f-STRUCTURES WITH PARALLELIZABLE KERNEL ON MANIFOLDS

RICHARD S. MILLMAN

1. A structure on an n-dimensional differentiable manifold given by a nonzero tensor field f of type $(1,1)$ and constant rank r, which satisfies $f^{3}+f=0$, is called an f-structure. This notion has been studied by Yano and Ishihara (among others) [5]. An f-structure is integrable if about each point there is a coordinate system in which f has the constant components

$$
f=\left[\begin{array}{ccc}
0 & -I_{p} & 0 \tag{1}\\
I_{p} & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

where I_{p} is the $p \times p$ identity matrix ($p=\frac{1}{2} r$). In [2] it is shown that the integrability of f is equivalent to the vanishing of the Nijenhuis tensor of f given by $N(X, Y)=[f X, f Y]-f[f X, Y]-f[X, f Y]+f^{2}[X, Y]$ where X and Y are vector fields on M. We shall write $\chi(M)$ for the set of all vector fields on $M, T_{m}(M)$ for the tangent space of M at $m \in M$, and $T(M)$ for the tangent bundle of M. For $m \in M$, let $(\operatorname{ker} f)_{m}=\left\{X \in T_{m} M \mid f_{m}(X)=0\right\}$ and $(\operatorname{imf})_{m}=$ $\left\{X \in T_{m} M \mid X=f_{m} Y\right.$ for some $\left.Y \in T_{m} M\right\}$. The kernel ker f of f is $\cup_{m}(\operatorname{ker} f)_{m}$ and the image im f of f is $\bigcup_{m}(\operatorname{im~} f)_{m}$. An f-manifold is k-framed if there are $\xi_{1}, \cdots, \xi_{n-r} \in \chi(M)$ such that $\left\{\xi_{1}(m), \cdots, \xi_{n-r}(m)\right\}$ forms a basis for $(\operatorname{ker} f)_{m}$ for all $m \in M$. We write $n_{0}=n-r$. If M_{1} and M_{2} are k-framed f-manifolds, then we define an almost complex structure J on $M_{1} \times M_{2}$. We shall denote the k-framing on M_{i} by $\left\{\xi_{1}^{i}, \cdots, \xi_{n_{0}}^{i}\right\}$, and the f-structure on M_{i} by f_{i}. If in addition $\left[\xi_{k}^{i}, \xi_{l}^{i}\right]=0$ for all $1 \leq k, l \leq n_{0}$, then M_{i} is called an f-contact manifold. The concept of f-contact manifold generalizes the basic features of almost contact structure to f-manifold of higher nullity (i.e., lower rank).

Theorem A. Let M_{1} and M_{2} be two k-framed f-manifolds of the same rank with f_{1} - and f_{2}-structures respectively, and suppose that f_{1} and f_{2} are integrable. Then the almost complex structure J on $M_{1} \times M_{2}$ is integrable if and only if both M_{1} and M_{2} are f-contact manifolds.
If $\varphi: M_{1} \rightarrow M_{2}$ and $f_{2} \varphi_{*}(X)=\varphi_{*} f_{1}(X)$ for all $X \in T_{m} M_{1}, m \in M_{1}$, then φ is an f-map. Here φ_{*} denotes, as usual, the differential of φ. If $M_{1}=M_{2}$, then

[^0]φ is an f-automorphism; if φ is a diffeomorphism, then both φ and φ^{-1} are f-maps and $\varphi_{*} \xi_{i}=\xi_{i}$ for all $1 \leq i \leq n_{0}$.

Theorem B. If M is a compact integrable f-contact manifold, then the set of all f-automorphisms of M is a Lie group in the compact-open topology.

Theorem A generalizes a result of Morimoto [3] which states that the product of any two normal (integrable) almost contact manifolds is a complex manifold. (This includes the Calabi-Eckmann manifolds $S^{2 p+1} \times S^{2 q+1}$ as a special case.) Morimoto [3] also proved Theorem B for integrable almost contact manifolds. Theorem B is also valid without the assumption of integrability if M is an almost contact manifold [4].
2. We shall construct the almost complex structure J.

Lemma 1. If f is an f-structure on an f-manifold, then $\operatorname{ker} f \cap \operatorname{im} f=(0)$.
Proof. If $Y=f(X) \in \operatorname{ker} f$, then $0=f(Y)=f^{2}(X)$, so from $f^{3}(X)+f(X)$ $=0$ we have $Y=f(X)=0$. q.e.d.

Since $\operatorname{dim} T_{m} M=\operatorname{dim}(\operatorname{ker} f)_{m}+\operatorname{dim}(\operatorname{imf})_{m}$, Lemma 1 allows us to write $T_{m} M=(\operatorname{ker} f)_{m} \oplus(\operatorname{imf} f)_{m}$. Let $\pi_{m}: T_{m} M \rightarrow(\operatorname{ker} f)_{m}$ be the projection associated to this direct sum decomposition. We define the differential 1-forms $\eta_{i}\left(i=1, \cdots, n_{0}\right)$ on M by $\left(\eta_{i}\right)_{m}(X)=a_{i}(m)$ where $\pi_{m} X=\sum a_{i}(m) \xi_{i}(m)$ and $X \in T_{m} M$.

Lemma 2. If $X \in T_{m} M$, then
(a) $\eta_{i}(f X)=0$ for $i=1, \cdots, n_{0}$,
(b) $f^{2}(X)-\sum_{i} \eta_{i}(X) \xi_{i}=-X$.

Proof. (a) If $f X=Z+\pi(f X)$ where $Z \in \operatorname{Im} f$, then $\pi(f X)=f X-Z \in$ $(\operatorname{ker} f) \cap(\operatorname{im} f)=(0)$ so $\pi(f X)=0$.
(b) Let $Y=X+f^{2}(X)$. Then $f(Y)=0$ so $Y=\sum a_{i} \xi_{i}$. Thus $a_{i}=\eta_{i}(Y)$ $=\eta_{i}(X)+\eta_{i}\left(f^{2}(X)\right)=\eta_{i}(X)$ where the last equality follows from (a). q.e.d.

Assume M_{1} (resp. M_{2}) has f-structure f_{1} (resp. f_{2}) with k-framing $\left\{\xi_{1}^{1}, \cdots, \xi_{n_{0}}^{1}\right\}$ (resp. $\left\{\xi_{1}^{2}, \cdots, \xi_{n_{0}}^{2}\right\}$). Note that we have assumed that the rank of f_{1} is equal to the rank of f_{2}. If $X_{1} \in T_{p} M_{1}, X_{2} \in T_{q} M_{2}$ where $p \in M_{1}, q \in M_{2}$, then we define a tensor J of type $(1,1)$ on $M_{1} \times M_{2}$ by

$$
\begin{equation*}
J_{p, q}\left(X_{1}, X_{2}\right)=\left(f_{1}\left(X_{1}\right)-\sum_{i} \eta_{i}^{2}\left(X_{2}\right) \xi_{i}^{1}(p), f_{2}\left(X_{2}\right)+\sum_{i} \eta_{i}^{1}\left(X_{1}\right) \xi_{i}^{2}(q)\right) \tag{2}
\end{equation*}
$$

Proposition 3. J is an almost complex structure on $M_{1} \times M_{2}$. Proof. Clearly

$$
J_{p, q}^{2}\left(X_{1}, X_{2}\right)=\left(f_{1}^{2}\left(X_{1}\right)-\sum \eta_{i}^{1}\left(X_{1}\right) \xi_{i}^{1}(p), f_{2}^{2}\left(X_{2}\right)-\sum \eta_{i}^{2}\left(X_{2}\right) \xi_{i}^{2}(q)\right) ;
$$

hence $J_{p, q}^{2}=-I$ by Lemma 2.
3. Before proving Theorem A we need the following:

Lemma 3. If M is an integrable k-framed f-manifold, then
(a) $\eta_{i}([f X, Y]+[X, f Y])=f(X) \eta_{i}(Y)-(f Y) \eta_{i}(X)$ for all $1 \leq i \leq n_{0}$, $X, Y \in \chi(M)$,
(b) $f\left[X, \xi_{j}\right]=\left[f(X), \xi_{j}\right]$ for $1 \leq j \leq n_{0}, X \in T M$.

Proof. (a) Since f is integrable, there is a coordinate system (with $s=\frac{1}{2} r$) $\left(x_{1}, \cdots, x_{s}, y_{1}, \cdots, y_{s}, w_{1}, \cdots, w_{n_{0}}\right)$ such that $\left\{\partial / \partial x_{i}, \partial / \partial y_{i} \mid i=1, \cdots, s\right\}$ forms a local basis for $\operatorname{im} f$ and $\left\{\partial / \partial w_{i} \mid i=1, \cdots, n_{0}\right\}$ forms a basis for ker f. It suffices to show (a) when $X, Y \in \operatorname{ker} f, X \in \operatorname{ker} f, Y \in \operatorname{im} f$ and $X, Y \in \operatorname{im} f$ since both sides are skew-symmetric. If $X, Y \in \operatorname{ker} f$, then both sides are zero. If $Y=g \xi_{i}$ and $X=h \partial / \partial x_{j}$ where $h \in C^{\infty}(M)$, then $f X=h \partial / \partial y_{j}$ and both sides are $\partial g / \partial y_{j}$. If $Y=g \xi_{i}$ and $X=h \partial / \partial y_{j}$, then both sides are $-h \partial g / \partial x_{j}$. Now assume $X, Y \in \operatorname{im} f$, and suppose $X=h \partial / \partial x_{j}$ and $Y=g \partial / \partial y_{k}$. Then $[f X, Y]+[X, f Y]=\left[h \partial / \partial y_{j}, g \partial / \partial y_{k}\right]-\left[h \partial / \partial x_{j}, g \partial / \partial x_{k}\right]$ which is in $\operatorname{im} f ;$ hence $\eta_{i}([f X, Y]+[X, f Y])=0$ for all i. On the other hand $\eta_{i}(Y)=\eta_{i}(X)=0$, so both sides are zero. The other three cases of this part are the same.
(b) If $N(X, Y)$ is the Nijenhuis torsion of f (which is zero since f is integrable), then

$$
0=f(N(X, Y))=f[f X, f Y]-f^{2}[f X, Y]-f^{2}[X, f Y]-f[X, Y] .
$$

Applying Lemma 2(b) we see

$$
\begin{align*}
0= & f[f X, f Y]+[f X, Y]+[X, f Y]-f[X, Y] \\
& -\sum_{i=1}^{n_{0}}\left\{\eta_{i}([f X, Y]+[X, f Y]) \xi_{i}\right\} . \tag{3}
\end{align*}
$$

If we let $Y=\xi_{j}$ and apply part (a), (3) becomes

$$
f\left(\left[X, \xi_{j}\right]\right)=\left[f X, \xi_{j}\right]-\sum_{i=1}^{n_{0}}\left(f(X) \delta_{i j}\right) \xi_{i}
$$

where $\delta_{i j}$ is the Kronecker δ, so that each term in the summation is zero. q.e.d.

We shall now prove Theorem A using the notation introduced there. Let $X_{i}, Y_{i} \in \chi\left(M_{i}\right), i=1,2$, and $A=\left(X_{1}, X_{2}\right), B=\left(Y_{1}, Y_{2}\right) . J$ is integrable if and only if

$$
\begin{equation*}
N(A, B)=[J A, J B]-J[J A, B]-J[A, J B]-[A, B]=0 \tag{4}
\end{equation*}
$$

We prove this at the point $\left(m_{1}, m_{2}\right) \in M_{1} \times M_{2}$. Let $\left(x_{1}^{i}, \cdots, x_{s}^{i}, y_{1}^{i}, \cdots, y_{s}^{i}\right.$, $w_{1}^{i}, \cdots, w_{n_{0}}^{i}$) be local coordinates about m_{i} as in the proof of Lemma 3. It suffices to prove (4) when X_{1}, Y_{1} are one of $\partial / \partial x_{i}^{1}, \partial / \partial y_{i}^{1}, \xi_{i}^{1}$, and X_{2}, Y_{2} are one of $\partial / \partial x_{i}^{2}, \partial / \partial y_{i}^{2}, \xi_{i}^{2}$ since N is a tensor.

We shall consider two cases-the others are similar. Suppose $A=$ $\left(\partial / \partial x^{1}, \partial / \partial y^{2}\right)$ and $B=\left(\xi_{i}^{1}, \xi_{j}^{2}\right)$. Then $J A=\left(\partial / \partial y^{1},-\partial / \partial x^{2}\right), J B=\left(-\xi_{j}^{2}, \xi_{i}^{1}\right)$ so that

$$
\begin{aligned}
J[J A, B]= & J\left(\left[\partial / \partial y^{2}, \xi_{i}^{1}\right],-\left[\partial / \partial x^{2}, \xi_{j}^{2}\right]\right) \\
= & \left(f_{1}\left(\left[\partial / \partial y^{2}, \xi_{i}^{1}\right]\right)+\sum_{l} \eta_{l}^{2}\left(\left[\partial / \partial x^{2}, \xi_{j}^{2}\right]\right) \xi_{l}^{1},\right. \\
& \left.-f_{2}\left(\left[\partial / \partial x^{2}, \xi_{j}^{2}\right]\right)+\sum_{l} \eta_{l}^{1}\left(\left[\partial / \partial y^{2}, \xi_{i}^{1}\right]\right) \xi_{l}^{2}\right) .
\end{aligned}
$$

Using Lemma 3(b) and the fact that

$$
\eta_{l}^{2}\left(\left[\partial / \partial x^{2}, \xi_{j}^{2}\right]\right)=-\eta_{l}^{2}\left(\left[f \partial / \partial y^{2}, \xi_{j}^{2}\right]\right)=-\eta_{l}^{2}\left(f\left[\partial / \partial y^{2}, \xi_{j}^{2}\right]\right)=0,
$$

from Lemma 2(a) we have

$$
\begin{equation*}
J[J A, B]=\left(-\left[\partial / \partial x^{2}, \xi_{i}^{1}\right],-\left(\left[\partial / \partial y^{2}, \xi_{j}^{2}\right]\right)\right) . \tag{5}
\end{equation*}
$$

Similarly

$$
\begin{align*}
J[A, J B]=\left(\left[-\partial / \partial y^{1}, \xi_{j}^{2}\right]\right. & \left.-\left[\partial / \partial x^{2}, \xi_{i}^{2}\right]\right) \tag{6}\\
& \left([A, B]=\left(\left[\partial / \partial x^{2}, \xi_{i}^{1}\right],\left[\partial / \partial y^{2}, \xi_{j}^{2}\right]\right)\right), \\
{[J A, J B]=} & \left(-\left[\partial / \partial y^{1}, \xi_{j}^{2}\right],-\left[\partial / \partial x^{2}, \xi_{i}^{1}\right]\right) . \tag{7}
\end{align*}
$$

From (5), (6) and (7) it follows that $N(A, B)=0$ in this case.
The other case we shall study in detail is when $A=\left(c^{1} \xi_{l}^{1}, c^{2} \xi_{m}^{2}\right)$ and $B=$ ($d^{1} \xi_{p}^{1}, d^{2} \xi_{q}^{2}$) where $c^{i}, d^{i} \in R$ for $i=1,2$. Note that $J A=\left(-c^{2} \xi_{m}^{1}, c^{1} \xi_{l}^{2}\right)$ and $J B=\left(-d^{2} \xi_{q}^{1}, d^{1} \xi_{p}^{2}\right)$. Clearly

$$
\begin{aligned}
J[J A, B] & =-\sum_{k=0}^{n_{0}}\left(\eta_{k}^{2}\left(\left[c^{1} \xi_{l}^{2}, d^{2} \xi_{q}^{2}\right]\right) \xi_{k}^{1}, \eta_{k}^{1}\left(\left[c^{2} \xi_{m}^{1}, d^{1} \xi_{p}^{1}\right]\right) \xi_{k}^{2}\right), \\
J[A, J B] & =-\sum_{k=1}^{n_{0}}\left(\eta_{k}^{2}\left(\left[c^{2} \xi_{m}^{2}, d^{1} \xi_{p}^{2}\right]\right) \xi_{k}^{1}, \eta_{k}^{1}\left(\left[c^{1} \xi_{l}^{1}, d^{2} \xi_{q}^{1}\right]\right) \xi_{k}^{2}\right), \\
{[J A, J B] } & =\left(\left[c^{2} \xi_{m}^{1}, d^{2} \xi_{q}^{1}\right],\left[c^{1} \xi_{l}^{2}, d^{1} \xi_{p}^{2}\right]\right) .
\end{aligned}
$$

Thus

$$
\begin{align*}
N(A, B)= & \left(\left[c^{2} \xi_{m}^{1}, d^{2} \xi_{q}^{1}\right]-\left[c^{1} \xi_{l}, d^{1} \xi_{p}^{1}\right]\right. \\
& +\sum_{k} \eta_{k}^{2}\left(\left[c^{1} \xi_{l}^{2}, d^{2} \xi_{q}^{2}\right]+\left[c^{2} \xi_{m}^{2}, d^{1} \xi_{p}^{2}\right]\right) \xi_{k}^{1},\left[c^{1} \xi_{l}^{2}, d^{1} \xi_{p}^{2}\right]-\left[c^{2} \xi_{m}^{2}, d^{2} \xi_{q}^{2}\right] \tag{8}\\
& \left.+\sum_{k} \eta_{k}^{1}\left(\left[c^{2} \xi_{m}^{1}, d^{1} \xi_{p}^{1}\right]+\left[c^{1} \xi_{l}^{1}, d^{2} \xi_{q}^{1}\right]\right) \xi_{k}^{2}\right)
\end{align*}
$$

If M is an f-contact manifold, then $\left[\xi_{k}^{i}, \xi_{l}^{i}\right]=0$ for all $i \leq k, l \leq n_{0}, i=$ 1,2 , so that $N(A, B)=0$ in this case. If $N(A, B)=0$, then set $c^{2}=d^{2}=1$, $c^{1}=d^{1}=0$ in (8) so that $0=N(A, B)=\left(\left[\xi_{m}^{1}, \xi_{q}^{1}\right],\left[\xi_{l}^{2}, \xi_{p}^{2}\right]\right)$. Since m, q, l, p are arbitrary, we conclude that both M_{1} and M_{2} are f-contact manifolds.
4. Let $A\left(M_{i}\right)$ be the set of all f-automorphisms of the k-framed f-manifold M_{i}, and $A\left(M_{1} \times M_{2}\right)$ be the almost complex diffeomorphisms of $M_{1} \times M_{2}$ with the almost complex structure J.

Proposition 4. If $\varphi_{i} \in A\left(M_{i}\right)$ for $i=1,2$, then $\varphi_{1} \times \varphi_{2} \in A\left(M_{1} \times M_{2}\right)$. Proof. This is a routine computation once we see that $\varphi^{*} \eta_{k}^{i}=\eta_{k}^{i}$ for $i=$ 1,2 , and $k=1, \cdots, n_{0}$. If $X_{i} \in T M_{i}$, then $X_{i}=Z_{i}+\sum a_{j}^{i} \xi_{j}^{i}$ for some $Z_{i} \in$ $\operatorname{im} f_{i}$ and $a_{j}^{i} \in R$, so that $\varphi_{*} Z_{i} \in \operatorname{im} f_{i}$ and hence that

$$
\eta_{k}^{i}\left(\varphi_{*} X_{i}\right)=\sum_{j} \eta_{k}^{i}\left(\varphi_{*}\left(a_{j}^{i} \xi_{j}^{i}\right)\right)=\sum_{j} a_{j}^{i} \eta_{k}^{k}\left(\xi_{j}^{i}\right)=a_{k}^{i}=\eta_{k}^{i}\left(X_{i}\right)
$$

Corollary 1. Let M_{1} and M_{2} be f-contact manifolds. If $A\left(M_{i}\right)$ acts transitively on M_{i} for $i=1,2$, then $A\left(M_{1} \times M_{2}\right)$ operates transitively on $M_{1} \times M_{2}$.

Corollary 2. If M is an integrable f-contact manifold, and $A(M)$ operates transitively on M, then $M \times M$ is a complex homogeneous manifold.

To prove Theorem B we define $H(\varphi)=\varphi \times \varphi$ for $\varphi \in A(M)$. By Proposition $4, H(\varphi) \in A(M \times M)$. Using the function $H: A(M) \rightarrow A(M \times M)$ we may view $A(M)$ as a subset of $A(M \times M)$ which is a Lie group. By means of this we can show that $A(M)$ is locally compact and that any element of $A(M)$ leaving fixed a nonempty open set of M is the identity map of $A(M)$. Hence by a theorem of Bochner-Montgomery [1], $A(M)$ is a Lie transformation group. The details of the proof are quite similar to Morimoto's proof in the almost contact case [3, Theorem 5] and we refer the reader there for details.

Bibliography

[1] S. Bochner \& D. Montgomery, Locally compact groups of differentiable transformations, Ann. of Math 47 (1946) 639-653.
[2] S. Ishihara \& K. Yano, On integrability conditions of a structure f satisfying $f^{3}+f=0$, Quart. J. Math. Oxford Ser. 15 (1964) 217-222.
[3] A. Morimoto, On normal almost contact structures, J. Math. Soc. Japan 15 (1963) 420-436.
[4] S. Sasaki, Almost contact manifolds. Part II, Tôhoku University, 1967.
[5] K. Yano \& S. Ishihara, Structure defined by f satisfying $f^{3}+f=0$, Proc. United States-Japan Seminar in Differential Geometry, Kyoto, Japan, 1965, Nippon Hyoransha, Tokyo, 1966, 153-166.

Southern Illinois University, Carbondale

[^0]: Communicated by K. Yano, May 24, 1973.

