HOLOMORPHIC IMMERSIONS OF A COMPACT KÄHLER MANIFOLD INTO COMPLEX TORI

YOZO MATSUSHIMA

In this paper we shall study the holomorphic immersion of a compact connected Kähler manifold M into a complex torus. It is easily seen that M admits a holomorphic immersion into a cmoplex torus if and only if the holomorphic cotangent bundle $T^{*}(M)$ is ample (see $\S 1$), and it has been proved in a joint paper [6] by the author with W. Stoll that if $T^{*}(M)$ is ample and one of the Chern numbers of M is nonzero, then M is algebraic.

This paper is devoted mainly to the study of a compact connected n-dimensional Kähler manifold M admitting a holomorphic immersion Φ into an $(n+1)$-dimensional complex torus B. The image $X=\Phi(M)$ defines a positive irreducible divisor $D(X)$ and a holomorphic line bundle which we shall denote by $\{X\}$. The Chern ${ }^{\text {ch }}$ class $c(\{X\})^{7}$ of $\{X\}$ is represented by a unique (1,1)form of the type $\frac{1}{2} i \sum h_{k j} \zeta^{k} \wedge \bar{\zeta}^{j}$, where $\left\{\zeta^{1}, \cdots, \zeta^{n+1}\right\}$ is a basis of the space of holomorphic 1-forms on B, and $H_{\Phi}=\left(h_{k j}\right)$ is a constant Hermitian matrix. It is known from the theory of theta functions that the Hermitian matrix H_{Φ} is positive (Weil [9]). Our main purpose is to describe the properties of M in term of the Hermitian form H_{φ}, and our main results are as follows.

First we show that we can reduce the case, where H_{\varnothing} is degenerate, to the case where H_{\oplus} is positive definite. Namely let $\mathrm{Aut}_{0}(M)$ be the identity component of the group of holomorphic transformations of M. It is well-known that the group $\operatorname{Aut}_{0}(M)$ is a complex Lie group, and in our special case we prove that $\mathrm{Aut}_{0}(M)$ is a complex torus acting freely on M and the complex dimension of $\mathrm{Aut}_{0}(M)$ is equal to the nullity of the Hermitian form H_{Φ}. Then M is a holomorphic principal bundle over the quotient $N=M / \mathrm{Aut}_{0}(M)$ with structure group $\mathrm{Aut}_{0}(M)$. The quotient manifold N is algebraic and admits a holomorphic immersion Ψ into a complex torus whose complex dimension is $\operatorname{dim} N+1$, and the Hermitian matrix H_{Ψ} associated with the immersion Ψ is positive definite. We shall show that the following conditions are equivalent: 1) $H_{\mathscr{\Phi}}$ is positive definite, 2) dim $\left.\operatorname{Aut}_{0}(M)=0,3\right)$ the Euler number $E(M)$ of M is nonzero.

We then prove that a compact connected n-dimensional Kähler manifold M with $E(M) \neq 0$ admits a holomorphic immersion into an $(n+1)$-dimensional complex torus if and only if the holomorphic cotangent bundle of M
is ample and M has precisely $n+1$ linearly independent holomorphic 1 -forms. Furthermore, the Albanese variety A of M is $(n+1)$-dimensional, the canonical map $J: M \rightarrow A$ is an immersion, and any holomorphic immersion Φ of M into an ($n+1$)-dimensional complex torus B is obtained from the canonical map J composing with a homomorphism of A onto B and a translation of B.

It is shown that every divisor in M is a divisor of a "theta function" on the universal covering manifold of M, and we shall obtain expressions of the Euler number, the arithmetic genus and the plurigenera of M in terms of the elementary divisors of the imaginary part of the Hermitian matrix H_{J} associated with the canonical map $J: M \rightarrow A$ and the "degree" of J.

The author wishes to thank Professors T. Nagano and B. Smyth who showed the author their recent results on the minimal immersions of a compact manifold into real tori. The presentation of $\S 1$ of this paper is greatly influenced by a conversation with them.

1. Let $B=\boldsymbol{C}^{m} / \Delta$ be a complex torus of dimension m, where Δ is a lattice in \boldsymbol{C}^{m}. We shall denote by π the canonical projection of \boldsymbol{C}^{m} onto B. Let $\left\{w^{1}, \cdots, w^{m}\right\}$ be the standard coordinates in C^{m}. Then 1-forms $d w^{k}$ are invariant by translations and hence projectable onto B. There exist therefore m linearly independent holomorphic 1 -forms $\zeta^{1}, \cdots, \zeta^{m}$ on B such that

$$
\pi^{*} \zeta^{k}=d w^{k} \quad(k=1, \cdots, m)
$$

and these 1 -forms are invariant by translations in B and form a basis of all holomorphic 1-forms in B. We shall denote by T_{b} the translation of B by an element $b \in B$. We identify the holomorphic tangent vector space $T_{y}(B)$ of B at each point $y \in B$ with C^{m} by the identification map $T_{y}(B) \rightarrow C^{m}$ which assigns to each vector $u \in T_{y}(B)$ the m-dimensional vector $\left(\zeta^{1}(u), \cdots, \zeta^{m}(u)\right) \in$ C^{m}.

Let M be an n-dimensional complex manifold, and

$$
\Phi: M \rightarrow B
$$

be a holomorphic map from M into B, and let

$$
\begin{equation*}
\omega^{k}=\Phi^{*} \zeta^{k} \quad(k=1, \cdots, m) . \tag{1.1}
\end{equation*}
$$

Then $\omega^{1}, \cdots, \omega^{m}$ are holomorphic 1-forms on M and the differential $\Phi_{*}(x)$: $T_{x}(M) \rightarrow T_{\Phi(y)}(B)=C^{m}$ is given by

$$
\begin{equation*}
\Phi_{*}(x)(u)=\left(\omega^{1}(u), \cdots, \omega^{m}(u)\right), \quad u \in T_{x}(M) . \tag{1.2}
\end{equation*}
$$

Let x_{0} be the reference point of M chosen once for all. Then

$$
\begin{equation*}
\Phi(x)=T_{\Phi\left(x_{0}\right)}\left(\pi\left(\int_{x_{0}}^{x} \omega^{1}, \cdots, \int_{x_{0}}^{x} \omega^{m}\right)\right) \tag{1.3}
\end{equation*}
$$

where $\int_{x_{0}}^{x} \omega^{k}$ means the integral of ω^{k} along a path γ from x_{0} to x, and it can be shown that $\pi\left(\int_{x_{0}}^{x} \omega^{1}, \cdots, \int_{x_{0}}^{x} \omega^{m}\right)$ does not depend on the choice of γ.

Let Φ_{1} and Φ_{2} be two homotopic holomorphic maps from M to B, and assume that M is compact. Since Φ_{1} and Φ_{2} are homotopic, closed holomorphic forms $\Phi_{1}^{*} \zeta^{k}$ and $\Phi_{2}^{*} \zeta^{k}$ have the same periods and are therefore cohomologous. Thus $\Phi_{1}^{*} \zeta^{k}-\Phi_{2}^{*} \zeta^{k}=d f$ and $d f=d^{\prime} f, d^{\prime \prime} f=0$, so that f is holomorphic and hence a constant, and we get $\Phi_{1}^{*} \zeta^{k}=\Phi_{2}^{*} \zeta^{k}$. It follows then from (1.3) that

$$
\Phi_{2}(x)=T_{b}\left(\Phi_{1}(x)\right), \quad b=\Phi_{2}\left(x_{0}\right) \cdot \Phi_{1}\left(x_{0}\right)^{-1}
$$

From now on we always assume that M is compact and connected, and let Aut (M) be the group of all holomorphic transformations of M. It is wellknown that Aut (M) has a structure of complex Lie group such that Aut $(M) \times$ $M \rightarrow M$ defined by $(g, x) \rightarrow g \cdot x$ is a holomorphic map. We shall denote by $\operatorname{Aut}_{0}(M)$ the identity component of Aut (M). If $g \in \mathrm{Aut}_{0}(M)$, then g is homotopic to the identity map of M, and hence Φ and $\Phi \circ g$ are homotopic for any holomorphic map Φ from M to B. Therefore

$$
\Phi(g x)=T_{\Phi^{\prime}(g)}(\Phi(x)),
$$

where

$$
\Phi^{\prime}(g)=\Phi\left(g x_{0}\right) \circ \Phi\left(x_{0}\right)^{-1}
$$

It is easily seen that Φ^{\prime} is a homomorphism of the complex Lie group Aut ${ }_{0}$ (M) into the complex torus B. The Lie algebra © © all holomorphic vector fields on M is identified with the Lie algebra of $\mathrm{Aut}_{0}(M)$. The Lie algebra of B is also identified with the Lie algebra of all translation invariant vector fields X of type $(1,0)$ which is identified with C^{m} by the map $X \rightarrow\left(\zeta^{1}(X), \cdots, \zeta^{m}(X)\right)$. Then the homomorphism of Lie algebra $\Phi_{*}^{\prime}:\left(\mathbb{S} \rightarrow \boldsymbol{C}^{m}\right.$ induced by $\Phi^{\prime}:$ Aut $_{0}$ $(M) \rightarrow B$ is given by

$$
\begin{equation*}
\Phi_{*}^{\prime}(\xi)=\left(\omega^{1}(\xi), \cdots, \omega^{n}(\xi)\right) \tag{1.4}
\end{equation*}
$$

where $\xi \in \mathscr{C}$ is a holomorphic vector field on M.
Let M be a compact connected Kähler manifold, $\left\{\theta^{1}, \cdots, \theta^{q}\right\}\left(q=h^{1,0}(M)\right)$ a basis of the vector space of all holomorphic 1-forms on M, and $H_{1}(M, Z)$ the 1-dimensional integral cohomology group of M. Then the image Δ_{A} of the homomorphism $\gamma \rightarrow\left(\int_{r} \theta^{1}, \cdots, \int_{r} \theta^{q}\right)$ of $H_{1}(M, Z)$ into C^{q} is a lattice of C^{q}, and the complex torus

$$
A=C^{q} / \Delta_{A}
$$

is called the Albanese variety of M. The map $J: M \rightarrow A$ defined by

$$
J(x)=\pi\left(\int_{x_{0}}^{x} \theta^{1}, \cdots, \int_{x_{0}}^{x} \theta^{q}\right)
$$

is holomorphic, and $J^{*}\left(\zeta^{k}\right)=\theta^{k}(k=1, \cdots, q)$. We call J the canonical map of M into A.

If $\Phi: \rightarrow B$ is a holomorphic map of M into a complex torus B, then there exists a homomorphism $f: A \rightarrow B$ such that

$$
\Phi=T_{\Phi\left(x_{0}\right)} \circ f \circ J
$$

Assume now that M is compact and connected, and let us denote by \mathfrak{h} the complex vector space of all holomorphic 1 -forms on M. We may of course identify \mathfrak{G} with the vector space $\Gamma\left(T^{*}(M)\right)$ of holomorphic sections of the holomorphic cotangent bundle $T^{*}(M)$. Let $e_{x}(x \in M)$ be the linear map $\mathfrak{h} \rightarrow$ $T_{x}^{*}(M)$ defined by $\omega \rightarrow \omega(x)$ for $\omega \in \mathfrak{h}$. We say that $T^{*}(M)$ is ample if e_{x} is surjective for all $x \in M$.

Assume now that there exists a holomorphic map Φ of M into a complex torus B, and let V be the subspace of \mathfrak{h} spanned by $\omega^{1}, \cdots, \omega^{m}$, where ω^{k} are defined by (1.1). By (1.2) the differential $\Phi_{*}(x)$ of Φ_{*} at x is injective if and only if $e_{x} V=T_{x}^{*}(M)$. Therefore, if Φ is an immersion, then $e_{x} V=T_{x}^{*}(M)$ for every x. This shows that if M admits a holomorphic immersion into a complex torus, then $T^{*}(M)$ is ample. Conversely, if $T^{*}(M)$ is ample and M is Kählerian, then the canonical map J is a holomorphic immersion of M into the Albanese variety A.

Lemma 1. Let M be a compact connected n-dimensional complex manifold. Assume that M admits a holomorphic immersion Φ into a complex torus B. Then the group $\mathrm{Aut}_{0}(M)$ is a complex torus and acts freely on M. Moreover, the kernel of the homomorphism $\Phi^{\prime}: \operatorname{Aut}_{0}(M) \rightarrow B$ is finite.

Proof. The homomorphism $\Phi_{*}^{\prime}: \sqrt{S} \rightarrow \boldsymbol{C}^{m}$ is injective. In fact, if $\xi \in \mathbb{C s}^{5}$ and $\Phi_{*}^{\prime}(\xi)=0$, then $\omega^{k}(\xi)=0(k=1, \cdots, m)$ by (1.4), so that $\xi=0$ because Φ is an immersion. Let $\xi \in \mathbb{G}, \xi \neq 0$, and $\Phi_{*}^{\prime}(\xi)=a$, and let h_{t} be the 1-parameter group of holomorphic transformations of M generated by ξ. Then $\Phi\left(h_{t}\right)$ $=T_{\pi(\text { ta })}$ for all $t \in \boldsymbol{R}$, and the 1-parameter group of translations $T_{\pi(\text { ta })}$ leaves the image $\Phi(M)$ invariant. Let $g_{0}=\zeta^{1} \bar{\zeta}^{1}+\cdots+\zeta^{m} \bar{\zeta}^{m}$ be the flat Kähler metric in the torus B, and $g=\Phi^{*} g_{0}$ the pullback of g_{0} by Φ. Then g is a Kähler metric of M. We show that h_{t} is an isometry for all $t \in \boldsymbol{R}$. Let y_{0} be an arbitrary point of M, and U a neighborhood of y_{0} such that Φ maps U biholomorphically onto a submanifold $\Phi(U)$ of B. Then $a=\Phi_{*}^{\prime}(\xi)$ is tangent to $\Phi(U)$. Moreover, $T_{\pi(\text { ta })}$ is an isometry of B (with respect to g_{0}) for each t, and leaves $\Phi(U)$ invariant provided $|t|$ is sufficiently small. It follows that a is an infinitesimal isometry (Killing vector field) of $\Phi(U)$, and therefore that the restriction of ξ to U is also an infinitesimal isometry in U with respect to g. Thus ξ is an infinitesimal isometry of the Kähler manifold M, and h_{t} is an isometry of M for each t. Since it is known that every infinitesimal isometry of a compact

Kähler manifold is a holomorphic vector field (cf. [2]), the group Aut ${ }_{0}(M)$ coincides with the identity component of the group of all isometries of M and is therefore compact. Since the kernel of $\Phi_{*}^{\prime}: ⿷ \rightarrow \boldsymbol{C}^{m}$ is trivial and $\mathrm{Aut}_{0}(M)$ is compact, the kernel of the homomorphism $\Phi^{\prime}: \operatorname{Aut}_{0}(M) \rightarrow B$ is finite. Now let $g \in \operatorname{Aut}_{0}(M)$ and $g y_{0}=y_{0}$ for some $y_{0} \in M$. Then $\Phi\left(y_{0}\right)=\Phi^{\prime}(g) \Phi\left(y_{0}\right)$ and $\Phi^{\prime}(g)=e$, the identity element of B. Hence $\Phi(g x)=\Phi(x)$ for any $x \in M$, and $\Phi_{*}\left(x_{0}\right) \circ g_{*}\left(x_{0}\right)=\Phi_{*}\left(x_{0}\right)$, where $g_{*}\left(x_{0}\right)$ denotes the differential of g at x_{0}. Since $\Phi_{*}\left(x_{0}\right)$ is injective, $g_{*}\left(x_{0}\right)$ should be the identity map. On the other hand, g is an isometry of M and maps a geodesic σ starting at x_{0} with direction u to a geodesic $g \cdot \sigma$ starting at $g x_{0}$ with direction $g_{*}\left(x_{0}\right) u$. Since $g\left(x_{0}\right)=x_{0}$ and $g_{*}\left(x_{0}\right) u$ $=u$ for any u, g leaves invariant any such geodesic pointwise. It follows then that g is the identity map in a neighborhood of x_{0}. Since this holds for any fixed point x_{0} of g, we can conclude that g is the identity map, so that Aut ${ }_{0}$ (M) acts freely on M. Since $\operatorname{Aut}_{0}(M)$ is complex and compact, it is a complex torus.

Lemma 2. Under the assumption in Lemma 1, let Γ be the closed subgroup of B consisting of all $b \in B$ such that $T_{b} X=X$, where $X=\Phi(M)$ is the image of M. Then the identity component Γ_{0} of Γ coincides with the image $C=\Phi^{\prime}\left(\mathrm{Aut}_{0}(M)\right)$ of $\mathrm{Aut}_{0}(M)$.

Proof. Clearly Γ is a closed subgroup of B and hence a closed Lie subgroup of B. Let b_{t} a 1-parameter subgroup of Γ. Then there exists a vector $a \in \boldsymbol{C}^{m}$ such that $b_{t}=\pi(\mathrm{ta})$. Let $y_{0} \in M$, and let U be a neighborhood of y_{0} such that Φ maps U biholomorphically onto a submanifold $\Phi(U)$ of B. As in the proof of Lemma 1 , we see that a is tangent to $\Phi(U)$ and is an infinitesimal isometry of $\Phi(U)$ with respect the Kähler metric of $\Phi(U)$ induced by the flat Kähler metric g_{0} of B. Thus the vector field ξ_{U} on U corresponding to the restriction of a to $\Phi(U)$ is an infinitesimal isometry of M defined on U. Now let $a_{k}=\xi^{k}(a)$ and $\theta_{a}=\sum_{k=1}^{m} a_{k} \xi^{k}$. Then θ_{a} is a (0,1)-form on B such that $\theta_{a}(\bar{v})$ $=g_{0}(a, \bar{v})$ for any $v \in C^{m}$, so that $\Phi^{*} \theta_{a}$ is a $(0,1)$-form on M and there exists a unique vector field ξ of type $(1,0)$ such that $g(\xi, \bar{\eta})=\left(\Phi^{*} \theta_{a}\right)(\bar{\eta})$ for any vector field η of type $(1,0)$ on M. We show that $\xi=\xi_{U}$ on U. Let $x \in U$. Then $\Phi_{*}(x) \xi_{U}=a$ and $g\left(\xi_{U}(x), \bar{\eta}(x)\right)=g_{0}\left(a, \Phi_{*}(x) \bar{\eta}(x)\right)=\theta_{a}\left(\Phi_{*}(x) \bar{\eta}(x)\right)=$ $\left(\Phi^{*} \theta_{a}\right)(\bar{\eta}(x))$. Therefore $\xi(x)=\xi_{U}(x)$ and $\xi=\xi_{U}$ on U, which implies that ξ is an infinitesimal isometry on U. Since U is a neighborhood of an arbitrarily chosen point $y_{0} \in M, \xi$ is an infinitesimal isometry on M and hence holomorphic. Moreover, $\Phi_{*}(x) \xi(x)=a$ at each point as the above proof shows. Then $\Phi^{\prime}(\xi)=a$, from which it follows that the one-parameter subgroup $b_{t}=\pi(\mathrm{ta})$ is contained in $C=\Phi^{\prime}\left(\operatorname{Aut}_{0}(M)\right)$ so that $L_{0} \subset C$. Since clearly $C \subset \Gamma_{0}$, $\Gamma_{0}=C$. q.e.d.

Since $\operatorname{Aut}_{0}(M)$ acts freely on M, the quotient $N=M / \mathrm{Aut}_{0}(M)$ is also a compact connected complex manifold. The image $C=\Phi^{\prime}\left(\operatorname{Aut}_{0}(M)\right)$ in B is a compact subgroup of B and moreover, since Φ^{\prime} is a complex Lie group homomorphism, C is a complex subgroup and hence C is a complex subtorus of B.

The map Φ induces a holomorphic map Ψ of N into $B^{\prime}=B / C$ such that the diagram

is commutative, where ρ and ρ^{\prime} denote the canonical projection of M and B onto N and B^{\prime} respectively.

It is easily seen that Ψ is a holomorphic immersion of N into B^{\prime}. We show that the group $\mathrm{Aut}_{0}(N)$ consists of only the identity element. To see this let Γ_{0}^{\prime} be the identity component of the group of all $b^{\prime} \in B^{\prime}$ such that $T_{b^{\prime}} X^{\prime}=X^{\prime}$, where $X^{\prime}=\Psi(N)$. Let $b^{\prime}(t)$ be a path in Γ_{0}^{\prime} such that $b^{\prime}(0)=e^{\prime}, e^{\prime}$ being the identity element of B^{\prime}, and let $b(t)$ be a path in B such that $\rho^{\prime}(b(t))=b^{\prime}(t)$ and $b(0)=e$. Let x be an arbitrary point of M, and let $x^{\prime}=\rho(x)$. Then $T_{b^{\prime}(t)} \Psi\left(x^{\prime}\right) \in X^{\prime}$, and hence there exists an element $y^{\prime} \in N$ such that $T_{b^{\prime}(t)} \Psi\left(x^{\prime}\right)$ $=\Psi\left(y^{\prime}\right)$, where the parameter t is fixed. Let y be an element of M such that $\rho(x)=y^{\prime}$. Then $T_{\rho^{\prime}(b(t))} \Psi(\rho(x))=\Psi(\rho(y))$, and from the commutativity of the diagram (1.5) we get $\rho^{\prime}(\Phi(y))=\rho^{\prime}\left(T_{b(t)} \Phi(x)\right)$. Thus there exists an element $c \in C$ such that $\Phi(y)=T_{c}\left(T_{b(t)} \Phi(x)\right)=T_{c b(t)} \Phi(x)$. This shows that $T_{c b(t)} X=$ X, where $X=\Phi(M)$, which implies that $T_{b(t)} X=T_{c-1} X=X$, so that $b(t) \in$ Γ in the notation of Lemma 2 for each t and hence that $b(t) \in \Gamma_{0}=C$. Then $\rho^{\prime}(b(t))=e^{\prime}$, and $b^{\prime}(t)=e^{\prime}$ for all t, which proves that Γ_{0}^{\prime} reduces to the identity element. Thus by Lemma 2 (applied for N and Ψ) we see that Aut ${ }_{0}$ (N) is trivial, and hence the following proposition.

Proposition 1. Let M be a compact connected complex manifold, and assume that M admits a holomorphic immersion Φ into a complex torus B. Let $\mathrm{Aut}_{0}(M)$ be the identity component of the complex Lie group of all holomorphic transformations of M. Then $\mathrm{Aut}_{0}(M)$ is a complex torus acting freely on M. Let $N=M / \operatorname{Aut}_{0}(M)$ be the quotient of M by the free action of Aut ${ }_{0}$ (M). Then N is a compact connected complex manifold, N admits also a holomorphic immersion in a complex torus, $\mathrm{Aut}_{0}(N)$ is trivial, and the manifold M is a holomorphic principal fibre bundle over N of the structure group Aut ${ }_{0}$ (M).
2. In the following sections we always denote by M a compact connected complex n-dimensional manifold, and assume that M admits a holomorphic immersion Φ into an $(n+1)$-dimensional complex torus B.

Let $X=\Phi(M)$. Then X defines a positive irreducible divisor $D(X)$ of B. More precisely there are an open covering $\left\{U_{\alpha}\right\}_{\alpha \in A}$ of B and holomorphic functions $\left\{f_{\alpha}\right\}_{\alpha \in A}$, each f_{α} being defined on U_{α}, such that f_{α} / f_{β} is holomorphic and nonvanishing on the intersection $U_{\alpha} \cap U_{\beta}$ and $X \cap U_{\alpha}$ is defined by the equa-
tion $f_{\alpha}=0$ for each α. We can define $\left\{f_{\alpha}\right\}$ in the following way. Let $p \in B$. If $p \notin X$, then choose a neighborhood $U(p)$ of p such that $U(p) \cap X=\emptyset$, and define $f^{(p)} \equiv 1$. If $p \in X$, each preimage of p in M has a neighborhood which is mapped biholomorphically onto an n-dimensional submanifold of B passing through p, and we obtain a finite number of distinct n-dimensional submanifolds X_{1}, \cdots, X_{k} each of which passes through p and is defined in a neighborhood $U(p)$ of p by an equation $f_{j}=0$ such that $\left(d f_{j}\right)(p) \neq 0$, where f_{j} is holomorphic in $U(p)$. Then define $f^{(p)}=f_{1}, \cdots, f_{k}$. The simple point of X is the point $p \in X$ for which $k=1$. It is not difficult to check that the open covering $\{U(p)\}_{p \in B}$ and the holomorphic functions $\left\{f^{(p)}\right\}_{p \in B}$ verify the properties mentioned above, the set of simple points of X is a connected n-dimentional submanifold of B, and, for a simple point p, X is defined in a neighborhood of p by a single equation $f=0$ such that $(d f)(p) \neq 0$. This means that the positive divisor $D(X)$ is irreducible (cf. Weil [9, Appendix]). In the above notation put $g_{\alpha \beta}=f_{\alpha} / f_{\beta}$. Then $g_{\alpha \beta} \cdot g_{\beta \gamma}=g_{\alpha \gamma}$ on $U_{\alpha} \cap U_{\beta} \cap U_{r}$, and $\left\{g_{\alpha \beta}\right\}$ is a system of transition functions of a holomorphic line bundle which we shall denote by $\{X\}$.

We recall here several facts about complex tori and theta functions (cf. Weil [9]). We shall write our complex torus B in the form $B=C^{m} / \Delta$ with $m=$ $n+1$ and Δ a lattice of \boldsymbol{C}^{m}, and regard \boldsymbol{C}^{m} as $\boldsymbol{R}^{2 m}$ with complex structure \boldsymbol{J}. Let $H=\left(h_{k j}\right)$ be an $m \times m$ Hermitian matrix, and $H(u, v)=\sum h_{k j} u^{k} \bar{v}^{j}$ the corresponding Hermitian form. The imaginary part $A(u, v)$ of $H(u, v)$ is a skew symmetric bilinear form defined on $R^{2 m} \times R^{2 m}$ such that $A(J u, J v)=$ $A(n, v)$. We say that A is intgral if A takes integral values on $\Delta \times \Delta$. If A is integral, there exists a basis $\left\{u_{1}, u_{1}^{\prime}, \cdots, u_{m}, u_{m}^{\prime}\right\}$ of Δ such that

$$
A(x, y)=\sum_{k=1}^{m} e_{k}\left(x^{k} y^{\prime k}-x^{\prime k} y^{k}\right)
$$

where $x=\sum x^{k} u_{k}+\sum x^{\prime k} u_{k}^{\prime}, y=\sum y^{k} u_{k}+\sum y^{\prime k} u_{k}^{\prime}$, and the nonnegative integers e_{k} satisfy $e_{1}\left|e_{2}\right| \cdots \mid e_{m}$. it is possible that $e_{p+1}=\cdots=e_{m}=0$ for some $1 \leq p \leq m$). We call e_{1}, \cdots, e_{m} the elementary divisors of A or of H. They are determined uniquely by A and hence by H.

A holomorphic function θ on C_{m} is called a theta function of type (H, Ψ) if

$$
\begin{equation*}
\theta(z+\sigma)=j(z, \sigma) \theta(z) \tag{2.1}
\end{equation*}
$$

for all $z \in C^{m}$ and $\sigma \in \Delta$, where the automorphic factor $j(z, \sigma)$ is of the form

$$
\begin{equation*}
j(z, \sigma)=\Psi^{(\sigma)} e\left[\frac{1}{2 i} H(z, \sigma)+\frac{1}{4 i} H(\sigma, \sigma)\right], \tag{2.2}
\end{equation*}
$$

where $\boldsymbol{e}=\exp 2 \pi i, H(u, v)$ is a Hermitian form on $\boldsymbol{C}^{m} \times \boldsymbol{C}^{m}$ whose imaginary part $A(u, v)$ is integral, and Ψ is a map of Δ into C^{*} satisfying $\Psi\left(\sigma+\sigma^{\prime}\right)$ $\cdot \boldsymbol{e}\left(\frac{1}{2} A\left(\sigma, \sigma^{\prime}\right)\right)=\Psi(\sigma) \Psi\left(\sigma^{\prime}\right)$ for any σ and σ^{\prime} in Δ. We call an "automorphic
factor" of the form (2.2) a theta factor of type (H, Ψ). A holomorphic theta function θ on \boldsymbol{C}^{m} determines a divisor on B in the following way. Let $\left\{U_{\alpha}\right)_{\alpha \in A}$ be an open covering of B such that each connected component of $\pi^{-1}\left(U_{\alpha}\right)$ ($\pi: C^{m} \rightarrow B$) is mapped homeomorphically onto U_{α}, and let \tilde{U}_{α} be one of the connected components of $\pi^{-1}\left(U_{\alpha}\right)$. Then $\pi^{-1}\left(U_{\alpha}\right)=\bigcup_{\sigma \in \Delta}\left(\sigma+\tilde{U}_{\alpha}\right)$. Let $\rho_{\alpha}=$ $\left(\pi \mid \tilde{U}_{\alpha}\right)^{-1}$. Then $\left\{\theta_{\alpha}\right\}_{\alpha \in A}$, where $\theta_{\alpha}=\theta \circ \rho_{\alpha}$ for each $\alpha \in A$, defines a positive divisor D on B, which we shall denote by (θ) and is called the divisor of the theta function θ. Conversely, every positive divisor D is defind by a holomorphic theta function θ of type (H, Ψ) for some (H, Ψ), and the Chern class of the holomorphic line bundle $\{D\}$ is represented by the invariant $(1,1)$-form h_{D} of the form

$$
h_{D}=\frac{1}{2} i \sum h_{k j} \zeta^{k} \wedge \bar{\zeta}^{j}
$$

where $H=\left(h_{k j}\right)$, and $\zeta^{1}, \cdots, \zeta^{m}$ denote, as in $\S 1$, holomorphic 1-forms on B such that $\pi^{*} \zeta^{k}=d w^{k},\left\{w^{1}, \cdots, w^{m}\right\}$ being the standard coordinates in C^{m}. It is known that if D is a positive divisor, then H is positive, and hence $c(\{D\})$ ≥ 0 (see [9, Prop. 5, Chap. IV, No. 5]).
Let $b \in B$, and D be a positive divisor. Then the divisor $T_{b} D$ is defined in an obvious way. Let Γ be the group of all $b \in B$ such that $T_{b} D=D$. Then the null space E_{0} of the Hermitian form H associated to D has the following properties: Since the intersection $\Delta_{0}=E_{0} \cap \Delta$ is a lattice of E_{0}, the image $\pi\left(E_{0}\right)$ of E_{0} in B is a complex subtorus isomorphic to E_{0} / Δ_{0} and $\pi\left(E_{0}\right)$ is a subgroup of finite index in the group Γ (see Weil [9, Cor. 3, Chap. IV, No. 5]).

Let us apply these results to our divisor $D(X)$ defined by $X=\Phi(M)$. The Chern class $c(\{X\})$ of the line bundle $\{X\}$ is represented by a $(1,1)$-form h_{Φ} of the form

$$
h_{\varnothing}=\frac{1}{2} i \sum h_{k j} \zeta^{k} \wedge \bar{\zeta}^{j},
$$

and we shall denote by H_{ϕ} the Hermitian matrix ($h_{k j}$) and also by the same letter the associated Hermitian form on $\boldsymbol{C}^{m} \times \boldsymbol{C}^{m}(m=n+1)$. The null space of H_{ϕ} will be denoted by E_{0}. Then $\pi\left(E_{0}\right)$ is a complex subtorus of B and is a subgroup of finite index of the group of all $b \in B$ such that $T_{b} D(X)=D(X)$. If $T_{b} D(X)=D(X)$, then we have $T_{b} X=X$, because $X=|D(X)|$, where $|D|$ denotes the carrier of a divisor D. Conversely, let $T_{b} X=X$. Clearly $\left|T_{b} D(X)\right|$ $=T_{b}|D(X)|=|D(X)|$. The divisor $T_{b} D(X)$ is positive and irreducible together with $D(X)$, and they have the same carrier. Then $D(X)$ and $T_{b} D(X)$ coincide (cf. for example [9, Appendix].) Therefore $\pi\left(E_{0}\right)$ is a subgroup of finite index of the group Γ of all $b \in B$ such that $T_{b} X=X$. This combined with Lemma 2 , § 1 gives $\Phi^{\prime}\left(\mathrm{Aut}_{0}(M)\right)=\pi\left(E_{0}\right)$. Since Φ^{\prime} and π are both local isomorphisms (cf. Lemma 1, § 1), we obtain

Theorem 1. Let $\Phi: M \rightarrow B$ be a holomorphic immersion of an n-dimensional compact connected complex manifold M into an $(n+1)$-dimensional
complex torus B. Then the complex dimension of the complex torus $\mathrm{Aut}_{0}(M)$ is equal to the nullity of the Hermitian form H_{\oplus} on $C^{n+1} \times C^{n+1}$ associated to Φ. Moreover, the Chern class $c(\{X\})$ of the line bundle $\{X\}(X=\Phi(M))$ is represented by the (1,1)-form

$$
h_{\varnothing}=\frac{1}{2} i \sum h_{k j} \zeta^{k} \wedge \bar{\zeta}^{j},
$$

where $H_{\Phi}=\left(h_{k j}\right)$, and H_{Φ} and hence $c(\{X\})$ are positive definite if and only if $\mathrm{Aut}_{0}(M)$ is trivial.
3. Let A be the imaginary part of the Hermitian form H_{ϕ}. Then A is integral, and let $\left(e_{1}, \cdots, e_{n+1}\right)$ be the elementary divisor of A. Let S be the singular set of X. Then $\Phi: M-\Phi^{-1}(S) \rightarrow X-S$ is a proper holomorphic map of the $n-$ dimensional complex manifold $M-\Phi^{-1}(S)$ onto the n-dimensional complex manifold $X-S$, and for any $2 n$-form η of compact carrier defined on $X-S$ we have

$$
\begin{equation*}
\int_{M-\Phi-1(S)} \Phi^{*} \eta=d_{\Phi} \int_{X-S} \eta, \tag{3.1}
\end{equation*}
$$

where d_{Φ} denotes the degree of $\Phi: M-\Phi^{-1}(S) \rightarrow X-S$ (see Sternberg [8]). On the other hand, X may be regarded as a $2 n$-cycle in B, and the integral

$$
\int_{X} \Psi
$$

over X of an $2 n$-form Ψ on B is defined. It follows from the definition of the integral over X (see Lelong [5]) and from (3.1) that

$$
\begin{equation*}
\int_{M} \Phi^{*} \Psi=d_{\Phi} \int_{X} \Psi \tag{3.2}
\end{equation*}
$$

for any $2 n$-form Ψ on B.
On the other hand, $c(\{X\})$ is the Poincaré dual of the homology class of X, that is,

$$
\begin{equation*}
\int_{X} \Psi=\int_{B} h_{\otimes} \wedge \Psi \tag{3.3}
\end{equation*}
$$

holds for any $2 n$-form Ψ on B (see Kodaira-Spencer [4, a] and Hirzebruch [1]). Letting $\Psi=h_{\phi}^{n}$ in (3.2) and (3.3) we obtain

$$
\begin{equation*}
\int_{M}\left(\Phi^{*} h_{\Phi}\right)^{n}=d_{\Phi} \int_{B} h_{\Phi}^{n+1} . \tag{3.4}
\end{equation*}
$$

Put $X^{\prime}=X-S$ and $M^{\prime}=M-\Phi^{-1}(S)$, and let $i_{X^{\prime}}$ and $i_{M^{\prime}}$ be the inclusion maps of X^{\prime} and M^{\prime} into B and M respectively. We also denote by Φ^{\prime} the map $M^{\prime} \rightarrow X^{\prime}$ induced by Φ. Then $\Phi \circ i_{M^{\prime}}=i_{X^{\prime}} \circ \Phi^{\prime}$.

The line bundle $\Phi^{*}\left(i_{x^{*}}^{*},\{X\}\right)$ over M^{\prime} is the restriction of the normal bundle N of M with respect to the holomorphic immersion Φ of M into B, and hence $i_{M^{*}}^{*}, N=\Phi^{*}\left(i_{X}^{*},\{X\}\right)$, and $i_{M^{\prime}}^{*},\left(\Phi^{*} h_{\Phi}\right)^{n}$ represents $i_{M^{*}}^{*}, c(N)^{n}$. Since $\Phi^{-1}(S)$ is an analytic subset of M and $M^{\prime}=M-\Phi^{-1}(S)$, we have

$$
\begin{equation*}
\int_{M}\left(\Phi^{*} h_{\varnothing}\right)^{n}=\int_{M^{\prime}} i_{M^{\prime}}^{*}\left(\Phi^{*} h_{\Phi}\right)^{n}=\int_{M^{\prime}} i_{M^{\prime}}^{*} c(N)^{n}=\int_{M} c(N)^{n} \tag{3.5}
\end{equation*}
$$

We have an exact sequence

$$
0 \rightarrow T(M) \rightarrow \Phi^{*} T(B) \rightarrow N \rightarrow 0
$$

and $\Phi^{*} T(B)$ is a trivial vector bundle of fibre dimension $n+1$ since B is a complex torus. Thus we have

$$
\left(1+c_{1}(M)+\cdots+c_{n}(M)\right)(1+c(N))=1
$$

from which it follows that

$$
\begin{equation*}
c_{k}(M)=(-1)^{k} c(N) \quad(k=1,2, \cdots, n) \tag{3.6}
\end{equation*}
$$

where $c_{k}(M)$ denotes the k-th Chern class of M. In particular $c(N)^{n}=$ $(-1)^{n} c_{n}(M)$, and we have

$$
\int_{M} c(N)^{n}=(-1)^{n} E(M)
$$

where $E(M)$ denotes the Euler number of M. It follows then from (3.4) and (3.5) that

$$
\begin{equation*}
E(M)=(-1)^{n} d_{\Phi} \int_{B} h_{\Phi}^{n+1} \tag{3.7}
\end{equation*}
$$

To compute the integral on the right hand side of (3.7), we notice

$$
\begin{equation*}
\int_{B} h_{\phi}^{n+1}=\int_{F}\left(\pi^{*} h_{\phi}\right)^{n+1}, \tag{3.8}
\end{equation*}
$$

where F is a fundamental domain of Δ and $\pi^{*} h_{\mathscr{Q}}=\frac{1}{2} i \sum h_{k j} d w^{k} \wedge d \bar{w}^{j}$. Moreover,

$$
H_{\varphi}(u, v)=A(J u, v)+i A(u, v)
$$

where J is the complex structure in $\boldsymbol{R}^{2(n+1)}$ defining C^{n+1}, the real skewsymmetric form A may be regarded as a 2 -form on $\boldsymbol{R}^{2(n+1)}$, and

$$
\begin{equation*}
\pi^{*} h_{\oplus}=-A \tag{3.9}
\end{equation*}
$$

as 2 -forms on $\boldsymbol{R}^{2(n+1)}$. Let $\left\{u_{1}, u_{1}^{\prime}, \cdots, u_{n+1}, u_{n+1}^{\prime}\right\}$ be a basis of Δ such that $A\left(u_{k}, u_{j}^{\prime}\right)=e_{k} \delta_{k j}$ and $A\left(u_{k}, u_{j}\right)=A\left(u_{k}^{\prime}, u_{j}^{\prime}\right)=0(k, j=1,2, \cdots, n+1)$, and let $\left\{x^{1}, x^{\prime 1}, \cdots, x^{n+1}, x^{\prime n+1}\right\}$ be the corresponding coordinates in $\boldsymbol{R}^{2(n+1)}$. Then

$$
\begin{gathered}
A=\sum_{k} e_{k} d x^{k} \wedge d x^{\prime k} \\
\frac{1}{(n+1)!} A^{n+1}=\left(e_{1} \cdots e_{n+1}\right) d x^{1} \wedge d x^{\prime 1} \wedge \cdots \wedge d x^{n+1} \wedge d{r^{\prime n+1}}^{\prime}
\end{gathered}
$$

Since a fundamental domain F of Δ is given by

$$
F=\left\{\left(x^{1}, x^{\prime 1}, \cdots, x^{n+1}, x^{\prime n+1}\right) \mid 0 \leq x^{k}, x^{\prime k} \leq 1, k-1,2, \cdots, n+1\right\}
$$

we get

$$
\begin{equation*}
\int_{F} A^{n+1}= \pm(n+1)!\left(e_{1} \cdots e_{n+1}\right) \tag{3.10}
\end{equation*}
$$

where the sign depends on the orientation of the coordinates $\left\{u_{1}, u_{1}^{\prime}, \cdots, u_{n+1}\right.$, $\left.u_{n+1}^{\prime}\right\}$ of $\boldsymbol{R}^{2(n+1)}$. It follows from (3.8), (3.9) and (3.10) that the absolute value of the integral $\int_{B} h_{\phi}^{n+1}$ is equal to $(n+1)!\left(e_{1} \cdots e_{n+1}\right)$. However, the matrix H_{Φ} is positive so that $2(n+1)$-form h_{ϕ}^{n+1} should be nonnegative. Thus the value of the integral should also be nonnegative, and we get

$$
\int_{B} h_{\phi}^{n+1}=(n+1)!\left(e_{1} \cdots e_{n+1}\right)
$$

From (3.7) we obtain the formula

$$
\begin{equation*}
E(M)=(-1)^{n}(n+1)!d_{\phi}\left(e_{1} \cdots e_{n+1}\right), \tag{3.11}
\end{equation*}
$$

where the positive integer d_{Φ} is the degree of the map $\Phi: M-\Phi^{-1}(S) \rightarrow$ $X-S$, and (e_{1}, \cdots, e_{n+1}) are elementary divisors of the imaginary part A of the Hermitian form H_{ϕ}. Since the elementary divisors are all positive if and only if A and hence H_{Φ} are nondegenerate, we obtain

Theorem 2. Let $\Phi: M \rightarrow B$ be a holomorphic immersion of an n-dimensional compact connected complex manifold M into an $(n+1)$-dimensional complex torus B. Then the following three conditions are equivalent:

1) $\operatorname{Aut}_{0} M=\{1\}$,
2) H_{Φ} is positive definite, or, equivalently, the Chern class $c(\{X\})$ of the holomorphic line bundle $\{X\}$ over B is positive definite,
3) the Euler number $E(M)$ of M is not zero.

Since the pullback of $c(\{X\})$ by Φ defines a Hodge form on M, we obtain from Kodaira's theorem the following corollary which is a special case of a more general theorem proved in [6].

Corollary. Let M be an n-dimensional compact connected complex manifold admitting a holomorphic immersion into an $(n+1)$-dimensional complex torus. If $E(M) \neq 0$, then M is algebraic.

Let us consider now the quotient $N=M / \mathrm{Aut}_{0}(M)$. Then by $\S 1, N$ admits a holomorphic immersion into $B^{\prime}=B / C$, where $C=\Phi^{\prime}\left(\operatorname{Aut}_{0}(M)\right)$. However $\operatorname{dim} C=\operatorname{dim} \operatorname{Aut}_{0}(M)$ by Lemma 1, and hence $\operatorname{dim} B^{\prime}=\operatorname{dim} N+1$. Since Aut $_{0}(N)=\{1\}$ by Proposition 1, from Theorem 2 and its corollary we get

Theorem 3. Let M be an n-dimensional compact connected complex manifold admitting a holomorphic immersion in an $(n+1)$-dimensional complex torus B. Then M is a principal fibre bundle over the quotient manifold $N=$ $M / \mathrm{Aut}_{0}(M)$ of the structure group $\mathrm{Aut}_{0}(M)$, and N has the following properties:
a) N is algebraic, and N admits a holomorphic immersion Ψ into a complex torus B^{\prime} with $\operatorname{dim} B^{\prime}=\operatorname{dim} N+1$.
b) $E(N) \neq 0$, and the Chern class $c\left(\left\{X^{\prime}\right\}\right)$ of $\left\{X^{\prime}\right\}$ is positive definite, where $\left\{X^{\prime}\right\}$ denotes the holomorphic line bundle defined by the divisor associated with the image $X^{\prime}=\Psi(N)$ of N in B^{\prime}.

Remark. It follows from a recent result of Nagano-Smyth [7] that, without assuming that $\operatorname{dim} B=n+1, \operatorname{Aut}_{0}(M)=\{1\}$ if and only if the Ricci tensor of the Kähler metric on M, which is induced from a flat Kähler metric on B, is negative definite almost everywhere (it is always negative everywhere). Thus the Chern number c_{1}^{n} of M is nonzero, and N is algebraic by a theorem proved in [6].
4. We shall prove the following theorem.

Theorem 4. Let M be an n-dimensional compact connected Kähler manifold. Assume that the Euler number $E(M)$ of M is not zero and $n \geq 2$. Then M admits a holomorphic immersion into an $(n+1)$-dimensional complex torus if and only if the following two conditions are satisfied:

1) the cotangent bundle $T^{*}(M)$ of M is ample,
2) $h^{1,0}(M)=n+1$, where $h^{1,0}(M)$ is the number of linearly independent holomorphic 1 -forms on M.

Proof. If the above two conditions are verified, then without assuming that $n \geq 2$ and $E(M) \neq 0$ we see that the canonical map J from M into the Albanese variety of M is a holomorphic immersion as we have already observed in § 1 .

Suppose now that M has a holomorphic immersion Φ into a complex torus B of dimension $n+1$. Then $T^{*}(M)$ is ample (see $\S 1$), and the condition 2) follows from the following lemma if we assume $E(M) \neq 0$ and $n \geq 2$.

Lemma 3. Assume that $E(M) \neq 0$, and M admits a holomorphic immersion into a complex torus B of dimension $n+1$, where $n=\operatorname{dim} M$. Then we have

$$
(n+1) h^{0, q}(M)=h^{1, q}(M) \quad(q=0,1, \cdots, n-2)
$$

In particular, $h^{1,0}(M)=n+1$ for $n \geq 2$.
Let N be the normal bundle of M with respect to the immersion $\Phi: M \rightarrow B$. Then we have

$$
0 \rightarrow T(M) \rightarrow I_{n+1} \rightarrow N \rightarrow 0
$$

where $I_{n_{+1}}=\Phi^{*} T(B)$ denotes the trivial vector bundle of fibre dimension $n+1$. Then we get

$$
0 \rightarrow N^{*} \rightarrow I_{n+1} \rightarrow T^{*}(M) \rightarrow 0
$$

and hence the exact sequence of cohomologies:

$$
\rightarrow H^{q}\left(M, N^{*}\right) \rightarrow H^{q}\left(M, \mathrm{o}^{n+1}\right) \rightarrow H^{q}\left(M, T^{*}(M)\right) \rightarrow H^{q+1}\left(M, N^{*}\right) \rightarrow .
$$

Let us consider the Chern class $c(N)$ of N. As we have seen in $\S 3, N$ and $\Phi^{*}\{X\}$ coincide on $M^{\prime}=M-\Phi^{-1}(S)$. Let $F=N \cdot \Phi^{*}\{X\}^{-1}$, and for each small $\varepsilon>0$ let U_{ε} be an open neighborhood of $\Phi^{-1}(S)$ such that the measure (with respect to any Kähler metric of M) of U_{ε} tends to 0 as ε tends to 0 . For each $\varepsilon, c(F)$ is represented by a (1,1)-form η_{ε} which is 0 outside U_{6}. Since $N=$ $\Phi^{*}\{X\} \cdot F, c(N)$ is represented by $\Phi^{*} h_{\mathscr{\Phi}}+\eta_{\epsilon}$. Since $E(M) \neq 0, h_{\Phi}$ and hence $\Phi^{*} h_{\Phi}$ are positive definite by Theorem 2. Under this situation Kodaira's original proof of his vanishing theorem (see Kodaira [3]) works well, and we can conclude that $H^{q}\left(M, N^{*}\right)=0$ for $q<n$. It thus follows from the above exact sequence of cohomologies that $H^{q}\left(M, \mathfrak{0}^{n+1}\right) \cong H^{q}\left(M, T^{*}(M)\right)$ for $q+1<n$, and this proves our lemma and at the same time Theorem 4.

Remark. The assumption $n \geq 2$ is necessary. In fact, we can immerse a compact Riemann surface M of genus $g>2$ for some g into a 2-dimensional complex torus whereas $h^{1,0}(M)=g>2$.

Under the assumption in Theorem 4 we show that Φ induces an isomorphism of $H^{1,0}(B)$ onto $H^{1,0}(M)$. We know by Lemma 3 that $\operatorname{dim} H^{1,0}(M)=n+1$, and $H^{1,0}(B)$ is spanned by $\zeta^{1}, \cdots, \zeta^{n+1}$, so that $\operatorname{dim} H^{1,0}(B)=n+1$. Therefore it is sufficient to show that $\Phi^{*}: H^{1,0}(B) \rightarrow H^{1,0}(M)$ is injective. By a linear change of coordinates in C^{n+1}, we may assume that the kernel of $\Phi^{*}: \boldsymbol{H}^{1,0}(B)$ $\rightarrow H^{1,0}(M)$ is spanned by $\zeta^{1}, \cdots, \zeta^{s}(s \geq 0)$. As in $\S 1$, let $\omega^{k}=\Phi^{*} \zeta^{k}$. Since $\omega^{1}=\cdots=\omega^{s}=0, \omega^{s+1}, \cdots, \omega^{n+1}$ should span the cotangent vector space of M at each point of M. Therefore $s \leq 1$. If $s=1$, then $\omega^{2}, \cdots, \omega^{n+1}$ must be linearly independent at each point of M, and M is parallizable, which contradicts the assumption that $E(M)$ is not zero. Let now $B=C^{n+1} / \Delta_{B}$, and $A=C^{n+1} / \Delta_{A}$ where A denotes the Albanese variety of M. We denote by π_{B} and π_{A} the projections of C^{n+1} onto B and A respectively. Then by $\S 1$

$$
\Phi(x)=T_{\Phi\left(x_{0}\right)}\left(\pi_{B}\left(\int_{x_{0}}^{x} \omega^{1}, \cdots, \int_{x_{0}}^{x} \omega^{n+1}\right)\right)
$$

$$
J(x)=\pi_{A}\left(\int_{x_{0}}^{x} \omega^{1}, \cdots, \int_{x_{0}}^{x} \omega^{n+1}\right)
$$

For any closed path γ starting at x_{0} we have

$$
\pi_{B}\left(\int_{r} \omega^{1}, \cdots, \int_{r} \omega^{n+1}\right)=\text { the identity element } e_{B} \text { of } B
$$

and

$$
\left(\int_{r} \omega^{1}, \cdots, \int_{r} \omega^{n+1}\right) \in \Delta_{B}
$$

which shows that $\Delta_{A} \subset \Delta_{B}$. Therefore there is a surjective homomorphism $f: A \rightarrow B$ such that $f\left(\pi_{A}\left(\int_{x_{0}}^{x} \omega^{1}, \cdots, \int_{x_{0}}^{x} \omega^{n+1}\right)\right)=\pi_{B}\left(\int_{x_{0}}^{x} \omega^{1}, \cdots, \int_{x_{0}}^{x} \omega^{n+1}\right)$. Thus we have shown that for any holomorphic immersion Φ of M into an ($n+$ 1)-dimensional torus B there exists a homomorphism f of the Albanese variety A of M onto B such that

$$
\Phi(x)=T_{\Phi\left(x_{0}\right)}(f(J(x)))
$$

for all $x \in M$.
Let $H^{1,1}(M, \boldsymbol{R})$ and $H^{1,1}(B, \boldsymbol{R})$ denote respectively the subspaces of the real de Rham cohomology group $H^{2}(M, \boldsymbol{R})$ and $H^{2}(B, R)$ whose elements are represented by closed real forms of type $(1,1)$. We show that $\Phi^{*}: H^{1,1}(B, R) \rightarrow$ $H^{1,1}(M, R)$ is bijective provided $n \geq 3$. Since $\operatorname{dim}_{R} H^{1,1}(B, R)=h^{1,1}(B)=$ $(n+1)^{2}$ and $\operatorname{dim}_{\boldsymbol{R}} H^{1,1}(M, \boldsymbol{R})=h^{1,1}(M), h^{1,1}(M)=(n+1) h^{0,1}(M)=(n+1)^{2}$ by Lemma 3 provided $n \geq 3$. Therefore it is sufficient to show that Φ^{*} is injective. The space $H^{1,1}(B, \boldsymbol{R})$ is identified with the space of all (1,1)-forms on B of the form $\theta=i \sum \theta_{k j} \zeta^{k} \wedge \bar{\zeta}^{k}$ where $\Theta=\left(\theta_{k j}\right)$ is a constant Hermitian matrix. Let $\omega^{k}=\Phi^{*} \zeta^{k}(k=1, \cdots, n+1)$, and suppose that $\Phi^{*} \theta \sim 0$. Then Θ cannot be (positive or negative) definite. In fact, if Θ is positive definite for example, then $\Phi^{*} \theta$ is the Kähler form of the Kähler metric $\sum_{k, j} \theta_{k j} \omega^{k} \bar{\omega}^{j}$ on M, and $\Phi^{*} \theta$ cannot be cohomologous to zero. After a suitable linear change of coordinates in \boldsymbol{C}^{n+1}, we may assume that Θ is of the form

$$
\Theta=\left(\begin{array}{ccc}
O_{k} & & \\
& E_{j} & \\
& & -E_{l}
\end{array}\right) \quad(k+j+l=n+1)
$$

where O_{k} denotes the $k \times k$ zero matrix, and E_{j} and E_{l} are the unit matrices of types $j \times j$ and $l \times l$ respectively. We may assume $j \leq l$ (otherwise replace θ by $-\theta$). To simplify our notation, put $\zeta_{k}=\zeta^{k} \wedge \bar{\zeta}^{k}, \omega_{k}=\omega^{k} \wedge \bar{\omega}^{k}, \omega=$ $i \sum \omega_{k}$. Then $\theta=i\left(\zeta_{k+1}+\cdots+\zeta_{k+j}-\zeta_{k+j+1}-\cdots-\zeta_{n+1}\right)$, and $\omega+\Phi^{*} \theta$ $=\omega^{\prime}$ where $\omega^{\prime}=i\left(\omega_{1}+\cdots+\omega_{k}+2 \omega_{k+1}+\cdots+2 \omega_{k+j}\right)$. Since $\Phi^{*} \theta \sim 0$,
$\omega \sim \omega^{\prime}$ and hence $\omega^{n} \sim \omega^{\prime n}$. If $k+j<n$, then $\omega^{\prime n}=0$ and $\omega^{n} \sim 0$, and this is impossible because ω is the Kähler form of the Kähler metric $\sum \omega^{k} \cdot \bar{\omega}^{k}$. Therefore $k+j=n$ or $k+j=n+1$. Suppose $k+j=n$. Since $k+j+$ $l=n+1$, we get $l=1$, and as we have assumed that $j \leq l, j$ is either equal to 0 or 1 . If $j=0$, we have $k=n$, and
(A) $\quad \Phi^{*} \theta=-i \omega^{n+1} \wedge \bar{\omega}^{n+1} \sim 0, \quad \omega \sim \omega^{\prime}=i\left(\omega_{1}+\cdots+\omega_{n}\right)$.

If $j=1$, we have $k=n-1, l=j=1$ and
(B) $\quad \Phi^{*} \theta=i\left(\omega_{n}-\omega_{n+1}\right) \sim 0, \quad \omega \sim \omega^{\prime}=i\left(\omega_{1}+\cdots+\omega_{n-1}+2 \omega_{n}\right)$.

If $k+j=n+1$, then $l=0$, and hence $j=0$ and $\Theta=0$ which implies $\theta=0$.

In either of the cases (A) and (B), we have $\omega^{n} \sim \omega^{\prime n}$ and

$$
\begin{equation*}
\int_{M} \omega^{n}=\int_{M} \omega^{\prime n} \tag{4.1}
\end{equation*}
$$

with $\omega^{n}=\Phi^{*}\left(i \sum_{k=1}^{n+1} \zeta_{k}\right)^{n}$ and either $\omega^{\prime}=\Phi^{*}\left(i \sum_{k=1}^{n} \zeta_{k}\right)^{n}$ (for case (A)) or $\omega^{\prime n}=\Phi^{*}\left(i \sum_{k=1}^{n-1} \zeta_{k}+2 i \zeta_{n}\right)^{n}$ (for case (B)). Put $\zeta=i \sum_{k=1}^{n+1} \zeta_{k}$ and $\zeta^{\prime}=$ $i \sum_{k=1}^{n} \zeta_{k}$ (for case (A)) or $\zeta^{\prime}=i \sum_{k=1}^{n-1} \zeta_{k}+2 i \zeta_{n}$ (for case (B)). Then by (3.2) and (4.1)

$$
\int_{X} \zeta^{n}=\int_{X} \zeta^{\prime n}
$$

where $X=\Phi(M)$. Since $c(\{X\})$ is the Poincare dual of the homology class X, we get

$$
\int_{B} h_{\mathscr{\varnothing}} \wedge \zeta^{n}=\int_{B} h_{\mathscr{\varnothing}} \wedge \zeta^{\prime n}
$$

and hence $h_{\oplus} \wedge \zeta^{n}=h_{\Phi} \wedge \zeta^{\prime n}$ because both sides are invariant and of type (n, n). As in $\S 3$, let $h_{\mathscr{\Phi}}=\frac{1}{2} i \sum h_{k j} \zeta^{k} \wedge \bar{\zeta}^{j}$. Since $E(M) \neq 0$, the Hermitian matrix $H_{\Phi}=\left(h_{k j}\right)$ is positive definite by Theorem 2, and $\zeta^{n}=i^{n} n!\sum_{k=1}^{n+1} \zeta_{1} \wedge$ $\cdots \wedge \hat{\zeta}_{k} \wedge \cdots \wedge \zeta_{n+1}, h_{\Phi} \wedge \zeta^{n}=\frac{1}{2} i^{n+1} n!\operatorname{Tr} H_{\Phi}\left(\zeta_{1} \wedge \cdots \wedge \zeta_{n+1}\right)$. Suppose that the case (A) occurs. Then $\zeta^{\prime n}=i^{n} n!\zeta_{1} \wedge \cdots \wedge \zeta_{n}$, and $h_{\Phi} \wedge \zeta^{\prime n}=$ $\frac{1}{2} i^{n+1} n!h_{n+1, n+1}\left(\zeta_{1} \wedge \cdots \wedge \zeta_{n+1}\right)$. It follows from $h_{\Phi} \wedge \zeta^{n}=h_{\Phi} \wedge \zeta^{\prime n}$ that $\sum_{k=1}^{n} h_{k k}=0$. However $n \times n$ Hermitian matrix $H^{\prime}=\left(h_{k j}\right)(1 \leq k, j \leq n)$ is positive definite, and it is impossible that $\operatorname{Tr} H^{\prime}=0$, so the case (A) cannot occur. Suppose now that the case (B) occurs. Then $\zeta^{\prime}=i\left(\sum_{k=1}^{n-1} \zeta_{k}+2 \zeta_{n}\right)$, $\zeta^{\prime n}=i^{n} n!2\left(\zeta_{1} \wedge \cdots \wedge \zeta_{n}\right)$, and $h_{\varnothing} \wedge \zeta^{\prime n}=i^{n+1} n!h_{n+1, n+1}\left(\zeta_{1} \wedge \cdots \wedge \zeta_{n+1}\right)$. It follows from $h_{\Phi} \wedge \zeta^{n}=h_{\Phi} \wedge \zeta^{\prime n}$ that $\operatorname{Tr} H_{\Phi}=2 h_{n+1, n+1}$. In the case (B), $\omega_{n} \sim \omega_{n+1}$, and since each ω_{k} is closed, we have also $\omega_{1} \wedge \cdots \wedge \omega_{n-1} \wedge \omega_{n}$ $\sim \omega_{1} \wedge \cdots \wedge \omega_{n-1} \wedge \omega_{n+1}$ and hence

$$
\int_{M} \omega_{1} \wedge \cdots \wedge \omega_{n-1} \wedge \omega_{n}=\int_{M} \omega_{1} \wedge \cdots \wedge \omega_{n-1} \wedge \omega_{n+1}
$$

From this we obtain as before $h_{\oplus} \wedge \zeta_{1} \wedge \cdots \wedge \zeta_{n-1} \wedge \zeta_{n}=h_{\oplus} \wedge \zeta_{1} \wedge \cdots \wedge$ $\zeta_{n-1} \wedge \zeta_{n+1}$, and $h_{n+1, n+1} \zeta_{1} \wedge \cdots \wedge \zeta_{n+1}=h_{n, n} \zeta_{1} \wedge \cdots \wedge \zeta_{n+1}$ which implies $h_{n+1, n+1}=h_{n, n}$. Combining this with $\operatorname{Tr} H_{\Phi}=2 h_{n+1, n+1}$ we get $\sum_{k=1}^{n-1} h_{k k}$ $=0$, and this contradicts the fact that the $(n-1) \times(n-1)$ Hermitian matrix $\left(h_{k j}\right)(1 \leq k, j \leq n-2)$ is also positive definite. Thus both cases (A) and (B) cannot occur, and therefore θ should be equal to 0 ; this concludes our proof.

It is also shown that every cohomology class in $H^{1,1}(M, R)$ is represented by a unique (1,1)-form of the type

$$
i \sum \theta_{k j} \omega^{k} \wedge \bar{\omega}^{j}
$$

where $\left(\theta_{k j}\right)$ is a constant Hermitian matrix of type $(n+1) \times(n+1)$, and $\left\{\omega^{1}, \cdots, \omega^{n+1}\right\}$ with $\omega^{k}=\Phi^{*} \zeta^{k}$ is a basis of the space of holomorphic 1-forms on M. From this and a theorem of Weil it follows that every divisor on M is a divisor of a theta function on the universal covering manifold \tilde{M} of M (see Weil [9, Th. 2 on P. 99]).

Summing up and combining with Theorem 4 we obtain
Theorem 5. Let M be a compact connected Kähler manifold such that $T^{*}(M)$ is ample, $E(M) \neq 0$ and $h^{1,0}(M)=\operatorname{dim} M+1$. Then the canonical map $J: M \rightarrow A$ of M into the Albanese variety is an immersion. Moreover, if $n=\operatorname{dim} M \geq 3$, then, J induces a bijection of $H^{1,1}(A, \boldsymbol{R})$ onto $H^{1,1}(M, \boldsymbol{R})$, every cohomology class of $H^{1,1}(M, \boldsymbol{R})$ is represented by a unique (1,1)-form of the type $\theta=i \sum \theta_{k j} \omega^{k} \wedge \bar{\omega}^{j}$, where $\left\{\omega^{1}, \cdots, \omega^{n+1}\right\}$ is a basis of the space of holomorphic 1-forms on M and $\left(\theta_{k j}\right)$ is a constant Hermitian matrix and every divisor of M is the divisor of a theta function on the universal covering manifold \tilde{M} of M.
5. In this section we always denote by M an n-dimensional compact connected Kähler manifold admitting a holomorphic immersion into an $(n+1)$ dimensional complex torus, and assume that $E(M) \neq 0$. Then the canonical map $J: M \rightarrow A$ of M into the Albanese variety A is an immersion, and A is ($n+1$)-dimensional. The Chern class $c(\{X\})$ of the line bundle $\{X\}$ associated to $X=J(M)$ is positive definite, and is represented by a unique (1,1)-form

$$
h_{J}=\frac{1}{2} i \sum h_{k j} \zeta^{k} \wedge \bar{\zeta}^{j} .
$$

Here the constant Hermitian matrix H_{J} is positive definite, and the imaginary part A of the associated Hermitian form is integral valued on $\Delta_{A} \times \Delta_{A}$ where we write $A=C^{n+1} / \Delta_{A}$. The elementary divisors of A (or H_{J}) denoted by e_{1}, \cdots, e_{n+1} are all positive integers since A is nondegenerate. For any n-tuple of integers $\pi=\left(p_{1}, \cdots, p_{n}\right)$ such that $\sum k p_{k}=n$, let

$$
c_{\pi}[M]=\int_{M} c_{1}^{p_{1}} \cdots c_{n}^{p_{n}}
$$

where c_{k} denotes the k-th Chern class of M. These numbers are called the Chern numbers of M. By (3.6), $c_{1}^{p_{1}} \cdots c_{n}^{p_{n}}=(-1)^{n} c(N)^{n}$ for all π so that the Chern numbers are all equal. Since $E(M)$ is equal to $c_{\pi}[M]$ with $\pi=$ $(0,0 \cdots, 1)$, every Chern number of M is equal to $E(M)$:

$$
E(M)=c_{\pi}[M] \quad \text { for any } \pi
$$

Let Y be another n-dimensional compact connected Kähler manifold with $E(Y) \neq 0$ admitting a holomorphic immersion in an $(n+1)$-dimensional complex torus. Then we also have $E(Y)=c_{\pi}[Y]$ for any π and hence

$$
\begin{equation*}
c_{\pi}[M]=\rho \cdot c_{\pi}[Y] \quad \text { for any } \pi \tag{5.1}
\end{equation*}
$$

where $\rho=E(M) / E(Y)$ is a nonzero rational number.
We say that two n-dimensional compact connected Kähler manifolds M and Y are proportional if their Chern numbers satisfy (5.1) for some nonzero rational ρ (cf. Hirzebruch [1]). It follows then from Riemann-Roch-Hirzebruch theorem that

$$
\begin{equation*}
\chi(M)=\rho \cdot \chi(Y), \quad \chi\left(M, K_{M}^{r}\right)=\rho \cdot \chi\left(Y, K_{Y}^{r}\right) \tag{5.2}
\end{equation*}
$$

where K_{M} and K_{Y} denote the canonical bundles of M and Y respectively, and r is an integer. We shall compute $\chi(M)$ and $\chi\left(M, K_{M}^{r}\right)$ by choosing Y suitably.

Since $E(M) \neq 0, M$ is algebraic (Theorem 2, Cor.) and hence A is algebraic. Let Y be a nonsingular hyperplane section of A (with respect to a projective imbedding of A). By Lefschetz theorem, $b_{p}(Y)=b_{p}(A)=\binom{2 n+2}{p}$ for $p=$ $0,1, \cdots, n-1$ and $b_{n}(Y) \geq b_{n}(A)=\binom{2 n+2}{n}$. By a computation using the Poincaré dualty we see that

$$
\begin{equation*}
E(Y)=(-1)^{n}\left\{b_{n}(Y)-b_{n}(A)+\frac{(2 n+2)!}{(n+1)!(n+2)!}\right\} \tag{5.3}
\end{equation*}
$$

so that $E(Y) \neq 0$, and the identity map of Y into A is an immersion (as a matter of fact, the identity map of Y into A is the canonical map, and A is the Albanese variety of Y).

We shall denote by $\{Y\}$ the line bundle over A associated with the nonsingular positive divisor Y of A. The Chern class $c(\{Y\})$ of $\{Y\}$ is represented by a unique (1,1)-form of the type

$$
\theta_{Y}=\frac{1}{2} i \sum \theta_{k j} \zeta^{k} \wedge \bar{\zeta}^{j}
$$

where $H_{Y}=\left(\theta_{k j}\right)$ is a constant positive definite Hermitian matrix, and the imaginary part of the associated Hermitian form is integral valued on $\Delta_{A} \times \Delta_{A}$.

We denote by f_{1}, \cdots, f_{n+1} the elementary divisor of H_{Y}. As a special case of the formula (3.11) we get

$$
\begin{equation*}
E(Y)=(-1)^{n}(n+1)!\left(f_{1} \cdots f_{n+1}\right) \tag{5.4}
\end{equation*}
$$

We also obtain from (5.3) and (5.4)

$$
b_{n}(Y)=\frac{n(2 n+2)!}{(n+1)!(n+2)!}+(n+1)!\left(f_{1} \cdots f_{n+1}\right)
$$

We shall use the following two formulas:

1) Riemann-Roch-Hirzebruch formula for complex tori: For any holomorphic line bundle F over A

$$
\begin{equation*}
\chi(A, F)=\frac{1}{(n+1)!} \int_{A} c(F)^{n+1} \tag{5.5}
\end{equation*}
$$

(This formula follows easily from the Riemann-Roch-Hirzebruch theorem, because Chern classes of A are all zero.)
2) Kodaira-Spencer formula $[4, b]$: For any holomorphic line bundle F over A and for any nonsingular divisor Y of A

$$
\begin{equation*}
\chi(A, F)=\chi\left(A, F \otimes\{Y\}^{-1}\right)+\chi(Y, F \mid Y) \tag{5.6}
\end{equation*}
$$

Let F be the trivial line bundle over A. Then $\chi(A, F)=\chi(A)=$ $\sum_{q}(-1)^{q} h^{0, q}(A)=\sum(-1)^{q}\binom{n}{q}=0$. Hence $\quad \chi(Y)=-\chi\left(A,\{Y\}^{-1}\right) \quad$ by (5.6), and

$$
\chi\left(A,\{Y\}^{-1}\right)=\frac{(-1)^{n+1}}{(n+1)!} \int_{A} c(\{Y\})^{n+1}=(-1)^{n+1}\left(f_{1} \cdots f_{n+1}\right)
$$

by (5.5) as in $\S 3$, so that $\chi(Y)=(-1)^{n}\left(f_{1} \cdots f_{n+1}\right)$ which together with (5.4) gives

$$
\begin{equation*}
\chi(Y) / E(N)=1 /(n+1)!. \tag{5.7}
\end{equation*}
$$

It follows from (5.2), (5.7) and (3.11) that

$$
\chi(M)=\frac{E(M)}{E(Y)} \chi(Y)=\frac{E(M)}{(n+1)!}=(-1)^{n} d_{J}\left(e_{1} \cdots e_{n+1}\right),
$$

where e_{1}, \cdots, e_{n+1} are the elementary divisors of H_{J}, and d_{J} is the degree of the map $J: M-J^{-1}(S) \rightarrow X-S, S$ denoting the singularities of $X=J(M)$. On the other hand

$$
\begin{aligned}
\chi(Y) & =\sum_{q=1}^{n}(-1)^{b} h^{0, q}(Y)=\sum_{q=0}^{n-1}(-1)^{q}\binom{n+1}{q}+(-1)^{n} h^{0, q}(Y) \\
& =-(-1)^{n}\binom{n+1}{n}-(-1)^{n+1}+(-1)^{n} h^{0, n}(Y)
\end{aligned}
$$

We have shown that $\chi(Y)=(-1)^{n}\left(f_{1} \cdots f_{n+1}\right)$ so that

$$
h^{0, n}(Y)=n+f_{1} \cdots f_{n+1} .
$$

Now putting $F=\{Y\}^{r}$ in (5.6) gives $\chi\left(A,\{Y\}^{r}\right)=\chi\left(A,\{Y\}^{r-1}\right)+\chi\left(Y, N^{r}\right)$, where $N=\{Y\} \mid Y$ is the normal bundle of Y. By (5.5) we get

$$
\begin{aligned}
\chi\left(Y, N^{r}\right) & =\frac{1}{(n+1)!} \int_{A}\left(r^{n+1}-(r-1)^{n+1}\right) c(\{Y\})^{n+1} \\
& =\left(r^{n+1}-(r-1)^{n+1}\right) f_{1} \cdots f_{n+1}
\end{aligned}
$$

On the other hand $c\left(K_{Y}\right)=-c_{1}(Y)=c(N)$, and from the Riemann-RochHirzebruch theorem for Y it follows that $\chi\left(Y, N^{r}\right)=\chi\left(Y, K_{Y}^{r}\right)$ so that $\chi\left(Y, K_{Y}^{r}\right)$ $=\left(r^{n+1}-(r-1)^{n+1}\right) f_{1} \cdots f_{n+1}=(-1)^{n}\left(r^{n+1}-(r-1)^{n+1}\right) E(Y) /(n+1)!$. Thus $\quad \chi\left(Y, K_{Y}^{r}\right) / E(Y)=(-1)^{n}\left(r^{n+1}-(r-1)^{n+1}\right) /(n+1)!$, and from $\chi\left(M, K_{M}^{r}\right)=(E(M) / E(Y)) \chi\left(Y, K_{Y}^{r}\right)$ we obtain the following formula:

$$
\chi\left(M, K_{M}^{r}\right)=d_{J}\left(r^{n+1}-(r-1)^{n+1}\right)\left(e_{1} \cdots e_{n+1}\right) .
$$

We have $c\left(K_{M}^{r} \otimes K_{M}^{-1}\right)=(r-1) c\left(K_{M}\right)=-(r-1) c_{1}(M)=(r-1) c(N)$ by (3.6), where N is the normal bundle of M with respect to the immersion J of M into A. Let S be the singularities of $X=J(M)$ and, as in the proof of Lemma 3, let $U_{s}(\varepsilon>0)$ be a neighborhood of $J^{-1}(S)$ such that the measure of U_{ε} tends to zero as ε tends to zero. For each $\varepsilon, c\left(K_{M}^{r} \otimes K_{M}^{-1}\right)$ is represented by $(r-1) J^{*} h_{J}+\eta_{\epsilon}$, where $\eta_{\epsilon}=0$ outside U_{ε}. If $r>1$, then $(r-1) J^{*} h_{J}$ is positive definite everywhere, and from this we conclude as indicated in the proof of Lemma 3 that $H^{q}\left(M, K_{M}^{r}\right)=0$ for $q>0$ provided $r>1$. Therefore we get also

$$
\operatorname{dim} H^{0}\left(M, K_{M}^{r}\right)=d_{J}\left(r^{n+1}-(r-1)^{n+1}\right)\left(e_{1} \cdots e_{n+1}\right) \quad \text { for } r>1 .
$$

Remark. It can be proved that the Ricci tensor $R_{k j}$ of the Kähler metric on M, which is the pullback of a flat Kähler metric in A, is negative everywhere, and is negative definite almost everywhere if $E(M) \neq 0$. Since $c\left(K_{M}\right)$ is represented by the (1,1)-form $-\frac{1}{2}(i / \pi) R_{k j} d z^{k} \wedge d \bar{z}^{j}, c\left(K_{M}\right)$ is positive definite almost everywhere. From this fact we can also prove the vanishing of cohomology groups discussed above and also in the proof of Lemma 3.

Bibliography

[1] F. Hirzebruch, Topological methods in algebraic geometry, Springer, New York, 1966.
[2] S. Kobayashi, Transformation groups in differential geometry, Springer, Berlin, 1972.
[3] K. Kodaira, On a differential geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A. 39 (1953) 1268-1273.
[4] K. Kodaira \& D. C. Spencer, [a]: Divisor class groups on algebraic varieties, Proc. Nat. Acad. Sci. U.S.A. 39 (1953) 872-877. [b]: On a theorem of Lefschetz and the lemma of Enriques-Severi-Zariski, Proc. Nat. Acad. Sci. U.S.A. 39 (1953) 1273-1278.
[5] P. Lelong, Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France 85 (1957) 239-262.
[6] Y. Matsushima \& W. Stoll, Ample vector bundles on compact complex spaces, to appear.
[7] T. Nagano \& B. Smyth, Minimal varieties in tori, to appear.
[8] S. Sternberg, Lectures on differential geometry, Prentice-Hall, Englewood Cliffs, 1965.
[9] A. Weil, Introduction à l'étude des variétés kählériennes, Hermann, Paris, 1958.
University of Notre Dame

