SOME INTEGRAL FORMULAS AND THEIR APPLICATIONS TO HYPERSURFACES OF $\mathbf{S}^{n} \times \mathbf{S}^{\boldsymbol{n}}$

GERALD D. LUDDEN \& MASAFUMI OKUMURA

In his recent paper [4], Simons has established a fundamental formula for the Laplacian of the length of the second fundamental tensor of a submanifold of a Riemannian manifold and has obtained an application in the case of a minimal hypersurface of a sphere. Nomizu and Smyth [2] then obtained an important application of the formula of Simons' type to a hypersurface of constant mean curvature immersed in a space of nonnegative constant curvature.

On the other hand, Chern-do Carmo-Kobayashi [1] have obtained a classification theorem for submanifolds with the second fundamental tensor of constant length which is immersed in a sphere.

In this paper we discuss the same type of problem for compact orientable hypersurfaces with constant mean curvature immersed in $S^{n} \times S^{n}$.

In § 1 we review some fundamental formulas for a hypersurface of $S^{n} \times S^{n}$.
In § 2, using the formulas obtained in § 1 we establish an integral formula of Simons' type and obtain a theorem corresponding to that of Simons' paper.

In § 3 we consider an invariant hypersurface of $S^{n} \times S^{n}$ and prove some classification theorems corresponding to those of Chern-do Carmo-Kobayashi and of Nomizu-Smyth.

1. Hypersurfaces of $S^{n} \times S^{n}$

Let S^{n} be an n-dimensional sphere of radius 1 , and consider $S^{n} \times S^{n}$. We denote by \bar{P} and \bar{Q} the projection mappings of the tangent space of $S^{n} \times S^{n}$ to each component S^{n} respectively. Then we have

$$
\begin{equation*}
\bar{P}+\bar{Q}=1, \tag{1.1}
\end{equation*}
$$

$$
\begin{gather*}
\bar{P}^{2}=\bar{P}, \quad \bar{Q}^{2}=\bar{Q}, \tag{1.2}\\
\bar{P} \bar{Q}=\bar{Q} \bar{P}=0 . \tag{1.3}
\end{gather*}
$$

We put

$$
\begin{equation*}
\bar{J}=\bar{P}-\bar{Q} . \tag{1.4}
\end{equation*}
$$

Communicated by K. Yano, July 18, 1973.

Then by virtue of (1.1), (1.2) and (1.3), we can easily see that

$$
\begin{gather*}
\bar{J}^{2}=I \tag{1.5}\\
\operatorname{tr} \bar{J}=0 \tag{1.6}
\end{gather*}
$$

where $\operatorname{tr} \bar{J}$ denotes the trace of \bar{J}. We call \bar{J} an almost product structure on $S^{n} \times S^{n}$.

We define a Riemannian metric on $S^{n} \times S^{n}$ by

$$
\bar{g}(\bar{X}, \bar{Y})=g^{\prime}(\bar{P} \bar{X}, \bar{P} \bar{Y})+g^{\prime}(\bar{Q} \bar{X}, \bar{Q} \bar{Y})
$$

where g^{\prime} is the Riemannian metric of S^{n}. Then it follows that

$$
\begin{gather*}
\bar{g}(\bar{J} \bar{X}, \bar{Y})=\bar{g}(\bar{X}, \bar{J} \bar{Y}), \tag{1.7}\\
\bar{\nabla}_{\bar{X}} \bar{J}=0 \tag{1.8}
\end{gather*}
$$

where $\overline{\bar{V}}$ denotes the operator of covariant differentiation with respect to the Riemannian connection of \bar{g}.

Since the curvature tensor of S^{n} is of the form

$$
R^{\prime}\left(X^{\prime}, Y^{\prime}\right) Z^{\prime}=g^{\prime}\left(Y^{\prime}, Z^{\prime}\right) X^{\prime}-g^{\prime}\left(X^{\prime}, Z^{\prime}\right) Y^{\prime}
$$

the curvature tensor of $S^{n} \times S^{n}$ is given by [5], [6]

$$
\begin{align*}
& \bar{R}(\bar{X}, \bar{Y}) \bar{Z} \tag{1.9}\\
& \quad=\frac{1}{2}\{\bar{g}(\bar{Y}, \bar{Z}) \bar{X}-\bar{g}(\bar{X}, \bar{Z}) \bar{Y}+\bar{g}(\bar{J} \bar{Y}, \bar{Z}) \bar{J} \bar{X}-\bar{g}(\bar{J} \bar{X}, \bar{Z}) \bar{J} \bar{Y}\}
\end{align*}
$$

from which we can easily see that $S^{n} \times S^{n}$ is an Einstein manifold because of (1.6) and (1.7).

Now, let M be a hypersurface of $S^{n} \times S^{n}$, and B the differential of the imbedding i of M into $S^{n} \times S^{n}$. Let X be a tangent vector field of M. Applying \bar{J} to $B X$ and to the unit normal vector N of M, we obtain vector fields $\bar{J} B X$ and $\bar{J} N$ which can be written in the following way:

$$
\begin{gather*}
\bar{J} B X=B f X+u(X) N \tag{1.10}\\
\bar{J} N=B U+\lambda N \tag{1.11}
\end{gather*}
$$

Then f, u, U and λ define a symmetric linear transformation of the tangent bundle of M, a 1 -form, a vector field and a function on M respectively. Moreover, we easily see that

$$
g(U, X)=u(X)
$$

where g is the induced Riemannian metric on M.

If u is identically 0 , then M is said to be an invariant hypersurface, that is, the tangent space $T_{x}(M)$ is invariant under \bar{J}. We will see later (1.20) that this is equivalent to $\lambda^{2}=1$.

We denote by V the operator of covariant differentiation with respect to the Riemannian connection of g. Then the Gauss and Weingarten equations are given by

$$
\begin{gather*}
\bar{\nabla}_{B X} B Y=B \nabla_{X} Y+h(X, Y) N \tag{1.12}\\
\bar{\nabla}_{B X} N=-B H X \tag{1.13}
\end{gather*}
$$

where h is the second fundamental tensor of the hypersurface and satisfies

$$
h(X, Y)=g(H X, Y)=g(X, H Y)=h(Y, X)
$$

The relation between the curvature tensors of $S^{n} \times S^{n}$ and of M is given by

$$
\begin{align*}
\bar{R}(B X, B Y) B Z= & B\{R(X, Y) Z-h(Y, Z) H X+h(X, Z) H Y\} \\
& +\left\{V_{X} h(Y, Z)-\nabla_{Y} h(X, Z)\right\} N \tag{1.14}
\end{align*}
$$

Substituting (1.9) into (1.14) and making use of (1.10), we obtain

$$
\begin{align*}
& R(X, Y) Z= \frac{1}{2}\{g(Y, Z) X-g(X, Z) Y+g(f Y, Z) f X-g(f X, Z) f Y\} \tag{1.15}\\
& \quad+h(Y, Z) H X-h(X, Z) H Y \\
&\left(\nabla_{X} H\right) Y-\left(\nabla_{Y} H\right) X=\frac{1}{2}(u(X) f Y-u(Y) f X) . \tag{1.16}
\end{align*}
$$

We apply \bar{J} to both sides of (1.10). Then by virtue of (1.10) and (1.11) we get

$$
B X=B\left(f^{2} X+u(X) U\right)+(u(f X)+\lambda u(X)) N
$$

which implies that

$$
\begin{gather*}
f^{2} X=X-u(X) U \tag{1.17}\\
u(f X)=-\lambda u(X) \tag{1.18}
\end{gather*}
$$

Applying \bar{J} to both sides of (1.11), we obtain

$$
N=B(f U+\lambda U)+\left(u(U)+\lambda^{2}\right) N
$$

that is,

$$
\begin{gather*}
f U=-\lambda U \tag{1.19}\\
u(U)=g(U, U)=1-\lambda^{2} \tag{1.20}
\end{gather*}
$$

Pick an orthonormal frame $\bar{E}_{\alpha}, \alpha=1, \cdots, 2 n$ in such a way that the first $2 n-1 \bar{E}_{\alpha}$'s satisfy $\bar{E}_{i}=B E_{i}$, and $\bar{E}_{2 n}=N$. Then because of (1.6) and (1.10) we have

$$
\begin{align*}
\operatorname{tr} f & =\sum_{i=1}^{2 n-1} g\left(f E_{i}, E_{i}\right)=\sum_{i=1}^{2 n-1} \bar{g}\left(B f E_{i}, B E_{i}\right)=\sum_{i=1}^{2 n-1} \bar{g}\left(\bar{J} B E_{i}, B E_{i}\right) \tag{1.21}\\
& =\sum_{\alpha=1}^{2 n}\left(\bar{J} \bar{E}_{\alpha}, \bar{E}_{\alpha}\right)-\bar{g}(\bar{J} N, N)=\operatorname{tr} \bar{J}-\lambda=-\lambda .
\end{align*}
$$

Differentiating (1.10) convariantly and making use of (1.10), (1.11), (1.12) and (1.13), we have

$$
\begin{aligned}
& \bar{J}\left(B \nabla_{Y} X+h(X, Y) N\right) \\
& \quad=B \nabla_{Y}(f X)+h(f X, Y) N+\left(\nabla_{Y} u\right)(X) N+u\left(\nabla_{Y} X\right) N-u(X) B H Y
\end{aligned}
$$

from which we have

$$
\begin{gather*}
\left(\nabla_{Y} f\right) X=h(X, Y) U+u(X) H Y \tag{1.22}\\
\left(\nabla_{Y} u\right)(X)=\lambda h(X, Y)-h(f X, Y) \tag{1.23}
\end{gather*}
$$

Similarly differentiating (1.11) covariantly, we get

$$
\begin{gather*}
\nabla_{X} U=-f H X+\lambda H X \tag{1.24}\\
X \lambda=-2 h(U, X)=-2 u(H X) \tag{1.25}
\end{gather*}
$$

We also have

$$
\begin{equation*}
\operatorname{tr} \nabla_{X} H=\nabla_{X} \operatorname{tr} H=\sum_{i} g\left(\left(\nabla_{E_{i}} H\right) X, E_{i}\right), \tag{1.26}
\end{equation*}
$$

where $E_{i}, i=1, \cdots, 2 n-1$ are the vector fields which extend to an orthonormal basis in $T_{x}(M)$ in a neighborhood of x.

2. Integral formulas for the hypersurface

Consider the function $S=\operatorname{tr} H^{2}$. Since the unit normal vector N is defined up to a sign, S is defined globally on M. We will now compute the Laplacian ΔS. We have

$$
\begin{aligned}
X S & =\nabla_{X} S=\nabla_{X} \operatorname{tr} H^{2}=\operatorname{tr} \nabla_{X} H^{2} \\
& =\operatorname{tr}\left(\nabla_{X} H\right) H+\operatorname{tr} H\left(\nabla_{X} H\right)=2 \operatorname{tr}\left(\nabla_{X} H\right) H,
\end{aligned}
$$

from which we have

$$
\begin{gathered}
Y X S=2 \operatorname{tr}\left(\nabla_{Y}\left(\nabla_{X} H\right)\right) H+2 \operatorname{tr}\left(\nabla_{X} H\right)\left(\nabla_{Y} H\right) \\
\left(\nabla_{Y} X\right) S=2 \operatorname{tr}\left(\nabla_{\nabla_{Y} X} H\right) H
\end{gathered}
$$

Hence

$$
\begin{equation*}
\frac{1}{2} \Delta S=\sum_{i=1}^{2 n-1}\left\{\operatorname{tr}\left(\left(\nabla_{E_{i}} \nabla_{E_{i}} H-\nabla_{\nabla_{E_{i} E_{i}}} H\right) H\right)+\operatorname{tr}\left(\nabla_{E_{i}} H\right)^{2}\right\} . \tag{2.1}
\end{equation*}
$$

Putting

$$
K(X, Y)=\nabla_{Y}\left(\nabla_{X} H\right)-\nabla_{\nabla_{Y} X} H,
$$

we have

$$
\begin{equation*}
K(X, Y) Z=K(Y, X) Z+R(X, Y)(H Z)-H(R(X, Y) Z) \tag{2.2}
\end{equation*}
$$

Let $E_{i}, i=1, \cdots, 2 n-1$ be an orthonormal basis in $T_{x}(M)$, and extend the E_{i} to vector fields in a neighborhood of x in such a way that $V_{Y} E_{i}=0$ at x. Let X be a vector field such that $\nabla_{Y} X=0$ at x. Replacing X, Y, and Z in (2.2) by E_{i}, X and E_{i} respectively and taking account of (1.16) and the fact that $\nabla_{Y} E_{i}=0, \nabla_{Y} X=0$, we obtain

$$
\begin{aligned}
K\left(E_{i}, X\right) E_{i} & =\left(\nabla_{E_{i}}\left(\nabla_{X} H\right)\right) E_{i}-\left(\nabla_{V_{E_{i}} X} H\right) E_{i} \\
& \left.=\nabla_{E_{i}}\left(\nabla_{X} H\right) E_{i}\right)-\left(\nabla_{X} H\right)\left(\nabla_{E_{i}} E_{i}\right) \\
& =\nabla_{E_{i}}\left\{\left(\nabla_{E_{i}} H\right) X+\frac{1}{2}\left(u(X) f E_{i}-u\left(E_{i}\right) f X\right)\right\} .
\end{aligned}
$$

Continuing this computation and making use of (1.22), (1.23), we have at x

$$
\begin{aligned}
K\left(E_{i}, X\right) E_{i}= & \left(\nabla_{E_{i}}\left(\nabla_{E_{i}} H\right)\right) X+\frac{1}{2}\left\{\left(\lambda h\left(X, E_{i}\right)-h\left(f X, E_{i}\right)\right) f E_{i}\right. \\
& +u(x)\left(h\left(E_{i}, E_{i}\right) U+u\left(E_{i}\right) H E_{i}\right)-\left(\lambda h\left(E_{i}, E_{i}\right)\right. \\
& \left.\left.-h\left(f E_{i}, E_{i}\right)\right) f X-u\left(E_{i}\right)\left(h\left(E_{i}, X\right) U+u(X) H E_{i}\right)\right\},
\end{aligned}
$$

from which we get

$$
\begin{aligned}
\sum_{i=1}^{2 n-1} K\left(E_{i}, X\right) E_{i}=\sum_{i=1}^{2 n-1}\{ & \left.K\left(E_{i}, E_{i}\right) X+\frac{1}{2}\left(\lambda h\left(X, E_{i}\right)-h\left(f X, E_{i}\right)\right) f E_{i}\right\} \\
+\frac{1}{2}\{ & u(X)(\operatorname{tr} H) U+u(X) \sum_{i=1}^{2 n-1} g\left(U, E_{i}\right) H E_{i} \\
& \quad-\lambda(\operatorname{tr} H) f X+(\operatorname{tr} H f) f X \\
& \left.\quad-\sum_{i=1}^{2 n-1} g\left(U, E_{i}\right) h\left(E_{i}, X\right) U-\sum_{i=1}^{2 n-1} u\left(E_{i}\right) u(X) H E_{i}\right\} .
\end{aligned}
$$

Here

$$
\begin{gathered}
\sum_{i=1}^{2 n-1} h\left(X, E_{i}\right) f E_{i}=f\left(\sum_{i=1}^{2 n-1} g\left(H X, E_{i}\right) E_{i}\right)=f H X \\
\sum_{i=1}^{2 n-1} h\left(f X, E_{i}\right) f E_{i}=f H f X \\
\sum_{i=1}^{2 n-1} u\left(E_{i}\right) H E_{i}=\sum_{i=1}^{2 n-1} g\left(U, E_{i}\right) H E_{i}=H\left(\sum_{i=1}^{2 n-1} g\left(U, E_{i}\right) E_{i}\right)=H U, \\
\sum_{i=1}^{2 n-1} g\left(U, E_{i}\right) h\left(E_{i}, X\right)=\sum_{i=1}^{2 n-1} g\left(U, E_{i}\right) g\left(H X, E_{i}\right) \\
=\sum_{i=1}^{2 n-1} g\left(H X, g\left(U, E_{i}\right) E_{i}\right)=g(H X, U) .
\end{gathered}
$$

Hence

$$
\begin{array}{r}
\sum_{i=1}^{2 n-1} K\left(E_{i}, X\right) E_{i}=\sum_{i=1}^{2 n-1} K\left(E_{i}, E_{i}\right) X+\frac{1}{2}\{\lambda f H X-f H f X+u(x)(\operatorname{tr} H) U \tag{2.3}\\
+(\operatorname{tr} H f) f X-\lambda(\operatorname{tr} H) f X-g(H X, U) U\}
\end{array}
$$

Thus we get from (2.2) and (2.3) that

$$
\begin{gathered}
\sum_{i=1}^{2 n-1} K\left(E_{i}, E_{i}\right) X+\frac{1}{2}\{\lambda f H X-f H f X+u(X)(\operatorname{tr} H) U+(\operatorname{tr} H f) f X \\
\quad-\lambda(\operatorname{tr} H) f X-g(H X, U) U\} \\
=\sum_{i=1}^{2 n-1}\left\{K\left(X, E_{i}\right) E_{i}+R\left(E_{i}, X\right)\left(H E_{i}\right)-H\left(R\left(E_{i}, X\right) E_{i}\right)\right\}
\end{gathered}
$$

We now assume that the hypersurface M has constant mean curvature, that is, $\operatorname{tr} H=$ const. Then (1.26) and the choice of E_{i} and X show that

$$
\sum_{i=1}^{2 n-1} K\left(X, E_{i}\right) E_{i}=\sum_{i=1}^{2 n-1}\left(\nabla_{X}\left(\nabla_{E_{i}} H\right)-\nabla_{\nabla_{X} E_{i}} H\right) E_{i}=\sum_{i=1}^{2 n-1}\left(\nabla_{X}\left(\nabla_{E_{i}} H\right)\right) E_{i}=0 .
$$

Hence we get

$$
\begin{align*}
\sum_{i=1}^{2 n-1} K\left(E_{i}, E_{i}\right) X=- & \frac{1}{2}\{\lambda f H X-f H f X+u(X)(\operatorname{tr} H) U \\
& \quad+(\operatorname{tr} H f) f X-\lambda(\operatorname{tr} H) f X-g(H X, U) U\} \tag{2.4}\\
& +\sum_{i=1}^{2 n-1}\left\{R\left(E_{i}, X\right)\left(H E_{i}\right)-H\left(R\left(E_{i}, X\right) E_{i}\right)\right\}
\end{align*}
$$

On the other hand, by (1.15) we have

$$
\begin{aligned}
& \sum_{i=1}^{2 n-1} R\left(E_{i}, X\right)\left(H E_{i}\right)=\frac{1}{2}\left\{g\left(X, H E_{i}\right) E_{i}-g\left(E_{i}, H E_{i}\right) X+g\left(f X, H E_{i}\right) f E_{i}\right. \\
&\left.\quad-g\left(f E_{i}, H E_{i}\right) f X\right\}+h\left(X, H E_{i}\right) H E_{i}-h\left(E_{i}, H E_{i}\right) H X
\end{aligned}
$$

$$
\begin{aligned}
= & \frac{1}{2}\{H X-(\operatorname{tr} H) X+f H f X-(\operatorname{tr} H f) f X\} \\
& +H^{3} X-\left(\operatorname{tr} H^{2}\right) H X \\
\sum_{i=1}^{2 n-1} H\left(R\left(E_{i}, X\right) E_{i}\right)= & \frac{1}{2}\left\{g\left(X, E_{i}\right) H E_{i}-g\left(E_{i}, E_{i}\right) H X+g\left(f X, E_{i}\right) H f E_{i}\right. \\
& \left.\quad-g\left(f E_{i}, E_{i}\right) H F X\right\}+h\left(X, E_{i}\right) H E_{i}-h\left(E_{i}, E_{i}\right) H X \\
= & \frac{1}{2}\left\{2(1-n) H X+H f^{2} X-(\operatorname{tr} f) H f X\right\} \\
& \quad+H^{3} X-(\operatorname{tr} H) H^{2} X .
\end{aligned}
$$

Substituting the above two equations into (2.4) and making use of (1.17), we have

$$
\begin{aligned}
& \sum_{i=1}^{2 n-1} K\left(E_{i}, E_{i}\right) X=-\frac{1}{2}\{\lambda f H X-2 f H X-u(X)(\operatorname{tr} H) U+2(\operatorname{tr} H f) f X \\
& \quad \lambda(\operatorname{tr} H) f X-g(H X, U) U+(\operatorname{tr} H) X+2\left(\operatorname{tr} H^{2}\right) H X \\
&\left.-2(n-1) H X-u(X) H U+\lambda H f X-2(\operatorname{tr} H) H^{2} X\right\}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
2 \sum_{i=1}^{2 n-1} K\left(E_{i}, E_{i}\right) H X= & -\lambda f H^{2} X+2 f H f H X+u(H X)(\operatorname{tr} H) U \\
& -2(\operatorname{tr} H f) f H X+\lambda(\operatorname{tr} H) f H X+g(H U, H X) U \\
& -(\operatorname{tr} H) H X-2\left(\operatorname{tr} H^{2}\right) H^{2} X+2(n-1) H^{2} X \\
& +u(H X) H U-\lambda H f H X+2(\operatorname{tr} H) H^{3} X
\end{aligned}
$$

Thus we have

$$
\begin{align*}
\Delta S= & 2 \sum_{j, i=1}^{2 n-1}\left\{g\left(K\left(E_{i}, E_{i}\right) H E_{j}, E_{j}\right)+\operatorname{tr}\left(\nabla_{E_{i}} H\right)^{2}\right\} \\
= & -2 \lambda \operatorname{tr} f H^{2}+2 \operatorname{tr}(f H)^{2}+(\operatorname{tr} H) g(H U, U)-2(\operatorname{tr} H f)^{2} \tag{2.5}\\
& +\lambda(\operatorname{tr} H) \operatorname{tr} f H+2 g(H U, H U)-(\operatorname{tr} H)^{2} \\
& -2 S(S-(n-1))+2(\operatorname{tr} H) \operatorname{tr} H^{3}+2 g(\nabla H, \nabla H),
\end{align*}
$$

where the metric g is extended to the tensor space in the standard fashion. In particular, if the hypersurface M is minimal, that is, if $\operatorname{tr} H=0$, then

$$
\begin{align*}
\frac{1}{2} \Delta S= & -\lambda \operatorname{tr} f H^{2}+\operatorname{tr}(f H)^{2}-(\operatorname{tr} H f)^{2}+g(H U, H U) \tag{2.6}\\
& +S((n-1)-S)+g(\nabla H, \nabla H)
\end{align*}
$$

Next we want to compute $\operatorname{div}((\operatorname{tr} f H) U-f H U)$. Since $\operatorname{div} Z=\sum_{i=1}^{2 n-1} g\left(V_{E_{i}} Z\right.$, E_{i}) for any vector field Z, we first have

$$
\begin{align*}
\nabla_{X}(\operatorname{tr}(f H) U) & =\left(\nabla_{X}(\operatorname{tr} f H)\right) U+(\operatorname{tr} f H) \nabla_{X} U \\
& =\sum_{i=1}^{2 n-1} \nabla_{X}\left(g\left(f H E_{i}, E_{i}\right)\right) U-(\operatorname{tr} f H) f H X+\lambda(\operatorname{tr} f H) H X, \tag{2.7}
\end{align*}
$$

because of (1.24). Remembering the choice of E_{i} and (1.22), we have at x

$$
\begin{aligned}
\nabla_{X} g(f H & \left.E_{i}, E_{i}\right) \\
& =g\left(\left(\nabla_{X} f\right) H E_{i}, E_{i}\right)+g\left(f\left(\nabla_{X} H\right) E_{i}, E_{i}\right) \\
& =g\left(g\left(H^{2} E_{i}, X\right) U+u\left(H E_{i}\right) H X, E_{i}\right)+g\left(f\left(\nabla_{X} H\right) E_{i}, E_{i}\right) \\
& =g\left(H^{2} E_{i}, X\right) g\left(U, E_{i}\right)+g\left(U, H E_{i}\right) g\left(H X, E_{i}\right)+g\left(f\left(\nabla_{X} H\right) E_{i}, E_{i}\right) \\
& =g\left(H^{2} X, E_{i}\right) g\left(U, E_{i}\right)+g\left(H U, E_{i}\right) g\left(H X, E_{i}\right)+g\left(f\left(\nabla_{X} H\right) E_{i}, E_{i}\right) .
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{2 n-1} \nabla_{X} g\left(f H E_{i}, E_{i}\right)=2 g\left(H^{2} X, U\right)+\operatorname{tr} f\left(\nabla_{X} H\right) .
$$

Substituting this into (2.7), we have

$$
\nabla_{X}(\operatorname{tr}(f H) U)=2 g\left(H^{2} X, U\right) U+\left(\operatorname{tr} f \nabla_{X} H\right) U-(\operatorname{tr} f H) f H X+\lambda(\operatorname{tr} f H) H X,
$$

from which it follows that

$$
\begin{aligned}
\operatorname{div}(\operatorname{tr}(f H) U)= & \sum_{i=1}^{2 n-1}\left\{2 g\left(H^{2} E_{i}, U\right) g\left(U, E_{i}\right)+\left(\operatorname{tr} f \nabla_{E_{i}} H\right) g\left(E_{i}, U\right)\right\} \\
& -(\operatorname{tr} f H)^{2}+\lambda(\operatorname{tr} f H) \operatorname{tr} H .
\end{aligned}
$$

Here

$$
\begin{gathered}
g\left(H^{2} E_{i}, U\right) g\left(U, E_{i}\right)=g\left(E_{i}, H^{2} U\right) g\left(U, E_{i}\right)=g\left(H^{2} U, U\right)=g(H U, H U), \\
\left(\operatorname{tr} f \nabla_{E_{i}} H\right) g\left(E_{i}, U\right)=\left(\operatorname{tr} f \nabla_{g\left(E_{i}, U\right) E_{i}} H\right)=\operatorname{tr} f \nabla_{U} H .
\end{gathered}
$$

Hence

$$
\begin{align*}
\operatorname{div}((\operatorname{tr}(f H)) U)= & 2 g(H U, H U)+\operatorname{tr}\left(f \nabla_{U} H\right)-(\operatorname{tr} f H)^{2} \tag{2.8}\\
& +\lambda(\operatorname{tr} f H) \operatorname{tr} H .
\end{align*}
$$

On the other hand we have, from (1.22), (1.24) and (1.16),

$$
\begin{aligned}
\nabla_{X}(f H U)= & \left(\nabla_{X} f\right) H U+f\left(\nabla_{X} H\right) U+f H \nabla_{X} U \\
= & g\left(H^{2} U, X\right) U+g(H U, U) H X+f\left(\left(\nabla_{U} H\right) X\right. \\
& \left.-\frac{1}{2} u(X) f U+\frac{1}{2} u(U) f X\right)+f H(-f H X+\lambda H X) \\
= & g\left(H^{2} U, X\right) U+g(H U, U) H X+f\left(\nabla_{U} H\right) X-\frac{1}{2} \lambda^{2} u(X) U
\end{aligned}
$$

$$
+\frac{1}{2}\left(1-\lambda^{2}\right)(X-u(X) U)-(f H)^{2} X+\lambda f H^{2} X,
$$

from which it follows that

$$
\begin{align*}
\operatorname{div}(f H U)= & g(H U, H U)+g(H U, U)(\operatorname{tr} H)+\operatorname{tr} f \nabla_{U} H \tag{2.9}\\
& +(n-1)\left(1-\lambda^{2}\right)-\operatorname{tr}(f H)^{2}+\lambda \operatorname{tr} f H^{2} .
\end{align*}
$$

Subtracting (2.9) from (2.8), we get

$$
\begin{align*}
\operatorname{div}((\operatorname{tr} f H) U-f H U)= & g(H U, H U)-(\operatorname{tr} f H)^{2}+\lambda(\operatorname{tr} f H) \operatorname{tr} H \\
& -(\operatorname{tr} H) g(H U, U)+\operatorname{tr}(f H)^{2}-\lambda \operatorname{tr} f H^{2} \tag{2.10}\\
& +(n-1)\left(1-\lambda^{2}\right) .
\end{align*}
$$

In particular, if M is minimal, we get

$$
\begin{align*}
& \operatorname{div}((\operatorname{tr} f H) U-f H U) \\
= & g(H U, H U)-(\operatorname{tr} f H)^{2}+\operatorname{tr}(f H)^{2}-\lambda \operatorname{tr} f H^{2}+(n-1)\left(1-\lambda^{2}\right) . \tag{2.11}
\end{align*}
$$

Now we compute $\operatorname{div}((\operatorname{tr} H(U)$. Since M has constant mean curvature, we have

$$
\nabla_{X}((\operatorname{tr} H) U)=(\operatorname{tr} H) \nabla_{X} U=(\operatorname{tr} H)(-f H X+\lambda H X),
$$

which implies that

$$
\begin{equation*}
\operatorname{div}((\operatorname{tr} H) U)=-(\operatorname{tr} H) \operatorname{tr} f H+\lambda(\operatorname{tr} H)^{2} \tag{2.12}
\end{equation*}
$$

Thus we have

$$
\begin{aligned}
& \frac{1}{2} \Delta S-\operatorname{div}((\operatorname{tr} f H) U-f H U)-\frac{1}{2} \operatorname{div}((\operatorname{tr} H) U) \\
& =\frac{3}{2}(\operatorname{tr} H) g(H U, U)-\frac{1}{2}(\lambda-1)(\operatorname{tr} H) \operatorname{tr} f H-\frac{1}{2}(1+\lambda)(\operatorname{tr} H)^{2} \\
& \quad-S(S-(n-1))+(\operatorname{tr} H) \operatorname{tr} H^{3}-(n-1)\left(1-\lambda^{2}\right)+g(\nabla H, \nabla H) .
\end{aligned}
$$

Assume that the hypersurface M is compact and orientable. Integrating the above equation over M, we get, because of Green-Stokes' theorem,

$$
\begin{align*}
\int_{M} & \left\{\frac{3}{2}(\operatorname{tr} H) g(H U, U)-\frac{1}{2}(\lambda-1)(\operatorname{tr} H) \operatorname{tr} f H\right. \\
& -\frac{1}{2}(1+\lambda)(\operatorname{tr} H)^{2}-S(S-(n-1))+(\operatorname{tr} H) \operatorname{tr} H^{3} \tag{2.13}\\
& \left.-(n-1)\left(1-\lambda^{2}\right)+g(\nabla H, \nabla H)\right\} d M=0 .
\end{align*}
$$

In particular, if the hypersurface is minimal, then

$$
\begin{equation*}
\left.\int_{M}\{S(n-1)-S)-(n-1)\left(1-\lambda^{2}\right)+g(\nabla H, \nabla H)\right\} d M=0 . \tag{2.14}
\end{equation*}
$$

Similarly, if we integrate

$$
\frac{1}{2} \Delta S-\operatorname{div}((\operatorname{tr} f H) U-f H U)+\operatorname{div}((\operatorname{tr} H) U)
$$

then we have

$$
\begin{align*}
\int_{M} & \left\{\frac{3}{2}(\operatorname{tr} H) g(H U, U)-\frac{1}{2}(\lambda+1)(\operatorname{tr} H) \operatorname{tr} f H\right. \\
& -\frac{1}{2}(1-\lambda)(\operatorname{tr} H)^{2}-S(S-(n-1))+(\operatorname{tr} H) \operatorname{tr} H^{3} \tag{2.15}\\
& \left.-(n-1)\left(1-\lambda^{2}\right)+g(\nabla H, \nabla H)\right\} d M=0 .
\end{align*}
$$

From (2.14) we get easily
Theorem 2.1. A compact orientable minimal hypersurface of $S^{n} \times S^{n}$ ($n>1$) satisfying

$$
\begin{equation*}
\int_{M}\left(S^{2}-(n-1) S\right) d M \geq \int_{M}\|\nabla H\|^{2} d M \tag{2.16}
\end{equation*}
$$

is an invariant hypersurface.
Corollary 2.2. A compact orientable minimal hypersurface with parallel second fundamental tensor of $S^{n} \times S^{n}$ satisfying $S \geq n-1$ is an invariant hypersurface.

Corollary 2.3. A compact orientable totally geodesic hypersurface of $S^{n} \times S^{n}$ is an invariant hypersurface.

3. Invariant hypersurfaces of $S^{n} \times S^{n}$

In this section we assume that the hypersurface M is invariant, i.e., (1.10) can be wrttten as

$$
\begin{equation*}
\bar{J} B X=B f X \tag{3.1}
\end{equation*}
$$

Since the 1 -form u and the vector field U vanish identically, we have

$$
\begin{equation*}
f^{2} X=X \tag{3.2}
\end{equation*}
$$

$$
\begin{equation*}
1-\lambda^{2}=0 \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} f=0 \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
X \lambda=0 \tag{3.5}
\end{equation*}
$$

We may assume that ${ }^{1} \lambda=1$ in the following discussions. Then the formulas (2.13) and (2.14) become

[^0]\[

$$
\begin{gather*}
\int_{M}\left\{S((n-1)-S)-(\operatorname{tr} H)^{2}+(\operatorname{tr} H) \operatorname{tr} H^{3}+g(\nabla H, \nabla H)\right\} d M=0 \tag{3.6}\\
\int_{M}\{S((n-1)-S)+g(\nabla H, \nabla H)\} d M=0
\end{gather*}
$$
\]

respectively. Thus we get
Theorem 3.1. Let M be a compact orientable invariant minimal hypersurface of $S^{n} \times S^{n}$. Then either M is the totally geodesic hypersurface or $S \equiv$ $n-1$, or $S(x)>n-1$ at some $x \in M$.

Corollary 3.2. Let M be a compact orientable invariant minimal hypersurface of $S^{n} \times S^{n}$. If $S<n-1$, then M is a totally geodesic hypersurface.

Now let

$$
T_{1}(x)=\left\{X \in T_{x}(M) ; f X=X\right\}, \quad T_{-1}(x)=\left\{X \in T_{x}(M) ; f X=-X\right\} .
$$

Then the correspondence of $x \in M$ to $T_{1}(x)$ and that to $T_{-1}(x)$ define ($n-1$)dimensional and n-dimensional distributions respectively, since $\operatorname{tr} f=-\lambda$ $=-1$. By virtue of (3.4) it follows that both distributions are involutive. We easily see that if $X \in T_{1}(x)$ and $Y \in T_{-1}(x)$, then $\nabla_{Y} X \in T_{1}(X)$ and $\nabla_{X} Y \in T_{-1}(x)$. Hence both distributions are parallel. Moreover, for the vector fields X and Y chosen in the above way, we have $g\left(\nabla_{Z} X, Y\right)=0$ and $g\left(\nabla_{W} Y, X\right)=0$, where $Z \in T_{1}(x)$ and $W \in T_{-1}(X)$. Thus the integral manifolds of $T_{1}(X)$ and $T_{-1}(X)$ are both totally geodesic in M. By standard arguments (see [2]) we know that M is a product of the integral manifolds of the distributions $T_{1}(x)$ and $T_{-1}(x)$. In the next step we want to show that the integral submanifold of $T_{-1}(x)$ is S^{n}.

Let $X \in T_{-1}(X)$. Then by virtue of (1.1), (1.4) it follows that

$$
\bar{P} B X=\frac{1}{2}(I B X+\bar{J} B X)=\frac{1}{2}(B X+B f X)=0 .
$$

Thus $B X$ belongs to the tangent space $T\left(S^{n}\right)$ which is defined by $V_{Q}=\{\bar{X}$; $\bar{Q} \bar{X}=\bar{X}\}$. Conversely, if we take a vector field \bar{X} belonging to V_{Q}, \bar{X} can be written as a sum of the tangential components and the normal components. So we put

$$
\bar{X}=B X+\alpha N
$$

Applying \bar{P} to the above equation, we have

$$
\begin{aligned}
0 & =\bar{P} \bar{X}=\bar{P} B X+\alpha \bar{P} N=\frac{1}{2}\{(I B X+\bar{J} B X)+\alpha(I N+\bar{J} N)\} \\
& =\frac{1}{2}\{B X+B f X+2 \alpha N\}
\end{aligned}
$$

from which we have

$$
f X=-X, \quad \alpha=0
$$

This means that $\bar{X}=B X$, and consequently V_{Q} is isomorphic to $B T_{-1}(x)$. Thus, the integral submanifold being unique since M is complete, the integral submanifold of $T_{-1}(x)$ must be S^{n}. If $X \in T_{1}(x)$, then the same discussion as above shows that $B X \in V_{P}=\{\bar{X} ; \bar{P} \bar{X}=\bar{X}\}$. Since the integral submanifold of V_{P} is another S^{n}, the integral submanifold of $T_{1}(X)$ is a hypersurface of S^{n}. Thus we have

Theorem 3.3. A complete invariant hypersurface of $S^{n} \times S^{n}$ is a product manifold $M^{\prime} \times S^{n}$, where M^{\prime} is a hypersurface of S^{n}.

In order to get further results, we prove
Lemma 3.4. Let P and Q be the projection of $T(M)$ into $T\left(M^{\prime}\right)$ and $T\left(S^{n}\right)$ respectively. Then we have

$$
\begin{equation*}
H Q X=0 . \tag{3.8}
\end{equation*}
$$

Proof. By the definitions of \bar{J}, P, Q, we have

$$
\bar{J} B Q X=(\bar{P}-\bar{Q}) B Q X=B(\bar{P}-\bar{Q}) \bar{Q} B X=-\bar{Q} B X=-B Q X
$$

since $V_{Q}=B T_{-1}(x)$. Hence

$$
\begin{equation*}
\bar{\nabla}_{B Y}(\bar{J} B Q X)=-\bar{\nabla}_{B Y}(B Q X)=-B \nabla_{Y}(Q X)-h(Y, Q X) N \tag{3.9}
\end{equation*}
$$

On the other hand, we have

$$
\begin{align*}
\bar{\nabla}_{B Y}(\bar{J} B Q X) & =\bar{J}\left(B \nabla_{Y}(Q X)+h(Y, Q X) N\right) \\
& =-B \nabla_{Y}(Q X)+h(Y, Q X) \bar{J} N \tag{3.10}\\
& =-B \nabla_{Y}(Q X)+h(Y, Q X) N
\end{align*}
$$

because of the fact that $\nabla_{Y}(Q X) \in V_{Q}$ and $\bar{J} N=N$.
Comparing (3.9) and (3.10), we have $h(Y, Q X)=0$, from which (3.8) follows.

We consider the immersion $i^{\prime}: M^{\prime} \rightarrow M^{\prime} \times S^{n}=M$, and denote the differential of i^{\prime} by B^{\prime}. Then we have

$$
\begin{equation*}
\bar{\nabla}_{B B^{\prime} Y^{\prime}} B B^{\prime} X^{\prime}=B B^{\prime} \nabla_{Y^{\prime}}^{\prime} X^{\prime}+\sum_{A=1}^{n+1} h_{A}^{\prime}\left(X^{\prime}, Y^{\prime}\right) N_{A}^{\prime} \tag{3.11}
\end{equation*}
$$

where $X^{\prime}, Y^{\prime} \in T\left(M^{\prime}\right)$, and h_{A}^{\prime} 's are the second fundamental tensor with respect to the normals N_{A}^{\prime}. Now we choose the last normal N_{n+1}^{\prime} in such a way that N_{n+1}^{\prime} is the unit normal to M^{\prime} in S^{n}.

On the other hand, we have

$$
\bar{\nabla}_{B B^{\prime} Y^{\prime}} B B^{\prime} X^{\prime}=B \nabla_{B^{\prime} Y^{\prime}} B^{\prime} X^{\prime}+h\left(B^{\prime} X^{\prime}, B^{\prime} Y^{\prime}\right) N
$$

from which it follows that

$$
\begin{equation*}
\bar{\nabla}_{B B^{\prime} Y^{\prime}} B B^{\prime} X^{\prime}=B B^{\prime} V^{\prime}{ }_{Y^{\prime}} X^{\prime}+\sum_{\alpha=1}^{n} h_{\alpha}\left(X^{\prime}, Y^{\prime}\right) B N_{\alpha}+h\left(B^{\prime} X^{\prime}, B^{\prime} Y^{\prime}\right) N \tag{3.12}
\end{equation*}
$$

Comparing (3.11) and (3.12) and remembering the choice of normals, we get

$$
\begin{align*}
& h_{\alpha}\left(X^{\prime}, Y^{\prime}\right)=h_{\alpha}^{\prime}\left(X^{\prime}, Y^{\prime}\right) \quad \text { for } \alpha=1, \cdots, n, \tag{3.13}\\
& h\left(B^{\prime} X^{\prime}, B^{\prime} Y^{\prime}\right)=h_{n+1}^{\prime}\left(X^{\prime}, Y^{\prime}\right) .
\end{align*}
$$

Since M^{\prime} is a totally geodesic submanifold in $M^{\prime} \times S^{n}$, it follows that $h_{\alpha}\left(X^{\prime}, Y^{\prime}\right)=0$ for $\alpha=1, \cdots, n$. Thus

$$
\begin{equation*}
\sum_{A=1}^{n+1} \operatorname{tr} H_{A}^{\prime P}=\operatorname{tr} H_{n+1}^{\prime}{ }^{P} \tag{3.14}
\end{equation*}
$$

for any natural number P. Furthermore,

$$
\operatorname{tr} H^{P}=\sum_{i=1}^{2 n-1} g\left(H^{P} E_{i}, E_{i}\right)=\sum_{A=1}^{n-1} g\left(H^{P} B^{\prime} E_{A}, B^{\prime} E_{A}\right)+\sum_{t=1}^{n} g\left(H^{P} N_{t}^{\prime}, N_{t}^{\prime}\right),
$$

where $N_{t}^{\prime}, t=1, \cdots, n$ are unit normals to M^{\prime} in $M^{\prime} \times S^{n}$. Since there exist X_{t}^{\prime} in $T(M)$ such that $N_{t}^{\prime}=Q X_{t}$, we have $H^{P} N_{t}^{\prime}=0$ because of Lemma 3.2. Thus we get

$$
\operatorname{tr} H^{P}=\sum_{A=1}^{n-1} g\left(H^{P} B^{\prime} E_{A}, B^{\prime} E_{A}\right)=\sum_{A=1}^{n-1} g\left(H_{n+1}^{\prime}{ }^{P} E_{A}, E_{A}\right)=\operatorname{tr} H_{n+1}^{\prime}{ }^{P} .
$$

This shows that, once we fix a choice of normals in the above way, $\operatorname{tr} H^{P}$ is a function on M^{\prime}. The immersion $i: M \rightarrow S^{n} \times S^{n}$ being $i^{\prime} \times \mathrm{id}: M^{\prime} \times S^{n}$ $\rightarrow S^{n} \times S^{n}$, we have that the second fundamental tensor H_{n+1}^{\prime} is identical with that of M^{\prime} in S^{n}. Thus, denoting the second fundamental tensor of M^{\prime} in S^{n} by H^{\prime} and using (3.6), (3.7) and Fubini theorem of measure theory, we have that

$$
\begin{align*}
& \left(\int_{M^{\prime}}\left\{S^{\prime}\left((n-1)-S^{\prime}\right)-\left(\operatorname{tr} H^{\prime}\right)^{2}+\left(\operatorname{tr} H^{\prime}\right) \operatorname{tr} H^{\prime 3}\right\} d M^{\prime}\right) \operatorname{vol} S^{n} \tag{3.15}\\
& \quad+\int_{M} g(\nabla H, \nabla H) d M=0
\end{align*}
$$

$$
\begin{equation*}
\left(\int_{M^{\prime}} S^{\prime}\left((n-1)-S^{\prime}\right) d M^{\prime}\right) \operatorname{vol} S^{n}+\int_{M} g(\nabla H, \nabla H) d M=0 \tag{3.16}
\end{equation*}
$$

where $S^{\prime}=\operatorname{tr} H^{2}=\operatorname{tr} H^{2}=S$.
We first consider the case where M is a minimal hypersurface. In this case, if $S=0$, it follows that $S^{\prime}=0$ and consequently M^{\prime} is the totally geodesic
great sphere of S^{n}. Thus we have $M=S^{n-1} \times S^{n}$, where both S^{n-1} and S^{n} are of radius 1 .

If $S=n-1$, then $S^{\prime}=n-1$. Applying Chern-do Carmo-Kobayashi's theorem, we have $M^{\prime}=S^{m}\left(\sqrt{m /(n-1))} \times S^{n-m-1}(\sqrt{(n-m-1) /(n-1))}\right.$, where we denote the radius of spheres in the parentheses. Hence we have $M=$ $S^{m}\left(\sqrt{m /(n-1))} \times S^{n-m-1}\left(\sqrt{(n-m-1) /(n-1))} \times S^{n}(1)\right.\right.$.

Theorem 3.5. The $S^{m}\left(\sqrt{m /(n-1))} \times S^{n-m-1}(\sqrt{(n-m-1) /(n-1))} \times\right.$ $S^{n}(1)$ in $S^{n} \times S^{n}$ are the only compact orientable invariant minimal hypersurfaces of $S^{n} \times S^{n}$ satisfying $S=n-1$.

Combining Theorem 3.1 and Theorem 3.5, we have
Theorem 3.6. The $S^{n-1}(1) \times S^{n}(1)$ and

$$
S^{m}\left(\sqrt{m /(n-1))} \times S^{n-m-1}\left(\sqrt{(n-m-1) /(n-1))} \times S^{n}(1)\right.\right.
$$

are the only compact orientable invariant minimal hypersurfaces of $S^{n} \times S^{n}$ satisfying $S \leq n-1$.

Next we consider the formula (3.15). We assume that M has principal curvatures $\lambda_{1}, \cdots, \lambda_{2 n-1}$ such that for any pair of $\lambda_{i}, \lambda_{j}, i, j=1, \cdots, 2 n-1$, $\lambda_{i} \lambda_{j} \geq 0$ holds, that is, M has principal curvatures of the same sign or 0 . Then by means of the Cauchy-Schwarz inequality, we have

$$
(\operatorname{tr} H) \operatorname{tr} H^{3}-S^{2}=\sum_{i=1}^{2 n-1}\left(\lambda_{i}^{1 / 2}\right)^{2} \sum_{i=1}^{2 n-1}\left(\lambda_{i}^{3 / 2}\right)^{2}-\sum_{i=1}^{2 n-1} \lambda_{i}^{1 / 2} \lambda_{i}^{3 / 2} \geq 0
$$

Thus (3.6) becomes

$$
\int_{M}\left\{(n-1) \operatorname{tr} H^{2}-(\operatorname{tr} H)^{2}+g(\nabla H, \nabla H)\right\} d M \leq 0
$$

which, together with (3.15), implies

$$
\begin{aligned}
&\left(\int_{M^{\prime}}\left\{(n-1)\left(\operatorname{tr} H^{\prime 2}-\frac{1}{n-1}\left(\operatorname{tr} H^{\prime}\right)^{2}\right\} d M^{\prime}\right) \operatorname{vol} S^{n}\right. \\
&=(n-1)\left(\int_{M^{\prime}} \operatorname{tr}\left(H^{\prime}-\frac{1}{n-1}\left(\operatorname{tr} H^{\prime}\right) I\right)^{2} d M^{\prime}\right) \operatorname{vol} S^{n} \\
&=(n-1)\left(\int _ { M ^ { \prime } } \operatorname { t r } \left\{\left(H^{\prime}-\frac{1}{n-1}\left(\operatorname{tr} H^{\prime}\right) I\right)^{t}\right.\right. \\
&\left.\left.\quad \cdot\left(H^{\prime}-\frac{1}{n-1}\left(\operatorname{tr} H^{\prime}\right) I\right)\right\} d M^{\prime}\right) \operatorname{vol} S^{n} \\
&=(n-1)\left(\int_{M^{\prime}}\left\|H^{\prime}-\frac{1}{n-1}\left(\operatorname{tr} H^{\prime}\right) I\right\|^{2} d M^{\prime}\right) \operatorname{vol} S^{n} \leq 0
\end{aligned}
$$

which implies that

$$
H^{\prime}=\frac{1}{n-1}\left(\operatorname{tr} H^{\prime}\right) I
$$

This shows that M^{\prime} is a totally umbilical hypersurface of S^{n} and consequently the small sphere of S^{n}. Thus we get

Theorem 3.7. $S^{n-1}(r) \times S^{n}(1)$ is the only compact orientable invariant hypersurface of $S^{n} \times S^{n}$ with constant mean curvature, which has principal curvatures of the same sign or 0 .

Bibliography

[1] S. S. Chern, M. do Carmo \& S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer, Berlin, 1970, 60-75.
[2] K. Nomizu \& B. Smyth, A formula of Simons type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969) 367-377.
[3] M. Okumura, Totally umbilical hypersurface of a locally product manifold, Kōdai Math. Sem. Rep. 19 (1967) 35-42.
[4] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 88 (1968) 62-105.
[5] S. Tachibana, Some theorems on locally product Riemannian manifold, Tôhoku Math. J. 12 (1960) 281-292.
[6] K. Yano, Differential geometry on complex and almost complex spaces, Pergamon, Oxford, 1965.

Michigan State University

[^0]: ${ }^{1}$ If we take $\lambda=-1$, then we use (2.15) instead of (2.13) and get the same results.

