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SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS
TO HYPERSURFACES OF §” x §*

GERALD D. LUDDEN & MASAFUMI OKUMURA

In his recent paper [4], Simons has established a fundamental formula for
the Laplacian of the length of the second fundamental tensor of a submanifold
of a Riemannian manifold and has obtained an application in the case of a
minimal hypersurface of a sphere. Nomizu and Smyth [2] then obtained an
important application of the formula of Simons’ type to a hypersurface of con-
stant mean curvature immersed in a space of nonnegative constant curvature.

On the other hand, Chern-do Carmo-Kobayashi [1] have obtained a classi-
fication theorem for submanifolds with the second fundamental tensor of con-
stant length which is immersed in a sphere.

In this paper we discuss the same type of problem for compact orientable
hypersurfaces with constant mean curvature immersed in S™ X S”.

In § 1 we review some fundamental formulas for a hypersurface of S* x S*.

In § 2, using the formulas obtained in § 1 we establish an integral formula
of Simons’ type and obtain a theorem corresponding to that of Simons’ paper.

In § 3 we consider an invariant hypersurface of $* X S$™ and prove some

classification theorems corresponding to those of Chern-do Carmo-Kobayashi
and of Nomizu-Smyth.

1. Hypersurfaces of S* X S*

Let S™ be_an n-d—imensional sphere of radius 1, and consider $* X S*. We
denote by P and Q the projection mappings of the tangent space of S x S»
to each component S™ respectively. Then we have

(L. P+0=1,
(1.2) PP=P, =0,
(1.3) PO=0P=0.
We put

(1.4 J=P—-0.
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Then by virtue of (1.1), (1.2) and (1.3), we can easily see that

(1.5) =1,

(1.6) trJ =0,

where trJ denotes the trace of J. We call J an almost product structure on

S™ xS
We define a Riemannian metric on §* X S™ by

g(X,Y) = ¢'(PX,PY) + g(0X,07),
where g’ is the Riemannian metric of S*. Then it follows that
1.7) glXx,Y) = g(X,JY),

(1.8)

N

A_’]—ZO:

where F denotes the operator of covariant differentiation with respect to the
Riemannian connection of g.

Since the curvature tensor of S” is of the form
RX',YNZ =g(Y',ZhX — ¢g¢X',Z2)Y’,
the curvature tensor of S* X S* is given by [5], [6]
(1.9) R(X,Y)Z - o - L
=38, 2)X — g(X,2)Y + gUY,2)]X — g(X,2Z)]Y},

from which we can easily see that S® X S” is an Einstein manifold because of
(1.6) and (1.7).

Now, let M be a hypersurface of S” X S*, and B the differential of the
imbedding i of M into S” X S*. Let X be a tangent vector field of M. Apply-
ing J to BX and to the unit normal vector N of M, we obtain vector fields
JBX and JN which can be written in the following way:

(1.10) JBX = BfX + u(X)N ,
(1.11) JN = BU + AN .

Then f, u, U and A define a symmetric linear transformation of the tangent
bundle of M, a 1-form, a vector field and a function on M respectively. More-
over, we easily see that

8, X) = uX),

where g is the induced Riemannian metric on M.
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If u is identically O, then M is said to be an invariant hypersurface, that is,
the tangent space T,(M) is invariant under J. We will see later (1.20) that this
is equivalent to 22 = 1.

We denote by I the operator of covariant differentiation with respect to the
Riemannian connection of g. Then the Gauss and Weingarten equations are
given by

1.12) VzxBY = BV yY 4+ h(X,Y)N ,

(1.13) VoyN = —BHX ,

where £ is the second fundamental tensor of the hypersurface and satisfies
h(X,Y) =g(HX,Y) = g(X,HY) = h(Y,X) .

The relation between the curvature tensors of S* X S” and of M is given by

R(BX,BY)BZ = B{R(X,Y)Z — WY,Z)HX + WX,Z)HY}

1.14
( ) + {FxW(Y,Z) — Vyh(X, Z)}N .
Substituting (1.9) into (1.14) and making use of (1.10), we obtain

RX,Y)Z = 3{g(Y, D)X — g(X,2)Y + g(fY, 2)fX — &(fX, Z)fY}
+ h(Y,Z)HX — h(X,Z)HY ,

(1.15)
(1.16) PxH)Y — P H)X = 3uX)fY — u(¥)fX) .
We apply J to both sides of (1.10). Then by virtue of (1.10) and (1.11) we get
BX = B(fX + u(X)U) + (u(fX) + au(X)N ,

which implies that
(1.17) fX=X—uXU,
(1.18) u(fX) = —auX) .

Applying J to both sides of (1.11), we obtain

N = B(fU + 2U) + w(U) + )N ,

that is,
(1.19) fU= =20,
(1.20) ulU) =gU,U)=1— 2.
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Pick an_orthonorma_l frame £, =1,---,2n in such a way that the first
2n — 1 E s satisfy E; = BE,, and E,, = N. Then because of (1.6) and (1.10)
we have

twf =3 ¢fE, E) = 3. g(B{E,, BE) = 5 g(JBE,, BE,)
(1.21) i=1 i=1 i=1

2 R -~ ¥ -
= (j a’Ea)_g( N,N):‘-tl']——l:—]

a=1

E}

Differentiating (1.10) convariantly and making use of (1.10), (1.11), (1.12)
and (1.13), we have '

J(BVyX + h(X,Y)N)
= BVy(fX) + h(fX,Y)N + (F yw)(X)N + u(PyX)N — u(X)BHY ,

from which we have

(1.22) FyHX = (X,Y)U + u(X)HY ,

(1.23) Fyw)(X) = 2h(X,Y) — h(fX,Y) .
Similarly differentiating (1.11) covariantly, we get

1.24) VyU = —fHX + 2HX ,

(1.25) XA= —-2nU,X) = —2u(HX) .
We also have

(1.26) trVyH =VytrH =} gV, H)X,E)) ,

where E;,i = 1, --.,2n — 1 are the vector fields which extend to an ortho-
normal basis in T;(M) in a neighborhood of x.

2. Integral formulas for the hypersurface

Consider the function S = tr H?. Since the unit normal vector N is defined
up to a sign, S is defined globally on M. We will now compute the Laplacian
4S. We have

XS =VxS =Vxtr H® = tr V  H?
=tr(PyH)H + tr HV yH) = 2tr V yH)H ,

from which we have
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YXS = 2tr Fy(PxH)H + 2 tr (FxH)VH)
V4 X)S = 2 tr (7, EDH .

Hence

2.1 4SS = Z:Z:;l{tr (7 5 5H — Vpy 5 FDH) + tr (75 H)?) .
Putting
K(X,Y) =Vy(WxH) — Vy,xH ,
we have
22 K(X,Y)Z=K({Y,XZ + RX, Y)HZ) — HRX, Y)Z) .

LetE,,i=1,..-,2n — 1 be an orthonormal basis in T,(M), and extend the
E; to vector fields in a neighborhood of x in such a way that ' ,E; = O at x.
Let X be a vector field such that 'y X = O at x. Replacing X, Y, and Z in
(2.2) by E;, X and E; respectively and taking account of (1.16) and the fact
that VyE; = 0, VX = 0, we obtain

K(E;, X)E;, = V5, VxH)E; — (V,, xH)E,
=V ((VxH)E;) — VxH)(V 5,E))
=V {(Ve.H)X + 3W(X)E; — w(E)fX)} .

Continuing this computation and making use of (1.22), (1.23), we have at x

K(E;, X)E; = V5,V s, H)X + HQWX,E,) — h(fX, E))E;
+ u(x)(W(E;,EQU + w(E)HE) — QhW(E, E)
— h(fE;, E))fX — u(E))(W(E;, X)U + w(X)HE,)} ,

from which we get
. KB, XE, = 5 {(KE E)X + J0h(X, E) — h(X, E))E])
+ H{uCO U + u(X) 3 8(U, E)HE,
— Atr )fX + (tr HHfX

N (U, EYWE, XU — 5 u(Ei}u(X)HEi} .
i=1 i=1

Here
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Z:Z}:h(X, E)E, — f(ijll g(HX, E)E) — fHX ,
T X, EXE, = fHIX
2”11 WE)HE, = 221 'o(U, E)HE, = H(22: 2(U, E)E) — HU,
T o(UEJHE, X) = 3, o(U, E)g(HX, E)
- Z:Zj:g(HX, ¢(U,E)E) = g(HX, U) .

Hence

2n

o & KEOE =5 KEE)X + YifHX — fHIX + @t U

+ (tr H)fX — a(tr H)fX — g(HX, U)U} .
Thus we get from (2.2) and (2.3) that

S K(E, E)X + HAHX — fHX + u(X)(r E)U + (ir H)fX
— 2tr )X — g(HX, U)U)
= "% {K(X, E)E; + R(E;, X)(HE,) — HR(E;, X)E)} .

We now assume that the hypersurface M has constant mean curvature, that is,
tr H = const. Then (1.26) and the choice of E; and X show that

S 7 o7 H)E, = 0 .

i=1

272:11 K(X’ Ez)Ez =2§ (VX(VEiH) — VVinH)Ei =
Hence we get
S K(E, E)X = —}{AHX — fHIX + u(X)(tr H)U
(2.4) + (tr HHfX — A(tr H)fX — g(HX, U)U}
+'5 (R(E, XOHE) — HR(E, XE)} .
On the other hand, by (1.15) we have
ZI R(E;, X)(HE,) = }{g(X,HE)E, — g(E;, HE)X + g(fX, HE)fE,
— 8(fE,, HE){X} + h(X, HE)HE; — h(E,, HE)HX
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= H{HX — (tr H)X + fHfX — (tr HNfX}
+ HX — (tr HYHX ,
z HR(E;, X)E,) = Me(X, E)HE; — g(E,, E)HX + g(X, E)HFE,

— 8(E;, E)HFX} + h(X,E)HE; — h(E;, E)HX
= 3{2(1 — WHX + HfX — (tr PHIX}
+ H'X — (tr H)HX .

Substituting the above two equations into (2.4) and making use of (1.17), we
have

S K(E, E)X = —J{(fHX — 2HX — u(X)(tr H)U + 2(ir H)fX

— Atr H)fX — g(HX, )U + (tr H)X + 2(tr HH)HX
— 2(n — DHX — u(X)HU + 2HfX — 2(tr H)H’X} ,

which implies that

2"t K(E,, E)HX = — X + 2fHfHX + u(HX)(tr H)U
i=1
— 2(tr HHfHX + A(tr H)fHX 4+ ¢(HU,HX)U
— (tr H)HX — 2(tr HH)H*X + 2(n — DH?X
+ u(HX)HU — AHfHX + 2(tr H)H*X .

Thus we have

45 =25 {¢(K(E,, EJHE,, E)) + tr (7 5.}
2.5 = —2Atr fH? + 2 tr (fH)? + (tr H)g(HU, U) — 2(tr Hf)*
4+ A(tr H) tr fH + 2¢g(HU, HU) — (tr H)*
— 258 —(n — 1)) + 2(tr H)tr H® 4+ 2g(FH,VH) ,

where the metric g is extended to the tensor space in the standard fashion. In
particular, if the hypersurface M is minimal, that is, if tr H = O, then

348 = —2atr fH* + tr (fH)* — (tr Hf)* + g(HU, HU)

2.6
2.6 1+ S(— 1) — 8) + gWH, VH) .

Next we want to compute div ((tr fH)U — fHU). Since divZ = } 727 g(V 5 Z,
E,) for any vector field Z, we first have
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Vx(tr (H)U) = (Vx(tr fH))U + (tr fH)V xU

@7 = "5 V2(GHE,, ENU — (tx fH)fHX + Atr fEDHX ,

because of (1.24). Remembering the choice of E; and (1.22), we have at x

V x8¢(fHE;, E,)
= g(VxHHE,,E;) + g(f(VxH)E,, E,)
= g(¢(H’E;, X)U + u(HE)HX,E)) + g(f(V yH)E;, E))
= g(H’E;, X)¢(U,E)) + g(U,HE,)¢(HX,E;) + ¢(f(VxH)E,, E,)
= g(H’X,E)¢(U,E,) + g(HU,E)g(HX,E;) + g(f("xH)E;, E,) .

Therefore
2n—-1
Zl Vxe(fHE;, E;) = 2g(H’X,U) + tr f{(V xH) .

Substituting this into (2.7), we have
Vx(tr (H)U) = 2g(H*X, U)U + (tr fF yH)U — (tr fH)fHX + A(tr fH)HX ,

from which it follows that

div (tr ()U) = 3}, (29(HE,, V)g(U, E) + (7 5, H)(E, U}
— (rfH)?* + A(trfH) tr H .
Here

g(H’E;, U)g(U, E;) = g(E;, H*U)g(U, E;) = g(H*U,U) = g(HU, HU) ,
(tr fV g, H)E;, U) = (tr fV yz, vy, H) = tr fVyH .

Hence

div ((tr (H)U) = 2¢(HU, HU) + tr (FyH) — (tr fH)?

(2.8)
4+ A@rfH) tr H .

On the other hand we have, from (1.22), (1.24) and (1.16),

Vx(fHU) = (Wx)HU + f(V xH)U + fHV yU
= g(H*U, X)U + g(HU, U)HX + f(VyH)X
— 3uXOfU + 3u(U)fX) + fH(—fHX + AHX)
= g(H*’U, X)U + g(HU, U)HX + fVyH)X — 1 2u(X)U
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+ 31 — )X — uX)U) — (FH'X + HHX ,

from which it follows that

div (fHU) = g(HU,HU) + g(HU, U)(tr H) + tr fF,H

2.9)
+ (mn— DA — 2 — tr (fH)* + Atr fH? .
Subtracting (2.9) from (2.8), we get

div ((tr fH)U — fHU) = g(HU, HU) — (tr fH)* + A(tr fH) tr H
(2.10) — (tr H)g(HU, U) + tr (fH)* — Atr fH?
+ @ —-DA-2).

In particular, if M is minimal, we get

.11 div ((tr fH)U — fHU)
= g(HU,HU) — (&r fH)? + tr (H)? — Atr fH? + (n — 1)(1 — 22 .
Now we compute div ((tr H(U). Since M has constant mean curvature, we have
Vx((tr H)U) = (tr H)V xyU = (tr H)(—fHX + 2HX) ,
which implies that
(2.12) div ((tr H)U) = —(tr H) tr fH + A(tr H)? .

Thus we have

348 — div ((tr fH)U — fHU) — % div ((tr H)U)
= $(tr H)g(HU, U) — (2 — D(tr H) tr fH — 3(1 4 2)(tr H)
- SSE—m—-1)+ trADtrH*— (n— 1)1 — 2% + g’H,VH) .

Assume that the hypersurface M is compact and orientable. Integrating the
above equation over M, we get, because of Green-Stokes’ theorem,

f {(3(tr H)g(HU, U) — (2 — D(tr H) tr fH
M

(2.13) — 31 4+ DrH? =SS —(n— 1) + (tr H) tr H?
—(n—-0D1A -2 + gWH,VH)}dM =0 .

In particular, if the hypersurface is minimal, then

2.14) jM (St —1) —8) — (n— (1 — ) + gZH,VH)}dM = 0 .
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Similarly, if we integrate
348§ — div ((tr fHY)U — fHU) + div ((tr H)U) ,

then we have

JM {8(tr H)g(HU,U) — (2 + D(tr H) tr fH

(2.15) — 31 —DArH — S — (n— 1)) + (tr ) tr H®
— (-1 -2 + gPH,VH)}dM =0 .
From (2.14) we get easily

Theorem 2.1. A compact orientable minimal hypersurface of S™ X S*
(n > 1) satisfying

(2.16) L{ (8t — (n — 1)S)aM > jM IVH| dM

is an invariant hypersurface.

Corollary 2.2. A4 compact orientable minimal hypersurface with parallel
second fundamental tensor of S™ X S satisfying S > n — 1 is an invariant
hypersurface.

Corollary 2.3. A compact orientable totally geodesic hypersurface of
S™ X 8" is an invariant hypersurface.

3. Invariant hypersurfaces of S” X S”

In this section we assume that the hypersurface M is invariant, i.e., (1.10)
can be wrttten as

3.0 JBX = BfX .

Since the 1-form u and the vector field U vanish identically, we have

(3.2) X=X,
(3.3) 1—-2=0,
3.4 Vxf =0,
(3.5 X2=0.

We may assume that! 4 = 1 in the following discussions. Then the formulas
(2.13) and (2.14) become

1 If we take 2= —1, then we use (2.15) instead of (2.13) and get the same results.
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(3.6) IM {S((n—1) —8) — (trH)?+ (rH)tr H* + g(WH,VH)}dM = 0 ,

(3.7) IM {(S((n — 1) — S) + gH,VH)}dM = 0 ,

respectively. Thus we get

Theorem 3.1. Let M be a compact orientable invariant minimal hyper-
surface of S® X S™. Then either M is the totally geodesic hypersurface or S =
n—1,0rSx)>n—1at somexeM.

Corollary 3.2. Let M be a compact orientable invariant minimal hyper-
surface of S* X S*. If S < n — 1, then M is a totally geodesic hypersurface.

Now let

T.(x) ={XeT,(M; X =X}, T ,(x) ={XeT,M); X = —X}.

Then the correspondence of x e M to T,(x) and that to T_,(x) define (n — 1)-
dimensional and n-dimensional distributions respectively, since trf = —2
= —1. By virtue of (3.4) it follows that both distributions are involutive. We
easily see that if X € Ty(x) and Y e T_,(x), then V'y X € T\(X) and VY € T_,(x).
Hence both distributions are parallel. Moreover, for the vector fields X and Y
chosen in the above way, we have g(V,X,Y) = 0 and g(V' Y, X) = 0, where
Z e T(x) and W e T_,(X). Thus the integral manifolds of 7,(X) and T_,(X)
are both totally geodesic in M. By standard arguments (see [2]) we know that
M is a product of the integral manifolds of the distributions T',(x) and T_,(x).
In the next step we want to show that the integral submanifold of T_,(x) is S™.
Let X e T_,(X). Then by virtue of (1.1), (1.4) it follows that

PBX = {(IBX + JBX) = ¥(BX + BfX) =0.

Thus BX belongs to the tangent space 7(S™) which is defined by Vo = {X;
OX = X}. Conversely, if we take a vector field X belonging to V,, X can be
written as a sum of the tangential components and the normal components.
So we put

X =BX +aN .
Applying P to the above equation, we have

0 = PX = PBX + «PN = }{(BX + JBX) + o(IN + JN)}
= }{BX + BfX + 2aN},

from which we have
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This means that X = BX, and consequently V' is isomorphic to BT_,(x).
Thus, the integral submanifold being unique since M is complete, the integral
submanifold of 7_,(x) must be S*. If X ¢ T,(x), then the same discussion as
above shows that BX ¢ V, = {X; PX = X}. Since the integral submanifold

of Vp is another S, the integral submanifold of T,(X) is a hypersurface of S™.
Thus we have

Theorem 3.3. A complete invariant hypersurface of S* X S™ is a product
manifold M’ X S, where M’ is a hypersurface of S™.
In order to get further results, we prove

Lemma 3.4. Let P and Q be the projection of T(M) into T(M’) and T(S™)
respectively. Then we have

(3.8) HQX =0.
Proof. By the definitions of J, P, Q, we have
JBQX = (P — 0)BQX = B(P — 0)0BX = —0BX = —BQX ,
since ¥, = BT_,(x). Hence
(3.9) FVy(UBQX) = —F 3p(BOX) = —BVy(QX) — h(Y,QX)N .
On the other hand, we have
V 5y(JBOX) = J(BV (QX) + W(Y,QX)N)

(3.10) = —BVy(0X) + h(Y,Q0X)IN
= —BIy(QX) + h(Y,QX)N,

because of the fact that Fy(QX) e V, and JN = N.

Comparing (3.9) and (3.10), we have A(Y, QX) = 0, from which (3.8) fol-
lows.

We consider the immersion i: M’ — M’ X S® = M, and denote the differ-
ential of i by B’. Then we have

— n+1
(3.11) Vg v BB'X' = BBV'y, X' + > hy(X', Y )N/, ,
A=1

where X', Y’ € T(M’), and ks are the second fundamental tensor with respect
to the normals N/,. Now we choose the last normal N, in such a way that
N, is the unit normal to M’ in S™.

On the other hand, we have

7 ypvBBX' = BV .. B’X + h(B'X',B'Y)N ,

from which it follows that



SOME INTEGRAL FORMULAS 629
(3.12) 7ypyBB'X' = BBV'y.X' + 3 h(X’,Y)BN, + h(B'X’,B'Y)N .
a=1

Comparing (3.11) and (3.12) and remembering the choice of normals, we
get

ha(X’,Y/)zh;(X’,Y/) fora: 1,...,n’

(3.13)
WB'X,BY) =K, (X',Y) .

Since M’ is a totally geodesic submanifold in M’ x S, it follows that
h(X',Y)=0foraea =1, .-,n Thus

n+1
(3.14) Az_;ltr H/F =tr H,, ",
for any natural number P. Furthermore,
2n—1 n—=1 n
tr H” =  g(HYE,E;) = }, g(H*B'E,,B'E,) + Y, g(H"N;,N)) ,
i=1 A=1 t=1

where Nj, t = 1, - - -, n are unit normals to M’ in M’ X S™. Since there exist
X, in T(M) such that N, = QX,, we have H’N, = 0 because of Lemma 3.2.
Thus we get

n—1 n-—1
twHF = 5 g(H'BE;, BE,) = 3, 8(H,."E4 E) = H],." .

This shows that, once we fix a choice of normals in the above way, tr HY
is a function on M’. The immersion i: M — S* X S* being i X id: M’ x S
— 8™ x §*, we have that the second fundamental tensor H,,., is identical with
that of M’ in S*. Thus, denoting the second fundamental tensor of M’ in S*
by H’ and using (3.6), (3.7) and Fubini theorem of measure theory, we have
that

(Lp (S(n—1) — §) — (wHY + (tr B) tr H’3}dM’> vol §*
(3.15)
+ jM ¢("H,PH)AM = 0,

(316 ([, $(@—1) ~$)aM) vols* + | o(WH.7E)M =0,

where S’ = tr H* = tr H* = S.
We first consider the case where M is a minimal hypersurface. In this case,
if $ =0, it follows that S’ = 0 and consequently M’ is the totally geodesic
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great sphere of S*. Thus we have M = §*~! X S”, where both S”' and S" are
of radius 1.

If S=n—1, then 8 =n — 1. Applying Chern-do Carmo-Kobayashi’s
theorem, we have M’ = S™(vm/(n — 1)) X S* " (v/(n — m — 1)/(n — 1)),
where we denote the radius of spheres in the parentheses. Hence we have M =
Sn(Wmf(n — D) X S*m({n = m = DJ(n — D) X S¥(1).

Theorem 3.5. The S™(vm/(n — 1)) X §* ™ (/(n — m — 1)/ (n — 1)) X
S*(1) in S® X S™ are the only compact orientable invariant minimal hyper-
surfaces of S* X S™ satisfying S = n — 1.

Combining Theorem 3.1 and Theorem 3.5, we have

Theorem 3.6. The S* (1) x S™(1) and

SM(Wm[(n — 1)) X S " v/(n —m — D)/(n — 1)) x S*(1)
are the only compact orientable invariant minimal hypersurfaces of S* X S*
satisfying S < n — 1.
Next we consider the formula (3.15). We assume that M has principal
curvatures 4,, - - -, 4,,_; such that for any pair of 4,,2;,i,j=1,---,2n — 1,

2;2; > 0 holds, that is, M has principal curvatures of the same sign or 0. Then
by means of the Cauchy-Schwarz inequality, we have

(trH) tr HY — §* = 221 (2,22 221 Ay — 221 2R >0 .
Thus (3.6) becomes
IM ((n— )t B — (tr H? + g("H,VH)}dM < 0 ,
which, together with (3.15), implies

it L o

=(n — 1)([ tr(
—(n— 1)(]}1/ tr{(H' = 1(tr H’)I)

( - i r H’)I)}dM’) vol §*

- H’)I> dM') vol §7

=@—(] &~ Loaan

'2 dM’) volS* < 0,

which implies that
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1
n—1

H = (tr H)I .

This shows that M’ is a totally umbilical hypersurface of S* and consequently
the small sphere of S*. Thus we get

Theorem 3.7. S™'(r) X S™(1) is the only compact orientable invariant
hypersurface of S® X S™ with constant mean curvature, which has principal
curvatures of the same sign or 0.
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