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TOTAL CURVATURE AND TOTAL ABSOLUTE 
CURVATURE OF IMMERSED SUBMANIFOLDS 

OF SPHERES 

J.  L. WEINER 

1. Introduction 

Let M n  be a compact oriented n-dimensional immersed Riemannian sub- 
manifold of the (n + k)-dimensional Euclidean unit sphere Snt '" (k 2 I), and 
let p  E Sntk. Let v(M) be the bundle of unit vectors normal to M in Sntk. We 
define the Gauss map, based at p, e, : v(M) -+ SpSn+ Ic, where SpSn + '" is the unit 
sphere in the tangent space TPSn+% to Sn+k at p. We investigate the integral 
over M of the pullback and the absolute value of the pullback of the normaliz- 
ed volume element of SPSntk under e,. These integrals are called the total 
curvature and the total absolute curvature of M with respect to the base point p,  
respectively. 

Let - p  be the antipode of p  in Sn+ k. If - p  4 M, we prove that the total 
curvature of M with respect to p  is the Euler-PoincarC characteristic of M. In 
addition, if - p  C$ M, the total absolute curvature of M with respect to p  satis- 
fies results similar to those of Chern and Lashof for the total absolute curva- 
ture of immersed submanifolds of Euclidean space. If - p  E M, and M is even 
dimensional, then we prove that the total curvature of M with respect to p  
equals the Euler-PoincarC characteristic less twice the number of times M 
passes through - p .  The total absolute curvature with respect to p  is also 
studied when - p  E M. 

Finally, we consider the average of the total absolute curvatures of M over 
all base points p  in Sn+'". Small n-spheres of Sn+'" for n = 1 , 2  are characterized 
by means of this average. 

Throughout this paper all manifolds are C", and by a differentiable map we 
mean a C" differentiable map. A superscript is used to denote the dimension 
of a manifold, so that M n  is an n-dimensional manifold. We use ( , > for the 
Riemannian metric on the Euclidean sphere or any submanifold of the sphere 
with the induced metric. 
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2. Definitions

Let Sn be a Euclidean unit sphere, and fix p € Sn. Let — p denote the anti-
pode of p.

Lemma 1. ( 1 ) Let v € TqS
n and qΦ —p. Then the parallel translate of

v to p along any geodesic from q to p is independent of the geodesic.

( 2) Let v e T_pS
n. Let vL = {u <= T_pS

n: <w, v} = 0>}. Then the parallel
translate of v to p along any geodesic from —p to p with initial velocity in v1

is independent of the geodesic.
Proof. The proofs of (1) and (2) are straightforward.
Let Mn be an immersed submanifold of Sn+k. Define ep: v(M) -> SpS

n+k as
follows: Let v € vq(Af), that is, let v be a unit vector normal to M at q. If
q Φ p, let ep(v) be the parallel translate of v to p along any geodesic from q
to p if q = —p, let ev(v) be the parallel translate of v to p along any geodesic
with initial velocity in TqM. By Lemma 1, the map ep is well defined.

Lemma 2. ep: v(M) —> SpS
n+k is continuous and dίfferentiable on

v(M)\M\{-p}.
Proof. The proof is straightforward.
Let dan be the volume element of Sn normalized so that

dan = 1 ,
I sn

for all positive integers n.
According to the preceding paragraphs, if Mn is a compact oriented im-

mersed submanifold of Sn+k, we may globally define the Gauss map on M with
respect to any base point p. If —peM for some p e Sn+k, then ep: v(M) —>
SpS

n+k is continuous but needs only to be difϊerentiable on v(M)\M\{—p}.
Hence e*{dan) and \e*{dan)\ are defined on v(M) \M\{-p}. Since v(M) \{-p}
is a set of measure zero we may integrate these forms over v(M).

Definition. Set

κp(M) = [ e*(dan) , τp(M) = f \e*(dan)\ .
Jv(M) Jv(M)

We call /ĉ CM) the total (algebraic) curvature of M with respect to p, and τp(M)
the total absolute curvature of M with respect to p.

Clearly κp{M) equals the algebraic normalized volume covered by ep. Since
ep is a continuous map from a compact oriented manifold into a compact
oriented manifold and both have the same dimension, ep has a degree and this
degree is /cp(M). In particular, note that /cp(M) is integral whether or not
— p € M.

Moreover, τp{M) is the normalized volume covered by ep, and because the
volume is normalized τp(M) equals the average number of times any vector in
SpS

n+1 is taken on by e?.
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Let Nn be an oriented immersed submanifold of En+k, and v(N) the bundle
of unit vectors normal to N in En+k. Then we have the usual Gauss map
e: v(M) -> Sζ+k-\ where S^*" 1 is the unit sphere in En+k with center 0. The
total curvature and total absolute curvature oί N in En+k are defined as above
and are denoted κ(N) and τ(N), respectively. The definition for τ(N) agrees with
the one in [3].

3. κp(M) and τp{M) for —p$M

Isometrically imbed Sn + k in En+k+1. Let σp: Sn+k\{-p}-> En+k be stereo-
graphic projection from —p onto the tangent hyperplane En+k to Sn+k at p.
For an oriented immersed submanifold Mn of Sn+k, set M(p) equal to the
image of M\{ — p] under σp. Let M(p) carry the metric induced from En+k.

We now restate Lemma 5 of [8] for arbitrary positive codimension.
Lemma 3. Let Mn be an immersed submanifold of Sn+k. Then the follow-

ing diagram is commutative:

v(M)\M\{-p] ^ > SpS^k

\dσ.

v{M(p))

P

It is clear that <7* and dσp: SpS
n+k -> S^1*-1 are difϊeomorphisms. Thus if

M(p) is given the orientation induced from M\{—p) by σp, the algebraic vol-
umes covered by e and ep are equal. Hence tc(M(p)) = κp(M). It is equally
clear that τ(M(p)) = τ p(M).

Note that for a compact oriented immersed submanifold M of Sn+k, M{p) is
a compact oriented immersed submanifold of En+k if —p$M. If —pεM,
then M(p) is a complete open oriented immersed submanifold of En+k.

Theorem 1. Let Mn be a compact oriented immersed submanifold of Sn+k,
and suppose —p<£M. Then /cp(M) = χ(M) where χ{M) is the Euler-Poincarέ
characteristic of M.

Proof. Since —p$M9 M\{—p} — M and hence M and M(p) are difϊeo-
morphic under σp. In particular, M andMQ?) are topologically equivalent.
Hence κp(M) = κ(M(p)) = χ(M), where the second equality is the Gauss-
Bonnet theorem.

Definition. We say that the submanifold ^ m oi Sn is a small m-sphere if
for any (and hence every) imbedding of Sn into En+1 we have Σm = Sn Π L m + 1 ,
where L m + 1 is an (m + l)-dimensional plane in En+1. For m = 1, we say that
2 1 is a small circle. Note that every metric hypersphere; of Sn is a small
hypersphere of Sn and conversely.

Theorem 2. Le/ Mw be α compact oriented immersed submanifold of Sn+k.
Let p e Sn+k and suppose —pφM. Then we have the following.
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( 1) τp(M) > β(M) where β(M) is the sum of the Betti numbers of M.
( 2 ) τp(M) < 3 implies M is homeomorphic to Sn.
( 3 ) τp(M) = 2 implies M is imbedded as a hypersurface of a small (n + 1)-

sphere Σn through —p.
Proof. (1) We know that M and M(p) are topologically equivalent under

σp. Hence τp(M) = τ(M(p)) > β(M(p)) = β(M), where the inequality in this
chain is due to Chern and Lashof [4].

(2) and (3) are proved in a similar fashion.

4. /Cp(M) and τp(M) for —p<zM

Throughout this section we suppose Mn is a compact oriented immersed sub-
manifold of Sn+k. We want to investigate κp(M) and τp(M) under the assump-
tion — pzM.

If Nn is an oriented immersed submanifold of En+k, then κ(N) = 0 for n
odd whether or not N is compact. Hence for Mn with n odd we have κp(M)
= κ(M(p)) = 0 = χ(M) whether or not —p$M.

If M2n is a compact oriented immersed submanifold of S2n+k and —peM
for some p e S2n+k, then κp(M) may not be (in fact, is not) equal to the Euler-
Poincare characteristic of M. For example, let M2n be a small hypersphere
through — p e S2n+1. Then the rank of ep: v(M) —>SpS

2n+1 is zero; see, for ex-
ample, [8, Theorem 6], Hence tcp(M) = 0 ^ 2 = χ(M).

For a compact immersed submanifold Mn of Sn+k and q ζ Sn+k, let #<?(M)
equal the number of times M passes through q. We have the following theorem.

Theorem 3. Let Mn be a compact oriented immersed submanifold of Sn+k

and let p e Sn+k. Suppose n is even and —p 6 M. Then

κp(M) = χ(M) - 2#_P(M) .

Proof. Let /: Mn -> Sn+k be the immersion of Mn into Sn+k. Let f~\-p)
= {#u > #r} Consider ft: Mn -^ Sn+k, 0 < t < 1, a continuous deformation
of /, i.e., /o = / and /t is an immersion for 0 < / < 1. Suppose this deformation
has the following properties:

(i) f-\-p) = f'K-p), for 0 < t < 1, and
(ii) (ftjqt = (fjqt9 for 0 < t < 1, and i = 15 . , r.

Denote ft(M) by Mt, 0 < t < 1. Then κp(Mt) varies continuously with /. How-
ever, we observed earlier that κp(M) is integral for all compact oriented im-
mersed submanifolds Mn of Sn+k. Thus κp(Mt) remains fixed under deforma-
tions of the type described. We may therefore assume that / is totally geodesic
in a sufficiently small neighborhood about qi9i = 1, , r, if we are only con-
cerned with computing κp(M).

For a sufficiently small sphere Sε sbout — p on Sn+k, bounding a ball Bn

ε

 + k

on Sn+k, the intersection /(M) Π Bs consists of flat discs /(#?), with qte B^.
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Under stereographic projection σ_p of f(M\{J^=i Bt) into En+k, the boundary
spheres dB1} are mapped into the sphere σ_p(Sε) and each is a great (n — 1)-
dimensional sphere, and σ_p maps f(B%\qi) into n-planes. We may then find
convex ^-dimensional surfaces 2 ? each with a disc removed in the exterior

of σ_p(Sε) so that A:(Σf) = 2> a n d s o t h a t (*-* o/)(Af\UΓ=i Bi) U (Uί-i Σ β )
is a smoothly immersed ^-manifold in En+k, homeomorphic to M.

Now κp(f(M\ \JBt)) = κp(M) since /(JB€) is part of a totally geodesic sphere
through —/?. Hence

U (y Σi)] - *(ύ Σ?)
= χ(M) - 2#_P(M) . q.e.d.

For A C 5W, l e t — A = { — q: q e A}. Let M w be a compact oriented im-
mersed submanifold of Sn+k. It is clear that the function p —> τp{M) is contin-
uous on Sn+k\(—M). Equivalently, τp(M) varies continuously as we move M
by a continuous 1-parameter family of isometries of Sn+k provided at no time
— peM. However, p —> τp(M) is not continuous on Sn+k. For example, let M
be a small π-sphere in S n + 1 ; if p e Sn+1\(—M), then τp{M) = 2, but if
pe -M, then τp(M) = 0.

The preceding example and Theorem 3 suggest the following.
Conjecture. Let Mn be a compact oriented immersed submanifold of Sn+k.

The function

p -> τp{M) + 2#_ί)(M)

is continuous on Sn+k.
We can, however, prove a special case of this conjecture. Let /: M —> Sn+k

be the immersion of M into Sn+k. Suppose f~K—p) = {<7i, 5<?r}> where
r > 0. Let φt, 0 < ί < 1, be a diίferentiable 1-parameter family of isometries
of 5n + f e with <p0 = id. Define 9: M X [0,1].-> Sn+k by 9^,' 0 = φt(f(q)) p is
diίferentiable. Set M έ = ^(/(M)). '"

Theoerm 4. // M f D {—p} = 0, 0 < / < 1, α«J ?̂ ZJ regular at {qu 0), / =
1, , r, //i£?z

( 1) τp(M) + 2#_P(M) = lim τp(Mt) .

Sketch of proof. Consider the directed dilitation of Sn+1c along — p, denoted
by S%+k(p). Now S%+k(p) = Sn+k\{-p} U S_pS

n+k is a diίϊerentiable manifold
with boundary S_pS

n+k, [5]. Also consider the directed dilitation of M X [0,1]
along {(q19 0), • , (^r, 0)}, denoted by (M x [0,1])*. Here (M x [0,1])# =
M X [0, l]\{( f t, 0), , fe, 0)} U Ui-i G - w h e r e G ^ = {̂  e 5 ( ί < f 0 )M X [0,1]:
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ζv, d/dtiq.t0)} > 0}, < , > being the product metric on M x [0,1]. φ induces a
map Φ:(M X [0,1])^ -> S%+k(p) since ψ is regular at (qu 0), i = 1, , r.

There is a natural map r. (M x [0,1])^ -+ M x [0,1] such that * is the
identity of (Jί=i <?« and * | G< = (qi9 0), z = 1, ., r. Let v(Mt) be the bundle
of unit vectors normal to Mt in Sn+k. Set v(M x [0,1]) = Uo<*<i v(Mt) this
is a bundle over M X [0,1]. Let μ = c*v(M x [0,1]. We may define a Gauss
map e: μ -> SpS*** so that e | v(M t ) , 0 < ί < 1, and e \ v(M\{q19 , qr}) are
the usual Gauss maps based at p. For the pair (v, u) € μ\Gt = Gt X vqt(M),
e(v, ύ) is the parallel translate of u to /? along the geodesic with initial velocity
Φ(v). Now e: μ-+ SpS

n+k is differentiate.
Define g: μ-> R such that
( i ) *|i;(Λft) - |Jacobian e\v(Mt)\, 0 < / < 1,
(ii) ^ |v(M\{^, ,gr}) = |Jacobian β|KΛtf\{^, >9qr})\,
(ϋi) g I CM I G t) = I Jacobian e\(μ\GJ\.

Then g is continuous almost everywhere and bounded. Using measure theo-
retic techniques, one may show

ί
μ\Gi

lim f g\v(Mt) = f g\v{M) + Σ ί

The integral g \ (μ \ G^ depends only on TqM and p*(3/9ί ( ί i f 0 )). Hence one

J μ\Gi

shows by letting M be a small π-sphere in Sn+k that g \ (μ \ G^ = 2. Hence
J μ\Gi

(1).
For details (in the codimension 1 case) see the author's thesis [9, Chapter

IV].

5. Another theorem

Let Mn be a compact briented jimmersedfsubmanifold of Euclidean space

En+k ( ! < £ ) . Suppose there exists an (n + /)-plane En+ι (1 < / < k) in En+k,
which contains Mn. Then it is known that the total absolute curvatures of Mn

regarded as a submanifold of En+ι and En+k are the same. We prove a corre-
sponding result for submanifolds of spheres in this section, and will give an
application of this result in the next section.

In the following theorem we consider a compact oriented immersed sub-
manifold Mn of Sn+k, which is contained in a small (n + /)-sphere Σ w + S
(1 < / < k). For p e Sn+k let τp(M, Sn+k) be the total curvature of M as a sub-
manifold of Sn+k with respect to the base point p. For p e Σn+ι l e t

τp(M, Σ n + 0 be the total curvature of M as a submanifold of Σn+ι with respect
to the base point p.

Theorem 5. Let Mn be a compact oriented immersed submanifold of Sn+k.
Suppose p ζ. Sn+k, and M is contained in a small in + ΐ)sphere 2 w + i ( l < / < & )
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containing — p. Let p' = — ( — p) in Σn+ι> that is, p' is the antipode of —p
in Σn+ι Then τp(M,Sn+k) = τp,(M, Σn+ι).

Proof. Isometrically imbed Sn+k into En+k+1. Then we have the stereo-
graphic projection σp: Sn+k\{-p} -> En+k from —p onto En+k, the (n + Jfc)-
dimensional plane in En+k+1 tangent to Sn+k at p. Let L be the (n + I + 1)-
dimensional plane En+k+1 such that L Π Sn+k = Σn+k Since — p e Σ n + S
under σp the small sphere Σn+ι corresponds to the (n + /)-dimensional plane
V = L Γ\ En+k. Hence σp(M\{p}) = M(p) c ZΛ

The small sphere 2 W + ^ *s imbedded as a metric sphere in L. Let σP /:
2 n + ι \{ —p} -> 1/ be the stereographic projection in L from — p onto ZΛ Even
though Z/, in general, is not tangent to Σn + ι a t P'> Lemma 3 still holds.
Hence, if we set Λf(pO = σp,(Λί\{-p}), we have τp,(M, Σn+ι) = τ<M{p')> U),
the total curvature of M(p') as a submanifold of Z/. Since σr = σp | 2

n + S w e

also have M(p) = M(p').
Let r(M(p),£ n + fe) be the total curvature of M(p) as a submanifold of En+k.

Then

τ p(M,5w + f e) - r(Af(p),£»+*) = r(Af(pO,LO - ^ , ( M , Σ n + 0

6. The average total absolute curvature

Let Mn be a compact oriented immersed submanifold of Sn+k. Define

τ(M) = ί τp(M)dan + k(p) ,

that is, τ(M) is the average value of τp{M) taken over all possible base points
peSn+k.

Theorem 6. Let Mn be a compact oriented immersed submanifold of Sk+k.
Then

( 1 ) τ(M) >/3(M) > 2,
( 2 ) τ(M) = 2 if M is imbedded as a small n-sphere.
Proof. ( 1) We know by Theorem 2 that for all p € Sn+k with — p $ M,

rp(M) > β(M). Since {p 6 Sw + f c: — p e M] is a set of measure zero, we have

τ(M) = f τp(M)dan+k > [ β(M)dan+k > β(M).

( 2 ) It is easy to show for p e Sn+k with —p$M that the image of a small
^-sphere under σp is a metric sphere in an (n + l)-dimensional plane of En+k.
Hence, if M is a small ^-sphere and —p$M, then rp(M) = r(M(p)) = 2. Thus
τ(M) = 2. q.e.d.

It is natural to ask to what extend the converse of part (2) of Theorem 6 is
true. If τ(M) = 2, then τp(M) = 2 for all p e Sn+k such that - p $M. This is
true since the function p-^τp(M) is continuous and >2on{p € Sn+k: —p$M}.
In particular, there is at least one p e Sn+k with —p$M such that rp(M) = 2.
By Theorem 2 there exists a small (n + l)-sρhere Σn+1 containing — p in
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which M is imbedded and M is homeomorphic to Sn. By Theorem 5 it follows
immediately that τ(M, J]n+1) = 2, where τ(M, J]n+1) is the average total ab-
solute curvature of M as a submanifold of Σn+1. So, to find out to what ex-
tent the converse of part (2) of Theorem 6 is true, we need only to study
manifolds Mn homeomorphic to Sn, which are imbedded in Sn+1 with τ(M) = 2.
In particular, when these Mn are imbedded as small spheres.

If Ln is a hyperplane of En+\ its complement En+1\Ln is the disjoint union
of two sets Dx and D2 with closures Dt = Dt U L n , z = 1,2. A set A in £ n + 1

has the two-piece property (TPP) if A (Ί Z^ is path connected, for either com-
plementary component D ί 5 / = 1,2, of any hyperplane Ln of En+ι.

If Σ w is a metric hyper sphere of Sn+1, its complement Sn+1\Σn is the dis-
joint union of two open sets Dλ and D2 with closures Dt = Dt U Σ n , / = 1,2.
A set 4̂ in Sn+1 has the spherical-two-piece-property (STPP) if A Π 15* is path
connected, for either complementary component Dt, i = 1,2, of any metric
hypersphere Σ n i*1 »Sn+1. F ° r example, it follows from Proposition 3.1 of [1]
that every metric hypersphere of Sn+1 has the STPP.

Let Ln be a hyperplane of En+1, and let L(e) equal the set of all points whose
distance from Ln is less than ε. We say a set A contained in En+ι is asymptotic
to Ln if given ε > 0 there exists an # > 0 such that for all r > R, N\B0(r) ψ 0
and N\BQ(r) C L(e), where .BQCΓ) is the open ball of radius r centered at the
origin of En+1.

Lemma 4. Let Nn be a complete imbedded hypersurface of En+1 asymptotic
to a hyperplane Ln of En+1. If Nn has the TPP, then Nn = Ln.

Proof. Suppose Nn φLn. Let d be the metric on En+ι. Let p <= N so that
d(p, L) ~ p is a maximum. Such a point exists since N is asymptotic to L. Let
P equal the connected component of {q e N: d(q,L) = p}, which contains p.
Let Kn be the hyperplane through p at a distance ^ from L. Clearly P C. K.

Let the origin 0 of En+1 be the base point of the perpendicular from p to L.
Since TV is asymptotic to L, there is a sequence of points ^ , / = 1, 2, , in
TV such that lim^JIq t\\ = + oo. Consider the sequence qJWqt||, / = 1, 2, ,
in the unit sphere of En+1 about 0. We may assume by taking a subsequence
if necessary that l im^^ ^ / | | ^ | | = u. Clearly u e L. Note that P is bounded
since N is asymptotic to L. Hence let pf € p so that (// — p) u = c is a maxi-
mum. Let .P"1 be the (n — l)-plane in K through p' orthogonal to u. Rotate
K about / so that the unit normal to K pointing away from L rotates toward
u. Let £>! be the complementary component of K, which does not contain L.
For a small enough rotation of K, the path component of pf in N Π Dλ is at
least a distance \ρ from L. Since N Pi Dλ must also contain a point <3̂  which
is closer to L than \p for / sufficiently large, L does not satisfy the TPP. This
is a contradiction. Hence L = N.

Lemma 5. Let Mn be a compact imbedded hypersurface of Sn+1. If M has
the STPP with respect to all metric hyperspheres through an umbilic point of
M, then M is a metric sphere.



TOTAL CURVATURE 399

Proof. Let q be the umbilic point of M. Consider the stereographic projec-
tion σ from q. Then Nn = σ(M\{q}) with metric induced from En+ι is a com-
plete imbedded hypersurface of En+1. Since M is umbilic at q, there exists a
metric hypersphere J]n through q, which makes second order contact with M.
Then Ln = σ{Σ\{q}) is a hyperplane of En+1.

Let Lx and L2 be two hyperplanes parallel to L with one on each side of Ln.
Under the stereographic projection σ, Lλ and L2 correspond to metric spheres
through q, Σ19 and Σ2, with one on each side of Σ. Since Σ makes second
order contact with M at q, in a small enough neighborhood about q, M lies
between 2\ and X>. Hence outside a large enough ball about 0 in En+1, N lies
between Lx and L2. It is now clear that N is asymptotic to L.

Since M has the STPP with respect to all metric spheres through q, N has
the TPP. Thus the hypotheses of Lemma 4 are satisfied so that N = L. Hence
M = Σ, that is, M is a metric sphere.

Lemma 6. Let Mn be a manifold homeomorphic to Sn imbedded in Sn+1

with τ(M) = 2. // (1) n < 2 or (2) n > 3 and M has an umbilic point, then
M is imbedded as a small sphere.

Proof. Let p <= Sn+1 such that —p$M. Since f(M) = 2, we have τp(M) = 2.
Thus τ(M{p)) = 2, which implies that M(p) is imbedded as a convex hyper-
surface of En + 1. In particular, M(p) has the TPP so that M has the STPP with
respect to all metric spheres through —p. Hence for all q$M, M has the STPP
with respect to all metric spheres through q. Since every metric sphere passes
through some point not in M unless M already is a metric sphere, M has the
STPP. If n = 1, then every point of M is umbilic. If n = 2, we have χ(M) =
χ(S2) = 2 ^ 0 . If M did not have an umbilic point, then the second funda-
mental form of M in Sn+1 determines a field of tangent line elements corre-
sponding to, say, the larger eigenvalue of the second fundamental form. Hence,
according to the comments following Theorem 40.13 in [7], χ(M) = 0. For
n > 3, we have assumed the existence of an nmbilic point. Now apply Lemma
5 to get the result since metric hyperspheres of Sn+1 are small hyperspheres.

q.e.d.
We now present an alternate proof of Lemma 6 for the cases n = 1 and

n = 2.
Proof (n = 1). It is clear that t(Mι) equals the total central curvature of

M1 as defined in [2] where it is shown that the total central cuvature of a closed
curve M1 c S2 equals the total absolute curvature of the curve as a curve in Ez.
Consequently if τ(M) = 2, then M1 c S2 is imbedded as a convex curve in a
hyperplane in E3. Thus M1 is a small circle.

Proof (n = 2). Since τp(M) = 2 for all p such that —p$M, by Theorem

4 we have τp(M) = 0 for p with —peM. Hence if —peM, then τ(M{p)) =

|j£| = 0, which implies K = 0 on M(p). Since M(p) is complete, M(p) is
J M(p)

a generalized cylinder [6], Also M has an umbilic point, for χ(M) ^ 0 since
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M is a topological sphere. Hence if we choose p so that — p is the umbilic

point, we also have M(p) asymptotic to a hyperplane Ln of En+1.

Clearly, an imbedded generalized cylinder asymptotic to a hyperplane must

be that hyperplane, so M(p) = L. Thus M is a small sphere.

Using Lemma 6 and the comments at the beginning of this section, we have

the following.

Theorem 7. Let Mn be a compact oriented immersed submanijold of Sn+k,

where n < 2. If t(M) — 2, then M is imbedded as a small n-sphere.

Bibliography

[ 1 ] T. F. Banchoff, The spherical two-piece property and tight surfaces in spheresy J.
Differential Geometry 4 (1970) 193-205.

[ 2 ] , Total central curvature of curves. Duke Math. J. 37 (1970) 281-289.
[ 3 ] S. S. Chern & R. K. Lashof, On the total curvature of immersed manifolds, Amer. J.

Math. 79 (1957) 306-313.
[ 4 ] , On the total curvature of immersed manifolds. II, Michigan Math. J. 5 (1958)

5-12.
[ 5 ] E. Kreysig, Stetige modfikation komplexer manigfaltigkeiten, Math. Ann. 128

(1954-1955) 479-492.
[ 6 ] W. S. Massey, Surfaces of Gaussian curvature zero in Euclidean 3-space, Tόhoku

Math. J. 14 (1962) 73-79.
[ 7 ] N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton,

New Jersey, 1951.
[ 8 ] J. L. Weiner, The Gauss map in spaces of constant curvature, Proc. Amer. Math.

Soc.38(1973) 157-161.
[ 9 ] , The Gauss map in curved manifolds, Doctoral thesis, University of California

at Los Angeles, 1971.

MICHIGAN STATE UNIVERSITY




