ALMOST SUBMANIFOLD STRUCTURES

ROBERT H. BOWMAN

1. Introduction

The purpose of this paper is the investigation of certain structures on an n-dimensional C^{∞} manifold determined by a second order connection, which we call almost submanifold structures. The case of an almost submanifold structure satisfying a certain additional condition is called an almost hypersurface structure, and is studied in detail. An almost hypersurface structure on a manifold allows us to treat the manifold almost as if it were a hypersurface of a second manifold. For example we may discuss the mean curvature and directions of curvature on a manifold bearing an almost hypersurface structure. We show that an almost hypersurface structure is integrable (isometrically imbeddable in a Euclidean space) if and only if the curvature tensor of the structure vanishes.

Various conditions are obtained that there exists a submanifold whose geodesics are also second order geodesics of a second order connection, and the mean curvature vector of and almost submanifold structure is investigated.

2. Preliminary remarks

In this section we will outline the results of [1] and [2] utilized in the main body of this paper. The notation utilized is essentially that of [1] and [3] with the summation convention employed on lower case Latin indices.

If ${ }^{2} M$ denotes the third term of the extended sequence [2] of a manifold $M\left(\equiv{ }^{0} M\right)$:

$$
\begin{equation*}
{ }^{0} M \stackrel{{ }^{1} \pi}{\overbrace{}^{2}}{ }^{1} M \stackrel{{ }^{2} \pi}{4^{2}} M \stackrel{{ }^{\frac{3}{2} \pi}}{\leftarrow} \cdots, \tag{1}
\end{equation*}
$$

then a second order connection [1] on M is a connection on the bundle ${ }_{0}^{2} \pi:{ }^{2} M \rightarrow M$, which naturally induces a connection on M (which we called the first order connection induced on M). If ${ }_{0}^{1} \pi_{*}$ denotes the tangent map of ${ }_{0}^{1} \pi: T M \rightarrow M\left({ }^{1} M \equiv T M\right)$, and K is the connection map of the induced first order connection, then $T T M$ and consequently ${ }^{2} M$ may be given a vector bundle structure over M relative to these maps. If $H M$ and $V M$ denote the horizontal and vertical subbundles of ${ }^{2} M$ respectively, then

[^0]\[

$$
\begin{equation*}
{ }_{0}^{1} \pi_{*}: H M_{p} \rightarrow T M_{0_{0} \pi(p)}, \quad K: V M_{p} \rightarrow T M_{\mathrm{i}_{0} \pi(p)} \tag{2}
\end{equation*}
$$

\]

are isomorphisms of each $p \in T M$; and if (U, ϕ) is a coordinate chart of M, then there are naturally determined bases $\left\{X_{i}^{h}\right\}$ and $\left\{X_{i}^{v}\right\}$ of the horizontal and vertical subbundles respectively, and coordinates of ${ }^{2} M$ (called vector bundle coordinates) relative to (U, ϕ) and the first order connection on M.

A second order connection on M determines a covariant differentiation of a section A of ${ }_{0}^{2} \pi:{ }^{2} M \rightarrow M$ with respect to a vector field X on M (here and throughout the remainder of the paper we identify the horizontal subbundle of ${ }^{2} M$ with $T M$) which has the local form

$$
\begin{equation*}
\tilde{\nabla}_{X} A=\xi^{j}\left(\frac{\partial A^{0 i}}{\partial x^{0 j}}+\Gamma_{j k}^{0 i} A^{0 k}\right) X_{i}^{h}+\xi^{j}\left(\frac{\partial A^{1 i}}{\partial x^{0 j}}+\Gamma_{j 0 k}^{1 i} A^{0 k}+\Gamma_{j 1 k}^{1 i} A^{1 k}\right) X_{i}^{v} \tag{3}
\end{equation*}
$$

where $X=\xi^{j} \partial / \partial x^{j}$, and $A=A^{0 i} X_{i}^{h}+A^{1 i} X_{i}^{v}$.
If X and Y are C^{∞} vector fields on M, and ξ is a vertical vector field on M, i.e., a $C^{\infty} \operatorname{map} \xi: M \rightarrow V M$, then decomposing $\tilde{\nabla}$ into horizontal and vertical components yields

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\alpha(X, Y), \quad \tilde{\nabla}_{X} \hat{\xi}=D_{X} \xi \tag{4}
\end{equation*}
$$

where the horizontal component $V_{X} Y$ is the covariant derivative of the induced first order connection, the vertical component $\alpha(X, Y)$, which we call the second fundamental form of \tilde{V}, is bilinear, and the vertical component $D_{X} \xi$ is a connection in the vertical bundle.

If γ is a C^{∞} curve of M, then γ^{\prime} will denote the canonical lift of γ to $T M$, and $\gamma^{\prime \prime}$ the canonical lift of γ^{\prime} to ${ }^{2} M \subset T T M$.

3. Almost snbmanifold structures

Suppose that g is a fiber metric on ${ }_{0}^{2} \pi:{ }^{2} M \rightarrow M$, and that $\mathfrak{X}(M)$ and $\mathfrak{X}^{v}(M)$ denote the modules of C^{∞} horizontal and vertical vector fields on M respectively. If \tilde{V} is a second order connection on M, then for all $X, Y \in \mathscr{X}(M)$ and $\xi \in \mathfrak{X}^{v}(M)$ there is a unique field in $\mathfrak{X}(M)$, which we denote by $\mathscr{A}_{\xi}(X)$ such that

$$
\begin{equation*}
g\left(\mathscr{A}_{\xi}(X), Y\right)=g(\alpha(X, Y), \xi) \tag{5}
\end{equation*}
$$

Using \mathscr{A} we define an operator ∇^{\prime} such that

$$
\begin{equation*}
\nabla_{X}^{\prime} Y=\nabla_{X} Y+\alpha(X, Y), \quad \nabla_{x}^{\prime} \xi=-\mathscr{A}_{\xi}(X)+D_{X} \xi \tag{6}
\end{equation*}
$$

where ∇, α and D are as in (4). Such an operator satisfying the additional condition (5) will be called an almost submanifold structure or $A S$-structure on M. Thus by construction we see that to each pair consisting of a fiber metric
on ${ }_{0}^{2} \pi:{ }^{2} M \rightarrow M$ and a second order connection on M there corresponds a unique $A S$-structure on M.

Suppose that for a given fiber metric g on ${ }_{0}^{2} \pi:{ }^{2} M \rightarrow M$ and second order connection \tilde{V}, the first order connection induced on M by $\tilde{\nabla}$ is metric with respect to the metric on M obtained by restricting g to the horizontal subbundle of ${ }^{2} M$, and that the connection on the vertical bundle induced by $\tilde{\nabla}$ is metric with respect to the metric obtained by restricting g to the vertical subbundle of ${ }^{2} M$. If in addition the torsion $\widetilde{\text { Tor }}(X, Y)$ of \tilde{V} with respect to any X, Y, given by

$$
\begin{equation*}
\widetilde{\operatorname{Tor}}(X, Y)=\tilde{V}_{X} Y-\tilde{V}_{Y} X-[X, Y] \tag{7}
\end{equation*}
$$

vanishes, we will say that $\tilde{\nabla}$ is Riemannian with respect to g.
Theorem 1. If $\tilde{\nabla}$ is Riemannian with respect to a fiber metric g, with the additional property that vertical and horizontal vector are orthogonal at each point of M, then ∇^{\prime} is Riemannian with respect to g.

Proof. Letting $A=A^{h}+A^{v}$ where A^{h} and A^{v} are the horizontal and vertical components of A we see that since horizontal and vertical vectors are orthogonal and \tilde{V} Riemannian,

$$
\begin{aligned}
X g(A, B) & =X g\left(A^{h}, B^{h}\right)+X g\left(A^{v}, B^{v}\right) \\
& =g\left(\nabla_{X} A^{h}, B^{h}\right)+g\left(A^{h}, \nabla_{X} B^{h}\right)+g\left(D_{X} A^{v}, B^{v}\right)+g\left(A^{v}, D_{X} B^{v}\right) .
\end{aligned}
$$

From (5) it follows that

$$
\begin{aligned}
& g\left(\alpha\left(X, A^{h}\right), B^{v}\right)+g\left(\mathscr{A}_{B^{v}}(X), A^{h}\right)=0 \\
& g\left(\alpha\left(X, B^{h}\right), A^{v}\right)+g\left(\mathscr{A}_{A v}(X), B^{h}\right)=0
\end{aligned}
$$

so that

$$
X g(A, B)=g\left(\nabla_{X}^{\prime} A, B\right)+g\left(A, \nabla_{X}^{\prime} B\right) .
$$

Since

$$
\operatorname{Tor}^{\prime}(X, Y)=\nabla_{X}^{\prime} Y-\nabla_{Y}^{\prime} X-[X Y]=\widetilde{\operatorname{Tor}}(X, Y)=0
$$

we see that ∇^{\prime} is Riemannian with respect to g.
Theorem 2. If the $A S$-structure ∇^{\prime} is Riemannian with respect to the fiber metric g, then the first order connection induced by ∇^{\prime} is Riemannian with respect to the metric induced by g, and $\alpha(X, Y)=\alpha(Y, X)$.

Proof. Since ∇^{\prime} is Riemannian, using (6) we have

$$
\nabla_{X}^{\prime} Y-\nabla_{Y}^{\prime} X-[X, Y]=\nabla_{X} Y-\nabla_{Y} X+\alpha(X, Y)-\alpha(Y, X)=0
$$

hence

$$
\nabla_{X} Y-\nabla_{Y} X-[X, Y]=0, \quad \alpha(X, Y)=\alpha(Y, X)
$$

We define the first vertical space $V_{1}(x)$ of an $A S$-structure at $x \in M$ by

$$
\begin{equation*}
V_{1}(x)=\operatorname{span}\left\{\alpha(X, Y) \mid X, Y \in M_{x}\right\} \tag{8}
\end{equation*}
$$

If $V_{1}(x)$ has maximum dimension l at any point $x \in M$, we call l the pseudocodimension of M.

4. Almost hypersurface structures

We first consider the case where the pseudocodimension of the $A S$-structure is 1 . Let

$$
\xi_{x}=\left\{\begin{array}{cl}
\frac{\alpha_{x}(X, Y)}{\left\|\alpha_{x}(X, Y)\right\|} & \text { if } \alpha_{x}(X, Y) \neq 0 \text { for some } X, Y \tag{9}\\
0 & \text { if } \alpha_{x} \equiv 0
\end{array}\right.
$$

If $h(X, Y)=\|\alpha(X, Y)\|$, then $\alpha(X, Y)=h(X, Y) \xi$. If we take $\mathscr{A}(X)=\mathscr{A}_{\xi}(X)$ for the ξ defined in (9), the $A S$-structure becomes

$$
\begin{equation*}
\nabla_{X}^{\prime} Y=\nabla_{X} Y+\alpha(X, Y), \quad \nabla_{X} \xi=-\mathscr{A}(X)+D_{X} \xi \tag{10}
\end{equation*}
$$

where $\left(D_{x} \xi\right)_{x}=0$ if $\xi_{x}=0$, and we restrict ourselves to the case where \mathscr{A} is C^{∞} henceforth.

On the basis of (10) we may define various notions analogous to those of a hypersurface. At a point $x \in M$ the mean curvature $H(x)$ is the trace of \mathscr{A}_{x}, and the total curvature $K(x)$ is the determinant of A_{x}. If $\lambda_{1}, \cdots, \lambda_{n}$ are the eigenvalues of \mathscr{A}_{x}, they are the principal curvatures at x, and the corresponsing eigenvectors are the directions of curvature at x. If two vectors at x have the property that $g(\mathscr{A}(X), Y)=0$, then they are conjugate; and if $g(\mathscr{A}(X), X)$ $=0$, then X is asymptotic. If $\mathscr{A}=\lambda$ Id, then x is umbilical, etc.

We define the curvature tensor of the $A S$-structure V^{\prime} in the usual manner as follows:

$$
\begin{equation*}
R^{\prime}(X, Y) A=\nabla_{X}^{\prime} \nabla_{Y}^{\prime} A-\nabla_{Y}^{\prime} \nabla_{X}^{\prime} A-\nabla_{[X, Y]}^{\prime} A \tag{11}
\end{equation*}
$$

and note that a standard calculation shows that the horizontal component of $R^{\prime}(X, Y) Z$ is equal to

$$
\begin{equation*}
R(X, Y) Z+h(X, Z) \mathscr{A}(Y)-h(Y, Z) \mathscr{A}(X) \tag{12}
\end{equation*}
$$

where $X, Y, Z \in \mathfrak{X}(M)$, and R is the curvature tensor of the induced first order connection. The vertical component is equal to

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z) \xi-\left(\nabla_{Y} h\right)(X, Z) \xi+h(Y, Z) D_{X} \xi-h(X, Z) D_{Y} \xi \tag{13}
\end{equation*}
$$

Suppose that $R^{\prime} \equiv 0$. Then from the horizontal component we have

$$
\begin{equation*}
R(X, Y) Z=h(Y, Z) \mathscr{A}(X)-h(X, Z) \mathscr{A}(Y) \tag{14}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
R(X, Y) Z=g(\mathscr{A}(Y), Z) \mathscr{A}(X)-g(\mathscr{A}(X), Z) \mathscr{A}(Y) \tag{15}
\end{equation*}
$$

From the vertical component of $R^{\prime}(X, Y) Z$ it follows that at those $x \in M$ where ξ is not continuous, $D \xi=0$ (by definition) whence

$$
\left(\nabla_{X} h\right)(Y, Z)=\left(\nabla_{Y} h\right)(X, Z)
$$

At those $x \in M$ where ξ is C^{∞}, we have $g(\xi, \xi)$ constant and thus

$$
X g(\xi, \xi)=2 g\left(D_{X} \xi, \xi\right)=0
$$

Hence $D_{x} \xi$ and ξ are orthogonal, which together with (13) written in the form

$$
\left(\nabla_{X} h\right)(Y, Z) \xi-\nabla_{Y} h(X, Z) \xi=h(X, Z) D_{Y} \xi-h(Y, Z) D_{X} \xi
$$

implies that in either case

$$
\begin{equation*}
\left(\nabla_{X} h\right)(Y, Z)=\left(\nabla_{Y} h\right)(X, Z) \tag{16}
\end{equation*}
$$

or alternately

$$
\begin{equation*}
\left(\nabla_{X} \mathscr{A}\right)(Y)=\left(\nabla_{Y} \mathscr{A}\right)(X) . \tag{17}
\end{equation*}
$$

Hence in the case of an $A S$-structure of pseudocodimension 1, (6) becomes

$$
\begin{equation*}
\nabla_{X}^{\prime} Y=\nabla_{X} Y+\alpha(X, Y), \quad \nabla_{x}^{\prime} \xi=-\mathscr{A}(X) \tag{18}
\end{equation*}
$$

Theorem 3. On a manifold bearing a Riemannian $A S$-structure of pseudocodimension 1 such that for $X, Y, Z \in \mathfrak{X}(M)$ the horizontal component of $R^{\prime}(X, Y) Z$ vanishes, the Ricci tensor is given by

$$
\operatorname{Ri}(X, Y)=g(\mathscr{A}(X), Y) \operatorname{tr} \mathscr{A}-g\left(\mathscr{A}^{2}(X), Y\right)
$$

Proof. By definition

$$
\operatorname{Ri}(X Y)=\text { trace of the map } Z \rightarrow R(Z, X) Y
$$

using (15) is a standard fashion we obtain the desired formula.
We will say that an $A S$-structure of pseudocodimension 1 on M is integrable if there is an isometric imbedding of M into R^{n+1} with second fundamental
tensor \mathscr{A} the tensor determined by the symmetric transformation of the $A S$ structure in (18).

Theorem 4. A Riemannian AS-structure of pseudocodimension 1 on a connected simply connected manifold is integrable if and only if $R^{\prime} \equiv 0$.

Proof. Suppose that $R^{\prime} \equiv 0$. Then from (15) and (17) we see that the symmetric linear transformation \mathscr{A} satisfies the Gauss-Codazzi equations. The integrability of the $A S$-structure on M then follows from the fundamental theorem for hypersurfaees [3]. On the other hand suppose that the $A S$-structure on M is integrable. Then \mathscr{A} satisfies the Gauss-Codazzi equations, and equations (15) and (17) imply that $R^{\prime}(X, Y) Z=0$ for arbitrary $X, Y, Z \in \mathfrak{X}(M)$. From (18) it follows that

$$
\begin{align*}
R^{\prime}(X, Y) \xi= & \nabla_{X}^{\prime} \nabla_{Y}^{\prime} \xi-\nabla_{Y}^{\prime} \nabla_{X}^{\prime} \xi-\nabla_{[X, Y]}^{\prime} \xi \\
= & \left(\nabla_{Y} \mathscr{A}\right)(X)-\left(\nabla_{X} \mathscr{A}\right)(Y)-\mathscr{A}(\operatorname{Tor}(X, Y)) \tag{19}\\
& -\alpha(X, \mathscr{A}(Y))+\alpha(Y, \mathscr{A}(X)) .
\end{align*}
$$

Since the Codazzi equation (17) is satisfied, $\left(\nabla_{Y} \mathscr{A}\right)(X)-\left(\nabla_{X} \mathscr{A}\right)(Y)=0$; and since ∇^{\prime} is Riemannian, $\mathscr{A}(\operatorname{Tor}(X, Y))=0$. Noting that $g(\alpha(X, Y), \xi)=$ $g(\mathscr{A}(X), Y)$ we see that

$$
\begin{aligned}
g(\alpha(X, \mathscr{A}(Y)), \xi) & =g(\mathscr{A}(X), \mathscr{A}(Y)) \\
& =g(\mathscr{A}(Y), \mathscr{A}(X))=g(\alpha(Y, \mathscr{A}(X)), \xi),
\end{aligned}
$$

so that $R^{\prime}(X, Y) \xi=0$.
Remark. Although an imbedding of M, to within an isometry of R^{n+1}, is determined by an integrable $A S$-structure, an imbedded submanifold of R^{n+1} may be determined, within an isometry of R^{n+1}, by several $A S$-structures. Suppose that M admits a global nonvanishing C^{∞} vector field and is imbedded in R^{n+1} with second fundamental form h. If ξ and ξ^{\prime} are C^{∞} unit vector fields on M (these exist globaly since M admits a nonvanishing C^{∞} vector field and a connection map K) take $\alpha(X, Y)=h(X, Y) \xi$ and $\alpha^{\prime}(X, Y)=h(X, Y) \xi^{\prime}$, then the $A S$-structures so obtained yield the same imbedding of M into R^{n+1}, to within an isometry of R^{n+1}.

Theorem 5. Suppose that M bears a Riemannian AS-structure of pseudocodimension 1 having the properties that the vertical component of R^{\prime} vanishes, and that the type number $t(x)$ of \mathscr{A} at each point $x \in M$ is constantly l on an open neighborhood U of M. Then through each $x \in U$ there passes a maximal submanifold S of dimension $n-l$ having the property that each geodesic of S is also a second order geodesic of S (in the sense that ∇^{\prime} and ∇ agree on S).

Proof. Let $\mathscr{D}_{x}=$ kernel \mathscr{A}_{x} for each x of the open submanifold U of M. If $X_{x} \in \mathscr{D}_{x}$ and $Y_{x} \in M_{x}$, then from

$$
\begin{equation*}
g\left(\mathscr{A}\left(X_{x}\right), Y_{x}\right)=g\left(X_{x}, \mathscr{A}\left(Y_{x}\right)\right)=0 \tag{20}
\end{equation*}
$$

we see that $\mathscr{A}\left(M_{x}\right)=\mathscr{D} \frac{1}{x}$ (in the horizontal subbundle). Suppose that X^{1}, \cdots, X^{n} are C^{∞} vector fields which form a basis of M_{p} at each p in a neighborhood of x. Then from the set

$$
\begin{equation*}
\left\{\mathscr{A}\left(X^{1}\right), \cdots, \mathscr{A}\left(X^{n}\right)\right\} \tag{21}
\end{equation*}
$$

we may select a minimal subset which spans $\mathscr{D}_{\frac{1}{x}}$. Since these are C^{∞} and linearly independent at x, they are linearly independent and thus span $\mathscr{D}_{\frac{1}{p}}^{\perp}$ at each p in some neighborhood of x. Consequently \mathscr{D}^{\perp} is a C^{∞} distribution of dimension l on U, and hence $\left(\mathscr{D}^{\perp}\right)^{\perp}=\mathscr{D}$ is a $C^{\infty}(n-l)$-dimensional C^{∞}. distribution on U. Suppose that $X, Y \in \mathscr{D}$. Then

$$
\begin{align*}
& \left(\nabla_{X} \mathscr{A}\right)(Y)=\nabla_{X} \mathscr{A}(Y)-\mathscr{A}\left(\nabla_{X} Y\right) \\
& \left(\nabla_{Y} \mathscr{A}\right)(X)=\nabla_{Y} \mathscr{A}(X)-\mathscr{A}\left(\nabla_{Y} X\right) \tag{22}
\end{align*}
$$

Since the vertical component of R^{\prime} vanishes, the Codazzi equation $\left(\nabla_{X} \mathscr{A}\right)(Y)$ $=\left(\nabla_{Y} \mathscr{A}\right)(X)$ holds, and since $\mathscr{A}(X)=\mathscr{A}(Y)=0$ we have

$$
\begin{equation*}
\mathscr{A}\left(\nabla_{X} Y-\nabla_{Y} X\right)=0 \tag{23}
\end{equation*}
$$

However, since the $A S$-structure is Riemannian, $\nabla_{X} Y-\nabla_{Y} X=[X, Y]$, and thus

$$
\begin{equation*}
\mathscr{A}([X, Y])=0 \tag{24}
\end{equation*}
$$

Thus \mathscr{D} is an involutive distribution on U, and consequently through each $x \in U$ there passes a maximal integral $(n-l)$-dimensional manifold S of \mathscr{D}. Since \mathscr{A} vanishes on tangent vectors to S and

$$
\begin{equation*}
g(\mathscr{A}(X), Y)=h(X, Y), \quad \alpha(X, Y)=h(X, Y) \xi \tag{25}
\end{equation*}
$$

we see that the second fundamental form α of the $A S$-structure vanishes on tangent vectors to S, and hence that each geodesic of S is also a second order geodesic of S.

Remark. If we define in the usual manner

$$
\begin{equation*}
R^{\prime}(W, X, Y, Z)=g\left(R^{\prime}(Y, Z) X, W\right) \tag{26}
\end{equation*}
$$

for $W, X, Y, Z \in \mathscr{X}(M)$, and the $A S$-structure is Riemannian, we see that if

$$
\begin{equation*}
\frac{R^{\prime}(X, Y, X, Y)}{g(X, X) g(Y, Y)-g^{2}(X, Y)}=k \tag{27}
\end{equation*}
$$

for all $X, Y \in \mathfrak{X}(M)$, then

$$
\begin{equation*}
R^{\prime}(X, Y) Z=k(g(Z, Y) X-g(Z, X) Y) \tag{28}
\end{equation*}
$$

and consequently the vertical component of $R^{\prime}(X, Y) Z$ vanishes. Hence the condition on the vertical component of $R^{\prime}(X, Y) Z$ in Theorem 5 may be replaced with the above "constant curvature" condition (27).

Theorem 6. Suppose that M bears a Riemannian $A S$-structure of pseudocodimension 1 , with the properties that \mathscr{A} is parallel with respect to the induced first order connection on M, and that the type number $t(x)$ of \mathscr{A} at each point of an open neighborhood U of M is constantly l. Then the conclusion of Theorem 5 holds.

Proof. Suppose that $S, Y \in \mathscr{D}$ where \mathscr{D} is defined as in Theorem 5. If \mathscr{A} is parallel with respect to the induced first order connection on M, then

$$
\begin{equation*}
\nabla_{X} \mathscr{A}(Y)=\mathscr{A}\left(\nabla_{X} Y\right), \quad \nabla_{Y} \mathscr{A}(X)=\mathscr{A}\left(\nabla_{Y} X\right) . \tag{29}
\end{equation*}
$$

Since $X, Y \in \mathscr{D}$, it follows that $\mathscr{A}\left(\nabla_{X} Y\right)=\mathscr{A}\left(\nabla_{Y} X\right)=0$, and hence that $\mathscr{A}\left(\nabla_{X} Y-\nabla_{Y} X\right)=\mathscr{A}([X, Y])=0$ due to the fact that the $A S$-structure is Riemannian. Thus \mathscr{D} is an involutive C^{∞} distribution on U (that \mathscr{D} is C^{∞} follows exactly as in Theorem 5) and the conclusion desired follows as in Theorem 5.

5. The mean curvature vector

The mean curvature vector of a manifold bearing an $\mathrm{A} S$-structure is giving by

$$
\begin{equation*}
\eta=\operatorname{tr} \mathscr{A}_{i} \xi_{i} \tag{30}
\end{equation*}
$$

where $\operatorname{tr} \mathscr{A}_{i}$ denotes the trace of the map $X \rightarrow \mathscr{A}_{i}(X), \xi_{i}$ is an orthonormal basis of the vertical subbundle of ${ }^{2} M$ (which exists locally at least), and \mathscr{A}_{i} is defined by

$$
\begin{equation*}
g\left(\mathscr{A}_{i}(X), Y\right)=g\left(\alpha(X, Y), \xi_{i}\right) \tag{31}
\end{equation*}
$$

We first note that in the case of an $A S$-structure of pseudocodimension $1, \alpha$ and η are linearly dependent.

Theorem 7. If a manifold M bears an $A S$-structure of pseudocodimension 1 , then there exists a C^{∞} map $h: \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow R$ such that

$$
\alpha(X, Y)=h(X, Y)_{\eta} /\|\eta\|
$$

at each point of M except where $\eta=0$ and $\alpha \neq 0$.
Proof. Suppose that ξ_{1}, \cdots, ξ_{n} form an orthonormal basis of the vertical subbundle such that η and ξ_{1} are linearly dependent. Since $g\left(\mathscr{A}_{i}(X), Y\right)=$ $g\left(\alpha(X, Y), \xi_{i}\right)$, we see that $\mathscr{A}_{i}=0$ and consequently $\operatorname{tr} \mathscr{A}_{i}=0, i=2, \cdots, n$. Thus

$$
\begin{equation*}
\eta=\operatorname{tr} \mathscr{A}_{i} \xi_{i}=\operatorname{tr} \mathscr{A}_{1} \xi_{1} \tag{32}
\end{equation*}
$$

On the other hand

$$
\alpha(X, Y)=g\left(\alpha(X, Y), \xi_{i}\right) \xi_{i}=g\left(\mathscr{A}_{i}(X), Y\right) \xi_{i}=g\left(\mathscr{A}_{1}(X), Y\right) \xi_{1}
$$

and $\xi_{1}=\eta / \operatorname{tr} \mathscr{A}_{1}=n /\|\eta\|$ for $\eta \neq 0$. Thus taking $h(X, Y)=g\left(\mathscr{A}_{1}(X), Y\right)$ we have

$$
\alpha(X, Y)=h(X, Y) \eta /\|\eta\|
$$

at each point of M where $\eta \neq 0$. If $\alpha=0$, then $\mathscr{A}_{i}=0, i=1, \cdots, h$ and $\eta=0$; hence $h(X, Y)=0$. If we define $\eta /\|\eta\|=0$ when $\eta=0$, we again obtain the desired formula.

Suppose that we define the mean curvature of a manifold bearing an $A S$ structure by

$$
\begin{equation*}
H(x)=\left\|\eta_{x}\right\| \tag{33}
\end{equation*}
$$

and define \mathscr{A} by

$$
\begin{equation*}
g(\mathscr{A}(X), Y)=g(\alpha(X, Y), \eta /\|\eta\|) \tag{34}
\end{equation*}
$$

for $\eta \neq 0$ and $\mathscr{A}=0$ for $\eta=0$. Then \mathscr{A} is C^{∞} except where $\eta=0$ and $\alpha \neq 0$, as in Theorem 7 we have

$$
g(\mathscr{A}(X), Y)=g(h(X, Y) \eta /\|\eta\|, \eta /\|\eta\|)=h(X, Y)
$$

except when $\eta=0$ and $\alpha \neq 0$.
Theorem 8. If M is a manifold bearing an $A S$-structure, then

$$
H(x)=\operatorname{tr} \mathscr{A}_{x} .
$$

Proof. If x is a point of M such that $\eta_{x} \neq 0$, then

$$
\begin{aligned}
g\left(\mathscr{A}\left(X_{x}\right), Y_{x}\right) & =g\left(\alpha\left(X_{x}, Y_{x}\right),\left(\operatorname{tr} \mathscr{A}_{i}\right) \xi_{i} /\left\|\eta_{x}\right\|\right) \\
& =\left(\operatorname{tr} \mathscr{A}_{i}\right) g\left(\alpha\left(X_{x}, Y_{x}\right), \xi_{i}\right) /\left\|\eta_{x}\right\| \\
& =\left(\operatorname{tr} \mathscr{A}_{i}\right) g\left(\mathscr{A}_{i}\left(X_{x}\right), Y_{x}\right) /\left\|\eta_{x}\right\| .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\mathscr{A}=\left(\operatorname{tr} \mathscr{A}_{i}\right) \mathscr{A}_{i} /\|\eta\| \tag{35}
\end{equation*}
$$

and hence that

$$
\begin{equation*}
\operatorname{tr} \mathscr{A}=\left(1 /\left\|\eta_{x}\right\|\right) \sum_{i=1}^{n}\left(\operatorname{tr} \mathscr{A}_{i}\right)^{2}=\left\|\eta_{x}\right\|=H(x) . \tag{36}
\end{equation*}
$$

If $\eta_{x}=0$, then from (34) we see that $\mathscr{A}_{x}=0$ and hence that once again $H(x)=\operatorname{tr} \mathscr{A}_{x}$.

In the case where there are no points of M such that $\eta=0$ and $\alpha \neq 0$, we may endow M with an $A S$-structure of pseudocodimension 1 via the formulas

$$
\begin{gathered}
\nabla_{X}^{\prime} Y=\nabla_{X} Y+g(\alpha(X, Y), \eta /\|\eta\| \eta /\|\eta\|, \\
\nabla_{x}^{\prime} \eta /\|\eta\|=-\mathscr{A}(X)+D_{X} \eta /\|\eta\|
\end{gathered}
$$

and the mean curvature is the same as that of the original $A S$-structure.

References

[1] R. H. Bowman, Second order connections. I, II, J. Differential Geometry 7 (1972) 549-561, 8 (1973) 75-84.
[2] S-, differential extensions, Tensor 21 (1970) 139-150.
[3] S. Kobayashi \& K. Nomizu, Foundations of differential geometry, Vols. I, II, Interscience, New York, 1963, 1969.

[^0]: Communicated by K. Yano, May 24, 1973.

