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HOLOMORPHIC IMMERSIONS OF A COMPACT KAHLER
MANIFOLD INTO COMPLEX TORI

YOZO MATSUSHIMA

In this paper we shall study the holomorphic immersion of a compact con-
nected Kahler manifold M into a complex torus. It is easily seen that M ad-
mits a holomorphic immersion into a cmoplex torus if and only if the holomor-
phic cotangent bundle T*(M) is ample (see § 1), and it has been proved in a
joint paper [6] by the author with W. Stoll that if T*(M) is ample and one of
the Chern numbers of M is nonzero, then M is algebraic.

This paper is devoted mainly to the study of a compact connected n-dimen-
sional Kahler manifold M admitting a holomorphic immersion Φ into an
(n + l)-dimensional complex torus B. The image X = Φ(M) defines a posi-
tive irreducible divisor D(X) and a holomorphic line bundle which we shall
denote by {X}. The Chern^class; c({X}Yoί {X} is represented by a unique (1,1)-
form of the type \i £ hkjζ

k A ζj, where {ζ1, , ζn+1} is a basis of the space
of holomorphic 1-forms on B, and Hφ = (hkj) is a constant Hermitian matrix.
It is known from the theory of theta functions that the Hermitian matrix Hφ is
positive (Weil [9]). Our main purpose is to describe the properties of M in
term of the Hermitian form Hφ, and our main results are as follows.

First we show that we can reduce the case, where Hφ is degenerate, to the
case where Hφ is positive definite. Namely let Aut0 (M) be the identity com-
ponent of the group of holomorphic transformations of M. It is well-known
that the group Aut0 (M) is a complex Lie group, and in our special case we
prove that Aut0 (M) is a complex torus acting freely on M and the complex
dimension of Aut0 (M) is equal to the nullity of the Hermitian form Hφ. Then
M is a holomorphic principal bundle over the quotient N = M/Aut0 (M) with
structure group Aut0 (M). The quotient manifold N is algebraic and admits a
holomorphic immersion Ψ into a complex torus whose complex dimension is
dim N + 1, and the Hermitian matrix Hψ associated with the immersion W
is positive definite. We shall show that the following conditions are equivalent:
1) Hφ is positive definite, 2) dim Aut0 (M) = 0, 3) the Euler number E(M)
of M is nonzero.

We then prove that a compact connected n-dimensional Kahler manifold M
with E(M) Φ 0 admits a holomorphic immersion into an in + ^-dimen-
sional complex torus if and only if the holomorphic cotangent bundle of M
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is ample and M has precisely n + 1 linearly independent holomorphic 1-forms.
Furthermore, the Albanese variety A of M is (n + l)-dimensional, the canon-
ical map /: M —> A is an immersion, and any holomorphic immersion Φ of
M into an (n + l)-dimensional complex torus B is obtained from the canonical
map / composing with a homomorphism of A onto B and a translation of B.

It is shown that every divisor in M is a divisor of a "theta function" on the
universal covering manifold of M, and we shall obtain expressions of the Euler
number, the arithmetic genus and the plurigenera of M in terms of the ele-
mentary divisors of the imaginary part of the Hermitian matrix Hj associated
with the canonical map /: M —> A and the "degree" of /.

The author wishes to thank Professors T. Nagano and B. Smyth who showed
the author their recent results on the minimal immersions of a compact mani-
fold into real tori. The presentation of § 1 of this paper is greatly influenced
by a conversation with them.

1. Let B = Cm/A be a complex torus of dimension ra, where Δ is a lattice
in Cm. We shall denote by π the canonical projection of Cm onto B. Let
{w1, ,wm} be the standard coordinates in Cm. Then 1-forms dwk are in-
variant by translations and hence projectable onto B. There exist therefore m
linearly independent holomorphic 1-forms ζ1, , ζ m on B such that

ττ*ζfc = dwk (k == 1, . . , m ) ,

and these 1-forms are invariant by translations in B and form a basis of all
holomorphic 1-forms in B. We shall denote by Tb the translation of B by an
element b e B. We identify the holomorphic tangent vector space Ty(B) of B
at each point y € B with Cm by the identification map Ty(B) —> Cm which as-
signs to each vector u € Ty(B) the m-dimensional vector (ζι(μ), , ζm(w)) €
Cm.

Let M be an π-dimensional complex manifold, and

Φ: M^B

be a holomorphic map from M into 5 , and let

(1.1) ωk = Φ*ζfc ( Λ = 1, . . . , m ) .

Then ω1, , ω m are holomorphic 1 -forms on M and the differential Φ^Ot):
TX(M) -* Γ# ( y )(B) - C™ is given by

(1.2) Φ*to(κ) = (ω 1 ^), , ω"(u)) , u e TX(M) .

Let xQ be the reference point of M chosen once for all. Then

(1.3) Φ(x) = Tφ(



HOLOMORPHIC IMMERSIONS 311

rx

where ωk means the integral of ωk along a path γ from x0 to x, and it can
J X0 I p p X

be shown that τr( ω1, , ωm I does not depend on the choice of γ.
\J Xo J XQ I

Let Φ1 and Φ2 be two homotopic holomorphic maps from M to B, and
assume that M is compact. Since Φλ and Φ2

 a r e homotopic, closed holomorphic
forms Φfζk and Φ?ζk have the same periods and are therefore cohomologous.
Thus Φ*ζk - Φ*ζk = df and df = d'f, d"f = 0, so that / is holomorphic and
hence a constant, and we get Φ?ζk = Φfζk. It follows then from (1.3) that

Φ2(x) = Tb{Φx{x)) , b = ΦJLxύ-Φxixd-1

From now on we always assume that M is compact and connected, and let
Aut (M) be the group of all holomorphic transformations of M. It is well-
known that Aut (M) has a structure of complex Lie group such that Aut (M) x
M —> M defined by (g, x) —> g-x is a holomorphic map. We shall denote by
Aut0 (M) the identity component of Aut (M). If g e Aut0 (M), then g is homo-
topic to the identity map of M, and hence Φ and Φ o g are homotopic for any
holomorphic map Φ from M to B. Therefore

Φigx) = Tφ,{g){Φ{x)) ,

where

It is easily seen that Φf is a homomorphism of the complex Lie group Aut0

(M) into the complex torus B. The Lie algebra © of all holomorphic vector
fields on M is identified with the Lie algebra of Aut0 (M). The Lie algebra of B
is also identified with the Lie algebra of all translation invariant vector fields X
of type (1,0) which is identified with Cm by the map X -> (C(X), , ζm(X)).
Then the homomorphism of Lie algebra Φ*: © —> C m induced by Φ 7 : Aut0

(M) -» 5 is given by

(1.4) Φ;(£) = (ωJ(f), •• ,ω*(f)) ,

where f € © is a holomorphic vector field on M.
Let M be a compact connected Kahler manifold, {θ\ , θq) (q = hh\M))

a basis of the vector space of all holomorphic 1-forms on M, and HX(M,Z)
the 1-dimensional integral cohomology group of M. Then the image ΔA of the

homomorphism γ -* ({ θ\ , ί θq\ of H^M, Z) into Cq is a lattice of Cq,

and the complex torus

A = σμA

is called the Albanese variety of M. The map J: M -* A defined by
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X θ"
J XQ

)

is holomorphic, and /*(ζfe) = θk (k = 1, , q). We call / the canonical map
of M into A.

If Φ: —» B is a holomorphic map of M into a complex torus B, then there
exists a homomorphism f: A-+B such that

Assume now that M is compact and connected, and let us denote by § the
complex vector space of all holomorphic 1-forms on M. We may of course
identify ϊ) with the vector space Γ (T*(M)) of holomorphic sections of the
holomorphic cotangent bundle T*(M). Let ex (x e M) be the linear map ζ -+
T*(M) defined by ω —> ω(x) for ω e ζ. We say that T*(M) is ample if ex is sur-
jective for all x e M.

Assume now that there exists a holomorphic map Φ of M into a complex
torus 5, and let V be the subspace of ϊ) spanned by ω1, , ωm, where ωk are
defined by (1.1). By (1.2) the differential Φ*(x) of Φ* at x is injective if and
only if exV = T*(M). Therefore, if Φ is an immersion, then exV = Γ*(M)
for every x. This shows that if M admits a holomorphic immersion into a com-
plex torus, then Γ*(M) is ample. Conversely, if T*(M) is ample and M is
Kahlerian, then the canonical map / is a holomorphic immersion of M into
the Albanese variety A.

Lemma 1. Lei M be a compact connected n-dίmensίonal complex mani-
fold. Assume that M admits a holomorphic immersion Φ into a complex torus
B. Then the group Aut0 (M) is a complex torus and acts freely on M. More-
over, the kernel of the homomorphism Φ': Aut0 (M) —> B is finite.

Proof. The homomorphism Φ*: © —> C m is injective. In fact, if ξ e © and
φς(f) = 0, then ωk(ξ) = 0 (jfc = 1, . . . , m) by (1.4), so that £ = 0 because Φ
is an immersion. Let ξ e ©, ξ Φ 0, and Φ^(f) = α, and let /̂ ί be the 1-ρara-
meter group of holomorphic transformations of M generated by ξ. Then Φ(ht)
= r s ( t a ) for all / e i?, and the 1-ρarameter group of translations Γff(ta) leaves
the image Φ(M) invariant. Let g0 = ζ^ 1 + + ζ w ζ m be the flat Kahler
metric in the torus B, and g = Φ*g0 the pullback of g0 by Φ. Then g is a Kahler
metric of M. We show that ht is an isometry for all t e R. Let ;y0 be an arbit-
rary point of M, and U a neighborhood of y0 such that Φ maps U biholomor-
phically onto a submanifold Φ(U) of 5 . Then a = Φ^(f) is tangent to Φ(C/).
Moreover, Tπ ( t a ) is an isometry of B (with respect to g0) for each /, and leaves
Φ(U) invariant provided \ί\ is sufficiently small. It follows that a is an infinite-
simal isometry (Killing vector field) of Φ(U), and therefore that the restriction
of ξ to U is also an infinitesimal isometry in U with respect to g. Thus ξ is an
infinitesimal isometry of the Kahler manifold M, and ht is an isometry of M
for each /. Since it is known that every infinitesimal isometry of a compact
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Kahler manifold is a holomorphic vector field (cf. [2]), the group Aut0 (Λf)
coincides with the identity component of the group of all isometries of M and
is therefore compact. Since the kernel of Φ*: © —> Cm is trivial and Aut0 (M)
is compact, the kernel of the homomorphism Φf: Aut0 (M) —> B is finite. Now
let g <= Aut0 (Λf) and gy0 = y0 for some j 0 e M. Then Φ(;y0) = Φ'(g)Φ(y0) and

= e, the identity element of B. Hence Φ(gx) = Φ{x) for any x ς. Λf, and
° £*(*o) = <ί*W> where g#(*0) denotes the differential of g at x0. Since

Φ*(*o) is injective, g*(xQ) should be the identity map. On the other hand, g is
an isometry of Λf and maps a geodesic a starting at x0 with direction u to a
geodesic g σ starting at gx0 with direction g%(xo)u. Since g(.x0) = x0 and g^OOw
= u for any w, g leaves invariant any such geodesic pointwise. It follows then
that g is the identity map in a neighborhood of JC0. Since this holds for any
fixed point xQ of g, we can conclude that g is the identity map, so that Aut0

(Λf) acts freely on Λf. Since Aut0 (Λf) is complex and compact, it is a complex
torus.

Lemma 2. Under the assumption in Lemma 1, let Γ be the closed sub-
group of B consisting of allb e B such that TbX — X, where X = Φ(M) is the
image of Λf. Then the identity component Γo of Γ coincides with the image
C = Φ^Auto (M)) of Aut0 (Λ*)

Proof. Clearly Γ is a closed subgroup of B and hence a closed Lie sub-
group of B. Let bt a 1-parameter subgroup of Γ. Then there exists a vector
a e Cm such that ^ = ττ(ta). Let y0 e M, and let U be a neighborhood of y0

such that Φ maps U biholomorphically onto a submanifold Φ(U) of 5 . As in
the proof of Lemma 1, we see that a is tangent to Φ(U) and is an infinitesimal
isometry of Φ(U) with respect the Kahler metric of Φ(U) induced by the flat
Kahler metric g0 of B. Thus the vector field ξΌ on U corresponding to the re-
striction of a to Φ(U) is an infinitesimal isometry of M defined on U. Now let
ak = ξk(a) and θa = ΣΓ=A?* Then 0α is a (0,l)-form on B such that θa(v)
= go(a, v) for any v e Cm, so that Φ*θa is a (0,l)-form on M and there exists
a unique vector field f of type (1,0) such that g(ξ,η) = (Φ*0α)O?) f° r a n y
vector field 97 of type (1,0) on M. We show that ξ = ξυ on f/. Let JC € C/.
Then Φ*(x)ξu = a and g ^ W ^ W ) = go(a,Φ*(x)η(x)) = θa(Φ*(x)η(x)) =
( ί* ίo)(?W). Therefore f(jc) = fσ(jc) and ξ = ξυ on U, which implies that
ζ is an infinitesimal isometry on U. Since C/ is a neighborhood of an arbitrarily
chosen point y0 e M, f is an infinitesimal isometry on M and hence holomor-
phic. Moreover, Φ*(x)ξ(x) = a at each point as the above proof shows. Then
Φ'(ξ) = a, from which it follows that the one-parameter subgroup bt = τr(ta)
is contained in C = Φf (Aut0 (M)) so that Lo c C. Since clearly C c Γo,
Γ o - C. q.e.d.

Since Aut0 (M) acts freely on M, the quotient iV = M/Aut0 (Λf) is also a
compact connected complex manifold. The image C = Φ'(Aut0 (Λf)) in B is a
compact subgroup of B and moreover, since Φr is a complex Lie group homo-
morphism, C is a complex subgroup and hence C is a complex subtorus of B.
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The map Φ induces a holomorphic map Ψ of N into Έf — B/C such that the
diagram

Φ
M >B

< L 5 >

is commutative, where p and pf denote the canonical projection of M and B
onto N and Br respectively.

It is easily seen that Ψ is a holomorphic immersion of N into Bf. We show
that the group Aut0 (TV) consists of only the identity element. To see this let
Γ'o be the identity component of the group of all V e Bf such that Ίb,X

f = X',
where X' = ψ(N). Let V{t) be a path in Γf

Q such that Z/(0) = e', e' being the
identity element of B', and let bit) be a path in B such that pf(b(t)) = ί>'(0
and Z?(0) = e. Let Λ: be an arbitrary point of M, and let xf = pC*). Then
Tb,{t)Ψ(x?) e X', and hence there exists an element yf € N such that Tb,it)Ψ(x/)
= Ψ(y'), where the parameter t is fixed. Let y be an element of M such that
p(x) = / . Then r,,(6(i))SP"Qo(jc)) = iΓ(pCy)), and from the commutativity of the
diagram (1.5) we get p'(Φ(y)) = ρ'(Tb{t)Φ(x)). Thus there exists an element
czC such that Φ(y) = Tc(Tb(t)Φ(x)) = Γc6(ί)Φ(jc). This shows that T c δ ( ί ) Z =
X, where Z = Φ(M), which implies that Tb(t)X = TC-XX = X, so that bit) e
Γ in the notation of Lemma 2 for each t and hence that bit) ζ Γo = C. Then
pfibit)) = e', and 6Ό) = β7 for all t, which proves that Γ'o reduces to the
identity element. Thus by Lemma 2 (applied for N and Ψ) we see that Aut0

(Λ/) is trivial, and hence the following proposition.

Proposition 1. Let M be a compact connected complex manifold, and as-
sume that M admits a holomorphic immersion Φ into a complex torus B. Let
Aut0 (M) be the identity component of the complex Lie group of all holomor-
phic transformations of M. Then Aut0 (M) is a complex torus acting freely on
M. Let N = M/Aut0 (M) be the quotient of M by the free action of Aut0

(M). Then N is a compact connected complex manifold, N admits also a holo-
morphic immersion in a complex torus, Aut0 (N) is trivial, and the manifold
M is a holomorphic principal fibre bundle over N of the structure group Aut0

(M).
2. In the following sections we always denote by M a compact connected

complex ^-dimensional manifold, and assume that M admits a holomorphic
immersion Φ into an in + 1)-dimensional complex torus B.

Let X = ΦiM). Then X defines a positive irreducible divisor D(Z) of B.
More precisely there are an open covering {Ua}aζA of B and holomorphic func-
tions {fa}a€A, each fa being defined on Ua9 such that fa/fβ is holomorphic and
nonvanishing on the intersection Ua Π Uβ and X Π Ua is defined by the equa-
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tion fa = 0 for each a. We can define {/„} in the following way. Let p e B. If
p <£ X, then choose a neighborhood U(p) of p such that U(p) Π X = 0, and
define / ( p ) = 1. If p € X, each preimage of p in M has a neighborhood which
is mapped biholomorphically onto an rc-dimensional submanifold of B passing
through p, and we obtain a finite number of distinct ^-dimensional submani-
folds X19 9Xk each of which passes through p and is defined in a neigh-
borhood U(ρ) of p by an equation fs = 0 such that (dfj)(p) Φ 0, where fj is
holomorphic in C/(p). Then define fp) = /i, , /*. The simple point of Z is
the point p € Z f or which & = 1. It is not difficult to check that the open cover-
ing {U(p)}peB and the holomorphic functions {f(p)}p^B verify the properties
mentioned above, the set of simple points of X is a connected n-dimentional
submanifold of B, and, for a simple point p, X is defined in a neighborhood of
p by a single equation / = 0 such that (df)(p) Φ 0. This means that the posi-
tive divisor D{X) is irreducible (cf. Weil [9, Appendix]). In the above notation
put gaβ = faffβ. Then gΛβ-gβr = gαr on Uaf] UβΠ Ur, and {gβ/ϊ} is a system of
transition functions of a holomorphic line bundle which we shall denote by {X}.

We recall here several facts about complex tori and theta functions (cf. Weil
[9]). We shall write our complex torus B in the form B = Cm/Δ with m =
n + 1 and Δ a lattice of Cm, and regard Cm as i?2 m with complex structure /.
Let H = (hkj) be an m X m Hermitian matrix, and H(u,v) = Σhkjukvj t n e

corresponding Hermitian form. The imaginary part A(u, v) of H(u,v) is a
skew symmetric bilinear form defined on R2m X R2m such that A(Ju,Jv) =
/4(w, v). We say that /I is intgral if 4̂ takes integral values on Δ X J . If 4̂ is
integral, there exists a basis {u19 u[, , um9 u'm} of Δ such that

where x = Σ **^* + Σ *'few/o ^ = Σ^^^Λ; + Σ/*w*» a n d t l i e nonnegative
integers ^ satisfy ^1^1 \em (it is possible that ep+1 = = e m = 0 for
some 1 < p < m). We call e19 , em the elementary divisors of A or of H.
They are determined uniquely by A and hence by H.

A holomorphic function θ on Cm is called a theta function of type (H, Ψ) if

(2.1) *(z + σ) = /(z

for all z e Cm and σ e Δ, where the automorphic factor j(z, σ) is of the form

(2.2) /(z, σ) = ΪΓWβf 1 /i(z, σ) + 1
L 2z 4/

where e = exp 2τr/, #(w, v) is a Hermitian form on Cm X C m whose imaginary
part A(u,v) is integral, and Ψ is a map of Δ into C* satisfying Ψ(σ + σ')

(/)) = ¥(σ)Ψ((/) for any σ and </ in J . We call an "automorphic
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factor" of the form (2.2) a theta factor of type (H, Ψ). A holomorphic theta
function Θ on Cm determines a divisor on B in the following way. Let {E/β)β6il

be an open covering of B such that each connected component of π'\Ua)
(π: Cm —» B) is mapped homeomorphically onto Ua9 and let ϋa be one of the
connected components of π~\Ua). Then π~KUa) = {JσeJ (σ + Utt). Let pa =
(TΓIC/J" 1 . Then {0α}α64, where θa — θopa for each α€^4, defines-a positive
divisor D on B, which we shall denote by (0) and is called the divisor of the
theta function θ. Conversely, every positive divisor D is defind by a holomor-
phic theta function θ of type (H, Ψ) for some (H, ¥), and the Chern class of
the holomorphic line bundle {D} is represented by the invariant (l,l)-form hD

of the form

hD = \i Σ hkύζ
k A V ,

where H = (hkj), and ζ1, , ζ m denote, as in § 1, holomorphic 1-forms on
B such that ττ*ζfc = dwk, {wι, , wm} being the standard coordinates in Cm.
It is known that if D is a positive divisor, then H is positive, and hence c({D})
> 0 (see [9, Prop. 5, Chap. IV, No. 5]).

Let b ζ. B, and D be a positive divisor. Then the divisor TbD is denned in
an obvious way. Let Γ be the group of all b e B such that TbD = D. Then
the null space EQ of the Hermitian form H associated to D has the following
properties: Since the intersection J o = Eo Π Δ is a lattice of EQ, the image
7r(£0) of Eo in 2? is a complex sub torus isomorphic to Eo/Jo and π(EQ) is a sub-
group of finite index in the group Γ (see Weil [9, Cor. 3, Chap. IV, No. 5]).

Let us apply these results to our divisor D{X) defined by X = Φ(M). The
Chern class c({X}) of the line bundle {X} is represented by a (l,l)-form hφ of
the form

hφ = \i Σ hkjζ
k A V ,

and we shall denote by Hφ the Hermitian matrix (hkj) and also by the same
letter the associated Hermitian form onCm X Cm (m = n + 1). The null space
of Hφ will be denoted by Eo. Then π(E0) is a complex subtorus of B and is a
subgroup of finite index of the group of all b β B such that TbD(X) = D(X).
If T6D(Z) = D(Z), then we have TbX = X, because X = \D(X)\, where | D |
denotes the carrier of a divisor D. Conversely, let TbX = X. Clearly \TbD(X)\
= Tb\D(X)\ = \D(X)\. The divisor TbD(X) is positive and irreducible together
with D(X), and they have the same carrier. Then D(X) and TbD(X) coincide
(cf. for example [9, Appendix].) Therefore π(E0) is a subgroup of finite index
of the group Γ of all b e B such that TbX = X. This combined with Lemma
2, § 1 gives Φ^Auto (M)) = π(EQ). Since Φ' and π are both local isomorphisms
(cf. Lemma 1, § 1), we obtain

Theorem 1. Lei Φ: M -+ B be a holomorphic immersion of an n-dimen-
sional compact connected complex manifold M into an (n + l)-dimensional
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complex torus B. Then the complex dimension of the complex torus Aut0 (M)
is equal to the nullity of the Hermitian form Hφ on Cn+1 X Cn+1 associated to
Φ. Moreover, the Chern class c({X}) of the line bundle {X} (X = Φ(M)) is
represented by the (l,l)-form

hΦ = ¥ Σ hkjζ
k A V ,

where Hφ = (hkj), and Hφ and hence c({X}) are positive definite if and only if
Aut0 (M) is trivial.

3. Let A be the imaginary part of the Hermitian form Hφ. Then A is integral,
and let (el9 , en+1) be the elementary divisor of A. Let S be the singular set
of X. Then Φ\M — Φ~\S) —> X — S is a proper holomorphic map of the n-
dimensional complex manifold M — Φ^iS) onto the ^-dimensional complex
manifold X — 5, and for any 2n-form -η of compact carrier defined on X — S
we have

(3.1) ί
JM-φ-i-i(S)

where dφ denotes the degree of Φ: M — Φ~\S) -> X — S (see Sternberg [8]).
On the other hand, X may be regarded as a 2rc-cycle in B, and the integral

ί.Ψ
x

over X of an 2n-form Ψ on B is defined. It follows from the definition of the
integral over X (see Lelong [5]) and from (3.1) that

(3.2) ί
J M

Ψ
X

for any 2rc-form Ψ on B.

On the other hand, c({X}) is the Poincare dual of the homology class of

X, that is,

(3.3) ί Ψ = f hφ A Ψ
J X J B

holds for any 2n-form Ψ on B (see Kodaira-Spencer [4, a] and Hirzebruch

[1]). Letting Ψ = hn

φ in (3.2) and (3.3) we obtain

(3.4) ί (Φ*hφ)
n = dφ [ hn

φ

+1 .
J M J B

Put Xf = X — S and Mf = M — Φ~\S), and let ix. and iM, be the inclusion
maps of Xf and M/ into B and M respectively. We also denote by Φf the map
M' -* Z ' induced by Φ. Then Φ o iu, = ix, o Φ7.
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The line bundle Φ*(i%*{X\) over Mr is the restriction of the normal bundle
N of M with respect to the holomorphic immersion Φ of M into B, and hence
i*,N = Φ'*(ϊf,{X}), and i%>(0*h0)

n represents i%,c(N)n. Since Φ~\S) is an
analytic subset of M and M' = M — Φ " X ( ^ ) J we have

(3.5) f (Φ*hφ)
n = f i*,(Φ*hΦY = f i*,c(ΛOn = ί

We have an exact sequence

0 -> Γ(M) — Φ*Γ(5) -> N -+ 0 ,

and Φ*T(B) is a trivial vector bundle of fibre dimension n + 1 since 5 is a
complex torus. Thus we have

(1 + C l(M) + + cn(M))(l + c(Λ0) = 1 ,

from which it follows that

(3.6) ck(M) = ( - l)*c(Λ0 (* = 1,2, , ή) ,

where ck{M) denotes the k-th Chern class of M. In particular c{N)n =

(— l)ncn{M), and we have

f c(N)" = ( - 1)"
J M

where £"(M) denotes the Euler number of M. It follows then from (3.4) and
(3.5) that

(3.7) E{M) = ( - \γdφ f /zΓ1

JB

To compute the integral on the right hand side of (3.7), we notice

(3.8) f A5+1 = ί Or*/g*+ 1 ,
J B J F

where F is a fundamental domain of Δ and π*/ίφ = \i 2 hkjdwk A dwj.
Moreover,

Hφ(u,v) = A(Ju,v) + iA(u,v) ,

where / is the complex structure in R2{n+1) defining Cn+1, the real skew-
symmetric form A may be regarded as a 2-form on R2ίn+1\ and

(3.9) π*hφ = - A
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as 2-forms on |? 2 ( w + 1 ) . Let {ul9 u[, ,un+19u'n+1} be a basis of A such that
A(uk, u'j) = ekδkj and A(uk, Uj) = A{uf

k, uj) = 0 (k, j = 1, 2, , n + 1), and
let {Λ:1, X!\ , ;cw+1, ^n+1} be the corresponding coordinates in R2<n+1\ Then

A = y] ̂ i** Λ
A:

W + 1 = (er . ^ + 1 ) ^ Λ d ^ 1 Λ Λ dxn+ι A dx/n+ι .
(w + 1) !

Since a fundamental domain F of J is given by

F = { U 1 , ^ 1 , . . , J C » + 1 , J C ' » + 1 ) | O < J C * , ^ * < 1,Λ - 1,2, , Λ + 1} ,

we get

(3.10) \ F

A n + 1 = ± ( n + D ' ^ i ' ^ + i ) '

where the sign depends on the orientation of the coordinates {w1? u[, , MW + 1,
< + i } of jf?2(w+1). It follows from (3.8), (3.9) and (3.10) that the absolute value

of the integral h%+1 is equal to (n + 1)! ( e Γ -en+1). However, the matrix
JB

Hφ is positive so that 2(n + l)-form h%+1 should be nonnegative. Thus the
value of the integral should also be nonnegative, and we get

f h r ί = ( n + l ) l ( e r . . e n + l ) .
JB

From (3.7) we obtain the formula

(3.11) E(M) = ( - \Y{n + 1)! dφ(er . en+ι) ,

where the positive integer dφ is the degree of the map Φ: M — Φ~\S) ->
X — S, and (eι, , en+ι) are elementary divisors of the imaginary part A of
the Hermitian form Hφ. Since the elementary divisors are all positive if and
only if A and hence Hφ are nondegenerate, we obtain

Theorem 2. Let Φ: M —> B be a holomorphic immersion of an n-dimen-
sional compact connected complex manifold M into an (n + V)-dimensional
complex torus B. Then the following three conditions are equivalent:

2) Hφ is positive definite, or, equivalently, the Chern class c({X}) of the
holomorphic line bundle {X} over B is positive definite,

3) the Euler number E{M) of M is not zero.
Since the pullback of c({X}) by Φ defines a Hodge form on M, we obtain

from Kodaira's theorem the following corollary which is a special case of a
more general theorem proved in [6].



320 YOZO MATSUSHIMA

Corollary, Let M be an n-dimensional compact connected complex mani-
fold admitting a holomorphic immersion into an (n + lydimensional complex
torus. If E(M) Φ 0, then M is algebraic.

Let us consider now the quotient N = M/Aut0 (M). Then by § 1, N admits
a holomorphic immersion into Bf = B/C, where C = 0'(Auto (M)). However
dimC = dim Aut0 (M) by Lemma 1, and hence dim 2?' = dimN + 1. Since
Aut0 (N) = {1} by Proposition 1, from Theorem 2 and its corollary we get

Theorem 3. Let M be an n-dimensional compact connected complex mani-
fold admitting a holomorphic immersion in an (n + l)-dimensional complex
torus B. Then M is a principal fibre bundle over the quotient manifold N =
M/Aut0 (M) of the structure group Aut0 (M), and N has the following pro-
perties:

a) N is algebraic, and N admits a holomorphic immersion Ψ into a com-
plex torus B' with dim Bf = dim N + 1.

b) E(N) Φ 0, and the Chern class c({X'}) of {Xf} is positive definite, where
{X'} denotes the holomorphic line bundle defined by the divisor associated with
the image Xf = Ψ(N) of N in B\

Remark. It follows from a recent result of Nagano-Smyth [7] that, without
assuming that dim B = n + 1, Aut0 (M) = -[1} if and only if the Ricci tensor
of the Kahler metric on M, which is induced from a flat Kahler metric on B,
is negative definite almost everywhere (it is always negative everywhere). Thus
the Chern number cj of M is nonzero, and N is algebraic by a theorem proved
in [6].

4. We shall prove the following theorem.
Theorem 4. Let M be an n-dimensional compact connected Kahler mani-

fold. Assume that the Euler number E(M) of M is not zero and n > 2. Then
M admits a holomorphic immersion into an (n + V)-dimensional complex
torus if and only if the following two conditions are satisfied:

1) the cotangent bundle T*(M) of M is ample,
2) hhQ(M) = n + 1, where hh\M) is the number of linearly independent

holomorphic 1-forms on M.
Proof. If the above two conditions are verified, then without assuming that

n > 2 and E(M) Φ 0 we see that the canonical map / from M into the Al-
banese variety of M is a holomorphic immersion as we have already observed
i n § l .

Suppose now that M has a holomorphic immersion Φ into a complex torus
B of dimension n + 1. Then Γ*(M) is ample (see § 1), and the condition 2)
follows from the following lemma if we assume E(M) Φ 0 and n > 2.

Lemma 3. Assume that E(M) Φ 0, and M admits a holomorphic immer-
sion into a complex torus B of dimension n + 1, where n = dimM. Then we
have

(n + l)h^{M) = hι'q(M) (q = 0? 1, , n - 2)
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In particular, hh\M) = n + 1 for n > 2.

Let N be the normal bundle of M with respect to the immersion Φ: M-+B.
Then we have

where In+1 = Φ*T(B) denotes the trivial vector bundle of fibre dimension
n + 1. Then we get

and hence the exact sequence of cohomologies:

-> H*(M, N*) -> H^M, on+1) -> H«(M, T*(M)) — H«+1(M, N*) — .

Let us consider the Chern class c(N) of Λf. As we have seen in § 3, N and
Φ*{X} coincide onM' = M - Φ~\S). Let F = iV Φ φ r } - 1 , and for each small
ε > 0 let C/e be an open neighborhood of Φ~\S) such that the measure (with
respect to any Kahler metric of M) of Uε tends to 0 as ε tends to 0. For each
ε,c(F) is represented by a (l,l)-form ηε which is 0 outside Uε. Since N =
0*{Z} F, c(N) is represented by Φ*hφ + ηε. Since E(M) Φ 0, Λφ and hence
Φ*hφ are positive definite by Theorem 2. Under this situation Kodaira's original
proof of his vanishing theorem (see Kodaira [3]) works well, and we can con-
clude that Hq(M, N*) = 0 for q < n. It thus follows from the above exact
sequence of cohomologies that HQ(M, on+1) ^ Hq(M, Γ*(M)) for q + 1 < n,
and this proves our lemma and at the same time Theorem 4.

Remark. The assumption n > 2 is necessary. In fact, we can immerse a
compact Riemann surface M of genus g > 2 for some g into a 2-dimensional
complex torus whereas hh0(M) = g > 2.

Under the assumption in Theorem 4 we show that Φ induces an isomorphism
of Hl0(B) onto Hι'\M). We know by Lemma 3 that aimHι>\M) = n + 1,
and Hί0(B) is spanned by ζ1, , ζn+\ so that dim fZ10(B) == n + 1. Therefore
it is sufficient to show that Φ*: # M ( 5 ) -> Hh\M) is injective. By a linear
change of coordinates in Cn+\ we may assume that the kernel of Φ*: Hh0(B)
-> Hι'\M) is spanned by ζ1, , ζs (s > 0). As in § 1, let ωk = Φ*ζk. Since
ω1 = = ωs = 0, ω s + 1, , ωn+1 should span the cotangent vector space of
M at each point of M. Therefore s < 1. If s = 1, then ω2, , ωn+1 must be
linearly independent at each point of M, and M is parallizable, which con-
tradicts the assumption that E(M) is not zero. Let now B = Cn+l/JB, and
/4 = Cn+ι/JA where A denotes the Albanese variety of M. We denote by πB

and πA the projections of Cn+1 onto 5 and A respectively. Then by § 1
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ω\

For any closed path γ starting at x0 we have

πB( ω\ , ωn+1) = the identity element eB of B ,

and

/ r r \
€ Δn ,

which shows that ΔA C J 5 . Therefore there is a surjective homomorphism

f:A-+B such that / ( ^ ( T ω1, , J* ωn+1\\ = πB(V ω\ ., J* ω*

Thus we have shown that for any holomorphic immersion Φ of M into an (n +
l)-dimensional torus 5 there exists a homomorphism / of the Albanese variety
A of M onto 2? such that

Φ(x) = Tφ(Xo)(f(J(x)))

for all JC € M.
Let H1Λ(M,R) and Hll(B,R) denote respectively the subspaces of the real

de Rham cohomology group H2(M,R) and H\B,R) whose elements are re-
presented by closed real forms of type (1,1). We show that Φ*: Hh\B, R) ->
Hhl(M,R) is bijective provided n > 3. Since dim^ff ' 1 ^,!?) = Λ1 '1^) =
(n + I) 2 and ά\mRHι>\M,R) = hι>\M), hhl(M) = (n + l ^ ^M) = (n + I) 2

by Lemma 3 provided n > 3. Therefore it is sufficient to show that Φ* is in-
jective. The space Hhl(B,R) is identified with the space of all (l,l)-forms on
B of the form θ = i Σ θkjζ

k A ζk where θ = (^fcJ) is a constant Hermitian
matrix. Let ωk = Φ*ζfc (Λ = 1, . , n + 1), and suppose that Φ*θ - 0. Then
Θ cannot be (positive or negative) definite. In fact, if Θ is positive definite for
example, then Φ*θ is the Kahler form of the Kahler metric Σιkjθkj(okώj on M,
and Φ*θ cannot be cohomologous to zero. After a suitable linear change of
coordinates in Cn+1, we may assume that θ is of the form

iok \

where Ok denotes the k x k zero matrix, and Ej and Eι are the unit matrices
of types / x / and / X / respectively. We may assume / < / (otherwise replace
θ by — θ). To simplify our notation, put ζk = ζk Λ ζk, ωk = ωk Λ ωk, ω =

i Σ ωk. Then θ = ί(ζk+ι + + ζ*+J ~ Zu+J+ί C»+i), and ω + Φ*θ
— ωf where ωf = i(ωx + + ωk + 2ωk+1 + + 2ωk+j). Since Φ*θ — 0,
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ω ~ α/ and hence ωn ~ ω'n. If k + j < n, then ωfn = 0 and ωw — 0, and this
is impossible because ω is the Kahler form of the Kahler metric J]ωk-ωk.
Therefore k + j = n or k + j = n + 1. Suppose k + j = n. Since k + j +
I = n + 1, we get / = 1, and as we have assumed that / < /, / is either equal
to 0 or 1. If / = 0, we have k = n, and

(A) Φ*θ = - iωn+1 A ωn+1 ~ 0 , ω ~ ω' = i{ωγ + + ωJ .

If j = 1, we have k = n — 1, / — / = 1 and

(B) Φ*0 = i(ωn - ωn + 1) - 0 , ω ~ α/ = /(ωx + + ω ^ + 2ωn) .

If k + j = M + 1, then / = 0, and hence / = 0 and 0 = 0 which implies

0 = 0.
In either of the cases (A) and (B), we have ωn — ω'n and

(4.1) f ωn = ί

with ωn = Φ*(i Σ ϊ ί i C*)n a n d e i t h e r ω7 = Φ*(i Σk=iζk)n (for case (A)) or
α/n = Φ*(iLϊ:}C* + 2iCn)

n (for case (B)). Put C = i Σ ϊ i ϊ C* and C =
* Σ ϊ - i C* ( f o r c a s e (A)) o r C = ί Σ !=ϊ Cfc + 2ίζn (for case (B)). Then by (3.2)
and (4.1)

f c--f
J X J X

where X = Φ(M). Since c({Z}) is the Poincare dual of the homology class X,
we get

ί hφ A ζn = f Λ, Λ ζ/ :

J B J B

and hence hφ Λ ζn = hφ Λ ζ'n because both sides are invariant and of type
(n,n). As in § 3, let hφ = %i Σ hkjζ

k A V- Since E(M) φ 0, the Hermitian
matrix Hφ = (hkj) is positive definite by Theorem 2, and ζn = i n n! Σ * i ϊ Ci Λ
• Λ L A Λ C»+i, ^ Λ ζ n = iin + 1/i! T r J Ϊ ^ Λ Λ ζ n + 1 ) . Suppose
that the case (A) occurs. Then ζfn = inn\ ζ1 A Λ ζn, and hφ A ζ'n =
i/ Λ + 1 n! Λn+1,n+i(Ci Λ Λ ζ n + 1 ) . It follows from hφ A ζn = hφ A ζ'n that
Σk=ihkk = 0. However n x n Hermitian matrix W = (hkJ) (1 < k,j < n) is
positive definite, and it is impossible that Tr ff = 0, so the case (A) cannot
occur. Suppose now that the case (B) occurs. Then ζ' = KΣlzlζk + 2ζn),
ζ- = i»/i! 2(d Λ Λ ζ n ), and hφ A ζ'n = in+1n\ An+1>n+1(Ci Λ Λ ζ n + 1 ) .
It follows from hφ A ζn = hφ A ζ/n that ΊτHφ = 2hn+hn+1. In the case (B),
ωw — ω n + 1, and since each ωk is closed, we have also ωx A Λ ωn_1 A ωn

— ωt A -" A ωn_λ A ωn+1 and hence
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ωγ A Λ ωn_1 A ωn = \ ω1 A Λ ωn_ί A ωn+ι .
J M J M

From this we obtain as before hφ A ζx A Λ ζw_i Λ ζn = hφ A d Λ Λ
Cn-i Λ ζ n + 1 , and An + 1,n + 1d Λ Λ ζ w + 1 = A ^ d Λ Λ ζ n + 1 which im-
plies An+lfW+1 = hn>n. Combining this with ΊτHφ = 2hn+un+ι we get Σΐ=lhkk
= 0, and this contradicts the fact that the (n — 1) X (n — 1) Hermitian matrix
(hkj) (1 < k,\ < n — 2) is also positive definite. Thus both cases (A) and (B)
cannot occur, and therefore θ should be equal to 0; this concludes our proof.

It is also shown that every cohomology class in Hll(M, R) is represented by
a unique (l,l)-form of the type

i Σ θkjω
k A ωj ,

where (θkj) is a constant Hermitian matrix of type ( n + l ) χ ( « + l ) , and
{ω\ , ωn+ι) with ωk = Φ*ζk is a basis of the space of holomorphic 1-forms
on M. From this and a theorem of Weil it follows that every divisor on M is
a divisor of a theta function on the universal covering manifold M of M (see
Weil [9, Th. 2 on P. 99]).

Summing up and combining with Theorem 4 we obtain
Theorem 5. Let M be a compact connected Kdhler manifold such that

T*(M) is ample, E(M) φ 0 and hh0(M) = dimM + 1. Then the canonical
map J: M —»A of M into the Λlbanese variety is an immersion. Moreover, if
n = dim M > 3, then, J induces a bijection of Hhl(A,R) onto Hhl(M, R), every
cohomology class of H1Λ(M, R) is represented by a unique (l,l)-form of the type
θ = ίj] θkjω

k A ωj, where {ω1, , ωn+1} is a basis of the space of holomorphic
1-forms on M and (θkj) is a constant Hermitian matrix and every divisor of M
is the divisor of a theta function on the universal covering manifold M of M.

5. In this section we always denote by M an ̂ -dimensional compact con-
nected Kahler manifold admitting a holomorphic immersion into an (n + 1)-
dimensional complex torus, and assume that E(M) Φ 0. Then the canonical
map / : M —> A of M into the Albanese variety A is an immersion, and A is
(n + l)-dimensional. The Chern class c({X}) of the line bundle {X} associated
to X — J(M) is positive definite, and is represented by a unique (1, l)-form

hj = \i Σ hkjζ
k A V

Here the constant Hermitian matrix Hj is positive definite, and the imaginary
part A of the associated Hermitian form is integral valued on ΔA X ΔA where
we write A = Cn+1/AA. The elementary divisors of A (or Hj) denoted by
eu ' * * > en+i a r e aU positive integers since A is nondegenerate. For any n-tuple
of integers π = (p15 , pn) such that Σ kpk = n, let

cπ[M] = f cp
JM
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where ck denotes the k-th Chern class of M. These numbers are called the
Chern numbers of M. By (3.6), cf1- . cj» = (— \)nc(N)n for all π so that
the Chern numbers are all equal. Since E(M) is equal to cπ[M] with π =
(0, O , 1), every Chern number of M is equal to E(M):

E(M) = cπ[M] for any TΓ .

Let Y be another π-dimensional compact connected Kahler manifold with
E(Y) Φ 0 admitting a holomorphic immersion in an (n + l)-dimensional
complex torus. Then we also have E(Y) = cπ[Y] for any π and hence

(5.1) cπ[M] = p-cπ[Y] for any π ,

where p = E(M)/E(Y) is a nonzero rational number.

We say that two ^-dimensional compact connected Kahler manifolds M and
Y are proportional if their Chern numbers satisfy (5.1) for some nonzero
rational p (cf. Hirzebruch [1]). It follows then from Riemann-Roch-Hirzebruch
theorem that

(5.2) χ(M) = p χ(Y) , χ(M, KTM) = p χ(Y, K F̂) ,

where KM and KF denote the canonical bundles of M and Y respectively, and
r is an integer. We shall compute χ(M) and χ(M,Kr

M) by choosing Y suitably.
Since E(M) Φ 0, M is algebraic (Theorem 2, Cor.) and hence 4̂ is algebraic.

Let Y be a nonsingular hyperplane section of A (with respect to a projective

imbedding of A). By Lefschetz theorem, bp(Y) = bp(A) = p π + 2 ) for p =
/?w _ι_ ?\ \ P /

0,1 , ,n — 1 and 6n(Y) > 6n04) = I ^ )• By a computation using

the Poincare dualty we see that

(5.3,

so that E(Y) Φ 0, and the identity map of Y into A is an immersion (as a mat-
ter of fact, the identity map of Y into A is the canonical map, and A is the
Albanese variety of Y).

We shall denote by [Y] the line bundle over A associated with the non-
singular positive divisor Y of A. The Chern class c({Y}) of {Y} is represented
by a unique (1, l)-form of the type

ΘY = \i Σ θkjζ
k A V ,

where Hγ = (θkj) is a constant positive definite Hermitian matrix, and the im-
aginary part of the associated Hermitian form is integral valued on ΔA X ΔA.
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We denote by f19 ,/TO+i the elementary divisor of Hγ. As a special case of
the formula (3.11) we get

(5.4) E(Y) = ( - IΠn + D ! ( / r - - / n + i ) .

We also obtain from (5.3) and (5.4)

We shall use the following two formulas:
1) Riemann-Roch-Hirzebruch formula for complex tori: For any holo-

morphic line bundle F over A

(5.5) χ(A,F) = * f
(w + 1)! J A

(This formula follows easily from the Riemann-Roch-Hirzebruch theorem,
because Chern classes of A are all zero.)

2) Kodaira-Spencer formula [4, b]: For any holomorphic line bundle F
over A and for any nonsingular divisor Y of A

(5.6) χ(A,F) = χί^FΦtY}-1) + χ(Y,F|Y) .

Let F be the trivial line bundle over A. Then χ(A,F) = χ(A) =

ΣA- Vqh°'q(A) = Σ ( - Ό*(2) = 0. Hence χ(Y) = - χOMY}"1) by

(5.6), and

by (5.5) as in § 3, so that χ(Y) = ( - l ) 7 ^ - -/n+1) which together with (5.4)
gives

(5.7)

It follows from (5.2), (5.7) and (3.11) that

where ^ , , e n + 1 are the elementary divisors of Hj, and dj is the degree of
the map / : M — /^(S) -> Z — 5, 5 denoting the singularities of X = /(M).
On the other hand
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χ(Y) = Σ ( - 1)»AM(Y) = M Σ ( - 1)«(R + *) + ( - 1)-Λ «(Y)
= 0 \ q /

( - 1)»+1 + ( - l)»Λ° n(Y) .

We have shown that χ(Y) = ( - l ) w ( / r -fn+1) so that

A° »(Y) = Λ + /I ••/„+!•

Now putting F = {Y}' in (5.6) gives χ(Λ,{Y}0 = χ{A,{Yy-*) +
where N = {Y}\Y is the normal bundle of Y. By (5.5) we get

χ(Y, NO = T - ^ — ί (rn+1 - (r - l)» + 1)
(n + 1)! J ^

On the other hand c(Kγ) = — cx(Y) = c(N), and from the Riemann-Roch-
Hirzebruch theorem for Y it follows that χ(Y, Nr) = χ(Y, ££) so that χ(Y, JC )̂

Thus χ(Y,Kr

γ)/E(Y) = ( - l)^(rw + 1 - (r - l ) w + 1 )/(^ + 1 ) ! , and from
χ(M,Kr

M) = (E(M)/E(Y))χ(Y,Kγ) we obtain the following formula:

'M) = dj(r»+ι - (r - l)n+ι)(er . gn+1) .

We have c(K'M ® Xi1) = (r - l)c(K^) = - (r - l)cx(M) = (r - l)c(N) by
(3.6), where N is the normal bundle of M with respect to the immersion / of
M into A. Let S be the singularities of X = /(M) and, as in the proof of
Lemma 3, let t/,(e > 0) be a neighborhood of J^GS) such that the measure
of Uε tends to zero as ε tends to zero. For each ε, c(Kr

M ® K^1) is represented
by (r - 1) /^Λ^ + ηe, where ^e = 0 outside C/e. If r > 1, then (r - 1) /*A,
is positive definite everywhere, and from this we conclude as indicated in the
proof of Lemma 3 that Hq(M,Kr

M) = 0 for q > 0 provided r > 1. Therefore
we get also

dim H°(M,Kr

M) = dj(rn+ι - (r - l)n+1)(er . .en + 1) for r > 1 .

Remark. It can be proved that the Ricci tensor RkJ of the Kahler metric
on M, which is the pullback of a flat Kahler metric in A, is negative every-
where, and is negative definite almost everywhere if E{M) Φ 0. Since c(KM) is
represented by the (l,l)-form —%(i/π)Rk3dzk Λ dzj,c(KM) is positive definite
almost everywhere. From this fact we can also prove the vanishing of cohomo-
logy groups discussed above and also in the proof of Lemma 3.
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