# GEOMETRY OF COMPLEX MANIFOLDS SIMILAR TO THE CALABI-ECKMANN MANIFOLDS 

DAVID E. BLAIR, GERALD D. LUDDEN \& KENTARO YANO

In [4] Calabi and Eckmann showed that the product of two odd-dimensional spheres $S^{2 p+1} \times S^{2 q+1}(p, q \geq 1)$ is a complex manifold. As $S^{2 p+1} \times S^{2 q+1}$ is not Kaehlerian, the fundamental 2-form $\Omega$ of the Hermitian structure is not closed. However, $d \Omega$ does have a special form on $S^{2 p+1} \times S^{2 q+1}$; in fact, $S^{2 p+1} \times S^{2 q+1}$ admits two nonvanishing vector fields which are both Killing and analytic, and whose covariant forms determine $\Omega$. Our purpose here is to study complex manifolds whose complex structures are similar to the complex structure on $S^{2 p+1} \times S^{2 q+1}$.

In § 1 we review the geometry of the Calabi-Eckmann manifolds. In § 2 we give some elementary properties of vector fields on a Hermitian manifold, and introduce the notion of a holomorphic pair of automorphisms and of a bicontact manifold. § 3 continues the author's paper [2] on the differential geometry of principal toroidal bundles for the present case. In § 4 we discuss bicontact manifolds and, in particular, the integrable distributions of a bicontact structure on a Hermitian manifold. Finally in § 5 we give some results on the curvatures of a Hermitian manifold admitting a holomorphic pair of automorphisms.

## 1. The Hermitian structure on the Calabi-Eckmann manifolds

The construction of the complex structure on $S^{2 p+1} \times S^{2 q+1}$ which we will give is due to Morimoto [6]. It is well known that an odd-dimensional sphere $S^{2 p+1}$ carries a contact structure, i.e., a nonvanishing 1 -form $\eta$ such that $\eta \wedge(d \eta)^{p} \neq 0$. Let $G$ be the standard metric on $S^{2 p+1}$. Then there exist on $S^{2 p+1}$ (see e.g. [8]) a contact form $\eta$, a vector field $\xi$, and a tensor field $\varphi$ of type $(1,1)$ such that

$$
\begin{aligned}
& \eta(\xi)=1, \quad \varphi \xi=0, \quad \eta \circ \varphi=0, \quad \varphi^{2}=-I+\eta \otimes \xi, \\
& G(\xi, X)=\eta(X), \quad G(\varphi X, \varphi Y)=G(X, Y)-\eta(X)_{\eta}(Y),
\end{aligned}
$$

i.e., $S^{2 p+1}$ carries an almost contact metric structure. For a contact structure $\eta \wedge(d \eta)^{p} \neq 0, \varphi, \xi$ and $G$ may be chosen such that $d_{\eta}(X, Y)=G(\varphi X, Y)$,

[^0]as happens in the sphere example. Moreover, the contact metric structure on $S^{2 p+1}$ is normal, i.e.,
$$
[\varphi, \varphi]+d_{\eta} \otimes \xi=0
$$
where $\left[\varphi, \varphi\right.$ ] is the Nijenhuis torsion of $\varphi$. Thus $S^{2 p+1}$ carries a normal contact metric or Sasakian structure.

Now let ( $\varphi, \xi, \eta, G$ ) and ( $\bar{\varphi}, \bar{\xi}, \bar{\eta}, \bar{G}$ ) be Sasakian structures on $S^{2 p+1}$ and $S^{2 q+1}$ respectively. Then define an almost complex structure $J$ on $S^{2 p+1} \times S^{2 q+1}$ by

$$
J(X, \bar{X})=(\varphi X-\bar{\eta}(\bar{X}) \xi, \bar{\varphi} \bar{X}+\eta(X) \bar{\xi}),
$$

and let $g$ be the product metric. Then direct computations show [6] that $J^{2}=-I, g(J(X, \bar{X}), J(Y, \bar{Y}))=g((X, \bar{X}),(Y, \bar{Y}))$ and, using normality, that $[J, J]=0$. Thus $S^{2 p+1} \times S^{2 q+1}$ is a Hermitian manifold.

Defining the fundamental 2-form $\Omega$ of the Hermitian structure by

$$
\Omega((X, \bar{X}),(Y, \bar{Y}))=g(J(X, \bar{X}),(Y, \bar{Y})),
$$

we find that

$$
\Omega=d \eta+d \bar{\eta}+\eta \wedge \bar{\eta}
$$

where we view $\eta$ and $\bar{\eta}$ as 1 -forms extended to the product. Thus the fundamental 2-form $\Omega$ of the Hermitian structure on $S^{2 p+1} \times S^{2 q+1}$ satisfies

$$
d \Omega=d \eta \wedge \bar{\eta}-\eta \wedge d \bar{\eta}
$$

Finally we remark that from the Hopf fibration $\pi^{\prime}: S^{2 p+1} \rightarrow P C^{p}$ of an odddimensional sphere as a principal circle bundle over complex projective space, we obtain a natural fibration $\pi: S^{2 p+1} \times S^{2 q+1} \rightarrow P C^{p} \times P C^{q}$ of a CalabiEckmann manifold as a principal $T^{2}$ (2-dimensional torus) bundle over a product of complex projective spaces. In fact the complex coordinates of $S^{2 p+1} \times$ $S^{2 q+1}$ are essentially those of $P C^{p} \times P C^{q}$ together with a fibre coordinate [4], [5].

## 2. Some elementary properties of vector fields on a Hermitian manifold

Let $M^{2 n}$ be a Hermitian manifold with complex structure $J$ and Hermitian metric $g$. Let $U$ be an analytic vector field ${ }^{1}$ on $M^{2 n}$, i.e., $\mathfrak{L}_{U} J=0$ where $\mathfrak{L}$ denotes Lie differentiation.

[^1]Proposition 2.1. If $U$ is an analytic vector field on $M^{2 n}$, then so is $V=J U$. Proof.

$$
\begin{aligned}
0 & =[J, J](U, X)=-[U, X]+[V, J X]-J[V, X]-J[U, J X] \\
& =-J\left(\Omega_{U} J\right) X+\left(\Omega_{V} J\right) X=\left(\mathfrak{\Omega}_{V} J\right) X
\end{aligned}
$$

Thus, if $U$ is an infinitesimal automorphism of $J$, so is $J U$; but if $U$ is Killing (an automorphism of $g$ ), $J U$ is not in general Killing. We therefore make the following definition.

Definition. By a holomorphic pair of automorphisms we mean a unit vector field $U$ such that $U$ and $V=J U$ are infinitesimal automorphisms of the Hermitian structure.

Let $u$ and $v$ denote the covariant forms of $U$ and $V$ respectively. We begin with some elementary properties of a holomorphic pair of automorphisms ( $U, V=J U$ ).

Lemma 2.2. $[U, V]=0$.
Proof. $\quad 0=\left(\Omega_{U} J\right) U=[U, J U]-J[U, U]=[U, V]$.
Lemma 2.3. $d u(U, X)=0, d u(V, X)=0, d v(U, X)=0, d v(V, X)=0$.
Proof. We give the proof for $d u$, the proof for $d v$ being similar. Since $U$ is Killing and unit, we have

$$
\begin{aligned}
d u(U, X) & =\left(\nabla_{U} u\right)(X)-\left(\nabla_{X} u\right)(U)=g\left(\nabla_{U} U, X\right)-g\left(\nabla_{X} U, U\right) \\
& =-2 g\left(\nabla_{X} U, U\right)=0
\end{aligned}
$$

where $V$ denotes the Riemannian connection of $g$. Similarly since $[U, V]=0$ and $V$ is also Killing, we have

$$
d u(V, X)=g\left(\nabla_{V} U, X\right)-g\left(\nabla_{X} U, V\right)=g\left(\nabla_{U} V, X\right)+g\left(\nabla_{X} V, U\right)=0
$$

Proposition 2.4. At each point of $M^{2 n}, u$ and $v$ have odd rank, i.e., there exist nonnegative integers $p$ and $q$ such that $u \wedge(d u)^{p} \neq 0, v \wedge(d v)^{q} \neq 0$, $(d u)^{p+1}=0,(d v)^{q+1}=0$.

Proof. First note that $(d u)^{n}=0$; for evaluating $(d u)^{n}$ on a $J$-basis containing $U$ and $V$ each term in

$$
(d u)^{n}\left(U, V, X_{3}, \cdots, X_{2 n}\right)
$$

vanishes by Lemma 2.3; here we have set $X_{1}=U, X_{2}=J U=V$ and $\left\{X_{i}\right\}$ a $J$-basis. Suppose now that at $m \in M^{2 n},(d u)^{p} \neq 0$ and $(d u)^{p+1}=0$. Then evaluating $\left(u \wedge(d u)^{p}\right)\left(U, Y_{1}, \cdots, Y_{2 p}\right)$ where $Y_{1}, \cdots, Y_{2 p}$ are vector fields such that $d u\left(Y_{i}, Y_{j}\right) \neq 0$, we have that $u \wedge(d u)^{p} \neq 0$. Similarly $v$ has rank $2 q+1$.

Definition. We say that a differentiable manifold $M^{2 n}$ is bicontact if it admits 1 -forms $u$ and $v$ such that $u \wedge v \wedge(d u)^{p} \wedge(d v)^{q} \neq 0,(d u)^{p+1}=0$
and $(d v)^{q+1}=0$ with $p+q+1=n . M^{2 n}$ is called a Hermitian bicontact manifold if $M^{2 n}$ is both Hermitian and bicontact, and the 1 -forms $u$ and $v$ are the covariant forms of a holomorphic pair of automorphisms.

Lemma 2.5. If du is of bidegree $(1,1)$ with respect to the complex structure J, then so is $d v$.

Proof. Recall that the Nijenhuis torsion of a vector-valued 1-form $h$ is given by its action on a 1 -form $\theta$. This action is

$$
[h, h] \theta=-h^{(2)} d \theta+h^{(1)} d(\theta \circ h)-d\left(\theta \circ h^{2}\right)
$$

where for a 2-form $\Theta$,

$$
\left(h^{(1)} \Theta\right)(X, Y)=\Theta(h X, Y)+\Theta(X, h Y), \quad\left(h^{(2)} \Theta\right)(X, Y)=\Theta(h X, h Y)
$$

$h^{(1)} \Theta$ is often denoted by $\Theta \pi h$. Now since $v=-u \circ J$ and $d u$ is of bidegree $(1,1)$, we have

$$
\begin{aligned}
0 & =([J, J] u)(X, Y) \\
& =-d u(J X, J Y)-d v(J X, Y)-d v(X, J Y)+d u(X, Y) \\
& =-d v(J X, Y)-d v(X, J Y)
\end{aligned}
$$

and hence $d v$ is of bidegree $(1,1)$.
Remark. The above proof also shows that if $d u=d v$, then $[J, J]=0$ implies that $d u(=d v)$ is of bidegree $(1,1)$. The authors have studied certain manifolds admitting independent 1 -forms $u$ and $v$ with $d u=d v$, [1], [2].

Proposition 2.6. If $M^{2 n}$ is Kaehlerian, then $d u=d v=0$.
Proof. First since $V$ is analytic, we have

$$
0=\left(\Omega_{V} J\right) X=\nabla_{V} J X-\nabla_{J X} V-J \nabla_{V} X+J \nabla_{X} V=-\nabla_{J X} V+J \nabla_{X} V
$$

Now since $V$ is Killing,

$$
\begin{aligned}
d u(X, Y) & =g\left(\nabla_{X} U, Y\right)-g\left(\nabla_{Y} U, X\right)=g\left(-\nabla_{X} J V, Y\right)-g\left(-\nabla_{Y} J V, X\right) \\
& =g\left(\nabla_{X} V, J Y\right)+g\left(J \nabla_{Y} V, X\right)=-g\left(\nabla_{J Y} V, X\right)+g\left(J \nabla_{Y} V, X\right)=0 .
\end{aligned}
$$

Similarly one can show that $d v=0$.
In [9] one of the authors introduced the notion of an $f$-structure on a differentiable manifold, i.e., the manifold admits a tensor field $f \neq 0$ of type $(1,1)$ satisfying $f^{3}+f=0$ (see also [1], [7]).

Proposition 2.7. Let $\left(M^{2 n}, J, g\right)$ be an almost Hermitian manifold admitting a nonvanishing vector field $U$, then $U, V=J U, u, v$ (the covariant forms of $U$ and $V$ ) and $f=J+v \otimes U-u \otimes V$ define an $f$-structure with complemented frames and rank $(f)=2 n-2$ on $M^{2 n}$, i.e., we have

$$
\begin{gathered}
f^{2}=-I+u \otimes U+v \otimes V, \quad f U=f V=0, \quad u \circ f=v \circ f=0, \\
u(U)=v(V)=1, \quad u(V)=v(U)=0 .
\end{gathered}
$$

The proof of this proposition is a straightforward computation and will be omitted.

An $f$-structure with complemented frames $(f, U, V, u, v)$ is said to be normal if the tensor $S$ defined by

$$
S(X, Y)=[f, f](X, Y)+d u(X, Y) U+d v(X, Y) V
$$

vanishes. Computing $S$ in our case gives

$$
\begin{aligned}
S(X, Y)= & {[J, J](X, Y)-(d u \pi J)(X, Y)-(d v \pi J)(X, Y) } \\
& +u(X)\left(\mathfrak{R}_{V} J\right) Y-u(Y)\left(\Omega_{V} J\right) X+v(X)\left(\Omega_{U} J\right) Y-v(Y)\left(\Omega_{U} J\right) X .
\end{aligned}
$$

Thus we have the following result.
Proposition 2.8. On a Hermitian manifold with a nonvanishing analytic vector field $U$, if $d u$ is of bidegree $(1,1)$, then the $f$-structure $(f, U, V, u, v)$ is normal.

It is well known (see e.g. [7]) that for a normal $f$-structure with complemented frames, we have

$$
\begin{gathered}
\mathfrak{\Omega}_{U} f=0, \quad \mathfrak{\Omega}_{U} u=0, \quad \mathfrak{L}_{U} v=0, \quad \mathfrak{L}_{V} f=0, \quad \mathfrak{\Omega}_{V} u=0, \quad \mathfrak{\Omega}_{V} v=0, \\
d u \pi f=0, \quad d v \pi f=0, \quad[U, V]=0 .
\end{gathered}
$$

Thus a straightforward computation shows that $S=0$ implies $[J, J]=0$.
Now if $g$ is the Hermitian metric on $M^{2 n}$, then

$$
\begin{aligned}
g(f X, f Y) & =g(X, Y)-u(X) u(Y)-v(X) v(Y), \\
u(X) & =g(U, X), \quad v(X)=g(V, X)
\end{aligned}
$$

that is, $(f, g, u, v)$ defines a metric $f$-structure with complemented frames.
Finally we define the fundamental 2-forms $\Omega$ and $F$ of the structures by

$$
\Omega(X, Y)=g(J X, Y), \quad F(X, Y)=g(f X, Y)
$$

Then a short computation gives

$$
F=\Omega-u \wedge v
$$

## 3. Fibering by a holomorphic pair of automorphisms

In [2] the authors proved the following result.
Theorem. Let $M^{2 m+s}$ be a compact connected manifold with a regular normal f-structure of rank $2 m$. Then $M^{2 m+s}$ is the bundle space of a principal toroidal bundle over a complex manifold $N^{2 m}$.

Now if a complex manifold $M^{2 n}$ admits a regular analytic vector field $U$ (i.e., every point $m \in M^{2 n}$ has a neighborhood such that the integral curve of $U$ through $m$ passes through the neighborhood only once), the vector field $V=J U$ is not necessarily regular. Thus we say that a holomorphic pair of automorphisms is regular if both $U$ and $V$ are regular vector fields. Then using the above theorem and Proposition 2.8 we can prove the following result.

Theorem 3.1. If a compact Hermitian manifold ( $M^{2 n}, J, g$ ) admits a regular holomorphic pair of automorphisms $(U, V=J U)$ with du of bidegree $(1,1)$, then $M^{2 n}$ is a principal $T^{2}$ bundle over a Hermitian manifold $N^{2 n-2}$.

Proof. From the above theorem and Proposition 2.8 we obtain the desired fibration. Thus we shall only exhibit the Hermitian structure on $N^{2 n-2}$. As $U$ and $V$ are analytic, $J$ is projectable and we define $J^{\prime}$ on $N^{2 n-2}$ by

$$
J^{\prime} X=\pi_{*} J \tilde{\pi} X
$$

where $\tilde{\pi}$ denotes the horizontal lift with respect to the Riemannian connection of $g$ (in the nonmetric case one can use the pair $(u, v)$ as a Lie algebra valued connection form to determine $\tilde{\pi}[2]$ ). Then it is easy to check that $J^{\prime 2}=-I$. Moreover we have

$$
\begin{aligned}
{\left[J^{\prime}, J^{\prime}\right](X, Y)=} & \left.-\left[\pi_{*} \tilde{\pi} X, \pi_{*} \tilde{\pi} Y\right]+{ }_{2} J \pi_{*} J \tilde{\pi} X, \pi_{*} J \tilde{\pi} Y\right] \\
& -\pi_{*} J \tilde{\pi}\left[\pi_{*} J \tilde{\pi} X, \pi_{*} \tilde{\pi} Y\right]-\pi_{*} J \tilde{\pi}\left[\pi_{*} \tilde{\pi} X, \pi_{*} J \tilde{\pi} Y\right] \\
= & \pi_{*}[J, J](\tilde{\pi} X, \tilde{\pi} Y)=0 .
\end{aligned}
$$

Finally as $U$ and $V$ are Killing, the metric $g$ is projectable to a metric $g^{\prime}$ on $N^{2 n-2}$ given by $g^{\prime}(X, Y) \circ \pi=g(\tilde{\pi} X, \tilde{\pi} Y)$. Then

$$
g^{\prime}\left(J^{\prime} X, J^{\prime} Y\right) \circ \pi=g(J \tilde{\pi} X, J \tilde{\pi} Y)=g(\tilde{\pi} X, \tilde{\pi} Y)=g^{\prime}(X, Y) \circ \pi
$$

and hence the structure on $N^{2 n-2}$ is Hermitian.
We now compute the fundamental 2-form $F$ of the $f$-structure $(f, U, V, u, v$ ) on $M^{2 n}$. First of all it is clear that $F(U, X)=0$ and $F(V, X)=0$. Thus it is enough to compute $F$ on vector fields of the form $\tilde{\pi} X, \tilde{\pi} Y$ where $X$ and $Y$ are vector fields on $N^{2 n-2}$.

$$
\begin{aligned}
F(\tilde{\pi} X, \tilde{\pi} Y) & =g(f \tilde{\pi} X, \tilde{\pi} Y)=g(J \tilde{\pi} X, \tilde{\pi} Y)=g\left(\tilde{\pi} J^{\prime} X, \tilde{\pi} Y\right) \\
& =g^{\prime}\left(J^{\prime} X, Y\right) \circ \pi=\Omega^{\prime}(X, Y) \circ \pi
\end{aligned}
$$

where $\Omega^{\prime}$ is the fundamental 2 -form on $N^{2 n-2}$. Hence we have $F=\pi^{*} \Omega^{\prime}$. Now $d F=d \pi^{*} \Omega^{\prime}=\pi^{*} d \Omega^{\prime}$ and $d F=d \Omega-d u \wedge v+u \wedge d v$, from which we get the following result.

Theorem 3.2. The base manifold $\left(N^{2 n-2}, J^{\prime}, g^{\prime}\right)$ of the above fibration is Kaehlerian if and only if

$$
d \Omega=d u \wedge v-u \wedge d v
$$

on $M^{2 n}$.
Note also that by Proposition 2.6, $d \Omega=0$ implies $d u=d v=0$ and hence $d F=0$. Thus we have the following result.

Proposition 3.3. If $M^{2 n}$ is Kaehlerian, then the base manifold $N^{2 n-2}$ is also Kaehlerian.

## 4. Hermitian bicontact manifolds

We begin with the following elementary result on the topology of a compact bicontact manifold.
Theorem 4.1. Let $M^{2 n}$ be a compact bicontact manifold, and let $2 p+1$ and $2 q+1$ denote the ranks of the bicontact forms $u$ and $v$ Then the betti numbers $b_{2 p+1}$ and $b_{2 q+1}$ are nonzero.

Proof. As $(2 p+1)+(2 q+1)=2 n$ it suffices to show that $b_{2 p+1}$ is nonzero. We shall show that $u \wedge(d u)^{p}$ has nonzero harmonic part. Suppose $u \wedge(d u)^{p}$ has no harmonic part, then as $(d u)^{p+1}=0, u \wedge(d u)^{p}$ is exact, say $d \alpha$. Now on a bicontact manifold $u \wedge(d u)^{p} \wedge v \wedge(d v)^{q}$ is a volume element, hence, since $(d v)^{q+1}=0$, we have
$0 \neq \int_{M} u \wedge(d u)^{p} \wedge v \wedge(d v)^{q}=\int_{M} d \alpha \wedge v \wedge(d v)^{q}=\int_{M} d\left(\alpha \wedge v \wedge(d v)^{q}\right)=0$, a contradiction.

We shall now digress briefly to introduce the notion of a semi-invariant submanifold [3]. Let $M^{2 n}$ be an almost complex manifold with a vector field $U$ and a 1 -form $u$ with $u(U)=1$, and set $V=J U, v=-u \circ J$. Let $\iota: \bar{M} \rightarrow M^{2 n}$ be a submanifold of $M^{2 n}$ such that 1) the transform of a vector tangent to $\bar{M}$ by $J$ is in the space spanned by the tangent space of $\bar{M}$ and the vector $U, 2$ ) $V$ is tangent to $\bar{M}$, and 3) $u \circ \iota_{*}=0$; we then say that $\bar{M}$ is semi-invariant with respect to $U$. Note that $U$ is never tangent to $\bar{M}$, for if it were, then $U=\iota_{*} \bar{U}$, and $1=u(U)=u\left(\iota_{*} \bar{U}\right)=0$, a contradiction.

Now define a tensor field $\varphi$ of type $(1,1)$, a vector field $\xi$, and a 1 -form $\eta$ on $\bar{M}$ by

$$
J_{\iota_{*}} X=\iota_{*} \varphi X-\eta(X) U, \quad V=\iota_{*} \xi
$$

We then have

$$
-\iota_{*} X=\iota_{*} \varphi^{2} X-\eta(\varphi X) U-\eta(X) \iota_{*} \xi,
$$

from which it follows that

$$
\varphi^{2}=-I+\eta \otimes \xi, \quad \eta \circ \varphi=0
$$

Also

$$
-U=J V=J_{\iota_{*}} \xi=\iota_{*} \varphi \xi-\eta(\xi) U,
$$

giving

$$
\varphi \xi=0, \quad \eta(\xi)=1
$$

Thus we have the following result.
Proposition 4.2. A submanifold of $M^{2 n}$, which is semi-invariant with respect to $U$, admits an almost contact structure.

Now computing $[J, J]\left(\iota_{*} X, \iota_{*} Y\right)$ we have

$$
\begin{aligned}
{[J, J]\left(\iota_{*} X, \iota_{*} Y\right)=} & \iota_{*}[\varphi, \varphi](X, Y)+d \eta(X, Y) \iota_{*} \xi-\eta(X)\left(\mathfrak{R}_{U} J\right) \iota_{*} Y \\
& +\eta(Y)\left(\mathfrak{R}_{U} J\right) \iota_{*} X-\left(\left(\mathfrak{L}_{\varphi X} \eta\right)(Y)-\left(\mathfrak{L}_{\varphi Y} \eta\right)(X)\right) U
\end{aligned}
$$

from which we obtain the following result.
Proposition 4.3. If a submanifold is semi-invariant with respect to an analytic vector field $U$ on a complex manifold $M^{2 n}$, then its almost contact structure is normal.

Returning to the bicontact case, we assume for the remainder of this section that $M^{2 n}$ is a Hermitian bicontact manifold as defined in $\S 2$. We define a distribution $\mathscr{U}$ of dimension $2 q+1$ by

$$
\mathscr{U}=\{X \mid i(X) u=0, i(X) d u=0\},
$$

where $i$ denotes the interior product operator. We shall show that $\mathscr{U}$ is integrable. Let $X$ and $Y$ be vector fields belonging to $\mathscr{U}$. Then

$$
0=d u(X, Y)=X u(Y)-Y u(X)-u([X, Y])=-u([X, Y])
$$

Also for any $Z$

$$
0=d u(X, Z)=X u(Z)-u([X, Z])=\left(\Omega_{X} u\right)(Z)
$$

and therefore

$$
\begin{aligned}
d u([X, Y], Z) & =[X, Y] u(Z)-Z u([X, Y])-u([[X, Y], Z]) \\
& =\left(\mathfrak{R}_{[X, Y]} u\right)(Z)=\left(\left(\mathfrak{R}_{X} \mathfrak{R}_{Y}-\mathfrak{R}_{Y} \mathfrak{R}_{X}\right) u\right)(Z)=0 .
\end{aligned}
$$

Similarly the complementary distribution $\mathscr{V}=\{X \mid i(X) v=0, i(X) d v=0\}$ of dimension $2 p+1$ is integrable.

Theorem 4.4. A Hermitian bicontact manifold $M^{2 n}$ with du of bidegree $(1,1)$ is locally the product of two normal contact manifolds $M^{2 p+1}$ and $M^{2 q+1}$.

Proof. As noted above the distributions $\mathscr{U}$ and $\mathscr{V}$ are complementary and integrable. Thus $M^{2 n}$ is locally the product of the respective maximal integral
submanifolds $M^{2 q+1}$ and $M^{2 p+1}$. We shall show that the integral submanifold $M^{2 q+1}$ of $\mathscr{U}$ is semi-invariant with respect to $U$. Let $\iota: M^{2 q+1} \rightarrow M^{2 n}$ denote the immersion, and let $X$ be tangent to $M^{2 q+1}$, i.e., $\iota_{*} X \in \mathscr{U}$. Set $Y=J_{\iota_{*}} X+$ $v\left(\iota_{*} X\right) U$. Then

$$
u(Y)=u\left(J_{\iota_{*}} X\right)+v\left(\iota_{*} X\right)=-v\left(\iota_{*} X\right)+v\left(\iota_{*} X\right)=0
$$

and

$$
d u(Y, Z)=d u\left(J \epsilon_{*} X+v\left(\iota_{*} X\right) U, Z\right)=d u\left(J_{\epsilon_{*}} X, Z\right)=-d u\left(\iota_{*} X, J Z\right)=0
$$

since du is of bidegree $(1,1)$. Thus $Y \in \mathscr{U}$ so that $M^{2 q+1}$ is semi-invariant with respect to $U$, and hence by Proposition 4.3 its almost contact structure is normal. Finally as

$$
\eta(X)=-g\left(J_{\iota_{*}} X, U\right)=g\left(\iota_{*} X, V\right)=v\left(\iota_{*} X\right)
$$

we have that $\eta \wedge\left(d_{\eta}\right)^{q} \neq 0$ on $M^{2 q+1}$. Similarly, $M^{2 p+1}$ is semi-invariant with respect to $V$, and is thus a normal contact manifold completing the proof.

Now let $P$ and $Q$ denote the projection maps to the tangent spaces of $M^{2 p+1}$ and $M^{2 q+1}$ respectively. We note for later use that $J(P-u \otimes U)=(P-u \otimes U) J$ as is easily verified, and hence that

$$
J P=P J+u \otimes V+v \otimes U
$$

We now compute the Lie derivative of $P$ with respect to $U$ and $V$. First note that

$$
\left(\Omega_{U} P\right) X=[U, P X]-P[U, X] .
$$

Thus, if $X$ is $U$ or $V$, we clearly have $\left(\Omega_{U} P\right) X=0$. If $X$ is orthogonal to $U$ but also tangent to $M^{2 p+1}$, then $P X=X$ and $[U, X]$ is again tangent to $M^{2 p+1}$ so that

$$
\left(\Omega_{U} P\right) X=[U, X]-[U, X]=0
$$

Finally, if $X$ is orthogonal to $V$ and tangent to $M^{2 q+1}$, then $P X=0$. Let $Y$ be arbitrary. Then as $U$ is Killing and $P$ symmetric, we have

$$
\begin{aligned}
g\left(\left(\mathfrak{L}_{U} P\right) X, Y\right) & =-g(P[U, X], Y)=-g\left(\nabla_{U} X, P Y\right)+g\left(\nabla_{X} U, P Y\right) \\
& =g\left(X, \nabla_{U} P Y\right)-g\left(X, \nabla_{P Y} U\right)=g(X,[U, P Y])=0 .
\end{aligned}
$$

Similarly $\mathfrak{R}_{V} P=0$, and thus $P$ and $Q=I-P$ are projectable by the fibration of $\S 3$.

On the base manifold $N^{2 n-2}$ of the fibration we define an almost product structure as follows.

$$
P^{\prime} X=\pi_{*} P \tilde{\pi} X, \quad Q^{\prime} X=\pi_{*} Q \tilde{\pi} X
$$

Then a direct computation shows that

$$
P^{\prime 2}=P^{\prime}, \quad Q^{2}=Q^{\prime}, \quad P^{\prime} Q^{\prime}=Q^{\prime} P^{\prime}=0, \quad P^{\prime}+Q^{\prime}=I
$$

Moreover as both the distributions $\mathscr{U}$ and $\mathscr{V}$ are integrable, $[P, P]=0$ so that

$$
\begin{aligned}
{\left[P^{\prime}, P^{\prime}\right](X, Y)=} & \pi_{*} P^{2} \tilde{\pi}\left[\pi_{*} \tilde{\pi} X, \pi_{*} \tilde{\pi} Y\right]+\left[\pi_{*} P \tilde{\pi} X, \pi_{*} P \tilde{\pi} Y\right] \\
& -\pi_{*} P \tilde{\pi}\left[\pi_{*} P \tilde{\pi} X, \pi_{*} \tilde{\pi} Y\right]-\pi_{*} P \tilde{\pi}\left[\pi_{*} \tilde{\pi} X, \pi_{*} P \tilde{\pi} Y\right] \\
= & \pi_{*}[P, P](\tilde{\pi} X, \tilde{\pi} Y)=0
\end{aligned}
$$

Thus the induced almost product structure on $N^{2 n-2}$ is integrable, and so $N^{2 n-2}$ is locally the product of two manifolds $N^{2 p}$ and $N^{2 q}$.

We have already seen that $J$ is projectable since $U$ and $V$ are analytic, and that ( $J^{\prime}=\pi_{*} J \tilde{\pi}, g^{\prime}$ ) is a Hermitian structure on $N^{2 n-2}$. Now let $\iota^{\prime}: N^{2 p} \rightarrow N^{2 n-2}$ denote the immersion of $N^{2 p}$ in $N^{2 n-2}$, and let $X$ be a vector field on $N^{2 p}$. Then using $J P=P J+u \otimes V+v \otimes U$, we have

$$
\begin{aligned}
J^{\prime} \iota_{*}^{\prime} X & =\pi_{*} J \tilde{\pi} P^{\prime} \iota_{*}^{\prime} X=\pi_{*} J P \tilde{\pi} \iota_{*}^{\prime} X=\pi_{*} P J \tilde{\pi} \iota_{*}^{\prime} X \\
& =\pi_{*} P \tilde{\pi} J^{\prime} \iota_{*}^{\prime} X=P^{\prime} J^{\prime} \iota_{*}^{\prime} X
\end{aligned}
$$

and hence $N^{2 p}$ is an invariant submanifold of $N^{2 n-2}$ and consequently is a Hermitian submanifold of $N^{2 n-2}$. Moreover, if $N^{2 n-2}$ is Kaehlerian, so is $N^{2 p}$ and similarly $N^{2 q}$. Also, if each of the induced structures on $N^{2 p}$ and $N^{2 q}$ are Kaehlerian, so is the structure on $\mathrm{N}^{2 n-2}$. Thus using Theorems 3.1 and 4.4 and Proposition 3.2 we have

Theorem 4.5. Let $M^{2 n}$ be a regular Hermitian bicontact manifold with du of bidegree $(1,1)$. Then the base manifold $N^{2 n-2}$ of the induced fibration is locally the product of two Hermitian manifolds. Moreover, $N^{2 n-2}$ is locally the product of two Kaehler manifolds if and only if the fundamental 2-form $\Omega$ on $M^{2 n}$ satisfies $d \Omega=d u \wedge v-u \wedge d v$.

## 5. Curvature

In this section we give some results on the curvature of a Hermitian manifold admitting a holomorphic pair of automorphisms.

Proposition 5.1. Let $\left(M^{2 n}, J, g\right)$ be a Hermitian manifold admitting a holomorphic pair of automorphisms ( $U, V=J U$ ). Then the sectional curvature of a section spanned by $U$ and $V$ vanishes.

Proof. Since $U$ is Killing, from $g\left(\nabla_{V} U, X\right)-g\left(\nabla_{X} U, V\right)=0$ which was derived in the proof of Lemma 2.3 it follows that $2 g\left(\nabla_{V} U, X\right)=0$ and hence that $\nabla_{V} U=0$. Moreover as $U$ is a unit vector field, we have $0=g\left(\nabla_{X} U, U\right)$ $=-g\left(\nabla_{U} U, X\right)$ giving $\nabla_{U} U=0$. Thus $g\left(R_{U V} U, V\right)=0$, where $R$ is the
curvature tensor of $g$, and hence the sectional curvature of a section spanned by $U$ and $V$ vanishes.

Theorem 5.2. If the Hermitian manifold $M^{2 n}$ of Theorem 3.1 has nonnegative sectional curvature, then the base manifold $N^{2 n-2}$ also has nonnegative curvature.

Proof. First we note some relations.

$$
[\tilde{\pi} X, \tilde{\pi} Y]=\tilde{\pi}[X, Y]+u([\tilde{\pi} X, \tilde{\pi} Y]) U+v([\tilde{\pi} X, \tilde{\pi} Y]) V
$$

Since $U$ and $V$ are Killing, we have

$$
\begin{aligned}
& g\left(\nabla_{\tilde{\pi} X} \tilde{\pi} Y, U\right)=-g\left(\tilde{\pi} Y, \nabla_{\tilde{\pi} X} U\right)=-\frac{1}{2} d u(\tilde{\pi} X, \tilde{\pi} Y) \\
& g\left(\nabla_{\tilde{\pi} X} \tilde{\pi} Y, V\right)=-g\left(\tilde{\pi} Y, \nabla_{\tilde{\pi} X} V\right)=-\frac{1}{2} d v(\tilde{\pi} X, \tilde{\pi} Y)
\end{aligned}
$$

and hence

$$
\nabla_{\tilde{\pi} X} \tilde{\pi} Y=\tilde{\pi} \nabla_{X}^{\prime} Y-\frac{1}{2} d u(\tilde{\pi} X, \tilde{\pi} Y) U-\frac{1}{2} d v(\tilde{\pi} X, \tilde{\pi} Y) V,
$$

where $\nabla^{\prime}$ is the Riemannian connection of $g^{\prime}$. Also, since $[U, \tilde{\pi} X]$ is vertical, $g\left(\nabla_{U} \tilde{\pi} X, \tilde{\pi} Y\right)=g\left(\nabla_{\tilde{\pi} X} U+[U, \tilde{\pi} X], \tilde{\pi} Y\right)=\frac{1}{2} d u(\tilde{\pi} X, \tilde{\pi} Y)$, and similarly $g\left(\nabla_{V} \tilde{\pi} X, \tilde{\pi} Y\right)=\frac{1}{2} d v(\tilde{\pi} X, \tilde{\pi} Y)$.

We now compute the curvature.

$$
\begin{aligned}
g\left(R_{\tilde{\pi} X \tilde{\pi} \tilde{\pi}} \tilde{\pi} X, \tilde{\pi} Y\right)= & g\left(\nabla_{\tilde{\pi} X} \nabla_{\tilde{\pi} Y} \tilde{\pi} X-\nabla_{\tilde{\pi} Y} \nabla_{\tilde{\pi} X} \tilde{\pi} X-\nabla_{[\tilde{\pi} X, \tilde{\pi} Y]} \tilde{\pi} X, \tilde{\pi} Y\right) \\
= & g\left(\nabla_{\tilde{\pi} X}\left(\tilde{\pi} \nabla_{Y}^{\prime} X-\frac{1}{2} d u(\tilde{\pi} Y, \tilde{\pi} X) U-\frac{1}{2} d v(\tilde{\pi} Y, \tilde{\pi} X) V\right)\right. \\
& \left.-\nabla_{\tilde{\pi} Y} \tilde{\pi} \nabla_{X}^{\prime} X-\nabla_{[\tilde{\pi} X, \tilde{\pi}]]} \tilde{\pi} X, \tilde{\pi} Y\right) \\
= & g\left(\tilde{\pi} \nabla_{X}^{\prime} \nabla_{Y}^{\prime} X, \tilde{\pi} Y\right)-\frac{1}{2} d u(\tilde{\pi} Y, \tilde{\pi} X) g\left(\nabla_{\tilde{\pi} X} U, \tilde{\pi} Y\right) \\
& -\frac{1}{2} d v(\tilde{\pi} Y, \tilde{\pi} X) g\left(\nabla_{\tilde{\pi} X} V, \tilde{\pi} Y\right)-g\left(\tilde{\pi} \nabla_{Y}^{\prime} \nabla_{X}^{\prime} X, \tilde{\pi} Y\right) \\
& -g\left(\tilde{\pi} \nabla_{[X, Y]}^{\prime} X, \tilde{\pi} Y\right)-u([\tilde{\pi} X, \tilde{\pi} Y]) g\left(\nabla_{U} \tilde{\pi} X, \tilde{\pi} Y\right) \\
& -v([\tilde{\pi} X, \tilde{\pi} Y]) g\left(\nabla_{Y} \tilde{\pi} X, \tilde{\pi} Y\right) \\
= & g^{\prime}\left(R_{X Y}^{\prime} X, Y\right) \circ \pi+\frac{3}{4} d u(\tilde{\pi} X, \tilde{\pi} Y)^{2}+\frac{3}{4} d v(\tilde{\pi} X, \tilde{\pi} Y)^{2}
\end{aligned}
$$

since $d u(\tilde{\pi} X, \tilde{\pi} Y)=\tilde{\pi} X u(\tilde{\pi} Y)-\tilde{\pi} Y u(\tilde{\pi} X)-u([\tilde{\pi} X, \tilde{\pi} Y])=-u([\tilde{\pi} X, \tilde{\pi} Y])$. Now for the sectional curvature $K$ we have

$$
K(\tilde{\pi} X, \tilde{\pi} Y)=\frac{-g\left(R_{\pi \tilde{\pi} X Y} \tilde{\pi} X, \tilde{\pi} Y\right)}{g(\tilde{\pi} X, \tilde{\pi} X) g(\tilde{\pi} Y, \tilde{\pi} Y)-g(\tilde{\pi} X, \tilde{\pi} Y)^{2}}
$$

Thus, if $K \geq 0$, then $g\left(R_{\tilde{\pi} X \tilde{\pi} Y} \tilde{\pi} X, \tilde{\pi} Y\right) \leq 0$ and hence

$$
-g^{\prime}\left(R_{X Y}^{\prime} X, Y\right) \circ \pi \geq \frac{3}{4}\left(d u(\tilde{\pi} X, \tilde{\pi} Y)^{2}+d v(\tilde{\pi} X, \tilde{\pi} Y)^{2}\right),
$$

from which it follows that the sectional curvature $K^{\prime}(X, Y) \geq 0$.

## References

[1] D. E. Blair, Geometry of manifolds with structural group $\mathscr{U}(n) \times \mathcal{O}(s)$, J. Differential Geometry 4 (1970) 155-167.
[2] D. E. Blair, G. D. Ludden \& K. Yano, Differential geometric structures on principal toroidal bundles, Trans. Amer. Math. Soc. 181 (1973) 175-184.
[ 3 ] -, Semi-invariant immersions, to appear in Kōdai Math. Sem. Rep.
[4] E. Calabi \& B. Eckmann, A class of compact complex manifolds which are not algebraic, Ann. of Math. 58 (1953) 494-500.
[5] S.S. Chern, Complex manifolds without potential theory, Math. Studies No. 15, Van Nostrand, Princeton, 1967.
[6] A. Morimoto, On normal almost contact structures, J. Math. Soc. Japan 15 (1963) 420-436.
[7] H. Nakagawa, f-structures induced on submanifolds in spaces, almost Hermitian or almost Kaehlerian, Kōdai Math. Sem. Rep. 18 (1966) 161-183.
[8] S. Sasaki \& Y. Hatakeyama, On differentiable manifolds with contact metric structures, J. Math. Soc. Japan 14 (1962) 249-271.
[9] K. Yano, On a structure defined by a tensor field f of type $(1,1)$ satisfying $\mathrm{f}^{3}+\mathrm{f}=$ 0 , Tensor 15 (1963) 99-109.

Michigan State University


[^0]:    Communicated November 10, 1972.

[^1]:    ${ }^{1}$ More generally on an almost complex manifold a vector field $U$ is said to be almost analytic if $\Omega_{U} J=0$ and $[J, J](U, X)=0$ for all vector fields $X$.

