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ON THE VOLUME OF MANIFOLDS ALL OF WHOSE
GEODESICS ARE CLOSED

ALAN WEINSTEIN

1. CL-mani£olds

A riemannian manifold (M, g) will be called a CL-manifold if all the geodesies
on M are closed and have length 2πL, i.e., if all the orbits of the geodesic flow
on the unit tangent bundle U(M, g) are periodic with least period 2πL. It is a
problem of some interest to characterize these manifolds, which are the "simple
harmonic oscillators" of riemannian geometry.

The best known examples of CL-manifolds are the symmetric spaces of rank
one, or SC-manifolds, as they are called by Berger [1,111. 4]. These are the
spheres (Sn, can), projective spaces (Pn(K), can) for k = R,C, or H, and the
Cayley projective plane (P2(Γ), can), with their canonical metrics. The spheres
are CΓmanifolds, and the projective spaces are, with Berger's normalization,
C1/2-manifolds.

Zoll (see [1, IV. 8]) in 1903 constructed examples of non-standard CL-metrics
on S2 (surfaces of revolution), and Blaschke [3, p. 233] gives an example, due
to Thomsen, of a CL-metric on S2 with no nontrivial isometries. These con-
structions can be carried out on higher dimensional spheres as well. If one
strengthens the CL condition to require that the geodesies be simple closed
curves on M, then a theorem of Green (see [1, VIII. 9]) states that any such
simple CL-metric on P2(R) has constant curvature. Furthermore, it is a theorem
of Bott (see [1,IV. 6]) that every simple CL-manifold has the same integer
cohomology ring as some SC-manifold. In fact, this result requires only that
all the geodesies through a single point of M be simply closed with the same
length. The earliest topological study of CL-manifolds seems to be that of Reeb
[7], who proved, among other things, that the product of two spheres of differ-
ent odd dimensions cannot carry a CL-metric.

The aim of the present paper is to demonstrate the following geometric result.
Theorem A. // (M, g) is an n-dimensional CL-manifold, then the ratio

KM, 8)= V O l ( M ' g )

L» vol (Sn, can)

is an integer.
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We will actually prove the following theorem, of which Theorem A is an
immediate consequence.

Theorem B. // (M, g) is an n-dimensional CL-manίfold, then the real num-
ber j(M, g) defined by the equation

( 1) vol (M,g) = (W

( Dί

is an even integer.
To prove Theorem A from Theorem B, one has merely to check, using the

values of vol (Sn~Scan) [1,VI. 7], that /(Sn,can) = 2; then set i(M,g) =

Remarks

1. The proof of Theorem B, contained in the following two sections of this
paper, identifies the integer ;(M, g) as a topological invariant of the ίibration
of U(M, g) by the orbits of the geodesic flow.

2. Using Gysin sequences one can prove that /(M, g) = 2 and i(M, g) = 1
if M is an even-dimensional sphere. It would be interesting to prove that
i(M, g) is independent of g when M is any SC-manifold. This may be a step
in the direction of generalizing the theorem of Green mentioned above.

3. In the succeeding paper in this journal [2], Marcel Berger proves the
following application of Theorem A. Let g be a Kahlerian metric on Pn(C),
compatible with the standard complex structure. Suppose that the distance to
the first conjugate point in each direction from each point on Pn{C) is \π.
Then, at least if g is sufficiently near the canonical metric in the C° topology,
(Pn(C),g) is isometric to (Pn(C), can).

4. Funk [4, p. 283] remarks that the area of a CΓsurface of revolution must
be Aπ. Otherwise, our result seems to be new even for M = S2.

5. An amusing consequence of Theorem A is that one cannot apply a
slight perturbation to GSw,can) to make the geodesies close only after k > 1
"revolutions", for then the volume of the manifold would have to be multiplied
by kn.

6. For reference, we present the following formulas, obtained from the
calculations in [1, VI. 7]:

/(Sw,can) = 1 , i(PnR, can) = 2n~ι ,

«(P-C, can) = (2n ~ ]) , /(P ir, can) = —L-(? ~ ]) ,
V n — 1/ In + l\2n — 1/

i(P2Γ, can) = 39 .

7. The work described here was carried out at the Institute for Advanced
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Study, Princeton and Institut des Hautes Etudes Scientifiques, Bures-sur-yvette
with support from a Sloan fellowship and was completed in Berkeley, with
support from NSF grant GP-34785X. The author would like to thank M.
Berger and F. Hirzebruch for their helpful comments.

2. Proof of Theorem B

The unit tangent bundle U(M, g) of a riemannian manifold carries the fol-
lowing geometric objects:

the geodesic spray G, [1, IV. 2],
the canonical one-form a, [1, III. 6],
the canonical two-form da, [1, III. 6],
the riemannian metric g, [1,V. 2.4],
the volume element θ, [1, V. 2.4].

These objects satisfy the following relations:

(n- 1)!
ii. wol(U(M,g),g) = vol(Λf,s).vol(Sn-1,can), [1,V.2.13],

iii. the flow of G leaves a invariant [1, IV. 3.10],
iv. a(G)=l, [l,p. 125],
v. the null space (characteristic distribution) of da is generated by G, [5,

Thm. 5.9].
Since the orbits of G are all periodic with period 2πL, the vector field 2τrLG

generates a free action of S1 = R/Z on U(M,g), with quotient a manifold

C(M, g). The projection U(M, g) > C(M, g) is a principal bundle with struc-
ture group S1. Relations iii and iv above mean that a/(2πL) is a connection
form on this bundle, and da/(2πL) is the curvature form. There is then a
uniquely determined form Ω on C(M,g) such that p*Ω = da/(2πL); the de
Rham cohomology class [Ω] e H2(C{M, g) R) is the image under the coefficient
homomorphism p2: H\C(M, g);Z)^> H2(C(M, g) R) of the Euler class e(p)
of the bundle p. (We identify the group S1 with 5O(2).) Then [β""1] = [Ω]71-1

is the image of [e(p)]71'1 under the coefficient homomorphism p2n-2
By relation v, the form Ω is nonsingular on C(M,g), which is oriented by

Ω71'1. Denoting by [C(M,g)] the fundamental (2n — 2)-cycle, we have

( 2 ) f Ωn~ι = <Xe(p)Y-\ [C(M, g)]} .

Let j(M,g) be the quantity on either side of (2). The left hand side of the
equation is positive, and the right hand side is an integer, so /(Aί, g) is a posi-
tive integer.

The argument up to here is essentially contained in [7]. At this point, we
use the Fubini theorem for fibrations [1, 0.3.17] to calculate
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\ y
u(M,g) (n — 1 ) !

= - ί a A p*(2πLΩ)n~1

(n — 1 ) ! J tf(jif ,*)

= ^ ) - ' f Γf αlfl -.
(Π — 1) ! JxζC(M,g) U p-Hx) J

By relation iv, αr = 2τrL for each x, so the above expression becomes

v,g) (n - 1)!

Combining this with relation ii shows that /(M, g) satisfies (1). To complete the
proof of Theorem B, it remains only to show that j(M, g) is even. This is done
in the next section.

3. Involutions and evenness

Let ξ: P —> B be a principal bundle with structure group 50(2). By means
of the embedding SO(2) —• 0(2), we can consider ξ as a bundle with fibre
SO(2) and structure group 0(2). Let β: ξ —> ξ be a mapping of 0(2) bundles
(see [8,2.5] for a definition) with β2 = identity and such that the induced
mapping γ: B —> B has no fixed points. Suppose further that B is an orientable
manifold of dimension 2n.

Proposition. The class [e(ξ)]n is an even multiple of the generator of
H2n{B Z) & Z.

Proof. By [6,4.11.2111], [e(ξ)]n = e{nξ) where nξ is the SO(2n) bundle
obtained by taking the n-ίolά Whitney sum of ξ with itself. The involution β
induces an involution nβ: nξ —> nξ of O(2n) bundles therefore there is an
O(2ή) bundle nξ over the quotient manifold B = B/γ such that nξ = π*nξ,
π: B —> B being the projection. The Whitney classes of nξ and nξ satisfy the
relation w2n(nξ) = π*w2n(nξ) [6, p. 73]. Since π is a double covering, it induces
the zero map from H2n(B; Z2) to H2n(B; Z2), so w2n(nξ) = 0. But w2n(nξ) is
the mod 2 reduction [6, p. 73] of e[nξ) = e(ξ)]n, so [e(f)]n is even, q.e.d.

To apply this Proposition to Theorem 2, we use the involution h_x: U(M, g)
—> U(M,g) defined by multiplying each tangent vector by — 1 . Since G is a
spray, Gis/z_Γrelatedto — G, so h_x is an 0(2) bundle mapping. Finally, the
induced map on C(M, g) has no fixed points, because a geodesic cannot double
back upon itself in the reverse direction.

Hence the class [eip)]71'1 is an even multiple of the generator of H2n~2(C(M,
g) Z) , and j(M,g) = (J_e(p)]n~\ [C(M, g)]> is an even integer.
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