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QUATERNION KAHLERIAN MANIFOLDS

SHIGERU ISHIHARA

A quaternion Kahlerian manifold is defined as a Riemannian manifold whose
holonomy group is a subgroup of Sp(m) Sp(l) . Recently, several authors
(Alekseevskii [1], [2], Gray [3], Ishihara [4], Ishihara and Konishi [5], Krainse
[6] and Wolf [10]) have studied quaternion Kahlerian manifolds and obtained
many interesting results. In the present paper, we shall study those manifolds
by using tensor calculus. To do so, it is rather convinient to define a quater-
nion Kahlerian manifold as a Riemannian manifold which admits a bundle V
of tensors of type (1,1) having some properties. The bundle V is 3-dimensional
as a vector bundle and admits an algebraic structure which is isomorphic to
that of pure imaginary quaternions.

In § 1, we define quaternion Kahlerian manifolds in our fashion and give
some results proved in [6]. § 2 is devoted to the establishment of some formulas
required in the following sections. In § 3, it is proved among some other
theorems that any quaternion Kahlerian manifold is an Einstein space
(Alekseevskii [1]). We prove in § 4 that a quaternion Kahlerian manifold,
which is of constant curvature or conformally flat, is of zero curvature, if the
manifold is of dimension > 8 . In §5, we define β-sectional curvatures and
determine the form of the curvature tensor of a quaternion Kahlerian
manifold when it has constant β-sectional curvature (See Alekseevskii [1]).

Manifolds, mappings and geometric objects under discussion are assumed
to be differentiable and of class C°°. The indices h, i, /, k, I, p, q, r, s, t, u, v run
over the range {1, , n}, and the summation convention will be used with
respect to this system of indices.

1. Quaternion Kahlerian manifolds

Let M be a differentiable manifold of dimension n, and assume that there is

a 3-dimensional vector bundle V consisting of tensors of type (1,1) over M

satisfying the following condition :

(a) In any coordinate neighborhood U of M, there is a local base {F, G, H}

of V such that
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" • = - ' • G ' = - ' "•=-••
GH = -HG = F , HF = - F # = G , FG = -GF = H ,

I denoting the identify tensor field of type (1, 1) in M.

Such a local base {F, G, #} is called a canonical local base of the bundle F
in £/. Then the bundle V is called an almost quaternion structure in M, and
(M, F) an almost quaternion manifold. Thus an almost quaternion manifold is
necessarily of dimension n = Am (m > 1).

In an almost quaternion manifold (M, F), we take intersecting coordinate
neighborhoods U and [/'. Let {F, G,H} and {i^G',//'} be canonical local
bases of V in U and E/' respectively. Then F', G' and # ' are linear combi-
nations of F, G and H in [/ Π U', that is,

F7 = snF + .y12G + suH ,

(1.2) G' = snF + s22G + ^23^ ,

H' = snF + s,2G + % #

with functions sΐβ (γ, β = 1, 2, 3) in [/ Π [/'. The coefficients ^r;3 appearing in
(1.2) form an element S ^ , = (^) of the proper orthogonal group SO(3) of
dimension 3, because both of {F, G, //} and {F7, G', //'} satisfy (1.1). Thus any
almost quaternion manifold is orientable.

If there is in an almost quaternion manifold (M, V) a global base {F, G, #}
of the bundle V which satisfies (1.1), then (M, 7) is what is traditionally called
almost quaternion manifold. Such a global base {F, G, #} of F is called a
canonical global base of F.

Let (M, F) be an almost quaternion manifold, and {F, G, H) a canonical
local base of F in a coordinate neighborhood U of M. We now assume that
there is in each U a system of coordinates (xh) with respect to which F, G and
H have numerical components of the form

/0 - £ 0 0 \ /0 0 - E 0\

£ 0 0 0 1 0 0 0

0 0 0 -El' \E 0 0

\) 0 E 0 ' Ό - £ 0
(1.3)

where E denotes the identity (ra, m)-matrix (dim M = 4m). In such a case, the
given almost quaternion structure F or such a canonical local base {F, G, H}
is said to be integrable.
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We denote by Sp (m) the real representation of the symplectic unitary group
acting on a unitary vector space C 2 m, that is, Sp (m) is the subgroup of SO(4m)
which leaves the tensors F, G and H invariant, where F, G and H have respec-
tively components given by (1.3) with respect to an orthogonal base of a real
metric vector space Rim. We denote by Sp (m) Sp (1) the subgroup Sp (m) x
Sp(l)/{±/} of SO(4m), and by Sp(ra) the subgroup Sp(m) /, where / is the
identity transformation of R*m.

Remark. A (4m, 4m)-matrix A = (Af) belonging to the Lie algebra sp (m)
X sp (1) of Sp (m) Sp (1) is an element of the subalgebra sp (ra) x 0 of sp (m)
X sp (1) if and only if

A hp ί 0 A hfl i A A hJJ i C\

where ( F / ) , (Gf) and (Hf) are respectively the matrices F, G and H given by

(1.3).
In any almost quaternion manifold (M, V), there is a Riemannian metric g

such that g(φX, Y) + g(X, φY) = 0 holds for any cross-section φ of V, X and
Y being arbitrary vector fields. A pair {g, V} of such a Riemannian metric and
an almost quaternion structure V is called an almost quaternion metric structure,
and {M, g, V) an almost quaternion metric manifold. Thus a manifold M admits
an almost quaternion structure if and only if the structure group of the tangent
bundle T(M) over M is reducible to Sp(m) Sp(l), where dimM = Am. A
manifold with almost quaternion structure admits a canonical global base of
V if and only if the structure group of Γ(M) is reducible to Sp (m).

Let {F, G, Ή] be a canonical local base of V in a coordinate neighborhood
U of an almost quaternion metric manifold (M, g, V). Since each of F, G and
H is almost Hermitian with respect to g, putting

Φ(X, Y) = g(FX, Y) , Ψ(X, Y) = g(HX, Y) ,

Θ(X, Y) = g(HX, Y) ,

for any vector fields X and Y, we see that Φ, ¥ and Θ are local 2-forms in U.
However, by means of (1.2),

(1.5) Ω = ΦΛΦ + ΨΛΨ + ΘΛΘ

is a 4-form defined globally in M. Using (L2), we easily see that

(1.6) A = F®F + G®G +

is a global tensor field of type (2, 2) in M.
Now, let us assume that the Riemannian connection V of (M, g, V) satisfies

the following conditions :
(b) If φ is a cross-section (local or global) of the bundle V, then Vxφ is
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also a cross-section (resp. local or global) of V, X being an arbitrary vector
field in M.

By means of (1.1), the condition (b) is equivalent to the following condition:
(b)' If {/% G, H) is in U a canonical local base of V in U, then

VXF = r(X)G - q(X)H ,

(1.7) VxG=-r(X)F + p(X)H ,

VXH =

for any vector field X, where p, q and r are certain local 1-forms defined in U.
If an almost quaternion metric manifold (M, g, V) satisfies the condition (b)

or (by, then (M, g, V) or M is called a quaternion Kdhlerian manifold and
(g, K) a quaternion Kdhlerian structure. Thus a Riemannian manifold is a
quaternion Kahlerian manifold if and only if the holonomy group is a sub-
group of Sp(m) SpQ) (see [1], [2], [3], [4], [5], [6], [10]). In a quaternion
Kahlerian manifold, we easily have

(1.8) FΩ = 0, FΛ = 0

because of (1.7). Conversely, if we have one of equations (1.8) in an almost
quaternion metric manifold, then it is a quaternion Kahlerian manifold. Thus
we have

Theorem 1.1. An almost quaternion metric manifold is a quaternion
Kdhlerian manifold if and only if VΩ = 0 or V A — 0 (See [4], for example).

From Theorem 1.1, we have VΩ = 0 in a quaternion Kahlerian manifold.
Thus Ω is a nonzero harmonic 4-form and hence Ωk (1 < k < m) is a non-
zero harmonic 4λ>form, where dimM = 4m. Therefore, when a quaternion
Kahlerian manifold M is compact, Bik > 1 for 0 < k < m, where Br is the
r-th Betti number of M, because M is orientable. Using the harmonic form β,
Kraines [6] proved inequalities Br < Br+i < < Br+ip for r + 4p < m + 1,
r = 0,1,2 or 3.

2. Some formulas

In this section we establish some formulas, which will be required in the
sequel, concerning quaternion Kahlerian manifolds. We denote a quaternion
Kahlerian manifold by (M,g, V), and assume that dimM = Am.

In a coordinate neighborhood {U xh) of M we denote by gH the components
of the metric tensor g, and put (gjί) = (gjt)'1. Take a canonical local base
{F, G, H) of V in U, and denote by Ft

h, Gt

h and Ht

h respectively the com-
ponents of F, G and H in {U, xh}, where {F, G, H) is a canonical local base of
V in U. Thus (1.7) is written as
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FjFf = rfi? - qβf ,

(2.1) Vfif = -rjFf + pfl? ,

Ψfif = qfS - pβf ,

where p}, q} and rs are respectively the components of p, q and r in {[/ xh}.
Using the Ricci formula, from (2.1) we have

KtW - KkJiΨ/ = CtjGt* - BkjHf ,

(2.2) KkJt

hG/ - KtJi'G,Λ = -CtjFS + AtJHt* ,
Ίζ hZJ t X sτi h D p h A fl h

Kkji

h being the components of the curvature tensor K of the quaternion
Kahlerian manifold (M, g), and A,B,C being defined by

(2.3) A = dp + qΛr, B = dq + r A P , C = dr + q A p ,

where AH = —Aij9 Bn = - 5 ^ - , Ctj = - C ^ and

(2.4) ^ = i ^ ^ ^ ^ Λ djc* , B = \BHdx* A dxι , C = \CHdχt A dxι .

Thus A,B and C are local 2-forms defined in U.
We now obtain, from (2.2),

[K(X, Y), F] = C(X, Y)G - B(X, Y)H ,

(2.5) [X(Z, Y), G] - -C(X, Y)F + A(X, Y)H ,

[K(X, Y), iϊ] = B(X, Y)F - ^ ( Z , Y)G

in a coordinate neighborhood U, X and Y being arbitrary vector fields in M.
In another neighborhood V we may have

[K(X, Y), F7] = C'(Z, Y ) ^ - B'ίZ, Y)H' ,

, Y), σ ] = - C ' ί Z , Y)F + ̂ ' ( Z , Y)H' ,

, Y), fl'] = B7(Z, Y)F7 - ^ ; ( Z , Y)G' ,

where Ff,G',Hr form a canonical local base of V in C/7. Because 5^^, =
(sJβ) e SO(3), by means of (1.2) we thus find in U Π C/7

(2.6) 5 r = s2lA + ̂ 225 + snC

C7 = ̂ ^ + s32£ + ^3 3C

Using (2.6) we easily see that the local 4-form
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(2.7) Σ=AΛA+BΛB + CΛC

determines in M a global 4-form, which is denoted also by Σ This Σ is, in
some sense, the curvature tensor of a linear connection defined in the bundle
V by means of (1.7). Now, using (2.3) and taking account of Theorem 3.3
proved in § 3, we can easily prove

Lemma 2.1. Let (M, g,V) be a quaternion Kdhlerian manifold. A neces-
sary and sufficient condition for the A-form J] t o vanish identically in M,
provided that dimM > 8, (or for all of the local 2-forms A,B and C to vanish
identically in each coordinate neighborhood U) is that in each coordinate
neighborhood U there be a canonical local base {F, G, H] of V satisfying FF =
FG = FH = 0, i.e., that the bundle V be locally parallelizable.

Assuming that a quaternion Kahlerian manifold satisfies the condition stated
in Lemma 2.1, we see that the functions sΐβ appearing in (1.2) are all constant
in a connected component of U Ω U', U and Ό' being coordinate neighbor-
hoods, if we take {F, G, Ή] such that FF = FG = FH = 0 in each U. In a
quaternion Kahlerian manifold (M, g, V), if M is simply connected, and the
bundle V is locally parallelizable, then V has a canonical global base.

Transvecting the three equations of (2.2) respectively with Fhu = Fh

ιGtu, Ghu

— GhStu and Hhu = Hh

ιgtu and changing indices, we find respectively

(2.8)

where Kkjίh = Kkjί

sgsh, and Fih = F/g s Λ, Gίh = Gi8g8h, Hih = Hihg8h are
the components of Φ, Ψ, Θ denned by (1.4) respectively.

Transvecting the second equation of (2.8) with Fίh = gίsFs

h, we have

-KMfiSGi'F** + KkjίhF
ih = 4mAkj ,

from which it follows that

K-kjίh

Kkjih

— CkjHih -

= AkjFίh -\

= BkjGih H

j- BkjGih

- CkjHih

- AkjFih

2m

where dimM = Am. Similarly, we obtain

AkJ = -±-KtjthF« , Bkj = Λ-

(2.9)
1

kj — —

Next, using (2.9) we have
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sh -Kk,th)F» = \{Kktsh + K,ttli)F"

= -%KkhtsF
ts = -mAkh ,

where we have used the identity Kkjih + Kjikh + Kikjh = 0. Similarly we find

( 2 1 Q ) KktshF
ts = -mAkh, KktshG

ts = -mBkh ,

KktsfιH
ts = -mCkh .

On the other hand because of (2.10), transvecting (2.8) with gn gives Kkh

= —mAksFh

s — BksGh

s — CksHh

s where Kkh = Kkjlhg
jl are the components

of the Ricci tensor S of (M,g). Similarly we obtain

Kkh = -mAksFh

s - BksGh

s - CksHh

s ,

Kkh = -AksFh° - mBksGh

s - CksHh° ,

Kkh = -AksFh° - BksGh

s - mCksHh

s ,

from which, it follows that for m > 1,

Kkh = - ( m + 2)AksFh

s , Kkh = - ( m + 2)BtsGft

s ,

Kkh= -(m + 2)CksHh° ,

and f or m = 1,

(2.12) £ S f t =-- - ^ , Λ S - B»,GΛ - CksHh* .

We find from (2.11) that if m > 1, then

4 KksFh

s , Bkh = ——KksGh

s ,
+ 2

•<4*A KksFh , Bkh

m + 2 m + 2
(2.13) i

Cfc/i = —KksHh

s .

m + 2

Substituting (2.13) in (2.8) we have for m > 1,

-K^F.Ψ^ + Kkm = —J—Kkt(Gj'Gih + H/Hih) ,

(2.14) -K^GtG^ + Kkm = l Kkt{HfHih + F/Fih),
m \ Z

m

m

+

+
1

2

2

-KkJttft'Gh + Kkm = —±—Kkt(F/Fih + G/Gih) .

Since Akj,Bkj and Ckj are all skew-symmetric, using (2.13) we find, for
m> 1,
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(2.15) KtsFkΨ/ = Kkj , KtfiJGj = KkJ ,

Now using (2.3) we have the identities

A4 + 0 Λ C r Λ . B = O, ώ + r Λ ^
(2.16)

dC + pΛB-qΛA=O.

Next by means of (2.13) we see that KjsFt

s, KjsGt

s and Kj8Hi8 are all skew-
symmetric if dimM = Am > 4. On the other hand, use of (2.1) gives

?*(£,&) = {FkKjs)Fί

s + rtKjfiS - qtKjJlS ,

from which it follows that (F f cX y s)F/ + (FkKis)Fjs = 0. Thus, if dimM =
4m > 4, then

(2.17) F ^ = (PtKJFjΨi' .

3. Some theorems

First, we prove
Lemma 3.1. For any quaternion Kdhlerian manifold of dimension > 8,

the Ricci tensor is parallel.
Proof. By means of (2.1) and (2.13), from the first identity of (2.16) it

follows that if dimM > 8, then

(3.1) {P*KjB)Fΐ + (FjKis)Fk

s + (FtKkt)Fj' = 0 .

Transvecting (3.1) with Fh

ι gives

-FkKih + (FjKts)FhΨk* + (FtKks)FhΨ/ = 0 .

Substituting in this equation (FjKts)FhΨk

s = FjKkh which is a consequence of
(2.17), we thus obtain

FjKkh - FkKjh = -(FtKks)FhΨ/ .

If we substitute in this equation FtKks = (FtKba)Gk

bGs

a which will be proved
in the same way as (2.17), then we find

FjKkh - FkKjh = (FcKba)Fh

cGk

bHj- .

Similarly we obtain

FjKkh - FkKjh = -(PcKba)Gh<HkΨj" = -{VcKba)HhΨk»Gf .

Combining these equations gives
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In particular, we have

(FcKba)Fk

cGjbHc* = (VcKtJGSHfFf ,

from which by transvecting with Hr

kGq

jFp

ί we obtain

(3.3) ~(FcKba)Gr

cHq

bFp« = (FcKba)Fr

cGq

bHp« .

Thus from (3.2) and (3.3) it follows that ( F c X 6 a ) F / G / # * a = 0 which implies
FcKba = 0 proving Lemma 3.1.

Next we prove
Lemma 3.2. Let (M, g, V) be a quaternion Kdhlerian manifold of dimen-

sion > 8. Then the Riemannian manifold (M,g) is irreducible if (M,g) has
nonvanishing Ricci tensor.

Proof. Suppose that (M, g) is reducible and has nonvanishing Ricci tensor.
Since (M, g) is not flat and the Ricci tensor S is parallel because of Lemma
3.1, we can take a coordinate neighborhood U of M such that the Riemannian
manifold (U, g) is decomposed into a Riemannian product of certain number
of Riemannian manifolds (W19 ft), , (Wp9 gp), p > 2, in such a way that

(3.4) g(X, Y)= Σ 8A(VAX, πAY) , S(X, Y) = ± PA8A(^AX9 πAY)

for any vector fields X and Y, where pA are constants such that ρ1 < < ρp

and πA: U —• WA are the natural projections which denote at the same time
their differential mappings.

On the other hand, since (F, g) is an almost Hermitian structure in U, we
have g(FX, FY) = g(X, Y) and S(FX, FY) = S(X, Y) from (2.15). Thus using
(3.4) we obtain in U

(3.5) Σ ZA(πAFX,πAFY) = Σ gJ^AX,πAY) ,
A = \ A = l

(3.6) Σχ PAgA{πAFX, πAFY) = Σχ pAgA(πAX, πAY)

for any vector fields X and Y. Since pλ < < pp and each of gA is positive
definite, we have, from (3.5) and (3.6),

(3.7) gA(πAFX9 πAFY) = gA(πAX, πAY) (A = 1, . . ., p)

for any vector fields X and Y.
From now on for simplicity we assume that p = 2, i.e., that (£/,g) =

(Wl9 ft) X (W2, ft). Let ( r ) = (y\ - ,yr) and (zλ) = (zr+\ , zn) be coordi-
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nates systems in W1 and W2 respectively. Then (xh) = (ya, zλ) are naturally
coordinates in U — Wλ x W2 (the indices a, β, γ run over the range {1, , r)
and the indices λ, μ, v over the rang {r + 1, , n}). With respect to (xh) =
(ya, zλ), § has components of the form

where (gΐβ) and (gμv) are respectively the components of g1 and g29 (grβ) and (gμv)
being independent of the variables zλ and ya respectively. From (3.7) we have
Fμ

a = 0 and hence Aμλ — Bμλ = Cμλ = 0 by putting h = a, i = ^, = ^ and
/: = // in (2.2). Similarly, we find Aβa = Cβa = Dβa = 0 and Aia = Bλa =
Cλa = 0. Therefore we have A = B = C = 0, which implies S = 0 because
of (2.11). Since this is a contradiction, the Riemannian manifold (M,g) is
necessarily irreducible and Lemma 3.2 is proved.

From Lemmas 3.1 and 3.2, we have the following theorems.
Theorem 3.3. Any quaternion Kdhlerian manifold of dimension > 8 is

an Einstein space (see Alekseevskii [1]).
Theorem 3.4. When a quaternion Kdhlerian manifold (M, g, V) of dimen-

sion > 8 has nonvanishing scalar curvature, the Riemannian manifold (M, g)
is irreducible (see Alekseevskii [1]).

Theorem 3.5. When a quaternion Kdhlerian manifold (M, g, V) of dimen-
sion > 8 has zero scalar curvature, (M, g) is locally a Riemannian product of
a flat quaternion Kdhlerian manifold and irreducible quaternion Kdhlerian
manifolds with vanishing Ricci tensor (see Alekseevskii [1]).

Now from (2.9) and (2.13) we have

m + 2 m
(3.8) /

m + 2

if dimM = 4m > 8. Thus, if the Ricci tensor vanishes identically, then we
obtain, for succesive covariant derivatives of the curvature tensor,

KkmF" = KkjihG" = KkjihH*» = 0 ,

WιKk3ih)P* = (FtKkJih)G" = (VιKkmW* = 0 ,

(3.9)

(F. FιKkjίh)F^ = (F, PιKkm)GiΛ = (F, VιKkjίh)Wh = 0 ,

provided that dimM > 8. Therefore by means of the remark stated in § 1 we
see that the restricted holonomy group of (M,g, V) is a subgroup of Sp(ra).
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Conversely, if the restricted holonomy group is a subgroup of Sp (ra), then we
have (3.9) and hence Kkh = 0 by taking account of (3.8). Summing up, we
have

Theorem 3.6. The restricted holonomy group of a quaternion Kάhlerian
manifold of dimension > 8 is a subgroup of Sp (ra) if and only if the Ricci
tensor vanishes identically (see Alekseevskii [1]).

When dimM = 4, taking account of (2.10) and (2.12), we have
Theorem 3.7. // the restricted holonomy group of a quaternion Kάhlerian

manifold of dimension 4 is a subgroup of Sp (ra), then the Ricci tensor vanishes
identically.

Taking account of (2.13), from Lemma 2.1 we have
Theorem 3.8. For a quaternion Kάhlerian manifold (M,g,V) of dimension

> 8, the bundle V is locally parallizable if and only if the Ricci tensor vanishes
identically. When a quaternion Kάhlerian manifold (M,g, V) is of dimension
4, the Ricci tensor vanishes identically if the bundle V is parallelizable.

Now suppose that a quaternion Kahlerian manifold (M, g, V) of dimension
> 8 is of zero curvature. Then by Theorem 3.8 the bundle V is locally paral-
lizable. Thus, if (M, g, V) is further simply connected, then the bundle V
admits a cannonical global base (i.e., M admits an almost quaternion structure
in traditional sense). If we now take account of a theorem proved in [7] and
[9], concerning the integrability of almost quaternion structure in traditional
sense, then we have

Theorem 3.9. // a quaternion Kahlerian manifold (M, g, V) of dimension
> 8 is complete, simply connected and of zero curvature, then (M, g, V) is a
Euclidean space with standard quaternion structure V.

Let (M, F) be an almost quaternion manifold. Consider a linear connection
D in the vector bundle F. If we take a canonical local base {F, G, H} of V in
a coordinate neighborhood U of M, then taking account of (1.1) we can put
in U

DXF = p(X)G - q(X)H , DXG = p(X)H - r(X)F ,

DXH = q(X)F - p(X)G

for any vector field X in M, where p, q and r are local 1-forms denned in U,
which are called connection forms of D in U with respect to {F, G,H}. Now
in U we put π = A Λ A + B A B + C A C, where Ά = dp + qΛr, B =
dq + r Ap, C = dr + p Aq. Then π is a global 4-form in M, which is brieafly
called the curvature form of D. We can easily verify that dπ = 0, so that the
curvature form π is closed.

Let there be given another linear connection Dr in the vector bundle F, and
denote by πr its curvature form which is obviously closed. Then, according to
a well known theorem due to A. Weil, the two curvature forms π and 7r/ deter-
mine the same cohomology class <$. We now denote, in the vector bundle F,
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by D the linear connection denned by DXF = FXF, DXG = V XG and DXH =
FXH,X being an arbitrary vector field in M, when a quaternion Kahlerian
structure (g, V) is given in M. Then, in a quaternion Kahlerian manifold
(M, g, V) of dimension > 8, the curvature from π=AΛA+BΛB+CΛC
= a(Φ ΛΦ + Ψ ΛΨ + Θ ΛΘ) determines the cohomology class # , where a
is a constant and π is harmonic, since (M,g, V) is an Einstein space.

When, for an almost quaternion manifold (M, V), there is a canonical local
base {F, G, #} of V in each coordinate neighborhood U of M in such a way
that the coefficients srβ appearing in (1.2) are all constant in every Connected
components of U Π &, we say that the almost quaternion structure V is trivial.
If we assume that the bundle V is trivial, then there is a linear connection D
in V satisfying DXF = 0, DXG = 0, DXH = 0 for any vector field X in M, and
the curvature form π of D is trivially zero. Thus, in such a case, the cohomo-
logy class ^ is zero.

Now we suppose that for a quaternion Kahlerian manifold (M, g, V) the
bundle V is trivial. Then the cohomology class <€ is zero and therefore the
harmonic 4-form π is cohomologous to zero. Thus, if M is compact, then π is
necessarily equal to zero, and hence the scalar curvature vanishes identically.
Conversely, if (M, g, V) has vanishing scalar curvature, then the Ricci tensor
vanishes, and hence the vector bundle V is locally parallelizable. Consequently,
in such a case, V is trivial. Summing up the arguments developed above, we
have

Theorem 3.10. A necessary and sufficient condition for a compact quater-
nion Kahlerian manifold (M,g,V) of dimension > 8 to have a trivial almost
quaternion structure V is that the scalar curvature vanish identically.

4. Quaternion Kahlerian manifolds of constant curvature

Let (M, g, V) be a 4m-dimensional quaternion Kahlerian manifold, and as-
sume that (M, g) is of constant curvature c. Then the curvature tensor of (M, g)
has components of the form

(4.1) Kkm = c(gkhgn - gjhgkί) .

Thus we obtain

(4.2) KwFtΨS = c(FkhFJt - FjhFkί) .

Substituting (4.1) in (2.9), we find

A C

Similary,
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(4.3) Akj = — Fkj , Bkj = — Gjcj , Ckj = — Hkj .
m m m

Substituting (4.1), (4.2) and (4.3) in the first equation of (2.8) we have

— c(FkhFji - FjhFkί) + c(gkhgH - gjhgki)

= — (HkjHih + GkjGih) ,

from which by transvecting with gjί we obtain c(m — l)(2ra + ^)gkhjm = 0.
Thus, if c Φ 0, we get m = 1. Consequently, we have

Theorem 4.1. // a quaternion Kdhlerian manifold (M, g, V) is of nonzero
constant curvature, then (M, g, V) is necessarily of dimension 4.

By Theorem 3.3, any quaternion Kahlerian manifold is an Einstein space.
If a quaternion Kahlerian manifold is conformally flat, then it is of constant
curvature. Thus from Theorem 4.1 we have

Theorem 4.2. // a quaternion Kdhlerian manifold of dimension > 8 is con-
formally flat, then it is of zero curvature.

5. (^-sectional curvatures

We have already known that the curvature tensor of a quaternion projective
space HP(m) of dimension 4m, which is the base space of the Hopf fibering
Sim+3->HP(m), where S4 m + 3 is a unit sphere of dimension 4m + 3 (m > 1)
(See [1], [4], [5]), is given by

KkjiK = Skhgji - gjhgki + FkhFH - FjhFkί- 2FkjFίh

(5.1) + GkhGji — GjhGki — 2GkjGίh

+ HkuHji — HjhHkί — 2HkjHίh .

Let Z b e a tangent vector of HP(m) at a point P of HP(m), and Y a linear
combination of X, FX, GX and HX, which is linearly independent of X. Then
by means of (5.1) we obtain σ(X, Y) = 4, where σ(X, Y) denotes the sectional
curvature of HP(m) with respect to X and Y. In this connection we shall define
β-sections and β-sectional curvatures in a quaternion Kahlerian manifold.

We take a point P in a quaternion Kahlerian manifold (M, g, V) of dimen-
sion 4m and a tangent vector X of M at P. Then the 4-dimensional subspace
Q(X) of the tangent space of M at P defined by

Q(X) = {YI Y = aX + bFX + cGX + dHX} ,

a, b, c and d being arbitrary real numbers, is called the Q-sectίon determined
b y * .

If we denote by σ(X9 Y) the sectional curvature of (M, g, V) with respect to
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the section spanned by X and Y at a point, then by definition we have

σ(χ9 Y) = - KkJthX
kY*X%Yh—

\\x\\2\\γ\\2-g(x,γy

where \\X\\ and \\Y\\ are lengths of X and Y respectively. Since (M, g, V) is an
Einstein space, using (2.14) we obtain, for a unit vector X,

σ(X,FX) = * ||X||2 - K(X, FX, GX, HX) ,
4m(m + 2)

(5.2) σ(X, GX) = k - ||X||2 - K{X, GX, HX, FX) ,
4m(m + 2)

σ(X,HX) = k \\X\\2 - K(G,HX,FX,GX) ,
4m(m + 2)

k being the scalar curvature of (M, g, V), where we have put K(X, Y, Z, W) =
g(K(X, Y)Z, W) for any tangent vectors X, Y, Z and W of M at P.

Now we suppose that for any Y,Z e Q(X) the sectional curvature σ(Y, Z)
is a constant p(X), which will be called the Q-sectional curvature of (M, g, V)
with respect to X at P. Then, putting Y = X, Z = FX; Y = X, Z = GX
and Y = X, Z = HX, we have respectively

(5.3) σ(X, FX) = σ(X, GX) = σ(X, HX) = p(X) .

Thus, if we take account of the identity

κ(x, Y, z, w) + κ(x, z, w, Y) + κ(x, w, r, z) = o

and use (5.2), we obtain

(5.4) p(X) = k

K(X. FX.
(5.5)

4m(m + 2)

K(X, FX, GX, HX) = K(X, GX, HX, FX)

= K(X, HX, FX, GX) = 0 .

Next, from the assumption we find σ(X, aFX + bGX) = p(X), a2 + b2 ψ 0,
which together with (5.3) implies K(X, FX, X, GX) = 0. Similarly,

£(Z, FZ, Z, GZ) = K{X, GX, X, HX)

= K(X,HX,X,FX) = 0 .

Thus, using (5.5) and (5.6), we find

(5.7) K(Y, Z)Y - p(X)Z € QHX)
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for any Y,Ze Q(X), where QL(X) denotes the orthogonal complement of Q(X)
in the tangent space of M at P.

Conversely, if we assume that (5.7) is established for any Y, Z e Q(X) at P
of M, then we easily see that the sectional curvature σ(Y, Z) is constant for any
Y, Z 6 Q(X). Thus we have

Lemma 5.1. Let Q(X) be a Q-sectίon at a point P of a quaternion
Kdhlerian manifold (M,g, V). Then the sectional curvature σ(Y,Z) with re-
spect to the section spanned by any Y,Z z Q(X) is a constant p(X) if and
only if K(Y, Z) - p(X)Z e QHX) for any Y,Z<z Q(X), and in such a case we
have

(5.8) p(X)= k \\X\\\
4m(m + 2)

where k is the scalar curvature of (M, g, V), and dimM = Am.
In Lemma 5.1, p{X) is called the Q-sectional curvature of (M, g, V) with

respect to X at P, and the β-section is said to have Q-sectional curvature p(X).
It is easily verified that a β-section Q(χ) a t P has Q-sectional curvature ρ(X)

if in (M, g, V) there is a totally geodesic submanifold N of dimension 4 and
constant curvature ρ(X) such that N is tangent to Q(X) at P. When dimM =
4, there is only one Q-section Q(X) at each point P of M, X being anarbitrary
tangent vector of M at P. Thus, when dimM = 4, this Q(X) has β-sectional
curvature c if and only if (M, g, V) is of constant curvature c at P.

Let (M, g, V) be a quaternion Kahlerian manifold and assume that each Q-
section Q(X) at each point P of M, X being an arbitrary tangent vector to M
at P, has a β-sectional curvature ρ(X). Moreover, if we suppose that the
sectional curvature p{X) is a constant c = c(P) independent of X at each point
P, then we say that the quaternion Kahlerian manifold (M, g, V) is of constant
Q-sectional curvature c(P). Taking account of (5.1) we see that a quaternion
projective space HP(m) is a quaternion Kahlerian manifold of constant β-sec-
tional curvature 1. In the sequel we shall determine the form of the curvature
tensor Kkjih of a quaternion Kahlerian manifold of constant β-section curva-
ture c(P).

Let (M, g, V) be a quaternion Kahlerian manifold of constant Q-sectional
curvature c = c{P) of dimension > 8. Since (M,g, V) is an Einstein space,
we may put

AkJ = -4aFkj , Bkj = -4aGkj , CkJ = -4aHkJ ,

a being a certain constant. Therefore substituting these equations in (2.8) we

have

(5.9) -KkjtsF/Fh

s + Kkm = -4a(GkjGih + HkjHίh) .

Transvecting (5.9) with Fr

kFp

h and Fq

jFp

h we obtain
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(5.10) -KvjshFk^ - KvjsίFk«Fh

s - 4a(GkjGίh + HkjHίh) ,

(5.11) -KktthFjΨt' - KkMFjΨh = -4a(GkjGίh + HkjHίh)

respectively, where we have changed indices.

From the assumption we have σ(X, FX) = c for any tangent vector X, taking

account of the definition of sectional curvatures, so that

* = c(gυhgjs -

= -cgJhgkiX*X'X'X* ,

Xh being the components of X. Since X is arbitrarily taken, from the above
equation we obtain

KvUhFk*Fΐ + KvishFj*Fk

s + KυkthFt

υFj' + KυjsίFk*Fh

s

+ KυhsίFjυFk

s + KvkHFh«Fjs + Kυk8hFj"Ft + KvίshFk

υF/

+ KvjshF^Fk

s + KυksίFjvFh

s + KvhsiFk

vF/ + KυjsίFh*Fk

s

+ gjigun. +

which, together with (5.10), implies

= -c(gkjgίh + gjigich + giicgju) - 4a(GkjGίh + HkjHih)

— 2a{GkjGίh + GjίGjch + GikGjh + HkjHίh + HHHkh + HίkHjh) .

If we transvect the above equation with Fq

kFp\ then we obtain

^qjpk — Λ-vuqhΓ p Γ j — ^pvuhr q Γ j

= -c(FqjFph ~ FqhFjp + gqpgjh)

— 2a(GqjGph + GqhGjp + GqpGjh + HqjHph + HqhHjp + HqpHjh) .

Substituting

KvuqhFq

υFju = Kjpqh + 4A(GjpGqh + HjpHqh) ,

which is a consequence of (5.9), in the above equation we get

Kqίph — Kjqph — KpvuhFq

vFjM — 4a(GjpGqh + HjpHqh)

( 5 1 2 ) = -c(FqjFph - FqhFjp + gqpgjh)

— 2a(GqjGph + GqhGjp + GqpGjh + HqjHph

+ HqhHjp + HqpHjh)

On the other hand, using (5.9) we find
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KpvuhFq

vFju — KpuυhFq

vFju

(5.13) = (Kpυuh - Kpuvh)Fq»Fju = -KvuphFq

υFju

— 4a(GqjGph + HqjHph) .

Taking the skew-symmetric parts of both sides of (5.12) with respect to q and
j , and substituting (5.13) in the resulting equation we obtain

ZKqjph — Kjpqh + Kqpjh + Kqjph + 4a(GqjGph + HqjHph)

— 4a(GjpGqh — GqpGjh + HjpHqh — HqpHjh)

= -c(2FqJFph - FqhFjp + FjhFqp + gqpgjh - gjpgqh)

- 4a(GqJGph + HqjHph) ,

from which it follows that

FqhFjp — FjhFqp — 2FqjFph)

+ a(βqhβjp — GjhGqp — 2GqjGίh + HqhHjp

— HjhHqp — 2HqjHίh) .

If we now take account of σ(X, FX) = c, then we have a = \c and therefore

κ*jih = \c{gkhgSi — gjhgkί + FkhFji — FjhFkί — 2FkjFih

(5.14) + GkhGH - GjhGkί - 2GkjGih + HkhHH

Summing up, we have
Therem 5.2. A quaternion Kdhlerian manifold of dimension n > 8 is of

constant Q-sectional curvature c = c(P) if and only if its curvature tensor has
components of the form (5.14) (see Alekseevskii [1]).

Transvecting (5.14) with gji we find KH = c(m + 2)gji which implies k =
4m(m + 2)c, so that c = c(P) is necessarily constant in M. Hence we have

Theorem 5.3. For a quaternion Kdhlerian manifold (M, g, V) of constant
Q-sectional curvature c = c(P), P e M, the function c(P) is constant in M if
dimM> 8.

Let X and Y be two mutually orthogonal unit tangent vectors of (M, g, V)
at a point P. If (M, g, V) is of constant 2-sectional curvature c, then by (5.14)
we obtain

(X, Y) = \c[\ + 3 (cos2 a + cos2 β + cos2 γ)] ,

where cos a = g(FX, Y), cos β = ^(GZ, Γ), cos 7- = ^(ffZ, Y). Thus we have
the inequality 0 < cos2 a + cos2/3 + cos2f < 1, where the first equality holds
if and only if Y € Q(X), and the second equality holds if and only if Y e QHX)
Therefore we arrive at (see [6])
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Theorem 5.5 Denote by K a general sectional curvature of a quaternion
Kdhlerian manifold of constant Q-sectional curvature c (c Φ 0). Then

\c < K <c for c> 0 , and \c>K>c for c < 0 .

If we denote by Λki

jh the components of the the tensor field A defined by

(1.6) and put Λkjih = Λkί

tsgtjgsh, then (5.14) reduces to

Kkjih = τc(Skh8ji - gjhgki + Λkhjί - Λjhki - 2Λkjίh) .

Since FA — 0, we get FιKkjih = 0. Thus a quaternion Kdhlerian manifold of

constant Q-sectional curvature is locally symmetric.
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