J. DIFFERENTIAL GEOMETRY 9 (1974) 537-546

ALMOST SUBMANIFOLD STRUCTURES

ROBERT H. BOWMAN

1. Introduction

The purpose of this paper is the investigation of certain structures on an n-dimensional C^{∞} manifold determined by a second order connection, which we call almost submanifold structures. The case of an almost submanifold structure satisfying a certain additional condition is called an almost hypersurface structure, and is studied in detail. An almost hypersurface structure on a manifold allows us to treat the manifold almost as if it were a hypersurface of a second manifold. For example we may discuss the mean curvature and directions of curvature on a manifold bearing an almost hypersurface structure. We show that an almost hypersurface structure is integrable (isometrically imbeddable in a Euclidean space) if and only if the curvature tensor of the structure vanishes.

Various conditions are obtained that there exists a submanifold whose geodesics are also second order geodesics of a second order connection, and the mean curvature vector of and almost submanifold structure is investigated.

2. Preliminary remarks

In this section we will outline the results of [1] and [2] utilized in the main body of this paper. The notation utilized is essentially that of [1] and [3] with the summation convention employed on lower case Latin indices.

If ²*M* denotes the third term of the extended sequence [2] of a manifold $M (\equiv {}^{0}M)$:

then a second order connection [1] on M is a connection on the bundle ${}^{2}_{0}\pi: {}^{2}M \to M$, which naturally induces a connection on M (which we called the first order connection induced on M). If ${}^{1}_{0}\pi_{*}$ denotes the tangent map of ${}^{1}_{0}\pi: TM \to M({}^{1}M \equiv TM)$, and K is the connection map of the induced first order connection, then TTM and consequently ${}^{2}M$ may be given a vector bundle structure over M relative to these maps. If HM and VM denote the horizontal and vertical subbundles of ${}^{2}M$ respectively, then

Communicated by K. Yano, May 24, 1973.

$$(2) \qquad {}^{1}_{0}\pi_{*}: HM_{p} \to TM_{\frac{1}{0}\pi(p)}, \qquad K: VM_{p} \to TM_{\frac{1}{0}\pi(p)}$$

are isomorphisms of each $p \in TM$; and if (U, ϕ) is a coordinate chart of M, then there are naturally determined bases $\{X_i^h\}$ and $\{X_i^v\}$ of the horizontal and vertical subbundles respectively, and coordinates of ${}^{2}M$ (called vector bundle coordinates) relative to (U, ϕ) and the first order connection on M.

A second order connection on M determines a covariant differentiation of a section A of ${}_{0}^{2}\pi$: ${}^{2}M \to M$ with respect to a vector field X on M (here and throughout the remainder of the paper we identify the horizontal subbundle of ${}^{2}M$ with TM) which has the local form

$$(3) \quad \tilde{\mathcal{V}}_{X}A = \xi^{j} \left(\frac{\partial A^{0i}}{\partial x^{0j}} + \Gamma^{0i}_{jk} A^{0k} \right) X_{i}^{h} + \xi^{j} \left(\frac{\partial A^{1i}}{\partial x^{0j}} + \Gamma^{1i}_{j0k} A^{0k} + \Gamma^{1i}_{j1k} A^{1k} \right) X_{i}^{v} ,$$

where $X = \xi^j \partial/\partial x^j$, and $A = A^{0i}X_i^h + A^{1i}X_i^v$.

If X and Y are C^{∞} vector fields on M, and ξ is a vertical vector field on M, i.e., a C^{∞} map $\xi: M \to VM$, then decomposing \tilde{V} into horizontal and vertical components yields

(4)
$$\tilde{\mathcal{V}}_X Y = \mathcal{V}_X Y + \alpha(X, Y) , \qquad \tilde{\mathcal{V}}_X \xi = D_X \xi ,$$

where the horizontal component $\overline{V}_X Y$ is the covariant derivative of the induced first order connection, the vertical component $\alpha(X, Y)$, which we call the second fundamental form of \tilde{V} , is bilinear, and the vertical component $D_X \xi$ is a connection in the vertical bundle.

If γ is a C^{∞} curve of M, then γ' will denote the canonical lift of γ to TM, and γ'' the canonical lift of γ' to ${}^{2}M \subset TTM$.

3. Almost snbmanifold structures

Suppose that g is a fiber metric on ${}^{2}_{\sigma\pi}: {}^{2}M \to M$, and that $\mathfrak{X}(M)$ and $\mathfrak{X}^{v}(M)$ denote the modules of C^{∞} horizontal and vertical vector fields on M respectively. If $\tilde{\mathcal{V}}$ is a second order connection on M, then for all $X, Y \in \mathfrak{X}(M)$ and $\xi \in \mathfrak{X}^{v}(M)$ there is a unique field in $\mathfrak{X}(M)$, which we denote by $\mathscr{A}_{\varepsilon}(X)$ such that

(5)
$$g(\mathscr{A}_{\xi}(X), Y) = g(\alpha(X, Y), \xi) .$$

Using \mathscr{A} we define an operator \mathcal{V}' such that

(6)
$$\nabla'_X Y = \nabla_X Y + \alpha(X, Y), \quad \nabla'_X \xi = -\mathscr{A}_{\xi}(X) + D_X \xi,$$

where ∇, α and D are as in (4). Such an operator satisfying the additional condition (5) will be called an almost submanifold structure or AS-structure on M. Thus by construction we see that to each pair consisting of a fiber metric

on ${}_{0}^{2}\pi$: ${}^{2}M \to M$ and a second order connection on M there corresponds a unique AS-structure on M.

Suppose that for a given fiber metric g on ${}_{0}^{2}\pi: {}^{2}M \to M$ and second order connection \tilde{V} , the first order connection induced on M by \tilde{V} is metric with respect to the metric on M obtained by restricting g to the horizontal subbundle of ${}^{2}M$, and that the connection on the vertical bundle induced by \tilde{V} is metric with respect to the metric obtained by restricting g to the vertical subbundle of ${}^{2}M$. If in addition the torsion $\widetilde{\text{Tor}}(X, Y)$ of \tilde{V} with respect to any X, Y, given by

(7)
$$\widetilde{\operatorname{Tor}}(X,Y) = \widetilde{V}_X Y - \widetilde{V}_Y X - [X,Y],$$

vanishes, we will say that $\tilde{\mathcal{V}}$ is Riemannian with respect to g.

Theorem 1. If \tilde{V} is Riemannian with respect to a fiber metric g, with the additional property that vertical and horizontal vector are orthogonal at each point of M, then V' is Riemannian with respect to g.

Proof. Letting $A = A^h + A^v$ where A^h and A^v are the horizontal and vertical components of A we see that since horizontal and vertical vectors are orthogonal and $\tilde{\mathcal{V}}$ Riemannian,

$$egin{aligned} Xg(A,B) &= Xg(A^h,B^h) + Xg(A^v,B^v) \ &= g(arphi_XA^h,B^h) + g(A^h,arphi_XB^h) + g(D_XA^v,B^v) + g(A^v,D_XB^v) \ . \end{aligned}$$

From (5) it follows that

$$egin{aligned} g(lpha(X,A^{\hbar}),B^{v}) \,+\, g(\mathscr{A}_{B^{v}}(X),A^{\hbar}) &= 0 \;, \ g(lpha(X,B^{\hbar}),A^{v}) \,+\, g(\mathscr{A}_{A^{v}}(X),B^{\hbar}) &= 0 \;, \end{aligned}$$

so that

$$Xg(A, B) = g(\nabla'_{X}A, B) + g(A, \nabla'_{X}B)$$

Since

$$\operatorname{Tor}'(X, Y) = \mathcal{V}'_{X}Y - \mathcal{V}'_{Y}X - [XY] = \operatorname{Tor}'(X, Y) = 0,$$

we see that Γ' is Riemannian with respect to g.

Theorem 2. If the AS-structure ∇' is Riemannian with respect to the fiber metric g, then the first order connection induced by ∇' is Riemannian with respect to the metric induced by g, and $\alpha(X, Y) = \alpha(Y, X)$.

Proof. Since Γ' is Riemannian, using (6) we have

$$\nabla'_X Y - \nabla'_Y X - [X, Y] = \nabla_X Y - \nabla_Y X + \alpha(X, Y) - \alpha(Y, X) = 0 ,$$

hence

$$abla_X Y -
abla_Y X - [X, Y] = 0, \qquad lpha(X, Y) = lpha(Y, X).$$

We define the first vertical space $V_1(x)$ of an AS-structure at $x \in M$ by

$$(8) V_1(x) = \operatorname{span} \left\{ \alpha(X, Y) \,|\, X, Y \in M_x \right\} \,.$$

If $V_1(x)$ has maximum dimension l at any point $x \in M$, we call l the pseudocodimension of M.

4. Almost hypersurface structures

We first consider the case where the pseudocodimension of the AS-structure is 1. Let

(9)
$$\xi_x = \begin{cases} \frac{\alpha_x(X,Y)}{\|\alpha_x(X,Y)\|} & \text{if } \alpha_x(X,Y) \neq 0 \text{ for some } X,Y, \\ 0 & \text{if } \alpha_x \equiv 0. \end{cases}$$

If $h(X, Y) = ||\alpha(X, Y)||$, then $\alpha(X, Y) = h(X, Y)\xi$. If we take $\mathscr{A}(X) = \mathscr{A}_{\xi}(X)$ for the ξ defined in (9), the AS-structure becomes

(10)
$$\nabla'_X Y = \nabla_X Y + \alpha(X, Y) , \qquad \nabla_X \xi = -\mathscr{A}(X) + D_X \xi ,$$

where $(D_x\xi)_x = 0$ if $\xi_x = 0$, and we restrict ourselves to the case where \mathscr{A} is C^{∞} henceforth.

On the basis of (10) we may define various notions analogous to those of a hypersurface. At a point $x \in M$ the mean curvature H(x) is the trace of \mathscr{A}_x , and the total curvature K(x) is the determinant of A_x . If $\lambda_1, \dots, \lambda_n$ are the eigenvalues of \mathscr{A}_x , they are the principal curvatures at x, and the corresponsing eigenvectors are the directions of curvature at x. If two vectors at x have the property that $g(\mathscr{A}(X), Y) = 0$, then they are conjugate; and if $g(\mathscr{A}(X), X) = 0$, then X is asymptotic. If $\mathscr{A} = \lambda \operatorname{Id}$, then x is umbilical, etc.

We define the curvature tensor of the AS-structure ∇' in the usual manner as follows:

(11)
$$R'(X,Y)A = \nabla'_X \nabla'_Y A - \nabla'_Y \nabla'_X A - \nabla'_{[X,Y]} A,$$

and note that a standard calculation shows that the horizontal component of R'(X, Y)Z is equal to

(12)
$$R(X,Y)Z + h(X,Z)\mathscr{A}(Y) - h(Y,Z)\mathscr{A}(X) ,$$

where $X, Y, Z \in \mathfrak{X}(M)$, and R is the curvature tensor of the induced first order connection. The vertical component is equal to

(13)
$$(\nabla_X h)(Y,Z)\xi - (\nabla_Y h)(X,Z)\xi + h(Y,Z)D_X\xi - h(X,Z)D_Y\xi$$
.

Suppose that $R' \equiv 0$. Then from the horizontal component we have

(14)
$$R(X,Y)Z = h(Y,Z)\mathscr{A}(X) - h(X,Z)\mathscr{A}(Y)$$

or equivalently

(15)
$$R(X,Y)Z = g(\mathscr{A}(Y),Z)\mathscr{A}(X) - g(\mathscr{A}(X),Z)\mathscr{A}(Y) .$$

From the vertical component of R'(X, Y)Z it follows that at those $x \in M$ where ξ is not continuous, $D\xi = 0$ (by definition) whence

$$(\nabla_X h)(Y, Z) = (\nabla_Y h)(X, Z)$$
.

At those $x \in M$ where ξ is C^{∞} , we have $g(\xi, \xi)$ constant and thus

$$Xg(\xi,\xi) = 2g(D_X\xi,\xi) = 0 .$$

Hence $D_X \xi$ and ξ are orthogonal, which together with (13) written in the form

$$(\nabla_X h)(Y,Z)\xi - \nabla_Y h(X,Z)\xi = h(X,Z)D_Y\xi - h(Y,Z)D_X\xi$$

implies that in either case

(16)
$$(\nabla_X h)(Y,Z) = (\nabla_Y h)(X,Z) ,$$

or alternately

(17)
$$(\nabla_X \mathscr{A})(Y) = (\nabla_Y \mathscr{A})(X) \; .$$

Hence in the case of an AS-structure of pseudocodimension 1, (6) becomes

(18)
$$\nabla'_X Y = \nabla_X Y + \alpha(X, Y) , \qquad \nabla'_X \xi = -\mathscr{A}(X) .$$

Theorem 3. On a manifold bearing a Riemannian AS-structure of pseudocodimension 1 such that for $X, Y, Z \in \mathfrak{X}(M)$ the horizontal component of R'(X, Y)Z vanishes, the Ricci tensor is given by

$$\operatorname{Ri}(X,Y) = g(\mathscr{A}(X),Y) \operatorname{tr} \mathscr{A} - g(\mathscr{A}^2(X),Y)$$
.

Proof. By definition

$$\operatorname{Ri}(XY) = \operatorname{trace} \operatorname{of} \operatorname{the} \operatorname{map} Z \to R(Z, X)Y$$

using (15) is a standard fashion we obtain the desired formula.

We will say that an AS-structure of pseudocodimension 1 on M is integrable if there is an isometric imbedding of M into R^{n+1} with second fundamental

tensor \mathscr{A} the tensor determined by the symmetric transformation of the AS-structure in (18).

Theorem 4. A Riemannian AS-structure of pseudocodimension 1 on a connected simply connected manifold is integrable if and only if $R' \equiv 0$.

Proof. Suppose that $R' \equiv 0$. Then from (15) and (17) we see that the symmetric linear transformation \mathscr{A} satisfies the Gauss-Codazzi equations. The integrability of the AS-structure on M then follows from the fundamental theorem for hypersurfaces [3]. On the other hand suppose that the AS-structure on M is integrable. Then \mathscr{A} satisfies the Gauss-Codazzi equations, and equations (15) and (17) imply that R'(X, Y)Z = 0 for arbitrary $X, Y, Z \in \mathfrak{X}(M)$. From (18) it follows that

(19)

$$R'(X, Y)\xi = \overline{\nu}'_{X}\overline{\nu}'_{Y}\xi - \overline{\nu}'_{Y}\overline{\nu}'_{X}\xi - \overline{\nu}'_{[X,Y]}\xi$$

$$= (\overline{\nu}_{Y}\mathscr{A})(X) - (\overline{\nu}_{X}\mathscr{A})(Y) - \mathscr{A} (\text{Tor } (X, Y))$$

$$- \alpha(X, \mathscr{A}(Y)) + \alpha(Y, \mathscr{A}(X)) .$$

Since the Codazzi equation (17) is satisfied, $(\nabla_Y \mathscr{A})(X) - (\nabla_X \mathscr{A})(Y) = 0$; and since ∇' is Riemannian, \mathscr{A} (Tor (X, Y)) = 0. Noting that $g(\alpha(X, Y), \xi) = g(\mathscr{A}(X), Y)$ we see that

$$g(\alpha(X, \mathscr{A}(Y)), \xi) = g(\mathscr{A}(X), \mathscr{A}(Y))$$

= $g(\mathscr{A}(Y), \mathscr{A}(X)) = g(\alpha(Y, \mathscr{A}(X)), \xi)$,

so that $R'(X, Y)\xi = 0$.

Remark. Although an imbedding of M, to within an isometry of R^{n+1} , is determined by an integrable AS-structure, an imbedded submanifold of R^{n+1} may be determined, within an isometry of R^{n+1} , by several AS-structures. Suppose that M admits a global nonvanishing C^{∞} vector field and is imbedded in R^{n+1} with second fundamental form h. If ξ and ξ' are C^{∞} unit vector fields on M (these exist globally since M admits a nonvanishing C^{∞} vector field and a connection map K) take $\alpha(X, Y) = h(X, Y)\xi$ and $\alpha'(X, Y) = h(X, Y)\xi'$, then the AS-structures so obtained yield the same imbedding of M into R^{n+1} , to within an isometry of R^{n+1} .

Theorem 5. Suppose that M bears a Riemannian AS-structure of pseudocodimension 1 having the properties that the vertical component of R' vanishes, and that the type number t(x) of \mathscr{A} at each point $x \in M$ is constantly l on an open neighborhood U of M. Then through each $x \in U$ there passes a maximal submanifold S of dimension n - l having the property that each geodesic of Sis also a second order geodesic of S (in the sense that ∇' and ∇ agree on S).

Proof. Let $\mathscr{D}_x = \text{kernel } \mathscr{A}_x$ for each x of the open submanifold U of M. If $X_x \in \mathscr{D}_x$ and $Y_x \in M_x$, then from

(20)
$$g(\mathscr{A}(X_x), Y_x) = g(X_x, \mathscr{A}(Y_x)) = 0$$

we see that $\mathscr{A}(M_x) = \mathscr{D}_x^{\perp}$ (in the horizontal subbundle). Suppose that X^1, \dots, X^n are C^{∞} vector fields which form a basis of M_p at each p in a neighborhood of x. Then from the set

(21)
$$\{\mathscr{A}(X^1), \cdots, \mathscr{A}(X^n)\}$$

we may select a minimal subset which spans \mathscr{D}_x^{\perp} . Since these are C^{∞} and linearly independent at x, they are linearly independent and thus span \mathscr{D}_p^{\perp} at each p in some neighborhood of x. Consequently \mathscr{D}^{\perp} is a C^{∞} distribution of dimension l on U, and hence $(\mathscr{D}^{\perp})^{\perp} = \mathscr{D}$ is a C^{∞} (n - l)-dimensional C^{∞} distribution on U. Suppose that $X, Y \in \mathscr{D}$. Then

(22)
$$(\overrightarrow{\Gamma}_{X}\mathscr{A})(Y) = \overrightarrow{\Gamma}_{X}\mathscr{A}(Y) - \mathscr{A}(\overrightarrow{\Gamma}_{X}Y) , \\ (\overrightarrow{\Gamma}_{Y}\mathscr{A})(X) = \overrightarrow{\Gamma}_{Y}\mathscr{A}(X) - \mathscr{A}(\overrightarrow{\Gamma}_{Y}X) .$$

Since the vertical component of R' vanishes, the Codazzi equation $(\nabla_X \mathscr{A})(Y) = (\nabla_Y \mathscr{A})(X)$ holds, and since $\mathscr{A}(X) = \mathscr{A}(Y) = 0$ we have

(23)
$$\mathscr{A}(\nabla_X Y - \nabla_Y X) = 0 \; .$$

However, since the AS-structure is Riemannian, $\nabla_X Y - \nabla_Y X = [X, Y]$, and thus

(24)
$$\mathscr{A}([X,Y]) = 0 .$$

Thus \mathcal{D} is an involutive distribution on U, and consequently through each $x \in U$ there passes a maximal integral (n - l)-dimensional manifold S of \mathcal{D} . Since \mathcal{A} vanishes on tangent vectors to S and

(25)
$$g(\mathscr{A}(X), Y) = h(X, Y), \qquad \alpha(X, Y) = h(X, Y)\xi,$$

we see that the second fundamental form α of the AS-structure vanishes on tangent vectors to S, and hence that each geodesic of S is also a second order geodesic of S.

Remark. If we define in the usual manner

(26)
$$R'(W, X, Y, Z) = g(R'(Y, Z)X, W)$$

for $W, X, Y, Z \in \mathfrak{X}(M)$, and the AS-structure is Riemannian, we see that if

(27)
$$\frac{R'(X, Y, X, Y)}{g(X, X)g(Y, Y) - g^2(X, Y)} = k$$

for all $X, Y \in \mathfrak{X}(M)$, then

(28)
$$R'(X, Y)Z = k(g(Z, Y)X - g(Z, X)Y),$$

and consequently the vertical component of R'(X, Y)Z vanishes. Hence the condition on the vertical component of R'(X, Y)Z in Theorem 5 may be replaced with the above "constant curvature" condition (27).

Theorem 6. Suppose that M bears a Riemannian AS-structure of pseudocodimension 1, with the properties that \mathscr{A} is parallel with respect to the induced first order connection on M, and that the type number t(x) of \mathscr{A} at each point of an open neighborhood U of M is constantly l. Then the conclusion of Theorem 5 holds.

Proof. Suppose that $S, Y \in \mathcal{D}$ where \mathcal{D} is defined as in Theorem 5. If \mathscr{A} is parallel with respect to the induced first order connection on M, then

(29)
$$\nabla_X \mathscr{A}(Y) = \mathscr{A}(\nabla_X Y) , \quad \nabla_Y \mathscr{A}(X) = \mathscr{A}(\nabla_Y X) .$$

Since $X, Y \in \mathcal{D}$, it follows that $\mathscr{A}(\nabla_X Y) = \mathscr{A}(\nabla_Y X) = 0$, and hence that $\mathscr{A}(\nabla_X Y - \nabla_Y X) = \mathscr{A}([X, Y]) = 0$ due to the fact that the AS-structure is Riemannian. Thus \mathscr{D} is an involutive C^{∞} distribution on U (that \mathscr{D} is C^{∞} follows exactly as in Theorem 5) and the conclusion desired follows as in Theorem 5.

5. The mean curvature vector

The mean curvature vector of a manifold bearing an AS-structure is giving by

(30)
$$\eta = \operatorname{tr} \mathscr{A}_i \xi_i ,$$

where tr \mathscr{A}_i denotes the trace of the map $X \to \mathscr{A}_i(X), \xi_i$ is an orthonormal basis of the vertical subbundle of ${}^{2}M$ (which exists locally at least), and \mathscr{A}_i is defined by

(31)
$$g(\mathscr{A}_i(X), Y) = g(\alpha(X, Y), \xi_i) .$$

We first note that in the case of an AS-structure of pseudocodimension 1, α and η are linearly dependent.

Theorem 7. If a manifold M bears an AS-structure of pseudocodimension 1, then there exists a C^{∞} map $h: \mathfrak{X}(M) \times \mathfrak{X}(M) \to R$ such that

$$\alpha(X,Y) = h(X,Y)\eta/\|\eta\|$$

at each point of M except where $\eta = 0$ and $\alpha \neq 0$.

Proof. Suppose that ξ_1, \dots, ξ_n form an orthonormal basis of the vertical subbundle such that η and ξ_1 are linearly dependent. Since $g(\mathscr{A}_i(X), Y) = g(\alpha(X, Y), \xi_i)$, we see that $\mathscr{A}_i = 0$ and consequently tr $\mathscr{A}_i = 0, i = 2, \dots, n$. Thus

(32)
$$\eta = \operatorname{tr} \mathscr{A}_i \xi_i = \operatorname{tr} \mathscr{A}_1 \xi_1 .$$

On the other hand

$$\alpha(X, Y) = g(\alpha(X, Y), \xi_i)\xi_i = g(\mathscr{A}_i(X), Y)\xi_i = g(\mathscr{A}_1(X), Y)\xi_1,$$

and $\xi_1 = \eta/\operatorname{tr} \mathscr{A}_1 = n/||\eta||$ for $\eta \neq 0$. Thus taking $h(X, Y) = g(\mathscr{A}_1(X), Y)$ we have

$$lpha(X,Y)=h(X,Y)\eta/\|\eta\|$$

at each point of M where $\eta \neq 0$. If $\alpha = 0$, then $\mathscr{A}_i = 0$, $i = 1, \dots, h$ and $\eta = 0$; hence h(X, Y) = 0. If we define $\eta/||\eta|| = 0$ when $\eta = 0$, we again obtain the desired formula.

Suppose that we define the mean curvature of a manifold bearing an ASstructure by

$$H(x) = \|\eta_x\|,$$

and define \mathscr{A} by

(34)
$$g(\mathscr{A}(X), Y) = g(\alpha(X, Y), \eta/||\eta||)$$

for $\eta \neq 0$ and $\mathscr{A} = 0$ for $\eta = 0$. Then \mathscr{A} is C^{∞} except where $\eta = 0$ and $\alpha \neq 0$, as in Theorem 7 we have

$$g(\mathscr{A}(X), Y) = g(h(X, Y)\eta/||\eta||, \eta/||\eta||) = h(X, Y)$$

except when $\eta = 0$ and $\alpha \neq 0$.

Theorem 8. If M is a manifold bearing an AS-structure, then

$$H(x) = \operatorname{tr} \mathscr{A}_x$$

Proof. If x is a point of M such that $\eta_x \neq 0$, then

$$egin{aligned} g(\mathscr{A}(X_x),Y_x) &= g(lpha(X_x,Y_x),(\operatorname{tr}\mathscr{A}_i)\xi_i/\|\eta_x\|) \ &= (\operatorname{tr}\mathscr{A}_i)g(lpha(X_x,Y_x),\xi_i)/\|\eta_x\| \ &= (\operatorname{tr}\mathscr{A}_i)g(\mathscr{A}_i(X_x),Y_x)/\|\eta_x\| \;. \end{aligned}$$

Thus

(35)
$$\mathscr{A} = (\operatorname{tr} \mathscr{A}_i) \mathscr{A}_i / \|\eta\|,$$

and hence that

(36)
$$\operatorname{tr} \mathscr{A} = (1/||\eta_x||) \sum_{i=1}^n (\operatorname{tr} \mathscr{A}_i)^2 = ||\eta_x|| = H(x) .$$

If $\eta_x = 0$, then from (34) we see that $\mathscr{A}_x = 0$ and hence that once again $H(x) = \operatorname{tr} \mathscr{A}_x$.

In the case where there are no points of M such that $\eta = 0$ and $\alpha \neq 0$, we may endow M with an AS-structure of pseudocodimension 1 via the formulas

$$egin{aligned} &
abla'_XY =
abla_XY + g(lpha(X,Y),\eta/\|\eta\|)\eta/\|\eta\| \ , \ &
abla'_X\eta/\|\eta\| = -\mathscr{A}(X) + D_X\eta/\|\eta\| \ , \end{aligned}$$

and the mean curvature is the same as that of the original AS-structure.

References

- [1] R. H. Bowman, Second order connections. I, II, J. Differential Geometry 7 (1972)
- [1] K. H. Bownau, Become order order connections: 1, 11, 5: Differential Connectly 7 (1972) 549-561, 8 (1973) 75-84.
 [2] —, differential extensions, Tensor 21 (1970) 139-150.
 [3] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vols. I, II, Interscience, New York, 1963, 1969.

ARKANSAS STATE UNIVERSITY