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QUASI-SYMMETRIC IS LOCALLY SYMMETRIC

J. E. DΆTRI

1. Let M be the space of left cosets G/K, where G is a connected Lie
group with Lie algebra g and K is a closed Lie subgroup with Lie subalgebra
ϊ. For simplicity, assume G acts effectively on M on the left. The canonical
projection π: G —• M takes e e G to o = TΓO) e M, and induces the map
π*: TeG -> T0M. For any l e g , let Z * be the global vector field on M
generated by the 1-parameter group {exp tX}. Then Xf = z^X, and X -> X*
is an injective Lie algebra anti-homomorphism. Assume M is reductive homo-
geneous, i.e., there is a given Ad (^)-invariant vector space decomposition
g = Ϊ 0 p. This defines the canonical connection f on M by (FX*Y*)O =
~ [X, Y\ for X, Y e p. Here as usual we identify p and T0M by the restriction
of TΓ*, and the subscript p indicates p component.

Now suppose M has a naturally reductive pseudo-Riemannian metric < , >,
i.e., the metric is G-invariant and the associated Levi-Civita connection V
agrees with the canonical torsionless connection for the reductive decomposi-
tion g = ϊ (x) p (see [4, Chapter 10]). Define tensors T and B on p by

ΠX, Y) = [X, Y\ , B(X, Y)Z = [[X, Y]l9 Z] .

With our conventions of sign, these are just the negatives of the torsion and
curvature for the canonical connection at o. Next define endomorphisms Tx

and BΣ on p by

TX{Y) = T(X, Y) , BX(Y) = B(X, Y)X .

Then Chavel [2] has given the following definition (in a slightly more special
setting).

Definition. The pseudo-Riemannian manifold (M, < , >) is said to be quasi-
symmetric if Tx and Bx commute for all X e p.

There are a number of reasons why it seems plausible to study this class
of spaces (see [2, p. 20]) but unfortunately, as we will show, all quasi-
symmetric spaces are locally symmetric. On the other hand, one can consider
the condition as an easy way to distinguish locally symmetric spaces amongst
all naturally reductives, so it still may have some interest.

Remark. In [2], Chavel claims that certain spaces Mn

a are quasi-symmetric.
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These spaces are not locally symmetric and the author believes the claim is in
error.

2. With notation as before, let M be naturally reductive. Define a tensor
field E on M by E = V — V. If i^ is the curvature tensor of F, then it was
shown in [3] (where the letter T was used in place of E) that, at the point o,

( 1 ) (PZR)(Y, X) = -R(EZY, X) + R(EZX, Y) + [EZ9 R(Y, X)]

for all X,Y,Z ep. Equivalent formulas occur in [1] and [5]. Note that at the
point o we have

( 2 ) EXY = i[Z, Y\ = iTz(Y) for X, Y e p ,

and also the curvature given by

3 R(X, Y)Z = -[[X, n , Z] - i[[Z, Y]p, Z\

+ i [ Z , [ Γ , Z U - i [ F , [ Z , Z U

for all X, Y, Z e p (see [4, p. 202]), so that

(4) #(X, Y)Z = -BX(Y) + \TX\Y) .

Then (1) and (4) give

( 5 ) (FxRXY, X)X = \TX o BX(Y) - \BX o TX(Y)

for all X, Y € p. This immediately shows that if M is locally symmetric, it is
quasi-symmetric.

Now suppose M is quasi-symmetric. For a given Yep, the tri-linear map
QiX^X^X,) = (FXlR)(Y,X2)X3 then satisfies Q(X,X,X) = 0 from (5). If
we polarize, this implies that

( 6 ) Σ ( ^ α j Λ ) ( y , ^ w ) ^ ( 8 , = 0 ,

where the sum is over all 6 permutations σ. Replace three of the terms in (6)
using

( 7) (FXlR)(X,,Y)X2 = -(FXlR)(Y, X2)X3 - (FXlR)(X2, X,)Y

and the two equations derived from (7) by cyclically permuting (1, 2, 3). Then
using the second Bianchi identity (and relabeling) gives

( 8 ) 0 = (FWR)(X, Y)Z + (FXR)(Z, Y)W + (FZR)(W, Y)X

for all W, X, Y, Z € p. Reversing the roles of X and Y in (8) yields

( 8 Y 0 = (FWR)(X, Y)Z + (FYR)(X, Z)W + (FZR)(X, W)Y .
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Adding (8) and (8)/ and applying the analog of (7) and the second Bianchi
identity, we find

( 9 ) (FWR)(X, Y)Z = -(FZR)(X, Y)W .

If the analog of (9) is substituted for the second term of (8) and the second
Bianchi identity is used again on the resulting last two terms, we have

(10) (FWR)(X, Y)Z = (FYR)(Z, W)X .

Now we use the analogs of (9) and (10) with standard identities to get

, vy = <SVWR){V9 z)Y, xy = <(FZRXY, W)V, xy

, v)w, y> = -<(FWRXX, v)z, y> = «PWR)(Y, Z)X, vy .

So using the nondegeneracy of < , > we have

(FWR)(X9 Y)Z = (FwR)(y, Z)X .

Applying this twice in the analog of (7) shows that FR = 0 at the point o.
Since M is homogeneous, FR = 0 everywhere. Hence we have

Theorem. Suppose that M is naturally reductive pseudo-Riemannian. Then
M is quasi-symmetric if and only if M is locally symmetric.
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