2(#t/, #£/) + g(HU, £/)(tr # ) + tr /Fptf

+ (n - 1)(1 - λ2) - tr (/fl)2 + X tr /# 2 .

Subtracting (2.9) from (2.8), we get

div ((tr fH)U - fHU) = g(HU, HU) - (tr fH)2 + Λ(tr /#) tr H

(2.10) - (tr H)g(HU, U) + tr (/#)2 - λ

+ (n - 1)(1 - λ2) .

In particular, if M is minimal, we get

div ((tr fH)U - fHU)
(2.11)

= g(HU, HU) - (tr fH)2 + tr (fH)2 - λ tr /tf2 + (n -

Now we compute div ((tr H(U). Since M has constant mean curvature, we have

Vx((tτH)U) = (tr H)PZU = (ti H)(-fHX + λHX) ,

which implies that

(2.12) div ((tr H)U) = - (tr J¥) tr fH + ;(tr # ) 2 .

Thus we have

\ΔS - div ((tr fH)U - fHU) - \ div ((tr H)U)

= f (tr H)g(Hl7, C/) - \(λ - l)(tr fl) tr fH - J(l + ^)(tr Hf

_ 5(5 - (n - 1)) + (tr H) ti H3 - (n - 1)(1 - Λ2) + ^(FH, FH) .

Assume that the hypersurface M is compact and orientable. Integrating the
above equation over M, we get, because of Green-Stokes' theorem,

ί {f (tr H)g(HU, U) - i(λ - l)(tr H) tr fH
J M

(2.13) - f(l + ΛXtr H)2 - S(S - (n - 1)) + (tr H) tr H*

- (n - 1)(1 - λ2) + g(FH, FH)}dM = 0 .

In particular, if the hypersurface is minimal, then

(2.14) f {S(n - 1) - 5) - (n - 1)(1 - λ2) + g(FH, FH)}dM = 0 .
JM
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Similarly, if we integrate

\ΔS - div ((tr jH)U - jHU) + div ((tr H)U) ,

then we have

ί {|(tr H)g(HU, U) - \{λ + l)(tr H) tr fH
J M

(2.15) - i ( l ~ Λ)(tr H)2 - S(S - ( n - 1)) + (tr H) tr

- (n- 1)(1 - λ2) + g(FH, VH)}dM = 0 .

From (2.14) we get easily
Theorem 2.1. A compact orientable minimal hypersurface of Sn X Sn

(n > 1) satisfying

(2.16) ί (S2 - (n - \)S)dM > ί |
J3f JM

dM

is an invariant hypersurface.
Corollary 2.2. A compact orientable minimal hypersurface with parallel

second fundamental tensor of Sn X Sn satisfying S > n — 1 is an invariant
hypersurface.

Corollary 2.3. A compact orientable totally geodesic hypersurface of
Sn X Sn is an invariant hypersurface.

3. Invariant hypersurfaces of Sn X Sn

In this section we assume that the hypersurface M is invariant, i.e., (1.10)
can be wrttten as

(3.1) JBX = BfX .

Since the 1-form u and the vector field U vanish identically, we have

(3.2) fX = X,

(3.3) 1 - λ2 = 0 ,

(3.4) ?zf = 0,

(3.5) Xλ = 0 .

We may assume that1 λ = 1 in the following discussions. Then the formulas
(2.13) and (2.14) become

1 If we take λ — — 1, then we use (2.15) instead of (2.13) and get the same results.
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(3.6) f {5((n - 1) - S) - (tr Hf + (tr H) tr H3 + g(FH, VH)}dM = 0 ,
J M

(3.7) ί {S((n - 1) - 5) + g(FH, VH)}dM = 0 ,
J M

respectively. Thus we get
Theorem 3.1. Let M be a compact orientable invariant minimal hyper-

surface of Sn X Sn. Then either M is the totally geodesic hyper surf ace or S =
n — 1, or S(x) > n — 1 at some x e M.

Corollary 3.2. Let M be a compact orientable invariant minimal hyper-
surface of Sn X Sn. If S < n — 1, then M is a totally geodesic hypersurface.

Now let

T,(x) = {X e T , ( M ) ;fX = X}, T_λ(x) = {X e TX(M) fX = -X) .

Then the correspondence of x e M to Tλ(x) and that to T_λ(x) define (n — 1)-
dimensional and n-dimensional distributions respectively, since t r / = — λ
= — 1. By virtue of (3.4) it follows that both distributions are involutive. We
easily see that if X e Tλ(x) and Y e T_λ(x), then VYX € 7\(X) and VXY € T_^x).
Hence both distributions are parallel. Moreover, for the vector fields X and Y
chosen in the above way, we have g(VzX, Y) = 0 and g(FwY, X) = 0, where
Z e Γ J O ) and W e Γ^CX). Thus the integral manifolds of Tλ(X) and T_λ(X)
are both totally geodesic in M. By standard arguments (see [2]) we know that
M is a product of the integral manifolds of the distributions Tx(x) and T_λ(x).
In the next step we want to show that the integral submanifold of T_λ(x) is Sn.

Let X e Γ ^ ί Z ) . Then by virtue of (1.1), (1.4) it follows that

PBX = ±(IBX + JBX) = \{BX + BfX) = 0 .

Thus BX belongs to the tangent space T(Sn) which is defined by VQ = {X
QX = X). Conversely, if we take a vector field X belonging to VQ9 X can be
written as a sum of the tangential components and the normal components.
So we put

X = BX + aN .

Applying P to the above equation, we have

0 = PX = PBX + aPN = \{{IBX + JBX) + a(IN + JN)}

BfX + 2aN} ,

from which we have

fX = -X , a = 0 .
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This means that X = BX, and consequently VQ is isomorphic to BT_x(x).
Thus, the integral submanifold being unique since M is complete, the integral
submanifold of T_λ(x) must be Sn. If X € T^x), then the same discussion as
above shows that BX e VP = {X; PX = X}. Since the integral submanifold
of VP is another Sn, the integral submanifold of Tλ(X) is a hypersurface of Sn.
Thus we have

Theorem 3.3. A complete invariant hypersurface of Sn X Sn is a product
manifold Mf X Sn, where Mr is a hypersurface of Sn.

In order to get further results, we prove
Lemma 3.4. Let P and Q be the projection of T(M) into T(M') and T(Sn)

respectively. Then we have

(3.8) HQX = 0 .

Proof. By the definitions of /, P, Q, we have

JBQX = (P - Q)BQX = B(P - Q)QBX = -QBX = -BQX ,

since VQ = BT_λ{x). Hence

(3.9) VBY{JBQX) = -ΨBY(BQX) = ~BVY{QX) - h(Y, QX)N .

On the other hand, we have

VBY{JBQX) = J(BFAQX) + h(Y, QX)N)

(3.10) = -BFY(QX) + h(Y, QX)JN

because of the fact that FY(QX) <=. VQ and JN = N.
Comparing (3.9) and (3.10), we have h(Y, QX) = 0, from which (3.8) fol-

lows.
We consider the immersion V: Mf —> M' X Sn = M, and denote the differ-

ential of V by J3'. Then we have

(3.11) FBB,γ,BBfX> = BBfF'γ,X
f + "Σ A^Z', Y O ^ ,

A = l

where Xf, Y1 e T(M'), and /ẑ 's are the second fundamental tensor with respect
to the normals N'Λ. Now we choose the last normal Λζ+1 in such a way that
Λζ+1 is the unit normal to Mf in 5W.

On the other hand, we have

FBB,γ,BBrX' = BFB,γ,B
fXf + h(B'X',BΎ')N ,

from which it follows that
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(3.12) VBB.Y.BB'X' = BB'VΎ.X' + £ K{X', Y')BNa + h(B'X',BΎ)N .
a = l

Comparing (3.11) and (3.12) and remembering the choice of normals, we
get

(3 13)

Since M' is a totally geodesic submanifold in M' x S", it follows that
ha(X', Y') = 0 for a = 1, , n. Thus

n + 1

(3.14) Σ*H'Λ
p = txH'n+1

p ,
A = l

for any natural number P. Furthermore,

2n-l n-1 n

tr Hp = Σ S(HpEi,Ei) = Σ g(HpB'EA,B'EA) + Σ 8(HpN't,N't) ,
i=l A=l ί=l

where N't, t = 1, , n are unit normals to M! in M' x Sn. Since there exist
X't in T(M) such that N't = QXt, we have HPN[ = 0 because of Lemma 3.2.
Thus we get

t r # p - n^j{HpBΈA,B
fEA) =n^g{Hf

n+

pEA,EA) = trH'n + 1

p .

This shows that, once we fix a choice of normals in the above way, tr Hp

is a function on M'. The immersion i: M —> Sn X Sn being V x id: Mf X Sn

—>Snχ Sn, we have that the second fundamental tensor H'n+1 is identical with
that of M/ in Sn. Thus, denoting the second fundamental tensor of Mf in Sn

by R' and using (3.6), (3.7) and Fubini theorem of measure theory, we have
that

+ (tr Ή!) tr I

(3.15) yJM'~

+ g(FH, VH)dM = 0 ,
J M

(3.16) ([ S'((n - 1) - S')dM'\ vol Sn + ί g(VH, PH)dM = 0 ,
\J M' J J M

where 5 ; = tr H/2 = tτH2 = S.
We first consider the case where M is a minimal hypersurface. In this case,

if S = 0, it follows that S' = 0 and consequently Mr is the totally geodesic
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great sphere of Sn. Thus we have M = Sn~ι X Sn, where both S71-1 and Sn are
of radius 1.

If S = n — 1, then Sf — n — 1. Applying Chern-do Carmo-Kobayashi's
theorem, we have AT = Sm(Vm/(n - 1)) x Sn-TO-1(V(w — m — l)/(n - 1)),
where we denote the radius of spheres in the parentheses. Hence we have M =
SmWm/(n - 1)) X S " - * - 1 ^ ^ m - l)/(n - 1)) X Sn(l).

Theorem 3.5. The SmWm/(n - 1)) x Sn~m-\<J(n - m - l)/(n - 1)) X
5W(1) m 5W X Sn are the only compact orientable invariant minimal hyper-
surfaces of Sn X Sn satisfying S = n — 1.

Combining Theorem 3.1 and Theorem 3.5, we have
Theorem 3.6. The Sn~\l) X Sn(l) and

SmWm/(n - 1)) X S^-KΛn -m- l)/(n - 1)) x 5»(1)

αr^ ί/zβ o/tZy compact orientable invariant minimal hypersurfaces of Sn X Sn

satisfying S < n — 1.
Next we consider the formula (3.15). We assume that M has principal

curvatures λ19 , λ2n_1 such that for any pair of λi9 λj9 i, j = 1, , 2n — 1,
λiλj > 0 holds, that is, M has principal curvatures of the same sign or 0. Then
by means of the Cauchy-Schwarz inequality, we have

2 n - l 2n-l 2n-l

(tr H) tr H3 - S2 = Σ (^,1/2)2 Σ (V/ 2)2 - Σ '̂
i l i i l

ί
J M

Thus (3.6) becomes

{(n - 1) tr H2 - (tr H)2 + g(FH, VH)}dM < 0 ,

which, together with (3.15), implies

a Un - ΐ)(\xHn - l (tr Hj
MΛ \ n — 1 /

= (n - l)^ί tr ^ - — — ( t r HOlYdM'λ vol Sn

((tr flO/)]dΛfA vol

= (Λ - l)f f
\JM> n — 1

7>) vol 5W < 0 ,
/

which implies that
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— 1

This shows that Mf is a totally umbilical hypersurface of Sn and consequently

the small sphere of Sn. Thus we get

Theorem 3.7. Sn~\r) x Sw(l) is the only compact orientable invariant

hypersurface of Sn X Sn with constant mean curvature, which has principal

curvatures of the same sign or 0.
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