TOTAL CURVATURE AND TOTAL ABSOLUTE CURVATURE OF IMMERSED SUBMANIFOLDS OF SPHERES

J. L. WEINER

1. Introduction

Let M^{n} be a compact oriented n-dimensional immersed Riemannian submanifold of the $(n+k)$-dimensional Euclidean unit sphere $S^{n+k}(k \geq 1)$, and let $p \in S^{n+k}$. Let $\nu(M)$ be the bundle of unit vectors normal to M in S^{n+k}. We define the Gauss map, based at $p, e_{p}: \nu(M) \rightarrow S_{p} S^{n+k}$, where $S_{p} S^{n+k}$ is the unit sphere in the tangent space $T_{p} S^{n+k}$ to S^{n+k} at p. We investigate the integral over M of the pullback and the absolute value of the pullback of the normalized volume element of $S_{p} S^{n+k}$ under e_{p}. These integrals are called the total curvature and the total absolute curvature of M with respect to the base point p, respectively.

Let $-p$ be the antipode of p in S^{n+k}. If $-p \notin M$, we prove that the total curvature of M with respect to p is the Euler-Poincaré characteristic of M. In addition, if $-p \notin M$, the total absolute curvature of M with respect to p satisfies results similar to those of Chern and Lashof for the total absolute curvature of immersed submanifolds of Euclidean space. If $-p \in M$, and M is even dimensional, then we prove that the total curvature of M with respect to p equals the Euler-Poincaré characteristic less twice the number of times M passes through $-p$. The total absolute curvature with respect to p is also studied when $-p \in M$.

Finally, we consider the average of the total absolute curvatures of M over all base points p in S^{n+k}. Small n-spheres of S^{n+k} for $n=1,2$ are characterized by means of this average.

Throughout this paper all manifolds are C^{∞}, and by a differentiable map we mean a C^{∞} differentiable map. A superscript is used to denote the dimension of a manifold, so that M^{n} is an n-dimensional manifold. We use \langle,$\rangle for the$ Riemannian metric on the Euclidean sphere or any submanifold of the sphere with the induced metric.

Received November 9, 1972, and in revised form, October 1, 1973.

2. Definitions

Let S^{n} be a Euclidean unit sphere, and fix $p \in S^{n}$. Let $-p$ denote the antipode of p.

Lemma 1. (1) Let $v \in T_{q} S^{n}$ and $q \neq-p$. Then the parallel translate of v to p along any geodesic from q to p is independent of the geodesic.
(2) Let $v \in T_{-p} S^{n}$. Let $\left.v^{\perp}=\left\{u \in T_{-p} S^{n}:\langle u, v\rangle=0\right\rangle\right\}$. Then the parallel translate of v to p along any geodesic from $-p$ to p with initial velocity in v^{\perp} is independent of the geodesic.

Proof. The proofs of (1) and (2) are straightforward.
Let M^{n} be an immersed submanifold of S^{n+k}. Define $e_{p}: \nu(M) \rightarrow S_{p} S^{n+k}$ as follows: Let $v \in \nu_{q}(M)$, that is, let v be a unit vector normal to M at q. If $q \neq p$, let $e_{p}(v)$ be the parallel translate of v to p along any geodesic from q to p; if $q=-p$, let $e_{p}(v)$ be the parallel translate of v to p along any geodesic with initial velocity in $T_{q} M$. By Lemma 1, the map e_{p} is well defined.

Lemma 2. $e_{p}: \nu(M) \rightarrow S_{p} S^{n+k}$ is continuous and differentiable on $\nu(M) \mid M \backslash\{-p\}$.

Proof. The proof is straightforward.
Let $d \alpha^{n}$ be the volume element of S^{n} normalized so that

$$
\int_{S^{n}} d \alpha^{n}=1
$$

for all positive integers n.
According to the preceding paragraphs, if M^{n} is a compact oriented immersed submanifold of S^{n+k}, we may globally define the Gauss map on M with respect to any base point p. If $-p \in M$ for some $p \in S^{n+k}$, then $e_{p}: \nu(M) \rightarrow$ $S_{p} S^{n+k}$ is continuous but needs only to be differentiable on $\nu(M) \mid M \backslash\{-p\}$. Hence $e_{p}^{*}\left(d \alpha^{n}\right)$ and $\left|e_{p}^{*}\left(d \alpha^{n}\right)\right|$ are defined on $\nu(M) \mid M \backslash\{-p\}$. Since $\nu(M) \mid\{-p\}$ is a set of measure zero we may integrate these forms over $\nu(M)$.

Definition. Set

$$
\kappa_{p}(M)=\int_{\nu(M)} e_{p}^{*}\left(d \alpha^{n}\right), \quad \tau_{p}(M)=\int_{\nu(M)}\left|e_{p}^{*}\left(d \alpha^{n}\right)\right|
$$

We call $\kappa_{p}(M)$ the total (algebraic) curvature of M with respect to p, and $\tau_{p}(M)$ the total absolute curvature of M with respect to p.

Clearly $\kappa_{p}(M)$ equals the algebraic normalized volume covered by e_{p}. Since e_{p} is a continuous map from a compact oriented manifold into a compact oriented manifold and both have the same dimension, e_{p} has a degree and this degree is $\kappa_{p}(M)$. In particular, note that $\kappa_{p}(M)$ is integral whether or not $-p \in M$.

Moreover, $\tau_{p}(M)$ is the normalized volume covered by e_{p}, and because the volume is normalized $\tau_{p}(M)$ equals the average number of times any vector in $S_{p} S^{n+1}$ is taken on by $e_{\mathfrak{p}}$.

Let N^{n} be an oriented immersed submanifold of E^{n+k}, and $\nu(N)$ the bundle of unit vectors normal to N in E^{n+k}. Then we have the usual Gauss map $e: \nu(M) \rightarrow S_{0}^{n+k-1}$, where S_{0}^{n+k-1} is the unit sphere in E^{n+k} with center 0 . The total curvature and total absolute curvature of N in E^{n+k} are defined as above and are denoted $\kappa(N)$ and $\tau(N)$, respectively. The definition for $\tau(N)$ agrees with the one in [3].

$$
\text { 3. } \kappa_{p}(M) \text { and } \tau_{p}(M) \text { for }-p \notin M
$$

Isometrically imbed S^{n+k} in E^{n+k+1}. Let $\sigma_{p}: S^{n+k} \backslash\{-p\} \rightarrow E^{n+k}$ be stereographic projection from $-p$ onto the tangent hyperplane E^{n+k} to S^{n+k} at p. For an oriented immersed submanifold M^{n} of S^{n+k}, set $M(p)$ equal to the image of $M \backslash\{-p\}$ under σ_{p}. Let $M(p)$ carry the metric induced from E^{n+k}.

We now restate Lemma 5 of [8] for arbitrary positive codimension.
Lemma 3. Let M^{n} be an immersed submanifold of S^{n+k}. Then the following diagram is commutative:

It is clear that σ_{p}^{*} and $d \sigma_{p}: S_{p} S^{n+k} \rightarrow S_{0}^{n+k-1}$ are diffeomorphisms. Thus if $M(p)$ is given the orientation induced from $M \backslash\{-p\}$ by σ_{p}, the algebraic volumes covered by e and e_{p} are equal. Hence $\kappa(M(p))=\kappa_{p}(M)$. It is equally clear that $\tau(M(p))=\tau_{p}(M)$.

Note that for a compact oriented immersed submanifold M of $S^{n+k}, M(p)$ is a compact oriented immersed submanifold of E^{n+k} if $-p \notin M$. If $-p \in M$, then $M(p)$ is a complete open oriented immersed submanifold of E^{n+k}.

Theorem 1. Let M^{n} be a compact oriented immersed submanifold of S^{n+k}, and suppose $-p \notin M$. Then $\kappa_{p}(M)=\chi(M)$ where $\chi(M)$ is the Euler-Poincaré characteristic of M.

Proof. Since $-p \notin M, M \backslash\{-p\}=M$ and hence M and $M(p)$ are diffeomorphic under σ_{p}. In particular, M and $M(p)$ are topologically equivalent. Hence $\kappa_{p}(M)=\kappa(M(p))=\chi(M)$, where the second equality is the GaussBonnet theorem.

Definition. We say that the submanifold Σ^{m} of S^{n} is a small m-sphere if for any (and hence every) imbedding of S^{n} into E^{n+1} we have $\sum^{m}=S^{n} \cap L^{m+1}$, where L^{m+1} is an $(m+1)$-dimensional plane in E^{n+1}. For $m=1$, we say that Σ^{1} is a small circle. Note that every metric hypersphere of S^{n} is a small hypersphere of S^{n} and conversely.

Theorem 2. Let M^{n} be a compact oriented immersed submanifold of S^{n+k}. Let $p \in S^{n+k}$ and suppose $-p \notin M$. Then we have the following.
(1) $\tau_{p}(M) \geq \beta(M)$ where $\beta(M)$ is the sum of the Betti numbers of M.
(2) $\tau_{p}(M)<3$ implies M is homeomorphic to S^{n}.
(3) $\tau_{p}(M)=2$ implies M is imbedded as a hypersurface of a small $(n+1)$ sphere \sum^{n} through $-p$.

Proof. (1) We know that M and $M(p)$ are topologically equivalent under σ_{p}. Hence $\tau_{p}(M)=\tau(M(p)) \geq \beta(M(p))=\beta(M)$, where the inequality in this chain is due to Chern and Lashof [4].
(2) and (3) are proved in a similar fashion.

$$
\text { 4. } \kappa_{p}(M) \text { and } \tau_{p}(M) \text { for }-p \in M
$$

Throughout this section we suppose M^{n} is a compact oriented immersed submanifold of S^{n+k}. We want to investigate $\kappa_{p}(M)$ and $\tau_{p}(M)$ under the assumption $-p \in M$.

If N^{n} is an oriented immersed submanifold of E^{n+k}, then $\kappa(N)=0$ for n odd whether or not N is compact. Hence for M^{n} with n odd we have $\kappa_{p}(M)$ $=\kappa(M(p))=0=\chi(M)$ whether or not $-p \notin M$.

If $M^{2 n}$ is a compact oriented immersed submanifold of $S^{2 n+k}$ and $-p \in M$ for some $p \in S^{2 n+k}$, then $\kappa_{p}(M)$ may not be (in fact, is not) equal to the EulerPoincaré characteristic of M. For example, let $M^{2 n}$ be a small hypersphere through $-p \in S^{2 n+1}$. Then the rank of $e_{p}: \nu(M) \rightarrow S_{p} S^{2 n+1}$ is zero; see, for example, [8, Theorem 6]. Hence $\kappa_{p}(M)=0 \neq 2=\chi(M)$.

For a compact immersed submanifold M^{n} of S^{n+k} and $q \in S^{n+k}$, let $\# q(M)$ equal the number of times M passes through q. We have the following theorem.

Theorem 3. Let M^{n} be a compact oriented immersed submanifold of S^{n+k} and let $p \in S^{n+k}$. Suppose n is even and $-p \in M$. Then

$$
\kappa_{p}(M)=\chi(M)-2 \#-p(M) .
$$

Proof. Let $f: M^{n} \rightarrow S^{n+k}$ be the immersion of M^{n} into S^{n+k}. Let $f^{-1}(-p)$ $=\left\{q_{1}, \cdots, q_{r}\right\}$. Consider $f_{t}: M^{n} \rightarrow S^{n+k}, 0 \leq t \leq 1$, a continuous deformation of f, i.e., $f_{0}=f$ and f_{t} is an immersion for $0 \leq t \leq 1$. Suppose this deformation has the following properties:
(i) $f_{t}^{-1}(-p)=f^{-1}(-p)$, for $0 \leq t \leq 1$, and
(ii) $\quad\left(f_{t^{*}}\right)_{q_{i}}=\left(f_{*}\right)_{q_{i}}$, for $0 \leq t \leq 1$, and $i=1, \cdots, r$.

Denote $f_{t}(M)$ by $M_{t}, 0 \leq t \leq 1$. Then $\kappa_{p}\left(M_{t}\right)$ varies continuously with t. However, we observed earlier that $\kappa_{p}(M)$ is integral for all compact oriented immersed submanifolds M^{n} of S^{n+k}. Thus $\kappa_{p}\left(M_{t}\right)$ remains fixed under deformations of the type described. We may therefore assume that f is totally geodesic in a sufficiently small neighborhood about $q_{i}, i=1, \cdots, r$, if we are only concerned with computing $\kappa_{p}(M)$.

For a sufficiently small sphere S_{c} sbout $-p$ on S^{n+k}, bounding a ball B_{c}^{n+k} on S^{n+k}, the intersection $f(M) \cap B_{\varepsilon}$ consists of flat discs $f\left(B_{i}^{n}\right)$, with $q_{i} \in B_{i}^{n}$.

Under stereographic projection σ_{-p} of $f\left(M \backslash \bigcup_{n=i}^{r} B_{i}\right)$ into E^{n+k}, the boundary spheres ∂B_{i}^{n} are mapped into the sphere $\sigma_{-p}\left(S_{\varepsilon}\right)$ and each is a great ($n-1$)dimensional sphere, and σ_{-p} maps $f\left(B_{i}^{n} \backslash q_{i}\right)$ into n-planes. We may then find convex n-dimensional surfaces \sum_{i}^{n} each with a disc removed in the exterior of $\sigma_{-p}\left(S_{c}\right)$ so that $\kappa\left(\sum_{i}\right)=2$, and so that $\left(\sigma_{-p} \circ f\right)\left(M \backslash \bigcup_{i=1}^{r} B_{i}\right) \cup\left(\bigcup_{i=i}^{r} \sum_{q}\right)$ is a smoothly immersed n-manifold in E^{n+k}, homeomorphic to M.

Now $\kappa_{p}\left(f\left(M \backslash \cup B_{i}\right)\right)=\kappa_{p}(M)$ since $f\left(B_{i}\right)$ is part of a totally geodesic sphere through $-p$. Hence

$$
\begin{aligned}
\kappa_{p}(M) & =\kappa_{p}\left(f\left(M \backslash \bigcup_{i=1}^{r} B_{i}\right)\right)=\kappa\left(\sigma_{-p} \circ f\left(M \backslash \bigcup_{i=1}^{r} B_{i}\right)\right) \\
& =\kappa\left[\sigma_{-p} \circ f\left(M \backslash \bigcup_{i=1}^{r} B_{i}\right) \cup\left(\bigcup_{i=1}^{r} \sum_{i}\right)\right]-\kappa\left(\bigcup_{i=1}^{r} \sum_{i}^{n}\right) \\
& =\chi(M)-2 \#-p(M) \cdot \text { q.e.d. }
\end{aligned}
$$

For $A \subset S^{n}$, let $-A=\{-q: q \in A\}$. Let M^{n} be a compact oriented immersed submanifold of S^{n+k}. It is clear that the function $p \rightarrow \tau_{p}(M)$ is continuous on $S^{n+k} \backslash(-M)$. Equivalently, $\tau_{p}(M)$ varies continuously as we move M by a continuous 1-parameter family of isometries of S^{n+k} provided at no time $-p \in M$. However, $p \rightarrow \tau_{p}(M)$ is not continuous on S^{n+k}. For example, let M be a small n-sphere in S^{n+1}; if $p \in S^{n+1} \backslash(-M)$, then $\tau_{p}(M)=2$, but if $p \in-M$, then $\tau_{p}(M)=0$.

The preceding example and Theorem 3 suggest the following.
Conjecture. Let M^{n} be a compact oriented immersed submanifold of S^{n+k}. The function

$$
p \rightarrow \tau_{p}(M)+2 \#-p(M)
$$

is continuous on S^{n+k}.
We can, however, prove a special case of this conjecture. Let $f: M \rightarrow S^{n+k}$ be the immersion of M into S^{n+k}. Suppose $f^{-1}(-p)=\left\{q_{1}, \cdots, q_{r}\right\}$, where $r>0$. Let $\varphi_{t}, 0 \leq t \leq 1$, be a differentiable 1-parameter family of isometries of S^{n+k} with $\varphi_{0}=\mathrm{id}$. Define $\varphi: M \times[0,1] \rightarrow S^{n+k}$ by $\varphi(q, t)=\varphi_{t}(f(q)) ; \varphi$ is differentiable. Set $M_{t}=\varphi_{t}(f(M))$.

Theoerm 4. If $M_{t} \cap\{-p\}=\emptyset, 0<t \leq 1$, and φ is regular at $\left(q_{i}, 0\right), i=$ $1, \cdots, r$, then

$$
\begin{equation*}
\tau_{p}(M)+2 \#-p(M)=\lim _{t \rightarrow 0} \tau_{p}\left(M_{t}\right) . \tag{1}
\end{equation*}
$$

Sketch of proof. Consider the directed dilitation of S^{n+k} along $-p$, denoted by $S_{*}^{n+k}(p)$. Now $S_{*}^{n+k}(p)=S^{n+k} \backslash\{-p\} \cup S_{-p} S^{n+k}$ is a differentiable manifold with boundary $S_{-p} S^{n+k}$, [5]. Also consider the directed dilitation of $M \times[0,1]$ along $\left\{\left(q_{1}, 0\right), \cdots,\left(q_{r}, 0\right)\right\}$, denoted by $(M \times[0,1])_{*}$. Here $(M \times[0,1])_{*}=$ $M \times[0,1] \backslash\left\{\left(q_{1}, 0\right), \cdots,\left(q_{r}^{\prime}, 0\right)\right\} \cup \cup \cup_{i=1}^{r} G_{i}$, where $G_{i}=\left\{v \in S_{\left(q_{i}, 0\right)} M \times[0,1]:\right.$
$\left.\left\langle v, \partial / \partial t_{\left(q_{i}, 0\right)}\right\rangle \geq 0\right\},\langle$,$\rangle being the product metric on M \times[0,1] . \varphi$ induces a $\operatorname{map} \Phi:(M \times[0,1])_{*} \rightarrow S_{*}^{n+k}(p)$ since φ is regular at $\left(q_{i}, 0\right), i=1, \cdots, r$.

There is a natural map $\iota:(M \times[0,1])_{*} \rightarrow M \times[0,1]$ such that ι is the identity of $\bigcup_{i=1}^{r} G_{i}$ and $\iota \mid G_{i}=\left(q_{i}, 0\right), i=1, \cdots, r$. Let $\nu\left(M_{t}\right)$ be the bundle of unit vectors normal to M_{t} in S^{n+k}. Set $\nu(M \times[0,1])=\bigcup_{0 \leq t \leq 1} \nu\left(M_{t}\right)$; this is a bundle over $M \times[0,1]$. Let $\mu=\iota^{*} \nu(M \times[0,1]$. We may define a Gauss map $e: \mu \rightarrow S_{p} S^{n+k}$ so that $e \mid \nu\left(M_{t}\right), 0<t \leq 1$, and $e \mid \nu\left(M \backslash\left\{q_{1}, \cdots, q_{r}\right\}\right)$ are the usual Gauss maps based at p. For the pair $(v, u) \in \mu \mid G_{i}=G_{i} \times \nu_{q_{i}}(M)$, $e(v, u)$ is the parallel translate of u to p along the geodesic with initial velocity $\Phi(v)$. Now $e: \mu \rightarrow S_{p} S^{n+k}$ is differentiable.

Define $g: \mu \rightarrow R$ such that
(i) $g\left|\nu\left(M_{t}\right)=\right|$ Jacobian $e\left|\nu\left(M_{t}\right)\right|, 0<t \leq 1$,
(ii) $g\left|\nu\left(M \backslash\left\{q_{1}, \cdots, q_{r}\right\}\right)=\right|$ Jacobian $e\left|\nu\left(M \backslash\left\{q_{1}, \cdots, q_{r}\right\}\right)\right|$,
(iii) $g\left|\left(\mu \mid G_{i}\right)=\right|$ Jacobian $e\left|\left(\mu \mid G_{i}\right)\right|$.

Then g is continuous almost everywhere and bounded. Using measure theoretic techniques, one may show

$$
\lim _{t \rightarrow 0} \int_{\nu\left(M_{t}\right)} g\left|\nu\left(M_{t}\right)=\int_{\nu(M)} g\right| \nu(M)+\sum_{i=1}^{r} \int_{\mu \mid G_{i}} g \mid\left(\mu \mid G_{i}\right) .
$$

The integral $\int_{\mu \mid G_{i}} g \mid\left(\mu \mid G_{i}\right)$ depends only on $T_{q_{i}} M$ and $\varphi_{*}\left(\partial / \partial t_{\left(q_{i}, 0\right)}\right)$. Hence one shows by letting M be a small n-sphere in S^{n+k} that $\int_{\mu \mid G_{i}} g \mid\left(\mu \mid G_{i}\right)=2$. Hence (1).

For details (in the codimension 1 case) see the author's thesis [9, Chapter IV].

5. Another theorem

Let M^{n} be a compact oriented immersed submanifold of Euclidean space $E^{n+k}(1 \leq k)$. Suppose there exists an $(n+l)$-plane $E^{n+l}(1 \leq l \leq k)$ in E^{n+k}, which contains M^{n}. Then it is known that the total absolute curvatures of M^{n} regarded as a submanifold of E^{n+l} and E^{n+k} are the same. We prove a corresponding result for submanifolds of spheres in this section, and will give an application of this result in the next section.

In the following theorem we consider a compact oriented immersed submanifold M^{n} of S^{n+k}, which is contained in a small $(n+l)$-sphere \sum^{n+l}, $(1 \leq l \leq k)$. For $p \in S^{n+k}$ let $\tau_{p}\left(M, S^{n+k}\right)$ be the total curvature of M as a submanifold of S^{n+k} with respect to the base point p. For $p \in \sum^{n+l}$ let $\tau_{p}\left(M, \sum^{n+l}\right)$ be the total curvature of M as a submanifold of \sum^{n+l} with respect to the base point p.

Theorem 5. Let M^{n} be a compact oriented immersed submanifold of S^{n+k}. Suppose $p \in S^{n+k}$, and M is contained in a small $(n+l)$-sphere $\sum^{n+l}(1 \leq l \leq k)$
containing $-p$. Let $p^{\prime}=-(-p)$ in \sum^{n+l}, that is, p^{\prime} is the antipode of $-p$ in \sum^{n+l}. Then $\tau_{p}\left(M, S^{n+k}\right)=\tau_{p^{\prime}}\left(M, \sum^{n+l}\right)$.

Proof. Isometrically imbed S^{n+k} into E^{n+k+1}. Then we have the stereographic projection $\sigma_{p}: S^{n+k} \backslash\{-p\} \rightarrow E^{n+k}$ from $-p$ onto E^{n+k}, the $(n+k)$ dimensional plane in E^{n+k+1} tangent to S^{n+k} at p. Let L be the $(n+l+1)-$ dimensional plane E^{n+k+1} such that $L \cap S^{n+k}=\sum^{n+k}$. Since $-p \in \sum^{n+l}$, under σ_{p} the small sphere \sum^{n+l} corresponds to the ($n+l$)-dimensional plane $L^{\prime}=L \cap E^{n+k}$. Hence $\sigma_{p}(M \backslash\{p\})=M(p) \subset L^{\prime}$.

The small sphere \sum^{n+l} is imbedded as a metric sphere in L. Let σ_{p}, $\sum^{n+l} \backslash\{-p\} \rightarrow L^{\prime}$ be the stereographic projection in L from $-p$ onto L^{\prime}. Even though L^{\prime}, in general, is not tangent to \sum^{n+l} at p^{\prime}, Lemma 3 still holds. Hence, if we set $M\left(p^{\prime}\right)=\sigma_{p^{\prime}}(M \backslash\{-p\})$, we have $\tau_{p^{\prime}}\left(M, \Sigma^{n+l}\right)=\tau\left(M\left(p^{\prime}\right), L^{\prime}\right)$, the total curvature of $M\left(p^{\prime}\right)$ as a submanifold of L^{\prime}. Since $\sigma_{p^{\prime}}=\sigma_{p} \mid \sum^{n+l}$, we also have $M(p)=M\left(p^{\prime}\right)$.

Let $\tau\left(M(p), E^{n+k}\right)$ be the total curvature of $M(p)$ as a submanifold of E^{n+k}. Then

$$
\tau_{p}\left(M, S^{n+k}\right)=\tau\left(M(p), E^{n+k}\right)=\tau\left(M\left(p^{\prime}\right), L^{\prime}\right)=\tau_{p^{\prime}}\left(M, \Sigma^{n+l}\right) .
$$

6. The average total absolute curvature

Let M^{n} be a compact oriented immersed submanifold of S^{n+k}. Define

$$
\bar{\tau}(M)=\int_{S^{n+k}} \tau_{p}(M) d \alpha^{n+k}(p)
$$

that is, $\bar{\tau}(M)$ is the average value of $\tau_{p}(M)$ taken over all possible base points $p \in S^{n+k}$.

Theorem 6. Let M^{n} be a compact oriented immersed submanifold of S^{k+k}. Then
(1) $\bar{\tau}(M) \geq \beta(M) \geq 2$,
(2) $\bar{\tau}(M)=2$ if M is imbedded as a small n-sphere.

Proof. (1) We know by Theorem 2 that for all $p \in S^{n+k}$ with $-p \notin M$, $\tau_{p}(M) \geq \beta(M)$. Since $\left\{p \in S^{n+k}:-p \in M\right\}$ is a set of measure zero, we have $\bar{\tau}(M)=\int_{S^{n+k}} \tau_{p}(M) d \alpha^{n+k} \geq \int_{S^{n+k}} \beta(M) d \alpha^{n+k} \geq \beta(M)$.
(2) It is easy to show for $p \in S^{n+k}$ with $-p \notin M$ that the image of a small n-sphere under σ_{p} is a metric sphere in an $(n+1)$-dimensional plane of E^{n+k}. Hence, if M is a small n-sphere and $-p \notin M$, then $\tau_{p}(M)=\tau(M(p))=2$. Thus $\bar{\tau}(M)=2$. q.e.d.

It is natural to ask to what extend the converse of part (2) of Theorem 6 is true. If $\bar{\tau}(M)=2$, then $\tau_{p}(M)=2$ for all $p \in S^{n+k}$ such that $-p \notin M$. This is true since the function $p \rightarrow \tau_{p}(M)$ is continuous and ≥ 2 on $\left\{p \in S^{n+k}:-p \notin M\right\}$. In particular, there is at least one $p \in S^{n+k}$ with $-p \notin M$ such that $\tau_{p}(M)=2$. By Theorem 2 there exists a small $(n+1)$-sphere \sum^{n+1} containing $-p$ in
which M is imbedded and M is homeomorphic to S^{n}. By Theorem 5 it follows immediately that $\bar{\tau}\left(M, \Sigma^{n+1}\right)=2$, where $\bar{\tau}\left(M, \Sigma^{n+1}\right)$ is the average total absolute curvature of M as a submanifold of \sum^{n+1}. So, to find out to what extent the converse of part (2) of Theorem 6 is true, we need only to study manifolds M^{n} homeomorphic to S^{n}, which are imbedded in S^{n+1} with $\bar{\tau}(M)=2$. In particular, when these M^{n} are imbedded as small spheres.

If L^{n} is a hyperplane of E^{n+1}, its complement $E^{n+1} \backslash L^{n}$ is the disjoint union of two sets D_{1} and D_{2} with closures $\bar{D}_{i}=D_{i} \cup L^{n}, i=1,2$. A set A in E^{n+1} has the two-piece property (TPP) if $A \cap \bar{D}_{i}$ is path connected, for either complementary component $D_{i}, i=1,2$, of any hyperplane L^{n} of E^{n+1}.

If Σ^{n} is a metric hypersphere of S^{n+1}, its complement $S^{n+1} \backslash \Sigma^{n}$ is the disjoint union of two open sets D_{1} and D_{2} with closures $\bar{D}_{i}=D_{i} \cup \sum^{n}, i=1,2$. A set A in S^{n+1} has the spherical-two-piece-property (STPP) if $A \cap \bar{D}_{i}$ is path connected, for either complementary component $D_{i}, i=1,2$, of any metric hypersphere Σ^{n} in S^{n+1}. For example, it follows from Proposition 3.1 of [1] that every metric hypersphere of S^{n+1} has the STPP.

Let L^{n} be a hyperplane of E^{n+1}, and let $L(\varepsilon)$ equal the set of all points whose distance from L^{n} is less than ε. We say a set A contained in E^{n+1} is asymptotic to L^{n} if given $\varepsilon>0$ there exists an $R>0$ such that for all $r>R, N \backslash B_{0}(r) \neq \emptyset$ and $N \backslash B_{0}(r) \subset L(\varepsilon)$, where $B_{0}(r)$ is the open ball of radius r centered at the origin of E^{n+1}.

Lemma 4. Let N^{n} be a complete imbedded hypersurface of E^{n+1} asymptotic to a hyperplane L^{n} of E^{n+1}. If N^{n} has the TPP, then $N^{n}=L^{n}$.

Proof. Suppose $N^{n} \neq L^{n}$. Let d be the metric on E^{n+1}. Let $p \in N$ so that $d(p, L)=\rho$ is a maximum. Such a point exists since N is asymptotic to L. Let P equal the connected component of $\{q \in N: d(q, L)=\rho\}$, which contains p. Let K^{n} be the hyperplane through p at a distance ρ from L. Clearly $P \subset K$.

Let the origin 0 of E^{n+1} be the base point of the perpendicular from p to L. Since N is asymptotic to L, there is a sequence of points $q_{i}, i=1,2, \ldots$, in N such that $\lim _{i \rightarrow \infty}\left\|q_{i}\right\|=+\infty$. Consider the sequence $q_{i} /\left\|q_{i}\right\|, i=1,2, \cdots$, in the unit sphere of E^{n+1} about 0 . We may assume by taking a subsequence if necessary that $\lim _{i \rightarrow \infty} q_{i} /\left\|q_{i}\right\|=u$. Clearly $u \in L$. Note that P is bounded since N is asymptotic to L. Hence let $p^{\prime} \in p$ so that $\left(p^{\prime}-p\right) \cdot u=c$ is a maximum. Let J^{n-1} be the ($n-1$)-plane in K through p^{\prime} orthogonal to u. Rotate K about J so that the unit normal to K pointing away from L rotates toward u. Let D_{1} be the complementary component of K, which does not contain L. For a small enough rotation of K, the path component of p^{\prime} in $N \cap \bar{D}_{1}$ is at least a distance $\frac{1}{2} \rho$ from L. Since $N \cap \bar{D}_{1}$ must also contain a point q_{i} which is closer to L than $\frac{1}{2} \rho$ for i sufficiently large, L does not satisfy the TPP. This is a contradiction. Hence $L=N$.

Lemma 5. Let M^{n} be a compact imbedded hypersurface of S^{n+1}. If M has the STPP with respect to all metric hyperspheres through an umbilic point of M, then M is a metric sphere.

Proof. Let q be the umbilic point of M. Consider the stereographic projection σ from q. Then $N^{n}=\sigma(M \backslash\{q\})$ with metric induced from E^{n+1} is a complete imbedded hypersurface of E^{n+1}. Since M is umbilic at q, there exists a metric hypersphere \sum^{n} through q, which makes second order contact with M. Then $L^{n}=\sigma\left\{\sum \backslash\{q\}\right.$) is a hyperplane of E^{n+1}.

Let L_{1} and L_{2} be two hyperplanes parallel to L with one on each side of L^{n}. Under the stereographic projection σ, L_{1} and L_{2} correspond to metric spheres through q, Σ_{1}, and Σ_{2}, with one on each side of Σ. Since Σ makes second order contact with M at q, in a small enough neighborhood about q, M lies between Σ_{1} and Σ_{2}. Hence outside a large enough ball about 0 in E^{n+1}, N lies between L_{1} and L_{2}. It is now clear that N is asymptotic to L.

Since M has the STPP with respect to all metric spheres through q, N has the TPP. Thus the hypotheses of Lemma 4 are satisfied so that $N=L$. Hence $M=\Sigma$, that is, M is a metric sphere.

Lemma 6. Let M^{n} be a manifold homeomorphic to S^{n} imbedded in S^{n+1} with $\bar{\tau}(M)=2$. If (1) $n \leq 2$ or (2) $n \geq 3$ and M has an umbilic point, then M is imbedded as a small sphere.

Proof. Let $p \in S^{n+1}$ such that $-p \notin M$. Since $\bar{\tau}(M)=2$, we have $\tau_{p}(M)=2$. Thus $\tau(M(p))=2$, which implies that $M(p)$ is imbedded as a convex hypersurface of E^{n+1}. In particular, $M(p)$ has the TPP so that M has the STPP with respect to all metric spheres through $-p$. Hence for all $q \notin M, M$ has the STPP with respect to all metric spheres through q. Since every metric sphere passes through some point not in M unless M already is a metric sphere, M has the STPP. If $n=1$, then every point of M is umbilic. If $n=2$, we have $\chi(M)=$ $\chi\left(S^{2}\right)=2 \neq 0$. If M did not have an umbilic point, then the second fundamental form of M in S^{n+1} determines a field of tangent line elements corresponding to, say, the larger eigenvalue of the second fundamental form. Hence, according to the comments following Theorem 40.13 in [7], $\chi(M)=0$. For $n \geq 3$, we have assumed the existence of an nmbilic point. Now apply Lemma 5 to get the result since metric hyperspheres of S^{n+1} are small hyperspheres.
q.e.d.

We now present an alternate proof of Lemma 6 for the cases $n=1$ and $n=2$.

Proof $(n=1)$. It is clear that $\bar{\tau}\left(M^{1}\right)$ equals the total central curvature of M^{1} as defined in [2] where it is shown that the total central cuvature of a closed curve $M^{1} \subset S^{2}$ equals the total absolute curvature of the curve as a curve in E^{3}. Consequently if $\bar{\tau}(M)=2$, then $M^{1} \subset S^{2}$ is imbedded as a convex curve in a hyperplane in E^{3}. Thus M^{1} is a small circle.

Proof $(n=2)$. Since $\tau_{p}(M)=2$ for all p such that $-p \notin M$, by Theorem 4 we have $\tau_{p}(M)=0$ for p with $-p \in M$. Hence if $-p \in M$, then $\tau(M(p))=$ $\int_{M(p)}|K|=0$, which implies $K \equiv 0$ on $M(p)$. Since $M(p)$ is complete, $M(p)$ is a generalized cylinder [6]. Also M has an umbilic point, for $\chi(M) \neq 0$ since
M is a topological sphere. Hence if we choose p so that $-p$ is the umbilic point, we also have $M(p)$ asymptotic to a hyperplane L^{n} of E^{n+1}.

Clearly, an imbedded generalized cylinder asymptotic to a hyperplane must be that hyperplane, so $M(p)=L$. Thus M is a small sphere.

Using Lemma 6 and the comments at the beginning of this section, we have the following.

Theorem 7. Let M^{n} be a compact oriented immersed submanifold of S^{n+k}, where $n \leq 2$. If $\bar{\tau}(M)=2$, then M is imbedded as a small n-sphere.

Bibliography

[1] T. F. Banchoff, The spherical two-piece property and tight surfaces in spheres, J. Differential Geometry 4 (1970) 193-205.
[2] -, Total central curvature of curves, Duke Math. J. 37 (1970) 281-289.
[3] S. S. Chern \& R. K. Lashof, On the total curvature of immersed manifolds, Amer. J. Math. 79 (1957) 306-313.
[4] -, On the total curvature of immersed manifolds. II, Michigan Math. J. 5 (1958) 5-12.
[5] E. Kreysig, Stetige modfikation komplexer manigfaltigkeiten, Math. Ann. 128 (1954-1955) 479-492.
[6] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tôhoku Math. J. 14 (1962) 73-79.
[7] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, New Jersey, 1951.
[8] J. L. Weiner, The Gauss map in spaces of constant curvature, Proc. Amer. Math. Soc. 38 (1973) 157-161.
[9] -, The Gauss map in curved manifolds, Doctoral thesis, University of California at Los Angeles, 1971.

