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CONTACT MANIFOLDS

R. E. STONG

1. Introduction

This paper is a study of the differential topology of contact manifolds. In
§ 2, the known results on contact manifolds will be reviewed. The problem of
existence of a global contact form will be studied, straightening out a minor
error in Gray [4]. The reduction of the structure group of the tangent bundle
will be examined. In § 3, the Kervaire semi-characteristic will be defined and
studied. Classically, there are two types of contact manifolds: a) the bundle of
tangent corays to a closed manifold and b) the spheres. The semi-characteristic
distinguishes these types. In § 4, the semi-characteristic will be placed in a
cobordism framework. This provides insight into just what the invariant
measures. In § 5, it will be shown that a closed oriented contact manifold of
dimension 8A: + 5 is the boundary of a compact almost complex manifold. In
§ 6, the characteristic classes of contact manifolds will be studied.

The author is indebted to Professor E. E. Floyd for some helpful conversa-
tions and to the National Science Foundation for financial support during this
work.

2. Review of contact manifolds

Let (x\ >,xn,y\ -,yn,z) be coordinates in Euclidean (2n + l)-space
R2n+1, and let a0 be the 1-form on R2n+1 defined by a0 = dz - Σ yidχί- τ h i s

form is completely characterized by the fact that a0 A (daQ)n Φ 0 in the sense
that any form with this property has the given expression in suitably chosen
local coordinates. A diffeomorphism f:U-+V between open sets of R2n+1 is
called a contact transformation if /*α0 = pa0 for some nonzero real function
p on £/. The collection Γ of all contact transformations forms a pseudogroup.

The systematic study of pseudogroups began with the work of Sophus Lie
on transformation groups [9], and volume two of his work is devoted to the
study of contact transformations.

An odd dimensional manifold M2n+1 is called a contact manifold if there is
an open cover {Ut} of M with homeomorphisms ft: Ut —> Vt C R2n+1 so that
when fi-fγ is defined, ft°fγ € Γ. Two such systems {t/^/J, {£/-,/•} are equi-
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valent if f\ o fr1 e Γ whenever defined, and a contact structure on M is an equi-
valence class of such coordinate systems.

Being given a contact structure on M determines a subline bundle ξ of the
cotangent bundle τ* of M. Specifically, if x e M and (!/<,/*) is a chart at *
compatible with the contact structure, then the fiber of ξ at x is the subspace
spanned by ff(a0). To see that this is well-defined, one needs only to note that
on Ut Π Uj9 ff(aQ) = puffin for some nonvanishing function ρi3 on Ut Π Uj.

The contact distribution on M is the sub-bundle of the tangent bundle of M
described as follows. It x € M, and (U, f) is a chart at x compatible with the con-
tact structure, then the fiber of the contact distribution at x consists of those
tangent vectors at x annihilated by f*(a0). In other words the contact distribu-
tion is the annihilator of the contact line bundle under the dual pairing of
tangent and cotangent bundles.

Proposition 2.1. / / M is a (2n + \)-dimensional contact manifold, the
determinant bundle of the cotangent bundle det τ* of M is the {n + l)-st tensor
power of the contact line bundle ξ. In particular,

a) // n is odd, M is oriented
b) // n is even, ξ is isomorphic to det τ* and the contact distribution is

oriented.
Proof. Being given a chart (Ui9fi) compatible with the contact structure

of M, Wi = ff(joc0) Λ (dff(ao))n is a nonvanishing section of detτ* over Ut. For
a second chart (Uj9fj)9ff(a0) = Pijff(a0) gives ωt = /o?/V/ T h i s i s t h e r e l a "
tionship of coordinate transformation between a line bundle and its (n + l)-st
tensor power. For any line bundle η, η (x) η = yf is trivial, and in fact has a
preferred class of trivializations given by the positive cone of all e (g) e with
e Φ 0. Thus if n is odd, ξn+1 has a preferred trivialization, and if n is even there
is a preferred isomorphism of ξ and ξn+1, which gives a) and b).

Remark. This is basically Proposition 2.2.1 of Gray [4]. There is an error
in the last six lines of the proof of Proposition 2.2.1 which invalidates part (ii)
of the result for n odd. Specifically, there is a globally defined vector field v
which is complementary to the 2n-distribution of hyperplanes defined by
on = 0 if and only if the distribution consists of oriented hyperplanes. Gray
gives a counterexample to his own result (Example 4 of § 2.4): Let M2n+1 =
R*+1 x Pn(R), where Pn(R) denotes ^-dimensional real projective space. Let
0°, , xn) be coordinates in Rn+1, and (tQ, , tn) homogeneous coordinates
in Pn(R). Let U€ C Rn+1 X Pn(R) be defined by U ψ 0 and α t = tr\J] tjdx*).
Then the at define a contact structure on M for which ptj = tj/ίi9 and ξ is the
nontrivial line bundle over M induced from the canonical line bundle over
Pn(R). When n is odd, Pn(R) is orientable and det τ* is trivial.

This example may be globalized. For any manifold Nn+1, the projective space
bundle Λf2 n + 1=ΛP(τ*) of the cotangent bundle of N is a contact manifold.
Specifically, given a chart U of N with local coordinates (x0, , xn), one has
a chart U X Rn+1 for the cotangent bundle with local coordinates (JC0, , xn,



CONTACT MANIFOLDS 221

<?o> * > Qn) where a form is expressed as 2 q ^ in these coordinates. The qt

may be considered as homogeneous coordinates in M. Letting Ut be the open
set inMlying over U inN and defined by qt Φ 0, we see that at = qϊKJ] Qjdx3)
is a form on Ut. On Ut an explicit coordinate function /: Ui-+R2n+1 with
/*(α0) = α< is given by /(*0, ., xn, qQ, . , qn) = (χ0, . . ., Xi_19 χi+19 > ,xn,
— Qo/Qu •> —Qi-ilQi, —<ϊί+ι/<li> —9 —Qn/Quχi)- If # ' is another chart in
N with local coordinates (JCJ, , < ) , then on (U x Rn+1) Π (L/' X JRW + 1) the
coordinates are related by x = φt{xQ, ,x n ),g = 2 <2j(dXj/dx'i), so that
2 qtdXi = 2 <?i^i on th ecotangent bundle. Then αj = q'f\Σ ύάQ =
fe/βίki on £/, Π E/J.

Proposition 2.2. TTze structural group of the tangent bundle of a (2n + 1)-
dimensional contact manifold reduces to the subgroup C2n+1 C 0(2n + 1)
generated by 1 X C/(n) and —1 X {conjugation), where R2n+1 is considered as
R x Cw.

Proof. Choose a Riemannian metric on M, reducing the structural group
to 0(2n + 1). The existence of the distribution of hyperplanes at = 0 gives a
further reduction to 0(1) X 0(2n). For each point x of M, one chooses a chart
(Uι,fi) compatible with the contact structure of M, and defines a 1-form ax

on C/i by ff(ao)/ff(ao)(Vi) where i^ is the unit vector field complementary to
the distribution at = 0 with ff(ao)(Vi) > 0. (In effect this chooses the 1-form
of length 1 in f with the Riemannian metric induced on r*.) (/Γ1*)(αHc) is then
a 1-form on the open set /$(£/*) C Λ2re+1, and since it satisfies the condition
a Λ (da)n Φ 0, one may find an open set Wx C /*(!/*) containing /€(JC) and a
diffeomorphism ^ : Ψa —>Λ2n+1 onto an open subset for which g*(a0) =
(UΨ(ax). Let Ux C fϊ\Wx) be the component of fϊ\Wx) containing x. Then
fx τ=z gto ft gives a chart (Ux, fx) near JC compatible with the given contact struc-
ture on M and on which ax = /J(α0) is a unit field in ξ.

Because Ux is connected, there are only two possible one-forms ax on Ux

with the given property. If fx: Ux -> R2n+1 with /*(α0) == ̂ , and ^ : .R27l+l + 1

— z), then ^o/^.: Ux-*R2n+1 gives ( ^ o / J * ^ ) = — α j . which is the other
form.

One may then consider M as having the contact structure defined by a col-
lection of open sets (Ui9 fτ) with t/< connected and ff (a0) = at a "unit" 1-form.

On each open set Ui9 one may then write dat\aί=Q = Σ > Λ (7?+*, and let
gtj: t/< Π Uj —> 0(1) X 0(2π) represent the tangent bundle of M in the cover-
ing {Ut}. Being given a point Λ: on Ut Π C/̂  with a^x) — aό{x) the bundles ξ
and det τ* over Ut and C/̂  have the same orientation (as imparted by at and
ccj) at JC. Thus gij(x) lies in 5O(l) X SO(2n), and if E is the matrix of coef-
ficients of the form 2 tf Λ <7y+fc, then g ^ β = £ g ^ so that ^ / J C ) € 1 X C/(n).
If on the other hand aj(x) = —a^x), then replacing (Uj9fj) by (Uj9fjθφ)
changes gtJ to g 0 o ( — 1 x conjugation) which belongs to 1 X U(n). Thus

belongs to C 2 n + 1 .
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Notes, a) This is in essence contained in the proof of Theorem 2.3.2 of
Gray [4], who attributes it to Chern [2].

b) It shold be noted that — 1 X conjugation is in the normalizer of 1 X U(u)
so that C2n+1 contains 1 x U(ri) as a subgroup of index 2. If n is odd, then
C2n+1 c SO(2n + 1) while for n even, C2n+1 Π SO(2n + 1) = 1 X U(n), and
C2n+1 is contained in 0(1) x SO(2n). This repeats the assertions of Proposition
2.1.

c) The author apologizes slightly for the cumbersomeness of this proof.
This is due in part to his lack of understanding of forms.

d) The reduction depends only on the choice of a Riemannian metric.
e) For M2n+1 = #P(τ*), where τ* is the cotangent bundle of Nn+\ let

π: M2n+ι -±Nn+1be the bundle projection. Considering M as lines in the fibers
of τ*, let λ be the line bundle over M given by pairs consisting of a line in a
fiber of τ* and a point on that line which is the contact line bundle. Choosing
a Riemannian metric on N to identify τ and τ*, one has θ (g) 1 = π*(τ*) ® λ
where θ is the bundle along the fibers of π, so that the tangent (or cotangent)
bundle of M is given by λ φ θ Θ (λ (x) θ). The structure group of this bundle
is generated by 1 x 0(n) and — 1 X conjugation, where 0(ή) C U(ή) by com-
plexification.

Now one would like to understand the existence of a global 1-form on M
defining the contact structure. For convenience, make

Definition 2.3. A contact form on a manifold M of dimension 2n + 1 is
a 1-form a such that a A (da)n is never zero. Two contact forms a and oί on
M are strictly equivalent if there is a positive function p > 0 on M with cί —
pa. A manifold M with a chosen strict equivalence class of contact forms will
be called a strict contact manifold.

It is proper to refer to M as a strict contact manifold since, if a is a contact
form on M, M admits a contact structure given by those charts {£/, /} for which
/*(α:0) = pa for some nonvanishing function p on £/. In fact a strict contact
manifold M is precisely a contact manifold M together with a homotopy class
of trivializations of the contact line bundle ξ. This point is thoroughly dis-
cussed by Martinet [10].

If M is a (2n + l)-dimensional contact manifold with n even, then by Pro-
position 2.1, b), the choice of a trivialization of ξ or of det r* is equivalent,
and thus a strict contact manifold of dimension 4k + 1 is just an oriented con-
tact manifold.

If M is a (2n + l)-dimensional contact manifold with n odd, then M is an
oriented manifold automatically. The choice of a trivialization of ξ is the
choice of a trivializaton of the complement of the contact distribution, or a
choice of orientation on the contact distribution.

Note. If n is odd, M is oriented, while if n is even the contact distribution
is oriented. A strict contact structure is the choice of an orientation on the
other one.
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From Proposition 2.2, one sees that the chioce of a Riemannian metric on
a strict contact manifold M of dimension 2n + 1 gives a reduction of the tan-
gent bundle of M to 1 X U(ή). Alternately, if M is a Riemannian contact mani-
fold of dimension 2n + 1, the choice of a strict equivalence class of contact
forms on M is a reduction of the structural group of the tangent bundle from
C 2 w + 1 t o 1 x U(n).

In Martinet [10] it is shown that every compact orientable 3-dimensional
manifold possesses a strict contact structure. For 1-dimensional manifolds, this
is also true, since Sι has a strict contact structure.

It should be noted that this is best possible; specifically, we have
Proposition 2.4. For n>2 there is a closed oriented connected manifold

of dimension In + 1 with no contact structure.
One such manifold is SU(3)/SO(3) for n = 2, and (SU(3) / SO(3)) X S2n~"

for n > 2. The manifold SU(3)/SO(3), first noted by Calabi, is a simply
connected 5 dimensional manifold with the Stiefel-Whitney number
w2w3[SU(3)/SO(3)] ψ 0.

Letting M2n+1 be one of the given manifolds, we see that M is connected
compact and simply connected, and w3(M) Φ 0. If M admits a contact struc-
ture, it admits a strict contact structure, since H\M Z2) = 0. Then the tangent
bundle of M reduces to 1 X U(n), and w3(M) must be zero, which is a con-
tradiction.

This is hardly exciting; there are many examples. It seems desirable to give
some other types of examples.

Let Nn+ί be a closed (n + l)-dimensional manifold and M2n+1 = RP(τ*)9

the projective space bundle of the cotangent bundle.
The mod 2 cohomology of RP(τ*) is well-known. If c e Hι(RP(τ*) Z2) is

the Stiefel-Whitney class of the double cover of RP(τ*) by the sphere bundle,
and π: #P(τ*) -> N is the bundle projection, then H*(RP(τ*) Z2) is the free
H*(N;Z2) module via TΓ* on l , c , ,c w and cn+1 = π^iw^N^c71 + +
π*(wr(N))cn+1-r + + π*(wn+1(N))> The Stiefel-Whitney class of jRP(τ*) is

{1 + Wι(N) + + wn+ι(N)}

+ wr(Λ0d +-c)»+1-' + + wn+1(Λ0} ,

where TΓ* has been deleted from the notation.
One easily has wλ(RP(τ*)) = (n + l)c, so for n even and n>2, RP(τ*) is

nonorientable and the contact structure is not a strict contact structure. Then
supposing n is odd and n > 3, we have
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/«Λ 1 \

+ w,(Λ/)

Thus, if N is any nonorientable (n + l)-manifold, e.g., RP(2) X Sn~\ then
ws(ΛP(r*)) =£ 0. If the tangent bundle of RP(τ*) was reducible to 1 X U(n),
the third Stiefel-Whitney class would be zero. Thus one has:

Proposition 2.5. // n > 2, there is a closed connected contact manifold
of dimension 2n + 1, which is not a strict contact manifold.

It should be noted that Martinet's result says this cannot happen in dimen-
sion 3, and since every one dimensional manifold is orientable, it cannot
happen in dimension one.

3. The semi-characteristic

Following Kervaire [6], one defines the semi-characteristic sχ(M) e Z2 for
an odd dimensional closed manifold M2n+1 to be the mod 2 reduction of

Σ(-l)*dimff'(Λf;Z 2) ,
ί = 0

where dim denotes the dimension of the Z2 vector space. For an even dimen-
sional closed manifold M2n of even Euler characteristic one lets sχ(M) =
Σ»-i (_ ιγ dim Hι(M Z2) + ( - l)n J dim Hn(M Z2) which is one-half of the
Euler characteristic.

Classically, there are two types of contact manifolds: a) the bundle of tan-
gent cor ays of a manifold, and b) the spheres. The semi-characteristic dis-
tinguishes these types (that the sphere does not have type a) was noted by
Boothby and Wang [1]).

Proposition 3.1. The semi-characteristic of the sphere S2n+1 is nonzero,
and if M2n+1 is the sphere bundle of the cotangent bundle of a closed manifold
Nn+1, then the semi-characteristic of M is zero.

Proof. sχ(S2n+1) = dim H\S2n+1 Z2) = 1. If M2n+1 is the sphere bundle of
the cotangent bundle of a closed connected manifold Nn+1, one has the exact
Gysin sequence

- ^ > H%M Z2) > fl«-»(N Z2) -A>

with β being multiplication by wn+1(r*). For 0 < i < n, this gives TΓ* : /7*(7V Z2)

-^-> W(M\ Z2), and the nontrivial part of the sequence is
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0 > Hn(N) > Hn(M) > H°(N)

_ J U Hn+1(N) > Hn+1(M) > H\N) > 0 .

Since N is connected, H°(N) ^ Hn+ι(N) ^ Z2, and β is nontrivial if and only
if Wn+iO*) Φ 0. Now <ww+1(r*),[N]> is the mod 2 reduction of the Euler
characteristic of N, χ(N). If χ(N) = 0 (mod 2), then sχ(M) = £ ? = 0 dim HKN)
+ dim H°(N) = ΣKi dim Hl(N) = χ(N) = 0, while if χ(N) = 1 (mod 2), then
sχ(M) = Σi=o dim H\N) = χ(N) - I Ξ O . q.e.d.

Now recall that a manifold with or without boundary V is said to be k-
parallellizeable if the restriction of the tangent bundle of V to the /:-skeleton
of V is trivial. (Alternatively, V is k-parallellizeable if for every finite complex
X of dimension less than or equal to k and every map /: X —» V, f*(τΌ) is
trivial.)

For any integer k, one lets φ(0, k) be the number of integers s with 0 < s
< k, which are congruent to 0,1,2, or 4 modulo 8.

Proposition 3.2. // V is a compact manifold with boundary of dimension
n, which is k-parallellizeable, then

sχ(dV) = χ(F) modulo 2

for n not divisible by 2φi0'k)+1.

The proof of this result will be postponed until the end of this section.
Notes, a) For k = 0 this is classical. Specifically, if M2j = dV2j+\ then

χ(M) = 2χ(V).
b) For k = oo (or k > ή) this is Kervaire's result [6] about the semi-

characteristic of the boundary of framed manifold.
c) For V closed, this says χ(V) is even and is Theorem 2 of [15] applied

with the results of [14].
The portion of this which is of interest for contact manifolds is the case

k = 1, which may be phrased
Corollary 3.3. // M is a closed oriented manifold of dimension 4k + 1,

and M is the boundary of the compact oriented manifold with boundary V,
then the semi-characteristic of M is the mod 2 reduction of the Euler char-
acteristic of V.

Note. In [13] Reinhart defined an invariant for an oriented boundary
Mik+ι given by the mod 2 reduction of χ(V) for any oriented V with dV = M.
By the above, it is just the semi-characteristic of M.

Following Gray [4, § 3] one defines an almost contact manifold to be a
manifold of dimension 2n + 1 and an equivalence class of reductions of the
tangent bundle to 1 X U(ri). If P —> M is the bundle of frames of M with
structure group GL(2n + 1,R), an equivalence class of reductions to 1 X
U(ri) is a homotopy class of cross-sections of the associated bundle with fiber
GL(2n+ 19R)/1 X U(n).
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From the last section, one sees that a strict contact manifold is an almost
contact manifold, since there is a unique equivalence class of reductions to
0(2n + 1 ) , and the strict contact structure specifies the further reduction to
1 X U(n) uniquely. It should be noted that the terminology is terrible: a con-
tact manifold is not an almost contact manifold.

Proposition 3.4. A closed almost contact manifold M2n+ι is the boundary
of a compact stably almost complex manifold.

Proof. A reduction of the tangent bundle of M to 1 X U(n) gives a com-
plex structure on the stable tangent bundle. Since the complex cobordism
group Ωξn+1 is zero (Milnor [11]), M bounds as stably almost complex mani-
fold.

Note. In essence this is contained in the proof of Theorem 2.3.2 of Gray
[4].

This is the strongest plausible assertion, and has the easiest proof. Since a
stably almost complex manifold is oriented, for example, it follows that M is
also the boundary of an oriented manifold. Thus Corollary 3.3 applies to strict
contact manifolds or almost contact manifolds of dimension 4k + 1.

The remainder of this section will be devoted to the proof of Proposition
3.2. Throughout, V will denote a ft-parallellizeable compact π-manifold with
boundary, and dV will denote its boundary.

If n is odd, one lets W be the manifold obtained from two copies of V by
identifying boundaries. Then W is closed and odd dimensional so χ(W) = 0,
but χ(W) = χ(V) + χ(V) - χ(3F), so χ(dV) = 2χ(V).

Henceforth, one may then suppose n is even. For n = 0 there is nothing to
prove, so let n = 2/ + 2.

Lemma 3.5. sχ(dV) = χ(V) + dim (image φ), where φ: W+1(V,dV;Z2)

Proof. One has the exact cohomology sequence

0 > H\V, dV) - ^ H°(V) > H°(dV) - ! U H'(V, dV) >

• • W(V, dV) > W(V) > H'(dV)

- ! U W+ι(V, dV) - ! U im φ > 0

and the usual rule for Euler characteristics in an exact sequence gives

Σ (-1) ' dim W(V) + ( - IV+1 dim im φ

= ^(-lyάimHWtdV) + Σ (-lVdimflW)
i=0 i=0

Since ά\mHι(V,dV) = dimff ^ - ^ F ) by Lefschetz duality, this equation
gives χ(V) + dim (image φ) = sχ(3V). q.e.d.
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Being given a, be imago φ, where φ: Hj+1(V, dV) —> Hj+ί(V), one may
choose α', V e W+\V, dV) with φ(α') = a, φ{bf) = b. Then the value

of the cup product of d and 6' on the fundamental class of (F, dV) is independ-
ent of the choice of αί and V. To see this, recall that H*(V, dV) is an H*(V)
module and that there is a factorization of the cup product

, dV) ® Hq(V, BV) - ^ * Hv+«(V, dV)

V, dV)

\φ

so that if φ(α!) = φ(α") = α and φ(V) = φ(b") = b, then <αf w &', [F, dV\)
, [V, dV]} = <^(αΌ w y , [F, 5F]> - <α'/ w ί/, [K, 5F]> =

, [F, 5F]> = <otf w ^ ( y ) , [F, BVY) = <α" w f , [F, dF]>.
Thus one has a symmetric bilinear form

[ , ] : (image φ) (g) (image φ) -> Z2

defined by [α, b] = <α7 w ί/, [F, aF]> where φ{α') = α, ̂ (Z?0 = 6. This pair-
ing is nondegenerate. To see this, note that if [α, b] = 0 for all ft, then letting
α = φ(cf) one has, for every ft' e /P ' + 1 (F, dV), <φ(α') ̂  b', [V, dV]} =
<d KJ V, [F, dV]} = [α, ̂ (i/)] = 0, and α = φ(cί) = 0 by Lefschetz duality.

From the theory of nondegenerate symmetric bilinear forms over Z2, there
is a unique class v e image 0 for which [v, α] = [α, α] for all α, and the dimen-
sion of image φ is congruent modulo 2 to the value [v,v]. Since [α,α] =
<d w α', [V,dV]> = < 5 ^ + V , [K,SF] = < ^ + 1 w ^ , [7,3F1>, where vj+1 e
Hj+\V) is the (/ + l)-st Wu class of (V,dV), and since vj+ί restricts to the
(/ + l)-st Wu class of dV, which is zero since SqJ+1: W(dV) -> H2^ι{dV) is
zero, vj+1 € image φ, giving [α, α] = [vj+1, ά\. Thus v is the Wu class vj+1.

Now since V is /:-parallellizeable, the tangent map τ: F —> BO lifts to the
connective cover BO(k + 1, , oo) of BO. By [14], the Stiefel-Whitney
classes >t^(F) of V are zero if / < 2 ί4(0A;), and so the Wu classes Vi(V) are zero
if i < 2*(0'fc), so 5 ^ : fl^+2-*(K, 37) -* H2*+2(V, 3V) is zero if ΐ < 2ί4(0 λ:). By
Proposition 6 of [15], Sqι e ΣUoS^s/ if i Ξ£ 0 (2S + 1), so 5^*: # 2 ' + 2 - ' ( F , d F )
->H2J+2(V,dV) is zero if i ^ 0 (2«*(0'fc)). In particular, if Λ Ξ£ 0 (2^(0 fe)+1)?

7 + 1 ^ 0 (2ί4(0'fe)), so vJ+1 = 0 and dim (image φ) = [ i ; i + 1 ,^ + i ] = 0. From
the Lemma, sχ(dV) = χ(F).

Note. The fact that the image of φ: H*(V, dV Za) -* H * ( F Z2) satisfies
"Poincare" duality appears in the dissertation of one of the author's students,
Russell J. Rowlett, and in rational cohomology for oriented manifolds was
used by Atiyah and Singer.
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4. Cobordism theoretic approach

It has been shown by Ocken [12] that Reinhart's cobordism group [13] of
n-manifolds (or oriented n-manifolds) is given by cobordism of manifolds with
a reduction of the stable tangent bundle to 0(n) (or SO(ri)). This places Rein-
hart's groups and invariants in a broader theoretical context.

In order to make similar use of cobordism theory in studying contact mani-
folds, one seeks an appropriate class of stable tangent structure possessed by
strict contact manifolds but stronger than stable almost complex structure, so
that a strict contact manifold will not bound. There is a rather obvious can-
didate.

Definition 4.1. A compact manifold (with or without boundary) of dimen-
sion 2n + 1 or 2n + 2 will be called a stably almost contact manifold if it is
given an equivalence class of reductions of the stable tangent bundle to U(ή).

This is an appropriate class of manifolds with which to define a cobordism
group. Specifically, an element of this group is an equivalence class of closed
stably almost contact manifolds of dimension In + 1. The zero class is the
class of boundaries of stably almost contact manifolds of dimension 2n + 2,
and the group operation is induced by disjoint union. This group will be
denoted Ω™{.

The formalism needed to make this precise may be found in Lashof [8].
Specifically, a stably almost contact manifold of dimension 2n + 1 or In + 2
is a manifold with (B, f) structure in the sense of Lashof, where B is the clas-
sifying space BU(ή) for complex rc-plane bundles and /: BU(ri) —> BO is a map
classifying the complement of the universal complex rc-plane bundle. The group
ΩϊnΆ is ώe (2n + l)-dimensional cobordism group of such (B,f) manifolds.

The main result of this section is:
Proposition 4.2. The group Ω^n+l is 0 // n is odd, and is Z2 if n is even.
Being given a closed oriented contact manifold M of dimension 4k + 1,

one lets /(M) denote the class of M in Z2 = ΩY£\K J(M) will also be used to
denote the class of an almost contact or stably almost contact manifold.

It will be shown that J(M) coincides with the semi-characteristic for almost
contact manifolds.

In order to compute Ωξn^l, one may apply the generalized Pontrjagin-Thom
theorem from Lashof [8], Being given the map /: BU(ή) —> BO one forms an
associated Thorn spectrum MU(rί) and has

β&?ί = Πξn+1(MU<n>)

given by the stable homotopy group of the spectrum.
Letting g: BU(ri) —> BU classify the universal bundle and h: BU —> BO

classify the complement of the universal bundle, one has f = hog, and has
induced a map of spectra Tg: MU(ri) —> MU. The stable homotopy of MU
gives the complex cobordism ring ΩJ ^ π?(MU), and the homotopy homo-
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morphism induced by Tg is the forgetful homomorphism

which considers a stably almost contact manifold as stably almost complex.
The homotopy exact sequence of the map (pair) Tg: MΌζrί) —> MU gives

an exact sequence

> Ωξn+2 - U π*n+2(MU, MUζn)) _ ? - • Ω™ > Ωξn+1 = 0 .

The relative homotopy group πξn+1{MU,MU(rί)) may be interpreted geo-
metrically as the relative cobordism group [16, p. 25] formed from stably
almost complex manifolds with boundary of dimension 2n + 2 with a com-
patible stably almost contact structure on the boundary. The homomorphism
d takes the class of the boundary manifold, while / is obtained by considering
a closed stably almost complex manifold as a manifold with boundary whose
boundary happens to be empty.

In order to compute πfw+2(Mt/,M£/<n>), one notes that g: BU(ή) —> BU
induces an epimorphism

g* : H*(BU(n) Z) - H*(BU Z)

II II
Z[Cί\i<n\

with g*(Ci) = Ci for / < n, g*(c^) = 0 for i > n, ct being the z-th universal
Chern class. Hence H*(BU,BU(n) Z) is the ideal in H*(BU; Z) generated
by the cj9j > n. Applying the Thorn isomorphism H*(MU,MU(rΐ)>; Z) ^
H*(BU,BU(ή);Z) so that Ht(MU, MU<n> Z) = 0 for i < In + 2 and is
Z for i = 2n + 2. By the Hurewicz theorem, πf(MU,MU(n}) is 0 for i <
2n + 2 and is Z for / = 2n + 2.

One may then study the composite

U , MU<n)) - ^ > H2n+2(MU, MU(n) Z)

Hi

where H2n+2(BU,BΌ(rΐ)\ Z) is identified with the integers by assigning to a
homology class a the value of the Kronecker pairing <c n + 1, α>. For a manifold
pair (F, 9F) of πξn+2{MU, MU(ri», the tangent map τ: (F, 37) -> (BU, BU(n))
induces a relative Chern class cn + 1(r) € H2n+2(V, dV; Z), and the integer as-
signed to (V,dV) is <cw+1(r), [F, 9F]). In particular, if F is a closed stably
almost complex manifold, this is the value of the top Chern number cn+ι[V].

Among all closed stably almost complex manifolds F of dimension 2n + 2,
the integers arising as the values of cn+ι[V] are all integers if n is odd or all
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even integers if n is even. To see this CP(1)W + 1 has value 2n+1 and CP(n + 1)
has value n + 2, so that if n is odd, the greatest common divisor is one. If
n is even, CF(1) X CP(n) has value 2(n + 1), so that the greatest common
divisor is 2. Since cn+ι[V] mod 2 is the Stiefel-Whitney number w 2 n + 2[F] or
the Euler characteristic mod 2, and since a closed oriented manifold of dimen-
sion not divisible by 4 has even Euler characteristic, c n + 1 [F] is always even if
n is even.

Thus the homomorphism i: Ωξn+2 —• πξn+2(MU,MU(ny) = Z is epic for n
odd and maps onto 2Z for n even. From the homotopy exact sequence

_ f0 n odd ,

Z2 n even ,

giving Proposition 4.2.
Being given a closed stably almost contact manifold M of dimension 4k + 1,

the proof just given shows how to compute J{M) e Z2. Specifically, one chooses
any stably almost complex manifold V whose boundary is M and /(M) is the
mod 2 reduction of c2k+1(τ)[V, M]. Unfortunately, finding such a V for which
the structure restricts properly and carrying through the evaluation are not
practical.

In order to simplify the calculation proceedure, one may consider the dia-
gram of classifying spaces

BU(2k) -?-> BU - * U BO

i l<
BSO(4k + 1) -^-> BSO —*-> BO

where r, s, p classify the universal bundles, and q classifies the complement.
For each of these one has a Thorn spectrum and induced obvious maps. In
particular, one has (s, r) inducing a homomorphism

πfk+1(MU,MU(2ky) -> π?k+2(MSO,MSO(4k + 1>) ,

which will be studied.
To begin, consider the homomorphism

p * : H*(BSO(4k + 1) Zp) <- H*(BSO Zp)

II II
Zpl&ili < 2k] Zpl&il

where p is an odd prime and 0i

i is the ί-th Pontrjagin class, p* is an isomor-
phism in dimensions less than Sk + 4, so that H*(MSO, MSO(4k + 1> Zp)
^ H*(BSO, BSO(4k + 1) Zp) is zero below dimension Sk + 4.
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Also,

p* : H*(BSO(4k + 1) Z2) < H*(BSO Z2)

II II

Z2[Wi\l < i < 4k + 1] Z2[w,|l < i]

is epic with kernel the ideal generated by the wi9i > 4k + 1, so that
Hι{MSO,MSO(4k + 1> Z2) ^ Hί(BSO,BSO(4k + 1) Z2) is zero for i <
4/: + 2 and is Z2 for / = 4Λ + 2. Since the bundles are oriented, the Thorn
isomorphism commutes with the Steenrod operation Sq1. Since Sq1w4k+2 = wik+3

in BSO,Sqι is nonzero on H'k+\MSO,MSO(4k + 1> Z2).
Combining these, one has Hi(MSO,MSO(4k + V)\Z) equal to zero for

i < 4/: + 2 and to Z2 for i = 4k + 2, and by the Hurewicz theorem
πfk+2(MSO, MSO(4k + 1>) is Z2 and maps isomorphically to the homology.

In mod 2 cohomology, the homomorphism

H4k+2(MSO, MSO(4k + 1> Z2) -* Hik+2(MU, MU<2k} Z2)

induced by (s, r) is an isomorphism, so that the induced homotopy homomor-
phism is epic. Thus one has the commutative diagram

πs

4k+2(MU,MU<2k}) • > π$k+2(MSO,MSO(4k + 1 »

Hik+2(MU, MU<2k> Z) -> H4k+2(MSO, MSO<4k + 1> Z)

Z : > Z2

epic

inducing isomorphisms

= πfk+2(MSO,MSO(4k + 1» .

Interpreting the relative homotopy group as a relative cobordism group,
one may now describe J(M) more reasonably. Being given the closed stably
almost contact manifold M of dimension 4k + 1 one chooses any oriented
manifold V whose boundary is M, thus (F,M) represents J(M) in
πffe+2(MSO,MSO<4/: + 1>). The tangent map is given by a map of pairs
τ : (V, M) -* (£S0, £SO(4£ + 1)) giving w4k+2(τ) e H 4 f e + 2 (F, M Z2), and
/(M) € Z2 is the value of <w4k+2(τ), [V, M]>.

It should be noted that the SO(4k + 1) structure on an almost contact
manifold M is the obvious one, namely, the SO(4k + 1 ) structure arising from
the stabilization of the tangent bundle of M, and that a general element of
π4k+2(MSO,MSO(4k + 1>) or a class obtained from a stably almost contact
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manifold is represented by a V and some reduction along dV, not necessarily
the obvious reduction to the tangent bundle of dV.

It is clear for an almost contact manifold that the tangent map may be con-
sidered as a map sending V into BSO{4k + 2) since the tangent bundle of V
is a (4k + 2)-plane bundle, and <H>4λ;+2(τ), [V,M]} is the mod 2 reduction of
<Z(τ),[F, M]> where X(τ) is obtained by pulling back the Euler class in
H*k+2(BSO(4k + 2), BSO(4k + 1) Z). The value of <X(r), [V, M]> is ± χ ( F )
where χ is the Euler characteristic, with the sign depending on the use of in-
ward or outward pointing normal field to orient V and M compatibly. (See
Gramain [3] for example.) This gives the result promised.

Proposition 4.3. // M4 f c + 1 is a closed almost contact manifold, then the
class of M in Ωf^ = Z2, denoted J(M), is given by the semi-charateristic of
M. In particular, the semi-characteristic measures the failure of M to bound a
stably almost contact manifold.

Note. The invariant J(M) for an almost contact manifold M presupposes
that M is given the induced stably almost contact structure. A manifold M
may possess two stably almost contact structures, for which the classes in
Ωϊk+ki a r e distinct. For example the circle S1 has two distinct framings of its
stable tangent bundle, and these give the two classes in βf(0) only one of these
stably almost contact structures comes from the contact structure on S1.

5. Boundaries of almost complex manifolds

Being given a compact almost complex manifold with boundary V of dimen-
sion 2n + 2, the tangent bundle of V has an operator / covering the identity
map and satisfying P = — 1. The restriction of the tangent bundle of V to
M = 3V has one section given by the unit inward pointing normal, the ortho-
gonal complement being the tangent bundle to M. Applying / to the normal
field gives a section of the tangent bundle of M, and the complement is a com-
plex bundle. Thus the boundary of V has an almost contact structure induced
by the almost complex structure on V.

The classical examples of contact manifolds all arise in this way. One would
then like to improve Proposition 3.4 by eliminating the word "stably". There
is one case in which this can be done, and one has

Proposition 5.1. A closed almost contact manifold M of dimension 8k + 5
is the boundary of a compact almost complex manifold.

Proof. Let M be a closed almost contact manifold of dimension 8k + 5.
If the result is true for each component of M, then it holds for M, and without
loss of generality one may suppose M to be connected.

Applying Proposition 3.4, one has M = dV for some compact stably almost
complex manifold V, and by taking the connected component of V containing
M one may assume V to be connected.

The tangent map τ : (F,M) -> (BU,BU(4k + 2)) may be deformed into
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BU(4k + 3) keeping the map fixed on M since V has dimension 8k + 6 and
Ki(BU, BU(4k + 3)) = 0 for i < Sk + 6. Thus there are a complex (4k + 3)-
bundle η over F and an isomorphism oίηjM with r M 0 1 so that η induces
the almost contact structure of M and that the stabilization of η gives the stably
almost complex structure of V, i.e., one has a chosen stable isomorphism of
η and τv.

If one just had an isomorphism of η and τv compatible with the given isomor-
phism over M, then V would be the desired almost complex manifold with the
structure arising from the isomorphism of τv and η. Thus one considers the
maps τv,η: (V,M) -> (BSO(Sk + 6),BU(4k + 2)) and seeks a homotopy
joining them and keeping M fixed. Since τv and η are stably isomorphic, their
restrictions to the (Sk + 5)-skeleton of V are isomorphic, and thus one may
assume that the maps agree on this skeleton. The obstruction to finding the
desired homotopy is then the difference element

d(τv, φ e H»k+%V,M;πskUBSO(Sk + 6))) .

From the transgression homomorphism

Δ : π8k+6(BSO(Sk + 6)) -* ττ8fc+5(S8fc+5) - Z

π
of the fibering 58 f e + 5 -> BSO(%k + 5) • BSO(Sk + 6) one has induced a
coefficient homomorphism

J t : H^\V, M πn+%(BSO(%k + 6))) -> H*k+\V, M

and

is the difference of the relative Euler classes of τv and η (the obstructions to
lifting in π with the given lift on the boundary M). See James and Thomas
[5, pp. 500-501].

Since V and M are connected, H8k+%V, M 9ΐ) ^ 9t and 4 is identified with
the homomorphism Δ. From Kervaire [7], one has

5)) > π8k+6(BSO(Sk + 6 ) )

/H l\\
π8k+5(SO(Sk + 5)) > πsk+6(SO(Sk + 6))

z2

so that J is monic. Further, since V and M are connected one has X(τv) —
X(η) = 0 if and only if the value of the Kronecker product <X(τv) — X(η),
[V,M]y is zero.
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Summarizing, one must find a V for which ζX(τΌ), [V,MJ) = ±χ(V) (the
sign depending on the orientation convention) is equal to (X(η), [V, M]). Since
the relative Euler class of a complex (4k + 3)-bundle is its Chern class c4fc+3,
X(rj) = cik+3(r/), and the relative Chern class of η is the same as that of its
stabilization (H8k+e(BU,BU(4k + 2) Z) ^ H8k+\BU(4k + 3),BU(4k + 2);
Z)), one sees that it suffices to find a connected stably almost complex mani-
fold V with dV = M for which

<c4 f c + 3(τ),[F,M]> = ± χ ( F ) ,

where the Kronecker product is as discussed in § 4, and is the determining in-
variant of πik+ι(MU,MUζ4k + 2 » .

To begin finding such a V, one first chooses any connected V with dV — M
and modifies it. First, being given V and any connected closed stably almost
complex manifold W, one may form the connected sum Vf%W by doing sur-
gery on S° imbedded in V \J W with one point in the interior of Vr and one
point in W. The resulting manifold Vr%W is connected. As in Lashof [8], this
surgery may be accomplished as a (BU, BU(4k + 2)) cobordism without chang-
ing the boundary structure.

Since the relative Chern number is a cobordism invariant,

while the Euler characteristics are related by

χ(y'$W) = χ(F') + χ(W) - 2 .

(See Lemma 1 of Reinhart [13] one is replacing DBk+β X S° by SSk+δ X D\
i.e., it is a surgery of type (8k + 5,0)).

In particular, if W = S1 X S8k+δ with the trivial stably almost complex
structure for which it bounds, this does not change the Chern number
(<c4Jfc+3(r), [W]} = 0) but subtracts 2 from the Euler characteristic. If in-
stead one lets W = S2 X S8k+* with the trivial stably almost complex structure,
the Chern number is unchanged but 2 is added to the Euler characteristic.
Since when reduced modulo 2 the Chern and Euler number agree (as in § 4),
it follows that by iterating this process one may find a V with the desired Chern
number-Euler number relationship. Thus one may find the desired almost com-
plex manifold V, completing the proof.

Note. Dimensions of the form 8k + 5 are the only ones for which Δ is
monic; that is the only point at which the hypothesis was used.

One may also apply this to understand sχ(M) more thoroughly. Let M be a
closed connected almost contact manifold of dimension 8A: + 5 for which
sχ(M) — 0. One may then choose a stably almost complex manifold V with
dV = M for which <c4A;+3(τ), [V,M]} = 0, and by surgery one may form the
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connected sum of the components of V, i.e., may assume V to be con-
nected. By attaching copies of S1 X S8k+b and S2 X S81c+\ one may also obtain
χ(V) = 0 so that V is an almost complex manifold whose tangent bundle has
a section extending the inward pointing normal field along dV — M. Multiply-
ing this field by / gives a second field and reduces the tangent bundle of V to
1 X U(4k + 2) compatibly with the reduction on M. This proves

Proposition 5.2. A closed almost contact manifold M of dimension 8k -f 5
is the boundary of a compact manifold with tangent bundle admitting a reduc-
tion to 1 X U(4k + 2) compatible with the reduction on M if and only if
sχ(M) = 0.

6. Characteristic classes

The object of this section is to describe the characteristic classes of a con-
tact manifold, or more precisely, the cohomology of the classifying space

Before beginning the calculations, notice that if 0(2n + 1) is included in
0(2n + 2), then C2n+ι becomes the subgroup of 0(2n + 2) generated by 1 X
U(n) and conjugation (where R2n+2 = Cn+1). Thus C2n+ι is the intersection of
0(2n + 1) and U(n + 1) in 0(2n + 2), where U(n + 1) is the group of real
linear transformations T: Cn+1 —» Cn+ι which preserve the real inner product
and are either complex linear or conjugate linear (i.e., Tix = iTx for all x or
Tix = -iTx for all x).

Alternately, C2n+1 may be identified with U(n) (although not as usually con-
tained in 0(2/ι) C 0(2n + 1)). To see this, one has a homomorphism φ: U(n)
-> Z2 = 0(1) with kernel U(n), and letting i: U(n) -> 0(2n) be the inclusion
one obtains that C2n+1 is the image of

U(n) ^X 0(1) X 0(2n) —--• 0(2Λ + 1) .

The groups U(n) have been extensively studied by one of the author's stu-
dents, Mr. Paul Beem, and the remarks which follow are contained in his
dissertation.

First notice that from the exact sequence 1 —• 1 X U(n) —> C2n+1 —> Z2 —» 1
there is a double cover of BC2n+1 by BU(n). The covering transformation is
the involution induced by conjugation on U(n). Thus the projection π: BU(ri)
-* # C 2 n + 1 induces a monomorphism TΓ* : H*(BC2n+ι ^ ) -^ H*(BΌ(n) ^ ) for
any ring ^ containing J, and the image of r* consists of those elements in-
variant under the involution. The ring H*(BU(n) 3$) is the polynomial ring
over 0ί on the Chern classes ct e H2ί(BU(n) ^ ) , and the involution sends ct

to (—1)*^, so that H*(BC2n+1 2&) is completely known.

With Z2 coefficients, one uses the fibration BU(ή) —U- £ C 2 n + 1 —^> 5Z 2

coming from the exact sequence. Since the composite BU(n) > BC2n + ι >
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BO(2n + 1) is epic in mod 2 cohomology, the fibration p is totally non-
homologous to zero, and H*(JBC 2 T O + 1 ; Z2) is the polynomial algebra over Z2

on P*(HΊ) and i*(w2k) for 1 < k < n. If n is even, C2n+1 φ SO(2n + 1) so
p*(wx) = /*(W!), while for n odd, C 2 n + 1 C S<9(2rc + 1) and i * ^ ) = 0. More
generally, one wishes to express /*O2 f c + 1) in terms of P*(HΊ) and the i*(w2k).

Being given a space Y and a principal C 2 w + 1 bundle over Y, π : P —• Y,
P/l X U(ή) = X is a double cover of Y induced by the homomorphism C2 W + 1

—> Z2 = 0(1) and giving a line bundle £ over Y (the contact line bundle). The
inclusion C2n+1 —> 0(1) x 0(2n) also provides a principal 0(2«) bundle over Y
with associated real 2π-plane bundle η over Y (the contact distribution) and
further inclusion in 0(2n + 1 ) gives the associated (2n + l)-plane bundle τ =
ξ®η (the tangent bundle or cotangent bundle for contact manifold).

If p denotes the vector bundle over X induced from η, then p is a complex
n-plane bundle. Letting T: X —> X be the involution given by the interchange
of sheets in the double cover, one has a covering involution Γ* on p which is
a conjugation (T*i = — zT*). One may consider Y as the orbit space X/T, ξ
as the line bundle with total space X X R/(x, r) — (Tx, — r), and 37 as the 2w-
plane bundle with total space E{η) = E(p)IT*.

Claim, η <g) ξ ^ 37.
Proof. For e € £(|θ), let π/e) be the projection of e in X. Let [e] denote

the class of e in E(p)/T* = E(τj), and let {x, r} denote the class of (x,r) in
E(ξ) = X x R/ —. Consider the function 0: E(p) -> E(^ ® f) given by ί(^) =
\ie\ (x) {7rp(^), 1}. This covers the projection of X on Y and is real-linear on
fibers. Now

θ(T*e) = \iT*e] (x) {π,(T*e)91} = [-Γ*ΐe] (g) {Γ^W, 1}

= [-fe] ® {τr,(e), - 1 } - [fe] (x) {^(e), 1} = β(e) ,

so that θ induces a map of E(p)/T* = E{η) into E(η ® f) which is obviously
a bundle isomorphism.

From the equation η ® ξ = 37, one has

(r ® f) Θ £ = (9 θ £) ® £ = (9 ® £) Θ 1 Θ £ = r Θ 1 .

Letting c € / / ' (Y; Z2) be w^f) and letting wt 6 fl*(Y:Z2) be the i-th Stiefel-
Whitney class of τ, z < In + 1, one has

1 + w2 + w2 + + w2n+1 = w(τ Θ 1) = w((r ® £) Θ £)

= {(1 + c) 2 w + 1 + (1 + cY*wx + + w2n+1}(l + c)

= (1 + c) 2 n + 2 + (1 + c)2n+1W! + •

+ (1 + c)2»+a-'w r + + (1 + c)w2n+1 .

Now specialize to Y = BC2n+ι, so that c = p*(wt) and w< = i*(wt) in the
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previous notation (so that multiplication by c is monic). The above equation
then becomes

Σ - i d + c ) 2 w + 2 - + l]wr = 0 ,
r = 0 C

and [(1 + c)
2n+2-r + l]/c = (2n +f ~ r\ + terms in c, so that the odd

degree components of this equation give polynomial identities for w2k+1 in
terms of c and the wi9 i < 2k + 1.

Claim.

1 + wλ + w2 + + w2n+1

- c-'Kl + c2)n+ί + (1 + c)] + c-'ld + cψ + (1 + c)]w2 + . .

+ c-Ήl + c 2 )- + 1 - + (1 + c)]w2r + .

+ c-'Kl + c2) + (1 + c)]>v2w .

Proof. At first one notes that

[(1 + c2)J + (1 + c)]/c = 1 + odd powers of c ,

so that the even degree terms are just the w2k on both sides, and the odd
degree terms give identities for w21c+1 as polynomials in c and the w2j.

It is sufficient to show that

A = j ] l [ ( l + c 2 )* + 1 - + (1 + c)]w2r
r=0 C

satisfies the identity given by w(τ 0 1 ) = w((τ (x) ξ) 0 ξ) since this identity im-
plies unique formulas for the wodd. Thus it suffices to show that A is trans-
formed into itself if the homogeneous component degree i is multiplied by
(1 + c)~ι and the entire expression is then multiplied by (1 + c)2n+2. Under
this operation, {[(1 + c2)n+ι~r + (1 + c)]/c}w2r is transformed into

α , c )2tt+2f[1 + (c/d + c))2]n + 1" r + [1 + c/d + c)]\ w
/ + c) / (1 + c)2'

= (1 + c ) 2 ^ 3 - 2 ^ - 1 ^ ! + c)- 2 ( n + 1- r ) + (1 + c ) " 1 ] ^ ,

(using the identities 1 + x2 = (1 + x)2 and 1 + c/(l + c) = (1 + c)"1)

= c^td + c) + (1 + cΓ+ 2-2 ']w2 r .

Thus A is unchanged, giving the result.
In conclusion, one has a complete description of the mod 2 cohomology of
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BC2n+1, and knows the relaltions between the Stiefel-Whitney classes and the

Stiefel-Whitney class of the contact line bundle for a contact manifold.

Corollary. A closed contact manifold M of dimension less than or equal

to 11 is the boundary of a compact manifold with boundary.

The proof is an uninspiring exercise in horrid calculation, and is not worth

writing down. It would be pleasant if this were true without dimensional re-

strictions, but a case by case checking of Stiefel-Whitney numbers is no way

to prove it.
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