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PARALLEL FRAMINGS AND FOLIATIONS ON
PSEUDORIEMANNIAN MANIFOLDS

S. A. ROBERTSON & P. M. D. FURNESS

This paper is in two main parts. The first part is concerned with the global
geometrical and topological structure of a pseudoriemannian m-manifold which
is foliated by the integral manifolds of a parallel field of tangent Λ-planes. The
second part deals with the more restrictive situation in which k mutually
orthogonal parallel vector fields are defined on the manifold.

The main results depend on the local canonical forms for the metric tensor
given by Walker [15], [16]. The basic method is to examine the form of the
transformations of local coordinates for the canonical charts of Walker, from
which it is possible to obtain strong restrictions on the structure of the leaves
of the foliations, the vector fields, and the parent manifold. For other applica-
tions of this method, see Robertson [10] and Furness and Willmore [1].

Thanks are due to I. R. Porteous for observations embodied in § 1, which
have greatly simplified the proof of Lemma 2. Also, the referee has drawn our
attention to an interesting analogy with recent work of Weinstein [20] on
Lagrangian foliations.

1. Pseudoriemannian metrics

Let E b e a real m-plane bundle over a topological space X, with projection
p: E —• X. Recall that a Riemannian metric p in E assigns to each x e X a.
symmetric positive-definite bilinear form px: Ex x Ex-^ R, where Ex = p~\x)
is the fibre over x, and the forms ρx vary continuously with x.

More generally, if we relax the requirement that ρx be positive-definite to the
condition that px be nondegenerate, then p is called a pseudoriemannian metric
in E. The signature of px is then independent of x if X is connected, and is
called the signature of p in this case. For convenience, we use the term signa-
ture to mean the ordered pair (/, m — j), where ρx has / negative and m — j
positive eigenvalues.

Suppose now that F is a subbundle of E of fibre dimension r such that
px\Fx = 0, that is, px(λ, μ) = 0 for all λ,μe Fx. The orthogonal complement
G of F in E is then a subbundle of E of fibre dimension m — r such that
Fx C Gx for all xeX, with
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Gx = {ξ € Ex: vv <= F X 9 p x ( ξ , φ = 0 } .

Now consider the quotient bundle H = E/G. Both H and its dual H* are r-
plane bundles over X, with H* = L(HX,R).

Lemma 1. There is a bundle-isomorphism

Proof. For each JC e X, define θx\ Fx -> # * by θx(λ)(ψ) = px(λ,μ), where
μe Ex is any representative oί ψ e Hx = Ex/Gx. It is trivial to check that 0̂
is an isomorphism and determines fibre-wise the required bundle-isomorphism
θ.

Corollary 1. For some (m — 2r)-plane bundle K on X there is a bundle-
isomorphism

E^ F®F@K.

Proof. By the Lemma, Eg±F®H*®K~F®F®K.
Corollary 2. If m = 2r, then E admits an almost-complex structure. More-

over, the Stiefel-Whitney classes of E are given by

W2ί+ι{E) = 0 , W2ί(E) = W0f .

Proof. By Corollary 1, E ^ F@F. Define Jx: EX->EX, where Ex =
Fx Θ Fx by J(λ,μ) = (—μ,X). Then / is an almost-complex structure on E.
The remaining statements follow immediately from the relation W(E) —
W(F®F) = W(F)W(F).

2. Parallel fields of planes

Suppose that M is a smooth (=C°°) connected complete m-dimensional
pseudoriemannian manifold, that is to say, M is a Riemann m-manifold. In
the theory of § 1 we take X — M and E = TM, and suppose that px varies
smoothly with x e M. Let P be a smooth subbundle of TM, of fibre-dimension
k. We say that P is parallel if for each x, y € M, each k P , and each smooth
path γ: I —> M from Λ: to y, the element of TyM obtained by parallel transport
of λ along γ lies on Py.

The following facts are standard (see, for example, Walker [15]):
(i) The orthogonal complement Q of P in TM is a parallel subbundle of

dimension m — k.
(ii) Further parallel subbundles P + Q and P Π Q of dimensions m — r

and r respectively are given by

(p + β ) , = px + _ β , (p n β ) , = p Λ .n β , .
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Moreover, P Π β is null in the sense that ρx \ Px Π Qx = 0 for all JC e M.
The results of § 1 now apply with F = P ( Ί β and G = P + Q, since P + β

is the orthogonal complement of P Π β . Thus we have, as a special case of
Lemma 1,

Lemma 2. Tλere w a bundle-isomorphism

θ: P n ρ->(TM/(p + β » * .

Any parallel subbundle P of TM, considered as a parallel field of tangent
&-planes, is integrable and is therefore the tangent field of a foliation J^, which
we call a parallel foliation of M. The leaves of IF are totally geodesic (com-
plete) submanifolds of X. Any such parallel foliation ̂  determines three other
foliations <F^ J^n and sF+ whose tangent fields are β, P Π β and P + Q
respectively. It is convenient to put k = r + s and to say that P or F is of
type (r,s). We say that P and J^ are nondegenerate if r = 0, degenerate if
r > 0, partially degenerate if r > 0 and s > 0, and totally degenerate (or nw//)
if s = 0. It should be noted that J ^ and β are (non-) degenerate if and only
if SF is (non-) degenerate.

3. Walker atlases

Let ^ be a parallel foliation of type (r, s) on the Riemann m-manifold M.
We identify Rm with the product Rr x Rs x Ru x Rr, where u = m-2r-s,
and use variables JC, y, z, / in this space. Thus Rm has foliations «̂ */, J^^, J^η,
^ + whose leaves are planes of the form Rr x Rs x {z} X {/}, Rr X {y} X Ru

X {/}, Rr x {y} x {z} X {t} and Rr x Rs X Ru x {/} respectively.
An admissible chart f: U —• C/7 on M is said to be SF-related if it is an iso-

morphism of foliations from P | U onto P71 [/', where P = J^, <F±, J^n and
J^+. It was shown by Walker [16] that M admits an atlas of J^-related charts
£: £/ —> C/7 in which, for each p € U, the matrix M(p) of ^ in f-coordinates has
the form

M(p) =

where: / is the unit r xr matrix A, B and C are symmetric f denotes trans-
position both A and B are invertible and the partition of M(p) conforms to
the above product decomposition of Rm. Walker also observed that if M admits
such an atlas s/, then it has a parallel foliation <F of type (r, s) for which each
chart is J^-related. For simplicity, we call such an atlas J / a Walker atlas
for 2F (the Riemann tensor field p being fixed).

Suppose then that s/ is a Walker atlas for J^, and let ξ: U -> Uf and
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η\ Fr-> V be ^-charts with W=UΠVφfd. A straightforward calculation
shows that the transformation of coordinates θζη\ ξ(W) —> η{W),

ξ(w) = U, y, z, t) -+ (x*,y*9 z*, /*)

for all w e W, is given by equations of the form

X* = (dT(t)-y(x) + f(y, t) + g(z, t) ,

)>* = y(y, t) , z* = Z(z, 0 , /*

where the differentials dT(t), dxY(y, t) and dλZ(z, t) are invertible linear auto-
morphisms of Rr, Rs and Ru respectively, and f denotes the adjoint with
respect to the standard inner product on Rr.

Our aim is to deduce information on the global structure of M from these
equations. Since each leaf of SF is given locally in terms of ξ-coordinates by
t = constant, y = constant, z = constant, we obtain at once the following
important fact.

Theorem 1. Let βF be a parallel foliation of M. Then M admits an atlas
whose restriction to each leaf of J ^ n is a flat affine atlas on that leaf.

Thus the leaves of 3F ̂  admit flat affine structures and in particular have jRr

as universal covering space.
As this stage, we also note that Lemma 2 can be interpreted in terms of

foliations, as follows. If 'βP is a foliation of M, then the bundle of planes tan-
gent to the leaves of & is denoted by τ ^ , and the quotient bundle r M / r ^ by
vβP. We call τ& and v& the tangent bundle and normal bundle of &. With these
conventions, Lemma 2 and the corollary of Lemma 1 yield

Theorem 2. Let 2F be a parallel foliation on M. Then there is a vector
bundle isomorphism

θ: v*^+ ^ τ J ^ n .

Corollary. Let & be a parallel foliation of type (r, 0) on a 2r-manifold M.
Then M admits an almost-complex structure, there is a vector bundle iso-
morphism τM = τ!F Θ τJ^, and the Stiefel-Whitney classes of M are given by

W2i+1(M) = 0 , W2t(M) = Wlτf .

Remarks. ( 1 ) Let M = X X Y, where X and Y are parallelisable m-
manifolds, and let <F be the foliation of M by the factors X x {y}. Then
τM ^ τ!F Θ τJ^. However, M need not have any Riemann structure for which
J^ is null and parallel. For instance, if X = Y = S3, then Theorem 1 implies
that no such Riemann structure exists.

( 2 ) The Stiefel-Whitney classes of M = P2 n + 1(C) are "almost" of the
above form in that they vanish in odd dimensions and are squares in even
dimensions. But τP2n+ι(C) is not expressible as a square.
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( 3 ) Let M be the cotangent space T*X of an ra-manifold X, and 3F the
foliation of M by the fibres T*X. Then M admits a Riemann structure for
which !F is null and parallel (see Patterson and Walker [5]).

4. Fibrings

To progress further we suppose that ϊF is a parallel foliation of type (r, s)
on M for which J r

n is a /ifrrmg of M. Thus M n = M/J^η is an (m — r)-
manifold, and the quotient map / n : M->Mn is such that (P Π 0 P = ker Γ/n(p)
for all p € M.

The map / n induces foliations ^ , ^ ± and ^ + on M n , defined by «f( / nW)
= /nC^X*))* e t c The dimensions of ^ , ^ ± and ^ + are therefore s, u and
m — 2r, where u = m — 2r — s as before. We note that ψ + ψ± = ψ + , where
ψ, ψ ± and ψ + are the tangent bundles of G, G ± and G + respectively.

Our aim is to show that the fibres of J ^ n are Euclidean cylinders [2, p. 210],
and that the leaves of & + are covered by Riemann products.

First we observe that there is a ^-related atlas J o n M such that for each
^-chart η: V —> F 7 there is a fibre-preserving diffeomorphism from F χ F n - ^
/n^K)? where F n is the fibre of J ^ n . It now follows immediately from Walker's
construction [16] that there is a Walker atlas sf for 2F having the following
properties. If ξ: U —• C/7 is an j^-chart, then there is a ^-chart 37: F —• F /

such that K = /n(t/) and π(f(p)) = ^(/n(P)) f o r a 1 1 P^C/, where π: Rm = Rr

X /£ro-r ^ . ^m-r j s projection from the first factor. We say that η is a projec-
tion of f, and f is a lift on 37 in this case. Secondly, the set of all ^-charts
ξt: Ut-* U'i which are lifts of any J*-chart η: V -• F 7 is such that IJi ^ =
/ ^ ( F ) . We denote this set of ^/-charts by stfiq). The essential point to note
is that the coordinates x are defined in terms of y, z and t. The complete argu-
ment can be found in [16]. We say that the Walker atlas s/ covers 31.

Theorem 3. Let 3F be a parallel foliation of M such that 3F'n is a fibring.
Then there is an atlas s/ on M whose restriction to each leaf ^n(p) of J ^ n is
a flat affine atlas with respect to which ^ n C p ) is affinely equivalent to a
Euclidean cylinder.

Proof. Let si be a Walker atlas for J^ covering an atlas 3S of M n . Let
p e M and q = f(p). Then there is a J'-chart η: V -^V with qzV. Let
ξi'.Ui-^ U't, ξj: Uj -> U'j be elements of s/(η), with W = Ut Π Uά•, Φ 0. Then
the equations relating f rcoordinates (x, y, z, t) to ^-coordinates (x^., y%9 z%, **)
oiweW take the simplified form

x* = x + hij , 0 * , z*, t*) = (y, z, t) = 9(g) ,

for some Λ^ e Rr. Hence ^^(p) has an atlas s/(η) \ ^ n ( p ) in which all coordi-
nate transformations are translations, which proves the theorem.

Theorem 4. Let F be a parallel foliation of M such thai 2F'n w a fibring.
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Then each leaf &+(v) of the induced foliation & + of M n has an induced
Riemann metric for which & and &L are conjugate nondegenerate parallel foli-
ations.

Proof. Again let s/ be a Walker atlas for ίF covering an atlas 31 of M n ,
and for q e M n let &(q) denote the restriction of @ to &+(q). Then, with Jf
= @\&+(q), the J ^ - c h a r t s are Jf-related, and the matrix of the induced
symmetric bilinear form is

W L 0 B(z,t)\

on ^(g)-charts, which proves the theorem.
Corollary. With the hypotheses of Theorem 4, the universal covering §+(q)

of &+(q) is the Riemann product of the s-manifold §{q) with the Riemann
u-manifold §\{q).

Proof. This follows at once from Wu's theorem [18].

5. Parallel foliations of type (n, 0)

In this section we consider a parallel foliation !F of dimension n on a
Riemann 2rc-manifold M, of type 0z,0). Thus ^ is totally degenerate (i.e.,
null), so that & = &\ = ^ n = &+. To suppose that & fibres M, therefore,
allows us to use the results of § 4 with 2F = βr

(λ.
Of course the induced foliations &,&± and ̂ + of the base Y = M n degen-

erate here to the trivial foliation of Y by its points, and Theorem 4 yields no
information in this case. By Theorem 3, however, SF has a Euclidean cylinder
F = (Sι)a X Rb as fibre, a + b = n, and each fibre <FO) = f~\q) is affinely
equivalent to F, where /: M —• Y is the projection, /(p) = <?, and J^O) has the
flat affine structure determined by any Walker atlas for <F.

In particular, if F = Rn, then SF is an affine bundle over Y, and hence M
is the total space of a vector bundle over Y. If follows immediately from our
equations relating local coordinates that this vector bundle is equivalent to
τ*Y. More precisely, we obtain

Theorem 5. Let ^ be a parallel null fibring of a Riemann 2n-manifold M
with simply connected fibre and n-dimensional base Y. Then there is an affine
bundle isomorphism from IF to the cotangent bundle of Y.

6. Parallel framings

An orthogonal λ-frame at x e M is an ordered set λ = (λ19 - , λk) of mutu-
ally orthogonal, linearly independent tangent vectors to M at x. The set of all
orthogonal / -frames at x e M forms a Stiefel manifold Sk

x which is the fibre
over x of the Stiefel bundle SkM. A smooth section σ of SkM is called a k-
framing of M, and determines an ordered set (σ19 , σk) of smooth, linearly



PARALLEL FRAMINGS AND FOLIATIONS 415

independent, mutually orthogonal vector fields at. The section σ also determines
a subbundle Σ of τM generated by σ19 , σk.

The framing σ is said be parallel of type (r, k — r) if:
(1) v/ = 1, . . . ,&, <̂  is a parallel vector field;
(2) σ19 - ,σr are null;
(3) σr+ι, - - - ,σk are nonnull and unit
(4) σ19 , σr generate Σ ΓΊ Σ±.
We note that if σ is parallel, then Σ is a strictly parallel field of ^-planes of

nullity r, in the terminology of [15]. The results of previous sections can now
be strengthened considerably for such parallel fields. As before we denote the
foliations determined by Σ, Σ±9 Σ Π Σ± and Σ + ΣL by J^, & L9 J % , ^ n

respectively.
Suppose that σ is a parallel ^-framing of M of type (r, k — r). Then in the

notation of § 3 there is a Walker atlas <$/ on M such that the matrix of the
metric tensor has the form

Ό
0

0

/,

0
A

0

0

0
0

B(z,

GKz,
t)

,t)

h
0

G(z,
C(z,

0
t)

where A, B, C are symmetric matrices of order s x s, u x u, and r x r re-
spectively, where r + s = k and u + r = m — k. Also, 4̂ and 2? are invertible,
and A is a constant diagonal matrix with entries of the form ± 1. Each chart
has coordinates (x, y, z, t) ε Rr X Rs X Ru X Rr and with respect to these co-
ordinates we have:

dx1 dxr dyι dys

It follows that the variables (**,y*,z*, **), (x,y,z,i) in the overlap of two
charts are related by equations of the form

x# = x + a(z, t) , y* = y + β , z* = Z(z, ί) , /* = / + 7- ,

where β e Rs, γ e Rr are constants, and Z, # are smooth functions of the co-
ordinates z, t.

The existence of sύ leads to the following result.
Theorem 6. Let M be a Riemann m-manifold with a parallel k-framing a

of type (r,k — r).
(i) Then τM ~ ck+r ® ξ for some subbundle ξ of τ(M).
(ii) // M is closed, then it is a bundle over the torus Tk, and the leaves of

2F and J ^ n are affίnely equivalent in the induced structure to euclidean cylin-
ders. Furthermore there is a k-dimensional subspace in H\M; R).
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Proof, ( i) follows immediately from Theorem 2.
(ii) dt = (dt1, , dtr) determines r independent closed nonvanishing 1-

forms. It follows that M is a bundle over Tk by Theorem 1 of Tischler [14].
Also dt determines an r-dimensional linear subspace in H\M; R). It should
be noted that this fίbring need not coincide with 2F.

7. Parallel framings of maximum nullity

The extreme case of parallel framings of type (r, 0) on manifolds of dimen-
sion m = 2r or (2r + 1) is now considered. The metric of M has signature
(r, r) if m is even, and (r + 1, r) or (r, r + 1) if m is odd. If m is even, it fol-
lows immediately from Theorem 6 that M is parallelizable.

Theorem 7. Let M be a smooth connected complete Riemann 2r- or
(2r + l)-manifold with a parallel framing of type (r, 0). Then, for all x e M,
exp^: Mx —• M is a covering map.

Proof. Case 1: M is even dimensional. There is a Walker atlas stf on M
such that in each chart the metric tensor has the form

Each chart has coordinates (x, t) e Rr X Rr, and on the overlap of two charts
the coordinates (x^, t#), (x, t) are related by equations of the form

( j j
t# = t + γ , where γ € Rr is constant.

For ease of notation x will be denoted by x\ λ = 1, , r, and / by t1 = jcr+1,
. . ., tr = x2r. Late Greek suffices λ, μ, τ, will denote integers in (1, , r),
early Greek suffices a, β, γ, integers in (r + 1, , 2r), and Roman suffices
/, /, /:,••• integers in (1, , 2r). The coefficients of the Levi-Civita connexion
satisfy

Πk = r;k = o, rβγ = %g2a(gaβ,r + gar,β - g β u a ) .

The equations for a geodesic θ: [0,1] —> M reduce to

( 2 ) ^-Γλ

aβ{θ"(u))X°χt = 0 , -ξζ- = 0 ,

where (dθλ/dύ)(0) = Xλ and (dθa/du)(0) = Xa.
Let JC e M and Z o € M r Let 0: [0,1] —• M be the geodesic determined by

Xo such that ^(1) = expx Zo . Cover ^([0,1]) with charts UQ, , UN of si for
which there is a subdivision [0, wj, , [uu ui+ι], , [M^_ 1 ? 1] of [0,1] satis-
fying tK[ut, ui+j) C Ut.
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Suppose that Xo has components XJ

0 with respect to the chart Uo. It follows
from (2) that in the chart Ut, Θ has coordinates

θ\{u) = ^β-iutXu - uτ) + θ\(uτ) - X»0Xξ Γ Γ iΓiβ(
dU JuiJui

θliu) = X«0(u - ut) + θtiu,) .

By using an inductive argument with (1), we can obtain

( 3 ) 0JO0 = X\u + βj(κ, Xf) , θ;(u) = Xa

ou + A" ,

where Λ[? is constant and Q\ is smooth. Thus in the chart UN we can represent

^ Xo by

(expΛ X0)
a = Θ AD , (exp, ^ 0 ) ^ - ^ ( 1 ) .

It is clear from (3) that the Jacobian of this map has the matrix form

( 4 ) \Ir P ( Z o ) l for some smooth P.

This matrix is nonsingular, and so expx is a local diffeomorphism. It follows
that there are a neighborhood W of Xo in Mx and an open set U C UN such
that exp x : W -^ U is a diffeomorphism. We now show that expx is onto ί/ (the
closure of U in UN). Let z = ( ^ , ^ ) be a limit point of U in t/^, and let
X(p) eW, p = l , 2 , 3 , , b e a sequence such that exp .̂ Z(p) converges to z.
Clearly X(p) converges to xa — Aa

N. Using (3) it is not difficult to show that
exp^ \{X e Mx: Xa = xa — Aa

N) -> (leaf through z) is a covering map. It fol-
lows that lim(;t' — X\p)) exists. Thus X{ = limX^p) exists. Clearly, z =
txpx X19 and so exp .̂ is onto U and hence the whole of UN. Moreover, it is
easily seen from (3) that there is a neighborhood Wr of X such that exp^: W
—*UN is a diffeomorphism. A straightforward induction shows that exp x: Mx

—> M is onto. The Walker atlas charts are evenly covered, and so exp^ is a
covering map.

Case 2: M is odd dimensional. There is a Walker atlas i o n M (see
Walker [15]) such that in each chart the metric tensor has the form

Each chart has coordinates (JC, z,i) eRr xRx Rr, and on the overlap of two
charts the coordinates (x*,z*, /*) and (x,z, ί) are related by equations of the
form

x* = x + a^ήz + a2(t) , z* = ±z + β(ί) , t# = ί + γ ,
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where γ e Rr is constant. The result now follows by an exactly analogous
method to case 1.

Corollary. // M is a simply-connected complete Riemann m-manifold with
a parallel framing of maximum nullity, then M is diffeomorphic to Rm.

If we do not assume that M is complete, we can still obtain strong results
when M is closed by appeal to the following theorem which strengthens a result
of D. Tischler [14].

Theorem 8. Let M be a smooth closed connected m-manifold which has a
foliation ^ of codimension r, determined by r independent closed, nonvanish-
ing 1-forms w1, , wr. Then all the leaves of ^ are diffeomorphic, and there
is a bundle map f: M —> Tr such that if F is the fibre and L is a typical leaf,
then F X Rr and L X Rr have the same universal cover and π^F) is iso-
morphic to an extension of a subgroup of π^L) by Zn {where Zn is the free
abelian group on n generators). Furthermore, if L is simply connected, then
π^M) is abelian.

Proof. The 1-forms wa, a = 1, , r, can be used to define a bundle-like
metric h for 3F (see [6]). It follows that there are r independent orthonormal
vector fields Xa spanning the normal distribution and satisfying wa(Xβ) = 5$.

Let X = ξaXa be a nonzero combination with ξa constant. Then the 1-para-
meter group of difϊeomorphisms ψ: RχM-+M associated with X corresponds
to a geodesic flow normal to the leaves. But h(X(x),X(x)) is constant as x
varies over M, and so ψ(s, ) : M —> M sends leaves to leaves for each s e R.
By varying the ξa it follows easily that all the leaves are diffeomorphic.

Denote the r-tuple of 1 forms (w\ , wr) by w. Thus τJ^ is defined by
w = 0. Operations on w will be carried out component-wise. Let a € M, and

consider Ha = l[σ]: [σ] € πλ(M, a), w = 0>. Clearly Ha is a normal subgroup

of πλ(M, a), and moreover it contains the commutator subgroup C. Following
Rosenberg [11], let M be the connected covering space of M with respect to
the group Ha. Then M is a regular covering space of M with covering group
isomorphic to π1(M,a)/Ha. Denote the covering projection by p. Defined on
M is the r-tuple w* = p*w = (p*w\ , p*wr). w* is never zero and dw* = 0.
Let J^* be the foliation determined by w*, and a a smooth closed curve in M

based at some point a in p~\d). Now, w* = w, and because [p-σ] re-
Jσ J p σ

presents an element in Ha it follows that w* = 0. Thus the integral of w*

about any closed curve in M is zero, and so w* = dg where g is an r-tuple
(g1? J 8r) of smooth real valued functions on M. The level surfaces of g are
precisely the leaves of J^*.

The vector fields Xa lift to X* on M so that p*wa(Xf) = δa

β. Thus Xf(ga) = tfjf,
and so if ga = ca, a — 1, , r, is a leaf of J^*, then the flow of ξXf for a
real number ξ takes this leaf to the leaf gι = c\ , gβ = ξ + cβ, , gr = cr.
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It follows that if γ e Rr, then g = γ is a leaf of J^*. The map 1: M -*Rr

defined by I(Λ ) = g(x) is thus a bundle map, and so M is diίϊeomorphic to
Lo x Rr where Lo is a leaf of J^*. For each γ e Rr, L° x γ corresponds to a
leaf of &*. It may be assumed without loss of generality that p(L0) = L, the
leaf of !F through a.

Define a map q: L-+Lo as follows. Let b € L, and τ: [0,1] —• L be a path
from α to b. Lift r to a path τ in Lo with initial point a. Put #(£) = ?(1) This
map does not depend on τ because closed paths in L are represented in Ha

and so lift to closed paths in Lo. Thus p: Lo —> L is a diίϊeomorphism, and M"
can be identified with L x Rr. p: L x Rr —> M is a regular covering with
covering group G, isomorphic to πx(M, a)/Ha. Now because p% is a monomor-
phism, it follows that Ha may be identified with πx{L,a) c πx(M,a). Thus
G ^ TΓ^M, a)/π1(L, a) and is abelian because C C # α . To show that G is free
abelian a further lemma is required.

An oriented closed transversal to & is a smooth path /: S1 —> M such that
wα(/*(d/dί))> αr = 1, , r, are not all zero and all have constant sign for t e S1

( = {teR:t~t+ 1}).
Lemma. Under the hypotheses of the theorem an element of πλ(M, a) can

be represented by an oriented closed transversal if and only if it belongs to
π^Myά) — πx(L,a).

This result is a generalization of a theorem of Moussu [3] for the case r=ί,
and his proof can be modified directly.

Corollary. πλ(M, a)/πί(L, a) is free abelian.
Proof. It is abelian because C C Ha.
To show it has no torsion let [σ] e πλ(M, a) and let [σ] Φ 0 be its coset in

πχ(M, cή/πxiL, a). By the lemma [σ] is representable by an oriented closed trans-
versal τ say. But τk is always an oriented closed transversal and thus [τk] =
[σ]k i TΓXCL, a), i.e., [σ? Φ 0. q.e.d.

Hence G is free abelian, and moreover is finitely generated because M is
compact.

Now by Theorem 1 of Tischler [14] the 1-forms wι, - - -,wr determine a
bundle map /: M —» Tr. If F is the fibre, then F is closed and there is no loss
of generality in assuming that F is connected, because otherwise one could
construct a k-tdlά cover (k=number of components of F) of Tr (which is dif-
feomorphic to Tr) and a new bundle map onto this covering torus, with con-
nected fibre.

Let Mf be a simply connected cover of M. Then there is a regular covering
φ: M' —*LχRr such that poφ: Mf —>M is the projection. Let F(a) be the fibre
of / through a, and Fx the component of p~ι(F{a)) through a. Then p: 2^ —•
F(a) is a regular covering with covering group Gf a subgroup of G. Clearly G r

is finitely generated free abelian, i.e., Gf = Zn for some n. Since πλ(L x Rr)
= τri(L), it follows that the covering group of φ is isomorphic to πx(L).

Let F2 be a connected component of φ'^FJ. Then 0: F2 —> Fλ is a regular
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covering with covering group isomorphic to a subgroup A of π^L). If F2 is
simply connected, then πλ{F) will be isomorphic to an extension of A by G'
and the theorem will follow.

Let ξ: Rr —* Tr be the regular covering induced by the standard Zr action.
Then ξ gives a pull back bundle of M over Rr with fibre F. But since Rr is
contractible, this bundle is trivial and so there is a covering map η\ F x Rr —>
M such that for each t e Rr, η\F x / is a diffeomorphism onto a fibre of / in
M.

Let Ff be a simply connected cover of F. Then there is a covering map
φ': F' x Rr ->F x Rr. Clearly η-φ'\ Ff X RΎ - » M is a simply connected
cover. Hence by uniqueness there is a homeomorphism λ: F' x Rr —>M' such
that (P-φ)-λ = η φ'. Thus Λ: F' —> F2 is a homeomorphism and so F 2 is simply
connected. This proves the first part of the theorem.

The second part follows immediately from the fact that C C πx{L, a) and so
C is trivial if L is simply connected.

The next result is a direct application of this theorem.
Theorem 9. Let M be a closed connected Riemann Ir-manifold with a

parallel framing of type (r, 0). Then each of the following statements is true:
( i ) M is covered by R2r.
(ii) The leaves of 3F are all diffeomorphic to Tq X Rr~q for some fixed

q<r.
(iii) There is a bundle map f: M —> Tr with fibre F a closed connected r-

manίfold for which F X Rr is covered by R2r. πλ{F) is isomorphic to an exten-
sion of Zk by Zh for some k and h with k < q.

(iv) πx(M) is isomorphic to an extension of Zq by Zs for some s.
(v) If q = r, then F is diffeomorphic to Tr and if q = 0, then M has the

homotopy type of Tm, and is homeomorphic to Tm for m Φ 4.
Proof. (ii)(iii)(iv) follow directly from previous theorems.
(i) follows from the fact that M is covered by TQ X Rrq X Rr.
(v) If q — r, then the leaves are closed, and since the foliation has trivial

holonomy and bundle like metric it follows that 3F admits a bundle structure.
Thus one may assume that F is diffeomorphic to Tr. If q = 0, then πSM) is
abelian. Since M is compact and covered by R2r, it follows that πx(M) is finitely
generated free abelian, i.e., πλ(M) ̂  Zk for some k. Hence M has the homo-
topy of Tk. Homology considerations and the compactness of M show that k =
m. Hence by results of C. T. C. Wall [19] M is homeomorphic to Tm if m Φ 4.

Corollary. Let M be a closed connected Riemann 4-manifold with a par-
allel framing of type (2,0). Then M is a T2 bundle over T2.

Proof. There are three cases, q = 0 ,1 , 2. Since F X R2 is covered by R\
it follows that F is covered by R2. If q = 0, then πx(F) is free abelian, and so
F is diffeomorphic to Γ2. If q = 2, the result follows from the theorem.

If q = 1, then π^F) is at worst isomorphic to an extension of Z by Zh for
some h. Thus there is a regular Zh cover p: F' ->F where π(Ff) = Z. But F
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is orientable (because H^F; Z) is torsion free), and so Ff is orientable. It can
be shown that Ff is homeomorphic to S1 x R. Identify Ff with Sι X R.

Let x <= S1 X 0 C F', and σ: S1 X 0 —> F" be the inclusion. Then [σ] represents
a generator of TΓJCF, x). Let ψ be any orientation-preserving homeomorphism
of S1 X R. Then ψ σ is an embedded S1, and hence if y = ψ(x) and τ: [0,1]
—• F' is a path joining JC to y, then [ τ ' ^ ί ψ σ ) , ^ = [σ]. Thus σ"1 - τ"1' (yjr - σ) - τ
is null homotopic. It follows easily that the commutator subgroup of π^F) is
trivial, and hence F is diffeomorphic to T2.

We now construct an example of a nontrivial T2 bundle over T2, which
admits a parallel framing of type (2,0).

Take R4 with coordinates (x, y, z, t) and metric as2 = Id x dz + 2dydt.
With respect to this metric the fields d/dx and d/dy are mutually orthogonal,
parallel and null. Consider the group G of transformations of R4 generated by
A,B,C,Θ defined as follows:

A(x,y,z,t) = (x + l,y,z,t) ,

B(x,y,z9t) = (x,y + l,z,t) ,

C(x,y,z,t) = (x,y,z,t + 1) ,

θ(x, y, z, t) = (x + t, y - z9 z + 1, i) .

It is not difficult to show that G is a properly discontinuous group of trans-
formations of R* leaving the metric invariant. Since θ does not commute with
C, G is nonabelian.

Let M = R*/G. Then M admits a pair of mutually orthogonal, null parallel
vector fields with respect to the induced metric, which lift to d/dx and d/dy
on R4. Furthermore, M is compact, and the fields d/dx, d/dy, zd/dx + d/dt,
d/dz — zd/dy on R4 are invariant under G showing that M is parallelizable.

The projection π: R4 -+ R2 defined by (x, y, z, t) -* (z, t) is equivariant with
respect to the action of G on R4 and the usual action of Z2 on R2, and so
TΓ: R4/G = M -> R2/Z2 = T2 is well defined.

It is not difficult to show that π gives a fibre bundle projection with fibre T2

and structure group a subgroup of T2. M is not the trivial bundle because
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