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EQUIVALENCE OF KAHLER MANIFOLDS AND
OTHER EQUIVALENCE PROBLEMS

RAVINDRA S. KULKARNI

1. Let M be a complex manifold, dim c M = n, τ be its tangent bundle and
and / be the canonical endomorphism of τ such that P = — 1. Considering
/ as multiplication by V — 1 we can give τ a structure of a complex vector
bundle. A complex 1-dimensional subspace of τ is called a holomorphic 2-
plane. The holomorphic 2-planes form a bundle Gλ(M, C) on M, whose fiber
is (n — l)-dimensional complex projective space it is a subbundle of the grass-
mann bundle G2(M, R) of 2-planes on M. Let g be a hermitian metric on M,
i.e., a Riemann metric for which / is an isometry. Let K be the correspond-
ing sectional curvature which is a real valued function on G2(M,R). The
restriction of K to GX(M, C) is called the holomorphic curvature, and denoted
by H. Since H comes quite canonically from the metric and the complex
structure, a natural question arises: is H characteristic of the complex geometry?
We shall show that this is so in a certain sense for Kahler manifolds.

Theorem 1. Let M, M* be connected Kahler manifolds with corresponding
holomorphic curvature functions H, H* respectively. Suppose that d im c M > 2
and there exists a diffeomorphism f: M —> M* such that

( * ) / * # * = H .

Then either (i) H = H* = constant and hence M, M* are locally holomorphi-
cally isometric or (ii) / is a holomorphic or antiholomorphic isometry.

Note that (*) implicitly requires that / carries GX{M,C) into G^M*^),
which is a strong restriction. Note also that when H = H* = constant, then
(*) is redundant and the conclusion in (i) is classical.

We have not considered the nonKahler case, but the restriction to Kahler
manifolds seems natural for the following reason. A Riemann manifold at a
point can be approximated by a Euclidean space up to the first order ("existence
of geodesic coordinates"), and curvature is precisely the second order effect
which carries a substantial information about local geometry. Analogously
among complex manifolds with hermitian metric, Kahler manifolds are charac-
terized by the property of existence of holomorphic geodesic coordinates. For
this reason it is only in the Kahler case that one may expect H to carry ade-
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quate information. This may explain why holomorphic curvature has seldom
helped in the problems concerning non-Kahler manifolds.

The above formulation in terms of /^-preserving maps is one type of formu-
lation of the so-called "equivalence problem". The general equivalence problem
for G-structure was posed by E. Cartan. In this general setup one has no
natural nonlinear "curvature functions", so the problem is formulated in terms
of Pfaffians, and the solution of the problem contains complete local infor-
mation about a G-structure. E. Cartan also considered special equivalence
problems for specific geometric structures, e.g., in [1] he studied congruence
of surfaces in R3 under the hypothesis that they have a given second funda-
mental form. See the references in [3] for later development. I. Singer [8],
K. Nomizu and K. Yano [7] have considered equivalence of Riemann mani-
folds. Perhaps because of the general philosophy introduced in the general
equivalence problem for G-structures the idea of considering certain multilinear
tensors runs through all these works. Our contention is simply that in the
situation of geometric interest where curvature functions are available, formu-
lation of the problem in terms of these functions leads to elegant and appealing
solutions. The method works because the functions are nonlinear. It has a
drawback that for it to work interesting curvature functions should be available.
Secondly going from the fundamental structure tensors to such curvature func-
tions one loses the analytic content somewhere and the generic hypothesis are
unavoidable. This is not quite apparent in Theorem 1 because the inherent
rigidity of the Kahler structure is helpful. But this will be apparent from the
discussions in [3], [4]. Yau [9] has given an example of 3-dimensional mani-
folds (with nonisotropic points) where a sectional curvature preserving diffeo-
morphism is not an isometry. Similarly it is possible to construct examples of
manifolds in all dimensions where the generalized Schur's theorem does not
hold without some further hypothesis cf. [5]. In this connection we mention
important results of T. Nasu [6] and S. T. Yau [9] concerning diffeomorphisms
preserving sectional and Ricci curvatures.

Finally here is a table of "good" curvature functions which have certain
basic similarities:

Object Curvatnre junction
1) Hypersurfaces in a space of nomal curvature

constant curvature
2) Riemann manifolds sectional curvature
3) Kahler manifolds holomorphic curvature
4) Conformally flat manifolds Ricci curvature

It is helpful to keep these analogies in mind while formulating problems involv-
ing such curvature functions, although the techniques in general will change
from case to case.
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2. We begin with the proof of Theorem 1. Let us first recall that the Kahler
metric is characterized by the property

( 1 ) FJ = 0 ,

where V is the connection defined by the metric. This implies

( 2 ) R(x,y)J = 0,

where R is the curvature tensor considered as a derivation of the tensor algebra.
(2) and the usual properties of the curvature tensor imply

, y)Jz, Jw> = <Λ(JC, y)z, w> = <Λ(/*, Jy)z, w} .

Let {e19 , en9 Je19 , Jen) be a locally defined orthonormal frame on M. We
shall call a frame of this type an adapted frame on the manifold, and write et

for Jβi. As a rule the indices /,'/", k range from 1 to n and refer to ei9 ej9 ek9 .
ι9j9k will refer to ei9 ej9 ek9 etc. Property (3) in terms of the components of
R reads, e.g.,

( 4 ) Rij,kl = Rij,kl. = Rί],kl

If the holomorphic curvature is constant c, then

RίUl = c , JR ί W = Jc (/ Φ ]) , jR4 i ί i = \c (i Φ ]) ,
( 5 ) and the remaining components which cannot be reduced to this form

are zero due to (4) or the usual properties of the curvature tensor.

Conversely (5) implies that the holomorphic curvature is constant.
We shall say that a point p e M is isotropic with respect to H if H has the

same value for all holomorphic 2-planes at p.
Lemma 1. Suppose p € M is not isotropic. Then there exists an adapted

frame such that

( * ) {Ran)2 + (Run ~ RJJJJ)2 Φ 0

for all (i, /), / φ /.
This proof requires a "general position" argument and is very much similar

to Lemma 2, § 1 of [2]. The crucial case is when d i m c M = 2. The proof
will be left to the reader.

3. Let now /: M^>M* be an H-preserving diffeomorphism of Kahler
manifolds of complex dimension > 2. For this to make sense we require of
course that
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Lemma 2. / is holomorphic or antiholomorphic.
Proof. We have to show that either f^J = Jf^ or j^J = — 7/^. The crucial

case is when dim cM = 2. So we assume dim cM = 2 and leave the general
case to the reader. Let {el9 e2, Je19 Je2} be an adapted frame at p € M. Let

Since

/ * { ^ Λ i } = {^*,Λ**}, i = l , 2 ,

is a holomorphic 2-ρlane, we have

( 1 ) h* = aie* + bje* , i = 1 , 2 .

Also for all (*, y) ^ (0,0) 9 x,yeR,

f*{χei + ye2,xJei + yJe2} = { î* + yef,xh* + yh*}

is a holomorphic 2-ρlane. Hence

xh* + yh* = jc(flΛ* + 6χΛi*) + yifli*} + bje*)

= λ(xe* + yet) + μ(xJef + yJef)

for suitable λ, μ. This implies ax = λ = a2, bλ = μ = f?2. Writing αx = α2 = α,
bι — b2 — a^Q have

( i y hf = aef + bJef , ί = 1 , 2 .

Again for all (*, y) ^ (0,0), x, y e R,

f*{χei + yJe2,xJex - ye2} = {**?? + yh*,xhf - ye}}

is a holomorphic 2-plane. So

xh} — j ^ ? = ^(fl^f + bJe}) — j ^ ^

= λ{xe} + y(ae* + bJe})} + μ{χje* + y(aJe* - be})}

for suitable λ, μ. This implies

( 2 ) α = λ, b = ^ , ^ - /ifo = α2 - b2 = - 1 , Λ6 + ^ = lab = 0 .

The only solutions of these equations are a = 0, b = ± 1 . 6 = 1 corresponds
to f*J = Jfv and 6 - - 1 to /*/ = - / / * .

4. Considering M* or its complex conjugate we shall assume for definite-
ness that / is holomorphic. Let {e19 , en, Je19 , Jen} be an adapted frame
on the manifold. Let i^et = ef. Since / is holomorphic, we have f*Jet = Jef.
Let
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M ϊ 11^* II*2 n II Jp*\\*2 /p* p*\* n /7P* Tp*\* i -/- j
\ X ) \\ei II — a i — \\jei II J \ e i >ej / — aij — \ j e i >jej / J * ¥ - / •

The crucial lemma is
Lemma 3. If p e M is nonisotropic, then f^p is a homothety.
Proof. In the notation introduced above we have to show

at = dj and atj = 0 i Φ j .

Since / is //-preserving, we have for all (JC, y) Φ (0,0), x,y e R,

( 2 )

(atx
2 + 2aiaxy + α, v2)2

Let the numerator of the left hand side be

Num = Ax' + Bx3y + Cx2y2 + Dxy* + EyA ,

where

, ~ x ^ — Run ' ^ = Rjjjj ' ^ — 4 ^ i ί ϋ 9 & = ^Rjjji ,

C = 2(Λ i W + 2^,,,,) .

In (3) we have used the Kahler property. Similarly we write the numerator of
the right hand side as

Num* = A*x* + B*x3y + C*x2y2 + D*xy3

where A*, B* are obtained by *-ing (3). (2) leads to the following equations:

( 4 ) A* = at

2A , E* = a/E;

= a/D

2A* + C* = 2(aiaj + 2aφA + Aa^B + a{C ,

2E* + C* =

25* + D* = ^ f l ^ + 2(α,α, + 2atJ*)B

2D* + 5* = 4 α ^ E + 2(^0^ + 2aυ

2)D

^ * + 2C* + £* = ^ + ̂ f l^B

Substituting (4) in (6) we obtain
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C* = (4a,/ + 2a,af - 2a,2) A + 4a,a,3 B + a,2C

= (Aa,/ + 2a,a3 - 2a/)E + 4aja,3D + a/C

and putting this in (8) we get

(10) {4a,/ - (a, - a3)*}(A + E - C) + 4(a, - a3)a,3(B - D) = 0 .

Similarly, substituting the values of B* and D* in (7) and subtracting the first

equation in (7) from the second we obtain

(11) 4(a, - aj)atj(A + E - C) - {4a,/ - (a, - a3)
2}(B - D) = 0 .

From (10) and (11) we conclude that if (A + E - Cf + (B - D)2 φ 0, then

(12) 4a,/ - (a, - a3)
2 = 0 , (a, - a/)a,ό = 0 ,

which clearly imply that a, — aό and atj = 0. It remains to consider the case
when (A + E — C) = 0 and (B — D) = 0. In this case (9) implies

(13) {4a,/ - (a, - a3)
2}(A - E) + 4(a, - a/)a,β = 0 .

Moreover substituting the values of β* and D* from (5) in the first equation
of (7) we get

(14) 4(a, - aj)a,j(A - E) - {4a,/ - (a, - a^B = 0 .

All considerations up to now are valid for any adapted frame on M. We
now choose the frame at a nonisotropic point p which satisfies the condition
(*) of Lemma 1. This condition is precisely

(A - E)2 + B2 Φ 0 .

Hence (13) and (14) again lead to (12). Thus in any case a, = a3 and a,3 — 0,
and the lemma is proved.

5. For proving Theorem 1 we have now arrived at the same stage as of
Theorem 1 in [2]. If all point are isotropic, as is well known H = constant.
So by analyticity if H ^ constant, then nonisotropic points are dense, and / is
conformal by Lemma 3. Since / is conformal and /^/-preserving, it is easily seen
that / actually preserves sectional curvature. Hence we can appeal to the main
theorem of [2], which proves Theorem 1.

However we prefer to give an alternate proof which is more direct in the
present case it was suggested to us by Yau. Let Φ, Φ* be the fundamental 2-
forms of M, M* respectively. Since / is holomorphic and conformal, we have
/*g* = ψ g, and therefore /*Φ* = Ψ Φ, where ψ is a smooth positive real
valued function. Since Φ, Φ* are closed we get dψ A Φ = 0, and since
dim c M > 2 we see that dψ = 0 or ψ is constant, i.e., / is a homothety. Since
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/ is //-preserving and H =fc 0, / must be an isometry. Hence Theorem 1 is
proved.

6. In this section we shall study the equivalence of conformally flat mani-
folds. A Riemann manifold (Mn, g) is said to be conformally flat if there exist
a covering {Ua} of M and conformal maps φa: M —> Rn where Rn is the
Euclidean space with the flat metric. A natural curvature junction on a con-
formally flat space is the Ricci curvature, namely, if

& = Ric: τ X τ -> R

is the Ricci tensor viewed as a bilinear form on the tangent bundle, then the
Ricci curvature is the function

where Gλ is the bundle of lines associated to τ defined by

where v Φ 0 represents the line [v].
If KΛ = constant, then as is well known, the conformally flat (M, g) is of

constant curvature. So like other "good" curvature functions the local geometry
of a conformally flat manifold with constant KΛ is uniquely determined. On
the other hand we have the following theorem.

Theorem 2, Let f: M—>M* be a K^-preserving diffeomorphism. Suppose
that M, M* are conformally flat, dim M > 3, and the set of points nonisotropic
with respect to Km is dense. Then f is an isometry.

The proof is very much similar to our congruence theorem [3]. Let Sc denote
the scalar curvature which is the trace of the Ricci tensor. As is well known
the tensor

satisfies the Codazzi's equations, i.e.,

( 1 ) ψίj,k = ψίkj

As usual under the hypothesis of denseness of nonisotropic points, / is con-
formal. To show / is an isometry one uses (1) just as the second fundamental
form in the case of hypersurfaces cf. [3]. The interested reader can easily
complete the proof.

7. In this section we shall discuss a Kahlerian analogue of the theorem of
Schur. We have already used the fact in Theorem 1 that if M is a connected
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Kahler manifold of dim c > 2 and all points are isotropic with respect to H,
then, H is identically constant. This is a Kahlerian analogue of a theorem in
Riemannian geometry due to F. Schur. Let us view this situation as follows:
let /: M —> M* be a diffeomorphism of Kahler manifolds such that / carries
G^M, C) into GX{M*, C) and

there exists a real valued function ψ: M —• R such that H*(f^σ) =

ΛJr(p)H(σ) for each holomorphic 2-plane σ on M .

The theorem mentioned above may be formulated as follows. To say points
of M* are isotropic amounts to the (local) existence of a map /: M —> M*
satisfying (*) where M is a Kahler manifold of constant holomorphic curvature
= 1. The theorem says in this case that ψ = constant. We now generalize this
theorem as follows.

Theorem 3. Let f:M^>M* be a dίβeomorphism of connected Kahler
manifolds satisfying (*). Suppose that d im c M > 2 and H φ. 0. Then ψ =
constant.

Proof. In view of the above theorem we assume that H φ. constant, so that
the set of nonisotropic points is dense. Then as in Theorem 1, / is conformal.
The alternate argument which we gave for passing from conformal to isometry
in Theorem 1 shows in the present case that / is a homothety. Hence ψ is
constant.
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