SUBELLIPTIC ESTIMATES FOR THE $\bar{\partial}$-NEUMANN PROBLEM IN \boldsymbol{C}^{2}

PETER GREINER

1. Introduction

In this paper we prove a conjecture of J. J. Kohn concerning precise subelliptic estimates for the local $\bar{\partial}$-Neumann problem in C^{2}. Let Ω be a bounded open set in C^{2} with C^{∞} boundary ω. If ω is pseudoconvex near a point $P \in \omega$, and P is of type m (the precise definitions are given in § 2), then Kohn proved that the subelliptic esitimate

$$
\left.\|\phi\|_{(s)}^{(\Omega)} \leq C_{s}\|\bar{\partial} \phi\|_{(0)}^{(\Omega)}+\|\theta \phi\|_{(0)}^{(\Omega)}+\|\phi\|_{(0)}^{(\Omega)}\right)
$$

holds for all $s<1 /(m+1)$ (see [8, (7.4)]). Here ϕ is a C^{∞} one-form with compact support in $\Omega \cap U$ where U is some sufficiently small neighborhood of P, θ is the adjoint of $\bar{\partial}$, and ϕ is in the domain of θ.

In [7] and [8] Kohn suggested that (i) the subelliptic estimate in question holds with $s=1 /(m+1)$, and (ii) it cannot hold with $s>1 /(m+1)$. In Theorem 3.7 of this paper we shall prove the second conjecture. We do not know whether $s=1 /(m+1)$ is achieved. In proving Theorem 3.7 we make use of results obtained by Yu. V. Egorov [1], L. Hörmander [4], [5] and W. J. Sweeney [9], which enable us to reduce the problem to a similar question concerning a system of pseudo-differential operators on ω. We shall compute these pseudo-differential operators with great precision by utilizing some results of Kohn (see [7] and [8]) concerning the behavior of ω near a point of type m. Our notation and terminology are standard (see e.g. [3] and [4]).

2. The Levi invariants

We recall the basic definitions of [8]. Let Ω be a bounded open subset of C^{2} with C^{∞} boundary ω, and let $r(P)$ denote the distance of the point P from ω, and assume that $r<0$ in Ω and $r>0$ outside of Ω. A vector field L is said to be holomorphic in some open set $U \subset C^{2}$ if it can be written in the form

$$
\begin{equation*}
L=a^{1} \frac{\partial}{\partial z_{1}}+a^{2} \frac{\partial}{\partial z^{2}}, \quad a^{i} \in C^{\infty}(U), \tag{2.1}
\end{equation*}
$$

[^0]where $\partial / \partial z_{j}=\frac{1}{2}\left(\partial / \partial x_{j}-i\left(\partial / \partial y_{j}\right)\right), j=1,2$. A vector field L is said to be tangential if at each point of ω it is tangent to ω, that is, if $L(r)=0$ at $r=0$. As usual we define \bar{L} by
\[

$$
\begin{equation*}
\bar{L}=\bar{a}^{1} \frac{\partial}{\partial \bar{z}_{1}}+\bar{a}^{2} \frac{\partial}{\partial \bar{z}_{2}} \tag{2.2}
\end{equation*}
$$

\]

If T_{1} and T_{2} are two vector fields, we define the Lie bracket by $\left[T_{1}, T_{2}\right]=$ $T_{1} T_{2}-T_{2} T_{1}$. The Lie algebra generated by T_{1} and T_{2} over the C^{∞} functions is the smallest module over the C^{∞} functions closed under [,], and is denoted by $\mathscr{L}\left\{T_{1}, T_{2}\right\} . \mathscr{L}\left\{T_{1}, T_{2}\right\}$ is filtered, that is,

$$
\mathscr{L}\left\{T_{1}, T_{2}\right\}=\bigcup_{k=0}^{\infty} \mathscr{L}_{k}\left\{T_{1}, T_{2}\right\},
$$

where $\mathscr{L}_{0}\left\{T_{1}, T_{2}\right\}$ is the module spanned by T_{1} and T_{2}, and $\mathscr{L}_{k_{+1}}\left\{T_{1}, T_{2}\right\}$ is the module spanned by the elements of $\mathscr{L}_{k}\left\{T_{1}, T_{2}\right\}$ and the elements of the form [A, T_{i}] with $A \in \mathscr{L}_{k}\left\{T_{1}, T_{2}\right\}$. Set

$$
\mathscr{L}=\mathscr{L}\{L, \bar{L}\}, \quad \mathscr{L}_{k}=\mathscr{L}_{k}\{L, \bar{L}\}
$$

where L is a holomorphic tangent vector in some neighborhood of a point $P \in \omega$, which is different from zero at P. We note that the \mathscr{L} and \mathscr{L}_{k} evaluated at P do not depend on the choice of L.
2.3. Definition. $P \in \omega$ is said to be of finite type if there exists $F \in \mathscr{L}$ such that $\left\langle(\partial r)_{P}, F_{P}\right\rangle \neq 0$. Here \langle,$\rangle denotes contraction between cotangent$ vectors and tangent vectors, and the subscript P denotes evaluation at $P . P$ of finite type is said to be of type m if m is the least integer such that there is an element in \mathscr{L}_{m} satisfying the above property.
2.4. Definition. Ω is said to be pseudo-convex near a point $P \in \omega$ if there is a neighborhood U of P such that

$$
\begin{equation*}
\langle\partial r,[\bar{L}, L]\rangle_{\omega \cap U} \geq 0, \tag{2.5}
\end{equation*}
$$

where L is a nonzero tangential holomorphic vector field.
2.6. Definition. If Ω is pseudo-convex near a point $P \in \omega$, and P is of type m, we say that ω is pseudo-convex of order m at P.

3. The local $\bar{\partial}$-Neumann problem in C^{2}

Let $H_{(s)}^{(\Omega)}$ and $H_{(s)}^{(\omega)}$ denote the Sobolev spaces on Ω and ω respectively (see e.g. [3]) with norms denoted by $\left\|\|_{(s)}^{(\Omega)}\right.$ and $\| \|_{(s)}^{(())}$as usual. These spaces and norms are well defined for vector functions, in particular, for (0,1)-forms $\phi=\phi_{1} d \bar{z}_{1}+\phi_{2} d \bar{z}_{2}, \phi_{1}, \phi_{2} \in C^{\infty}(\Omega)$. On (0,1)-forms we have

$$
\begin{equation*}
\bar{\partial} \phi=\left(\partial \phi_{2} / \partial \bar{z}_{1}-\partial \phi_{1} / \partial \bar{z}_{2}\right) d \bar{z}_{1} \wedge d \bar{z}_{2} . \tag{3.1}
\end{equation*}
$$

Let θ denote the formal adjoint of $\bar{\partial}$ operating on $(0,1)$-forms, that is,

$$
\begin{equation*}
(\bar{\partial} \phi, \psi)_{L^{2}(\Omega)}=(\phi, \theta \psi)_{L^{2}(\Omega)}, \tag{3.2}
\end{equation*}
$$

$\phi \in C_{0}^{\infty}(\Omega)$ and $\psi \in D_{(0,1)}(\Omega)$, where $D_{(0,1)}(\Omega)$ stands for $C^{\infty}(0,1)$-forms with compact support in Ω. More precisely we have

$$
\begin{equation*}
\theta\left(\phi_{1} d \bar{z}_{1}+\phi_{2} d \bar{z}_{2}\right)=-\partial \phi_{1} / \partial z_{1}-\partial \phi_{2} / \partial z_{2} \tag{3.3}
\end{equation*}
$$

Now we can state the main result of [8].
3.4. Theorem. Let $P \in \omega$ be a point of type m, and U be an open neighborhood of P such that $U \cap \omega$ is pseudoconvex. Then there exists a constant C_{s} for all $s, 0<s<1 /(m+1)$, such that

$$
\begin{equation*}
\left.\|\phi\|_{(s)}^{(\Omega)} \leq C_{s}\|\bar{\partial} \phi\|_{(0)}^{(\Omega)}+\|\theta \phi\|_{(0)}^{(\Omega)}+\|\phi\|_{(0)}^{(\Omega)}\right) \tag{3.5}
\end{equation*}
$$

for all $\phi \in D_{(0,1)}(U \cap \bar{\Omega})$ satisfying $\langle\phi, \bar{\partial} r\rangle=0$ on $\omega \cap U$.
We note that $\langle\psi, \bar{\partial} r\rangle=0$ on $\omega \cap U$ is equivalent to

$$
\langle\bar{\partial} \phi, \psi\rangle=\langle\phi, \theta \psi\rangle, \quad \phi \in D_{(0,1)}(U \cap \bar{\Omega}) .
$$

When $m=1$, (3.4) holds with $s=\frac{1}{2}$, and this is the best possible estimate (see [4], [6] and [10]). When $m>1$, we do not have such a precise result. On the other hand, we have the following result.
3.7. Theorem. Let $P \in \omega$ be a point of type m, and U a neighborhood of P. Then the estimate (3.5) does not hold with any $s>1 /(m+1)$.

The proof of Theorem 3.7 will be given in $\S \S 4,5$ and 6 .

4. The $\bar{\partial}$ operator near a point of type m

Let $P \in \omega$ be a point of type m, and U a sufficiently small neighborhood of P. By an affine change of coordinates we construct coordinates $z_{1}^{\prime}, z_{2}^{\prime}$ in U such that

$$
\begin{gather*}
z_{1}^{\prime}(P)=z_{2}^{\prime}(P)=\left(\partial r / \partial z_{1}^{\prime}\right)_{P}=\left(\partial r / \partial \bar{z}_{1}^{\prime}\right)_{P}=\left(\partial r / \partial y_{2}^{\prime}\right)_{P}=0 \tag{4.1}\\
\left(\partial r / \partial x_{2}^{\prime}\right)_{P}=1
\end{gather*}
$$

where $z_{1}^{\prime}=x_{1}^{\prime}+i y_{1}^{\prime}$ and $z_{2}^{\prime}=x_{2}^{\prime}+i y_{2}^{\prime}$. Now r has the following Taylor series expansion

$$
\begin{equation*}
r\left(z^{\prime}\right)=\operatorname{Re} h\left(z^{\prime}\right)+\psi\left(z^{\prime}\right)+O\left(\left|z^{\prime}\right|^{m+2}\right) \tag{4.2}
\end{equation*}
$$

where $\psi\left(z^{\prime}\right)$ is a polynomial of degree $m+1$ such that each term contains $z_{i}^{\prime} \bar{z}_{j}^{\prime}$ as a factor and

$$
\begin{equation*}
h\left(z_{1}^{\prime}, z_{2}^{\prime}\right)=\sum_{s+t \leq m+1} \frac{1}{s!t!}\left\{\left(\partial / \partial z_{1}^{\prime}\right)^{s}\left(\partial / \partial z_{2}^{\prime}\right)^{t} r\right\} z_{1}^{\prime s} z_{2}^{\prime t} . \tag{4.3}
\end{equation*}
$$

According to (4.1) and (4.2)

$$
\begin{equation*}
\left(\partial h / \partial z_{1}^{\prime}\right)_{0}=0, \quad\left(\partial h / \partial z_{2}^{\prime}\right)_{0}=\left(\partial r / \partial x_{2}^{\prime}\right)_{0}=1 \tag{4.4}
\end{equation*}
$$

Thus z_{1}^{\prime} and h are linearly independent in U (here we need U to be sufficiently small), and therefore we can introduce holomorphic coordinates $w_{1}=u_{1}+i v_{1}$, $w_{2}=u_{2}+i v_{2}$ defined by $w_{1}=z_{1}^{\prime}$ and $w_{2}=h$. Then (4.2) becomes

$$
\begin{equation*}
r\left(w_{1}, w_{2}\right)=u_{2}+\gamma\left(w_{1}, w_{2}\right)+O\left(|w|^{m+2}\right), \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma\left(w_{1}, w_{2}\right)=O\left(|w|^{2}\right) \tag{4.6}
\end{equation*}
$$

is a polynomial of degree $m+1$ which contains no pure terms, that is, holomorphic or antiholomorphic terms.

To derive a precise expression for the $\bar{\partial}$ operator we set

$$
|\nabla r| \omega^{1}=r_{w_{2}} d w_{1}-r_{w_{1}} d w_{2}, \quad|\nabla r| \omega^{2}=r_{w_{1}} d w_{1}+r_{w_{2}} d w_{2}=\partial r
$$

where $r_{w_{1}}=\partial r / \partial w_{1}$, etc., so that ω_{1} and ω_{2} yield a basis of the (1,0)-forms in U. Let $\phi=\phi_{1} \bar{\omega}^{1}+\phi_{2} \bar{\omega}^{2}$. From (3.1) it is easy to see that the $\bar{\partial}$ operator on $(0,1)$-forms ϕ has the following expression in terms of the basis $\bar{\omega}^{1}$ and $\bar{\omega}^{2}$:

$$
\begin{align*}
\bar{\partial} \phi= & \left(-\bar{M} \phi_{1}+\bar{L} \phi_{2}\right) \bar{\omega}^{1} \wedge \bar{\omega}^{2} \tag{4.7}\\
& +\left(\text { terms in which } \phi_{1} \text { and } \phi_{2} \text { remain undifferentiated }\right),
\end{align*}
$$

where

$$
\begin{align*}
& |\nabla r| L=r_{w_{2}} \frac{\partial}{\partial w_{1}}-r_{w_{1}} \frac{\partial}{\partial w_{2}}, \tag{4.8}\\
& |\nabla r| M=r_{w_{1}} \frac{\partial}{\partial w_{1}}+r_{w_{2}} \frac{\partial}{\partial w_{2}} . \tag{4.9}
\end{align*}
$$

Given $\phi=\phi_{1} \bar{\omega}^{1}+\phi_{2} \bar{\omega}^{2}$ the $\bar{\partial}$-Neumann boundary condition $\langle\phi, \bar{\partial} r\rangle=0$ on ω is equivalent to the vanishing of ϕ_{2} on ω. If $\phi=\phi_{1} \bar{\omega}^{1}+\phi_{2} \bar{\omega}^{2} \in C_{0}^{\infty}(U \cap \bar{\Omega})$ and $\phi_{2}=0$ on ω, then $\theta \phi$ is well defined and is given by the expression

$$
\begin{align*}
\theta \phi= & -\left(L \phi_{1}+M \phi_{2}\right) \tag{4.10}\\
& +\left(\text { terms in which } \phi_{1} \text { and } \phi_{2} \text { remain undifferentiated }\right) .
\end{align*}
$$

Thus in terms of the basis $\bar{\omega}^{1}, \bar{\omega}^{2}$ the principal part of the $\bar{\alpha}$-Neumann operator on (0,1)-forms is given by

$$
D_{0}=\left(\begin{array}{lr}
-\bar{M} & \bar{L} \tag{4.11}\\
-L & -M
\end{array}\right)
$$

4.12. Lemma. Let $P \in \omega$ be of type m. Then $\gamma\left(w_{1}, 0\right)$ is a homogeneous polynomial in w_{1} of degree $m+1$. More precisely

$$
\begin{equation*}
\gamma\left(w_{1}, 0\right)=\sum_{s+t=m-1} \frac{1}{(s+1)!(t+1)!} L^{s} \bar{L}^{t}\langle\partial r,[L, \bar{L}]\rangle w_{1}^{s+1} \bar{w}_{1}^{t+1} \tag{4.13}
\end{equation*}
$$

Proof. See Kohn [8, Lemma 3.16].
Consider

$$
\begin{equation*}
r=u_{2}+\gamma\left(u_{1}, v_{1}, u_{2}, v_{2}\right)+O\left(|u|^{m+2}+|v|^{m+2}\right)=0 \tag{4.14}
\end{equation*}
$$

where we set $u=\left(u_{1}, u_{2}\right)$ and $v=\left(v_{1}, v_{2}\right)$. Since $\left(\partial r / \partial u_{2}\right)_{0}=1$, we can solve (4.14) for $u_{2}=u_{2}\left(u_{1}, v_{1}, v_{2}\right)$ in a neighborhood of 0 .
4.15. Lemma. Let $u_{2}\left(u_{1}, v_{1}, v_{2}\right)$ be a solution of (4.14) in some neighborhood of 0. Then

$$
\begin{equation*}
\frac{\partial^{l+k} u_{2}(0)}{\partial u_{1}^{l} \partial v_{1}^{k}}=0 \quad \text { if } \quad l+k \leq m \tag{4.16}
\end{equation*}
$$

Proof. According to Lemma 4.12

$$
\begin{equation*}
\frac{\partial^{l+k} \gamma(0)}{\partial u_{1}^{l} \partial v_{1}^{k}}=0 \quad \text { if } \quad l+k \leq m \tag{4.17}
\end{equation*}
$$

By the definition of $r, u_{2}(0)=0$. Next, replacing u_{2} by $u_{2}\left(u_{1}, v_{1}, v_{2}\right)$ in (4.17) we obtain

$$
\frac{\partial u_{2}}{\partial u_{1}}+\frac{\partial \gamma}{\partial u_{1}}+\frac{\partial \gamma}{\partial u_{2}} \frac{\partial u_{2}}{\partial u_{1}}+O\left(\left|u_{1}\right|^{m+1}+|v|^{m+1}\right)=0
$$

Since $\gamma=O\left(|u|^{2}+|v|^{2}\right)$, this implies that

$$
\begin{equation*}
\frac{\partial u_{2}(0)}{\partial u_{1}}=0, \text { and similarly } \frac{\partial u_{2}(0)}{\partial v_{1}}=0 . \tag{4.18}
\end{equation*}
$$

Now suppose that

$$
\begin{equation*}
\frac{\partial^{l+k} u_{2}(0)}{\partial u_{1}^{l} \partial v_{1}^{k}}=0 \quad \text { if } \quad l+k \leq p \tag{4.19}
\end{equation*}
$$

for some $p<m$. Then for a fixed l and k satisfying $l+k=p+1$ we have

$$
\begin{aligned}
& \frac{\partial^{p+1} u_{2}}{\partial u_{1}^{l} \partial v_{1}^{k}}+\frac{\partial^{p+1} \gamma}{\partial u_{1}^{l} \partial v_{1}^{k}} \\
& +\sum_{\sum_{j}\left(s_{j}+t_{j}+\left(q_{j}-1\right)\right) \leq p+1} C_{\left\{s_{j}, t_{j}, q_{j}\right\}_{j}} \prod_{j}\left(\frac{\partial^{s_{j}+t_{j}} u_{2}(0)}{\partial u_{1}^{s_{j}} \partial v_{1}^{t_{j}}}\right)^{q_{j}} \\
& +O\left(\left(\left|u_{1}\right|+|v|\right)^{m+1-p}\right)=0 .
\end{aligned}
$$

In particular if we set $u_{1}=v_{1}=v_{2}=0$, the induction hypothesis (4.19) implies that

$$
\frac{\partial^{p+1} u_{2}(0)}{\partial u_{1}^{l} \partial v_{1}^{k}}+\frac{\partial \gamma(0)}{\partial u_{2}} \frac{\partial^{p+1} u_{2}(0)}{\partial u_{1}^{l} \partial v_{1}^{k}}=\frac{\partial^{p+1} u_{2}(0)}{\partial u_{1}^{l} \partial v_{1}^{k}}=0 .
$$

This proves Lemma 4.15.
To utilize Lemma 4.15 we set $x_{1}=u_{1}, x_{2}=v_{1}, x_{3}=v_{2}$ and $\rho=-r$. Then a simple computation yields

$$
\begin{gather*}
|\nabla \rho| L=-\frac{1}{2} \rho_{w_{2}}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right)-\frac{1}{2} i \rho_{w_{1}} \frac{\partial}{\partial x_{3}}, \tag{4.20}\\
|\nabla \rho| M=-\left|\nabla_{w} \rho\right|^{2} \frac{\partial}{\partial \rho}-\frac{1}{2} \rho_{w_{1}}\left(\frac{\partial}{\partial x_{1}}-i \frac{\partial}{\partial x_{2}}\right)+\frac{1}{2} i \rho_{w_{2}} \frac{\partial}{\partial x_{3}}, \tag{4.21}
\end{gather*}
$$

where

$$
\begin{equation*}
\left|\nabla_{w \rho}\right|^{2}=\left|\rho_{w_{1}}\right|^{2}+\left|\rho_{w_{2}}\right|^{2} . \tag{4.22}
\end{equation*}
$$

5. Reduction to the boundary

In [4] L. Hörmander reduced the study of the estimate (3.5) from $U \cap \Omega$ to the study of similar estimates involving pseudo-differential operators on $U \cap \omega$, at least in the case $s=\frac{1}{2}$. This result was extended by W. J. Sweeney [10] to arbitrary $s, 0<s \leq 1$. To be able to state the result in our particular case we shall first compute the boundary system of pseudo-differential operators in question. From (4.11) we have

$$
\begin{equation*}
D_{0}^{*} D_{0}=(L(-\bar{L})+M(-\bar{M})) I_{2}+\text { first order terms } \tag{5.1}
\end{equation*}
$$

where I_{2} stands for the two-by-two identity matrix. Let r^{0} denote $d^{0} d^{0}$, the principal symbol of $D_{0}^{*} D_{0}$. A somewhat messy calculation yields

$$
\begin{align*}
r^{0}(x, \xi, \tau)= & \left(|L(x, \xi)|^{2}+|M(x, \xi, \tau)|^{2}\right) I_{2} \\
= & \frac{1}{4}\left\{\left|\nabla_{w} \rho\right|^{2} \tau^{2}+\left[\operatorname{Re}\left(\rho_{w_{1}}\left(\xi_{1}-i \xi_{2}\right)\right)\right.\right. \tag{5.2}\\
& \left.\left.\quad-\left(\operatorname{Im} \rho_{w_{2}}\right) \xi_{3}\right] \tau+\frac{1}{4}|\xi|^{2}\right\} I_{2}|\nabla \rho|^{-2},
\end{align*}
$$

where τ stands for the symbol of $\partial / i \partial \rho$, and ρ is assumed to be zero. The equation $r^{0}\left(x, \xi, D_{\rho}\right) U(\rho)=0$ has a unique exponentially decreasing solution on R_{+}such that $U(0)=u$, which is given by

$$
\left(\begin{array}{ll}
u_{1} & e^{m \rho} \tag{5.3}\\
u_{2} & e^{m \rho}
\end{array}\right)
$$

where

$$
\begin{align*}
m=\frac{1}{2}\left|\nabla_{m} \rho\right|^{-2}\{ & -i\left[\operatorname{Re}\left(\rho_{w_{1}}\left(\xi_{1}-i \xi_{2}\right)\right)-\left(\operatorname{Im} \rho_{w_{2}}\right) \xi_{3}\right] \tag{5.4}\\
& \left.-\left(\left|\nabla_{w} \rho\right|^{2}|\xi|^{2}-\left[\operatorname{Re}\left(\rho_{\bar{w}_{1}}\left(\xi_{1}-i \xi_{2}\right)\right)-\left(\operatorname{Im} \rho_{w_{2}}\right) \xi_{3}\right]^{2}\right)^{\frac{1}{2}}\right\} .
\end{align*}
$$

Following Hörmander (see [4, Theorem 2.3.1]) we define pseudo-differential operators P_{1} and P_{2} on $U \cap \omega$ with principal symbols $p_{1}^{0}(x, \xi)$ and $p_{2}^{0}(x, \xi)$, respectively, given by the first column of

$$
\begin{equation*}
d^{0}\left(x, \rho=0, \xi, D_{\rho}\right)\binom{e^{m \rho}}{0} \tag{5.5}
\end{equation*}
$$

evaluated at $\rho=0$. More explicitly we have

$$
\begin{align*}
p_{1}^{0}(x, \xi)= & \frac{1}{2} \operatorname{Im}\left(\rho_{w_{1}}\left(\xi_{1}-i \xi_{2}\right)\right)-\frac{1}{2}\left(\operatorname{Re} \rho_{w_{2}}\right) \xi_{3} \tag{5.6}\\
& -\frac{1}{2}\left\{\left|\nabla_{w} \rho\right|^{2}|\xi|^{2}-\left[\operatorname{Re}\left(\rho_{w_{1}}\left(\xi_{1}-i \xi_{2}\right)\right)-\operatorname{Im}\left(\rho_{w_{2}}\right) \xi_{3}\right]^{2}\right\}^{\frac{1}{2}}, \\
& p_{2}^{0}(x, \xi)=-\frac{1}{2} i \rho_{w_{2}}\left(\xi_{1}-i \xi_{2}\right)+\frac{1}{2} \rho_{w_{1}} \xi_{3} . \tag{5.7}
\end{align*}
$$

5.8. Proposition. Let $0<s \leq 1$. Then (3.5) implies the following estimate

$$
\begin{equation*}
\|\phi\|_{(s)}^{(\omega)} \leq C_{s}\left(\left\|P_{1} \phi\right\|_{(0)}^{(o)}+\left\|P_{2} \phi\right\|_{(0)}^{(\infty)}+\|\phi\|_{(0)}^{(o)}\right) \tag{5.9}
\end{equation*}
$$

for all $\phi \in C_{0}^{\infty}(U \cap \omega)$.
Proof. Recall that the $\overline{\bar{\delta}}$-Neumann boundary condition is equivalent to $\phi_{2}=0$ on ω. Then Proposition 5.8 is a special case of the results of Hörmander (see [4, Theorems 2.3.1 and 2.3.2]) and of Sweeney (see [10, Propositions 5.7 and 5.8]).

6. Proof of Theorem 3.7

First we localize the estimate (5.9).
6.1. Proposition. Let $0<s \leq 1$, and set $\delta=1-s$. Suppose that the estimate (5.9) holds with

$$
\begin{equation*}
\frac{k}{k+1} \leq \delta<\frac{k+1}{k+2} \tag{6.2}
\end{equation*}
$$

where k is a positive integer. Then for every $(x, \xi) \in T^{*}(\omega),|\xi|=1$, there exists a constant C such that

$$
\begin{align*}
& \int_{R_{3}}|\phi(y)|^{2} d y \\
& \quad \leq C\left\{\sum_{j=1,2} \int_{R_{3}}\left|\sum_{|\alpha+\beta| \leq k} \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta} p_{j}^{0}(x, \xi)}{\partial \xi^{\alpha} \partial x^{\beta}} y^{\beta}\left(D^{\alpha} \phi\right)(y) \lambda^{\delta-|\alpha| \delta-(1-\delta)|\beta|}\right|^{2} d y\right. \tag{6.3}\\
& \left.\quad+\lambda^{2 \delta-2(k+1)(1-\delta)} \sum_{|\alpha+\beta| \leq k+1} \int_{R_{3}}\left|y^{\beta}\left(D^{\alpha} \phi\right)(y)\right|^{2} d y \lambda^{-2|\alpha|(2 \delta-1)}\right\},
\end{align*}
$$

for all $\lambda \geq 1$ and $\phi \in C_{0}^{\infty}\left(\boldsymbol{R}_{3}\right)$.
Proof. See Egorov [1, Theorem 1] and Hörmander [5, Theorems 6.1 and 6.3].

Let $x=0$ be a point of type m. We shall show that the estimate (6.3) cannot hold at the point $\left(x_{0}, \xi^{0}\right)=(0,0,0,0,0,1)$ when $k<m$. According to Proposition 6.1 this proves that the estimate (5.9) does not hold with $s>$ $1 /(m+1)$, which proves Theorem 3.7. Since $\rho_{w_{2}}(0)=-\frac{1}{2}$, according to (5.6) and (5.7) we have

$$
\begin{equation*}
p_{1}^{0}\left(x_{0}, \xi^{0}\right)=p_{2}^{0}\left(x_{0}, \xi^{0}\right)=0, \tag{6.4}
\end{equation*}
$$

and therefore we can assume that $k \geq 1$. Furthermore Lemmas 4.12 and 4.15 imply that

$$
\begin{equation*}
\rho_{w_{1}}(x)=x_{3} h(x)+O\left(|x|^{m}\right) . \tag{6.5}
\end{equation*}
$$

Assume that the estimate (6.3) holds for some δ such that $k /(k+1) \leq \delta<$ $(k+1) /(k+2)$ with $k<m$. We substitute

$$
\begin{equation*}
\phi(y)=\psi\left(y_{1}, y_{2}, y_{3}{ }^{2 \delta-1+\varepsilon}\right), \quad \psi \in C_{0}^{\infty}\left(\boldsymbol{R}_{3}\right) \tag{6.6}
\end{equation*}
$$

into (6.3) with some $\varepsilon>0$ such that

$$
\begin{equation*}
(k+1) \varepsilon+\delta<(k+1)(1-\delta) \leq 1 \tag{6.7}
\end{equation*}
$$

According to the right hand side of (6.2) we have $\delta<(k+1)(1-\delta)$ so that such an ε can always be found. We change coordinates $y_{1}=y_{1}^{\prime}, y_{2}=y_{2}^{\prime}$, $y_{3}{ }^{2 \delta-1+\varepsilon}=y_{3}^{\prime}$, divide both sides of (6.3) by $\lambda^{-2 \delta+1-\varepsilon}$, and let $\lambda \rightarrow \infty$. Then the left hand side of (6.3) becomes

$$
\begin{equation*}
\int_{R_{3}}\left|\psi\left(y^{\prime}\right)\right|^{2} d y^{\prime} \tag{6.8}
\end{equation*}
$$

Next we compute the right hand side of (6.3).

1) Terms involving $p_{1}^{0}(x, \xi)$ and its derivatives at $\left(x_{0}, \xi^{0}\right)$.
(i) Set $q_{1}(x, \xi)=\operatorname{Im}\left(\rho_{w_{1}}\left(\xi_{1}-i \xi_{2}\right)\right)$. Then

$$
\begin{align*}
& \sum_{\left\lvert\, \begin{array}{l}
\mid \beta \beta_{j=1,2} \\
\end{array} \quad \frac{1}{\beta!} \frac{\partial^{\beta+1} q_{1}\left(x_{0}, \xi^{0}\right)}{\partial x^{\beta} \partial \xi_{j}} y^{\beta}\left(D_{j} \phi\right)(y) \lambda^{-(1-\delta)|\beta|}\right.} \quad=\sum_{\left\lvert\, \begin{array}{l}
|\beta| \leq k-1 \\
j=1,2 \\
\end{array} \frac{1}{\beta!} \frac{\partial^{\beta+1} q_{1}\left(x_{0}, \xi^{0}\right)}{\partial x^{\beta} \partial \xi_{j}} y^{\prime \beta}\left(D_{j} \psi\right)\left(y^{\prime}\right) \lambda^{-(1-\delta)|\beta|+\beta_{3}(-2 \delta+1-\delta)}\right.}^{\quad=O\left(\lambda^{-(1-\delta)}\right),}
\end{align*}
$$

since $\beta_{3}>0$ by (6.5).
(ii) Set $p_{1}=\frac{1}{2} q_{1}-\frac{1}{2} q_{2}$. Then

$$
\begin{align*}
& \sum_{\substack{\mid \alpha+\beta+\beta \leq k \\
\alpha_{1}+\alpha_{2} \neq 0}} \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta} q_{2}\left(x_{0}, \xi^{0}\right)}{\partial \xi^{\alpha} \partial x^{\beta}} y^{\beta}\left(D^{\alpha} \phi\right)(y) \lambda^{\delta-|\alpha| \delta-(1-\delta)|\beta|} \\
& \quad=\sum_{\substack{1 \alpha+\beta+\beta \leq k \\
\alpha_{1}+\alpha_{2} \neq 0}} \frac{1}{\alpha!\beta!} \frac{\partial^{\alpha+\beta} q_{2}\left(x_{0}, \xi^{0}\right)}{\partial \xi^{\alpha} \partial x^{\beta}} y^{\prime \beta}\left(D^{\alpha} \psi\right)\left(y^{\prime}\right) \tag{6.10}\\
& \quad=\sum_{j=1}^{2} \frac{\partial q_{2}\left(\alpha_{0}+\xi_{1}+\alpha_{2}-1\right) \delta-\alpha_{3}(1-\delta-\varepsilon)-(1-\delta)\left(\beta_{1}+\beta_{2}\right)-\beta_{3}(\delta+\varepsilon)}{\partial \xi_{j}}\left(D_{j} \psi\right)\left(y^{\prime}\right)+o(1)=o(1),
\end{align*}
$$

because

$$
\frac{\partial q_{2}\left(x_{0}, \xi^{0}\right)}{\partial \xi_{j}}=\left(\frac{\partial}{\partial \xi_{j}}\left(-\frac{1}{2}+\frac{1}{2} \sqrt{\xi_{j}^{2}+1}\right)\right)_{\xi_{j}=0}=0, \quad j=1,2 .
$$

(iii) Finally set $\xi_{1}=\xi_{2}=0$ in q_{2}. Then

$$
\begin{align*}
q_{2}\left(x, 0,0, \xi_{3}\right) & =\left(\left(\left|\rho_{w_{1}}\right|^{2}+\left(\operatorname{Re} \rho_{w_{2}}\right)^{2}\right)^{\frac{1}{2}}+\operatorname{Re} \rho_{w_{2}}\right) \xi_{3} \\
& =-\operatorname{Re} \rho_{w_{2}}\left\{1-\left(1+\left|\rho_{w_{1}}\right|^{2} /\left(\operatorname{Re} \rho_{w_{2}}\right)^{2}\right)^{\frac{1}{2}}\right\} \xi_{3} \\
& =\left(-\left(\operatorname{Re} \rho_{w_{2}}\right) \sum_{j=1}^{m} a_{j} \frac{\left|\rho_{w_{1}}\right|^{2 j}}{\left(\operatorname{Re} \rho_{w_{2}}\right)^{2 j}}+O\left(|x|^{2 m+2}\right)\right) \xi_{3} \tag{6.11}\\
& =\left(x_{3}^{2} H(x)+O\left(|x|^{2 m+2}\right)\right) \xi_{3},
\end{align*}
$$

where $a_{j}, j=1, \cdots, m$, are the coefficients in the Taylor series expansion $1+\sum_{j=1}^{m} a_{j} x^{j}+O\left(|x|^{m+1}\right)$ of $\sqrt{1+x}$ about $x=0$, and $H(x)$ is a C^{∞} function near $x=0$. Thus

$$
\begin{align*}
\sum_{\left|\beta+\alpha_{3}\right| \leq k} & \frac{1}{\beta!} \frac{\partial^{\beta+\alpha_{3}} q_{2}\left(x_{0}, \xi^{0}\right)}{\partial \xi_{3}^{\alpha_{3}} \partial x^{\beta}} y^{\beta}\left(D^{\alpha_{3}} \phi\right)(y) \lambda^{\delta-\alpha_{3} \delta-(1-\delta)|\beta|} \\
& =\sum_{|\beta| \leq k} \frac{1}{\beta!} \frac{\partial^{\beta} q_{2}\left(x_{0}, \xi^{0}\right)}{\partial x^{\beta}} y^{\prime \beta} \psi\left(y^{\prime}\right) \lambda^{\delta+2(1-2 \delta-\varepsilon)-(1-\delta)|\beta|+\left(\beta_{3}-2\right)(1-2 \delta-\epsilon)} \tag{6.12}
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{|\beta| \leq k-1} \frac{1}{\beta!} \frac{\partial^{\beta+1} a_{2}\left(x_{0}, \xi^{0}\right)}{\partial \xi_{3} \partial x^{\beta}} y^{\prime \beta}\left(D_{3} \psi\right)\left(y^{\prime}\right) \lambda^{-(1-\delta)|\beta|+\left(\beta_{3}-1\right)(1-2 \delta-\epsilon)} \\
= & O\left(\lambda^{-(\delta+2 \varepsilon)}\right),
\end{aligned}
$$

since $\beta_{3} \geq 2$ according to (6.11).
2) As for $p_{2}^{0}(x, \xi)$ we have

$$
\begin{aligned}
& -\frac{1}{4}\left(\partial \psi / \partial y_{1}-i \partial \psi / \partial y_{2}\right) \\
& -\frac{1}{2} i \sum_{0<|\beta| \leq k-1} \frac{1}{\beta!} \frac{\partial^{\beta} \rho_{w_{2}}\left(x_{0}\right)}{\partial x^{\beta}} y^{\prime \beta}\left(\left(D_{1} \psi\right)\left(y^{\prime}\right)-i\left(D_{2} \psi\right)\left(y^{\prime}\right)\right) \\
& +\quad \cdot \lambda^{-(1-\delta)|\beta|+\beta_{3}(1-2 \delta-\varepsilon)} \\
& +\frac{1}{2} \sum_{0<\mid \beta \rho \leq k} \frac{1}{\beta!} \frac{\partial^{\beta} \rho_{w_{1}}\left(x_{0}\right)}{\partial x^{\beta}} y^{\prime \beta} \psi\left(y^{\prime}\right) \lambda^{\delta-(1-\delta)|\beta|+\beta_{3}(1-2 \delta-\epsilon)} \\
& +\frac{1}{2} \sum_{0<|\beta| \beta \leq 1} \frac{1}{\beta!} \frac{\partial^{\beta} \rho_{w_{1}}\left(x_{0}\right)}{\partial x^{\beta}} y^{\prime \beta}\left(D_{3} \psi\right)\left(y^{\prime}\right) \lambda^{-(1-\delta)|\beta|+\left(\beta_{3}-1\right)(1-2 \delta-\varepsilon)} \\
& =-\frac{1}{4}\left(\partial \psi / \partial y_{1}^{\prime}-i \partial \psi / \partial y_{2}^{\prime}\right)+O\left(\lambda^{-\varepsilon}\right),
\end{aligned}
$$

where we have used (6.5).
3) Finally, the remainder yields

$$
\begin{align*}
& \sum_{|\alpha+\beta| \leq k+1} y^{\prime \beta}\left(D^{\alpha} \psi\right)\left(y^{\prime}\right) \lambda^{\delta-(k+1)(1-\delta)-\left(\alpha_{1}+\alpha_{2}\right)(2 \delta-1)+\beta_{3}(1-2 \delta-s)+\alpha_{3}} \tag{6.14}\\
& \quad=O\left(\lambda^{(k+1) \epsilon+\delta-(k+1)(1-\delta)}\right)=o(1),
\end{align*}
$$

where we have used (6.7). Thus (6.8), (6.9), (6.10), (6.12), (6.13) and (6.14) yield

$$
\begin{equation*}
\int_{R_{3}}|\psi(y)|^{2} d y \leq \frac{1}{4} C \int_{R_{3}}\left|\frac{\partial \psi(y)}{\partial y_{1}}-i \frac{\partial \psi(y)}{\partial y_{2}}\right|^{2} d y \tag{6.15}
\end{equation*}
$$

where $\psi \in C_{0}^{\infty}\left(\boldsymbol{R}_{3}\right)$. This is impossible. To see that set $\psi(y)=f(\varepsilon y), f \in C_{0}^{\infty}\left(\boldsymbol{R}_{3}\right)$, and let $\varepsilon \rightarrow 0$. Then the left hand side of (6.15) is $O\left(\varepsilon^{-3}\right)$, while the right hand side is only $O\left(\varepsilon^{-2}\right)$. Hence Theorem 3.7 is proved..

7. Remarks on the estimate (3.5)

In [8] Kohn proved that if $P \in \omega$ is of type m, and ω is pseudo-convex at P, then m must be odd. This result also follows by applying Propositions 2.4 of [9] to the symbol (5.7). Furthermore Kohn conjectured that under the hypothesis of Theorem 3.4 the estimate (3.5) holds with $s=1 /(m+1)$.
7.1. Proposition. Let $P \in \omega$ be a point of type m, and suppose that the estimate (3.5) holds with $s=1 /(m+1)$. Then m is necessarily odd.

Proof. It suffices to show that if the estimate (6.3) holds with $k=m, \delta=$ $m /(m+1)$ and $\left(x_{0}, \xi^{0}\right)=(0,0,0,0,0,1)$, then m is odd. We shall follow the arguments of $\S 6$ and indicate the necessary changes. Thus we substitute

$$
\begin{equation*}
\phi(y)=\psi\left(y_{1}, y_{2}, y_{3} 2^{2 \delta-1+\varepsilon}\right), \quad \psi \in C_{0}^{\infty}\left(\boldsymbol{R}_{3}\right) \tag{7.2}
\end{equation*}
$$

into (6.3), where

$$
\begin{equation*}
(m+1) \varepsilon+\delta<(m+1)(1-\delta)=1 . \tag{7.3}
\end{equation*}
$$

The left hand side of (6.3) again becomes (6.8). (6.9), (6.10) and (6.12) go through unchanged. (6.13) becomes

$$
\begin{equation*}
-\frac{1}{4}\left(\partial \psi / \partial y_{1}^{\prime}-i \partial \psi / \partial y_{2}^{\prime}\right)+\frac{1}{2} \gamma_{w_{1}}\left(w_{1}, 0\right) \psi+O\left(\lambda^{-\varepsilon}\right), \tag{7.4}
\end{equation*}
$$

and there is no change in (6.14). Thus the hypothesis of Proposition 7.1 implies the following estimate

$$
\begin{equation*}
\int_{R_{3}}|\psi(y)|^{2} d y \leq C \int_{R_{3}}\left|\frac{\partial \psi}{\partial y_{1}}-i \frac{\partial \psi}{\partial y_{2}}-2 \gamma_{w_{1}}\left(w_{1}, 0\right) \psi(y)\right|^{2} d y \tag{7.5}
\end{equation*}
$$

where $\psi \in C_{0}^{\infty}\left(\boldsymbol{R}_{3}\right)$. Set

$$
\psi\left(y_{1}, y_{2}, y_{3}\right)=\overline{f\left(y_{1}, y_{2}\right)} g\left(y_{3}\right) e^{2 \gamma\left(w_{1}, 0\right)}
$$

Then (7.5) yields

$$
\begin{equation*}
\int_{\boldsymbol{R}_{2}}|f(y)|^{2} e^{4_{r}\left(w_{1}, 0\right)} d y \leq C \int_{R_{3}}\left|\frac{\partial f}{\partial \bar{w}_{1}}\right|^{2} e^{4 r\left(w_{1}, 0\right)} d y, \tag{7.6}
\end{equation*}
$$

for all $f \in C_{0}^{\infty}\left(\boldsymbol{R}_{2}\right)$. According to Theorem 2 of [2], (7.6) implies

$$
\begin{equation*}
\frac{\partial^{2} \gamma\left(w_{1}, 0\right)}{\partial w_{1} \partial \bar{w}_{1}} \geq 0 \tag{7.7}
\end{equation*}
$$

(Compare Kohn [8, formula (3.10)]. Egorov's proof of (7.7) is based on one of Hörmander's arguments in [4]; see [4, Lemma 1.2.4, especially (1.2.16)].) Now (7.7) clearly implies Proposition 7.1.

References

[1] Yu. V. Egorov, Pseudo-differential operators of principal type, Math. U.S.S.R.-Sb. 2 (1967) 319-333.
[2] , Bounds for differential operators of the first order, Functional Anal. Appl. 3 (1969) 211-217.
[3] L. Hörmander, Linear partial differential operators, Springer, Berlin, 1963.
[4] - Pseudo-differential operators and non-elliptic boundary problems, Ann. of Math. 83 (1966) 129-209.
[5] -, Pseudo-differential operators and hypoelliptic equations, Proc. Sympos. Pure Math. Vol. 10, Amer. Math. Soc., 1966, 138-183.
[6] J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, II, Ann. of Math. 78 (1963) 112-148, 79 (1964) 450-472.
[7] , The $\bar{\partial}$-Neumann problem on (weakly) pseudo-convex two-dimensional manifolds, Proc. Nat. Acad. Sci. U.S.A. 69 (1972) 1119-1120.
[8] , Boundary behavior of $\overline{\bar{\gamma}}$ on weakly pseudo-convex manifolds of dimension two, J. Differential Geometry 6 (1972) 523-542.
[9] L. Nirenberg \& F. Treves, On local solvability of linear partial differential equations. Part I: Necessary conditions, Comm. Pure Appl. Math. 23 (1970) 1-38.
[10] W. J. Sweeney, The D-Neumann problem, Acta Math. 120 (1968) 223-277.
University of Toronto

[^0]: Communicated by J. J. Kohn, October 17, 1973. This research was partially supported by the National Research Council of Canada under Grant A-3017.

