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NONSINGULAR DEFORMATIONS OF SPACES
WITH NORMAL CROSSINGS. I

JAMES A. MORROW

Introduction

We wish to study one-parameter families of compact complex spaces. We
will describe a certain construction which can be performed on a class of
complex spaces and which will yield a topological manifold homeomorphic to
any nonsingular fibre of a one-parameter family containing the given complex
space as singular fibre (as long as the given structure sheaf on the complex
space is the same as the one which is induced as a fibre of a family). The
structure sheaf plays a nontrivial role since, for example, if π: Jί —> Δ =
{z I |z | < 1, z e C1} is a one-parameter family Mt = π~\t) such that with respect
to appropriate local coordinates π(w19 , wn) = wf, then Mt for t Φ 0 is a
/^-sheeted covering of Mo which in general will be topologically distinct from
Mo even though Mo is a nonsingular submanifold of Jί.

The class of complex spaces which we study is the one with normal crossing
singularities. For these spaces we will give a simple condition which must be
satisfied if they are to belong to a one-parameter family. For those spaces
which are members of a one-parameter family we will show how they determine
the topology of the nonsingular fibres.

0. Basic definitions and assumptions

We remind the reader of some standard definitions (consult, for example,
Grauert and Kerner [2]). Let X be a topological space, and stf a sheaf of
local complex algebras on X. We suppose that the unit 1̂ .6 stf x varies continu-
ously with x € X. If Jί' x is the maximal ideal of s/x, then stf x\Jίx is isomorphic
to C under the isomorphism which sends lx + Jίx into 1 € C. The pair (X, <$/)
is called a complex ringed space, and <$/ the structure sheaf.

Let (X, stf) and (Γ, &) be two complex ringed spaces, By a morphism
Φ: (Z, sf) —> (Y, £8) we mean a pair of continuous maps (<p, <p*), where ψ maps
X into Y, and φ* maps the sheaf φ~ι3S = {(*, b) \x € X, b e ^ψ{x)} into si so
that 9* is a sheaf map which is a homomorphism of local complex algebras
on each stalk. Φ is a bimorphism if there is a morphism Ψ = (ψ, ψ * ) : (Y, @)
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—• (X, sί) such that Φ o Ψ = identity and Ψ o φ = identity where the notation
is obvious.

Let G be an open region in Cn, and 4̂ an analytic set in G. Let Θ{G) be
the sheaf of germs of holomorphic functions on G, and J ci 0(G) be a coher-
ent sheaf of ideals J2^ such that A = {xzG\JxΦ GX(G)}. Then the stalks
of the sheaf Θ(β)\J are zero outside of A, and therefore #P — Θ(G)j J can
be considered to be a sheaf of local complex algebras on A. Hence {A, Jf) is
a complex ringed space. Such spaces are called complex models. A complex
ringed space is a complex space if:

(i) X is Hausdorfϊ,
(ii) to every xeX there are a neighborhood U and a complex model (A, ^f7)

such that (£/, J ^ ) is bimorphic to (A,J(?). One can easily see that the complex
spaces form a category. A morphism of complex spaces will be called a holo-
morphic mapping.

Let Aλ be an analytic set in a region Gλ of Cn\ where Λ = 1 or 2. Suppose
^ has structure sheaf Jt?λ where Jfλ = Θ(β^\Jλ as in the definition of a
complex model. Let ψ-: Gx —> G2 be a holomorphic mapping in the classical
sense such that ψO4i) c ^U Then the inverse image ψ~ι(9(G2) is contained in
0(Gj). Suppose ψ " 1 ^ C J 2 ^. Then by passing to quotients we can define a
sheaf map <p*: ty~\£F2) —• ^fj. If we set ψ\A1 = φ, we have defined a mor-
phism (9, £>*): (Ai, J^i) -* (A2, Jί?2). Such a morphism will be said to be
generated by ψ . The following result is well-known (see e.g. Grauert [1]).

Proposition 1. Let (φ, φ*): (A19 tff^ —> (A2, J4?2) be a morphism of complex
spaces. Letxz A1 and y = φ(x) e A2. Then there are complex models (M15 s/t),
(Λf2, s/2) with Af! C G i C C711, M2 CZ G2 CZ CU2 where Gλ and G2 <zre regions
in Cnt and Cn% and //ẑ r̂  ar^ neighborhoods U of x and V of y and bimor-
phisms (ψ 1 ? ψ * ) : (M 1 ? ^ ) -> (J7, ^ U , (ψ 2, ψf): (M 2 , ^ 2 ) -> ( F , ^T 2 | F ) JMCA

/Λaί //ẑ  composition (ψ2, ψt)~\φ, φ*)(ψ19 ψf) is generated by a holomorphic
map ψ : Gx —* G2.

Let (Z, Jf7) be a complex space, and (Λf, 0) a complex manifold where 0 is
the sheaf of germs of holomorphic functions on M. Suppose (π, π*): (X, 2tf)
—»(M, (̂ ) is a holomorphic map. For t e M, Xt = π" 1^) is an analytic subset
of X. Let ^#ί c 0t be the maximal ideal of Φt9 and JKtoπ the ideal of «^
generated by π*(jz~ιJίi)- If one defines ^ft = tf\Jίtoπ, then Jf, vanishes
outside of ^ ί ? and ( Z ί ? 2t?t) is a complex space. The morphism (π, TΓ*) : (X, 2?)
—• (M, Θ) hence defines a family of complex spaces (Xt, 2t?i). We abbreviate
this notation to π: X —> M.

Now let ^ be a complex manifold, and ω be a proper holomorphic map of
Jί onto Δ = {z\\z\ < 1, z e C}, the unit disk in C. Let J / and 0 be the sheaves
of germs of holomorphic functions on Δ and Jί respectively. If we give each
fibre Mt = ω~\t) the structure sheaf described above, then we say that the
triple {Jί^ω^Δ) is a one-parameter family of compact complex spaces. For
simplicity, in subsequent work we will always assume Jί and Mt to be con-
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nected for all t e Δ. By a one-parameter family we shall always mean a one-
parameter family of connected compact complex spaces. We have

Proposition 2. Let {Jί, ω, Δ) be a one-parameter family. Then any general
member (Mt, 34?t) is a nonsingular complex manifold with reduced structure
sheaf. By this we mean that the set of points t e Δ, for which {Mt, Jft) is not
a complex manifold with Jft the sheaf of germs of holomorphic functions on
Mt, is a set without accumulation point in Δ.

Proof. If we are willing to use the proper mapping theorem of Remmert
the proof would be immediate. We propose instead the following elementary
argument. Let TΓ* : TJt —> TΔ be the induced map of tangent spaces. Let
A cz Jί be the analytic subset consisting of all points p e Jί for which TΓ* : TpJί
—> Tπ(p)Δ is the zero map. Let As be the singular points of A. Then A — As

is a complex manifold, and π is constant on each component of A — As. Thus
π is constant on each irreducible component of A. Now suppose π{A) has an
accumulation point in Δ. Call it s. Then there is a sequence of distinct points
{tv} <Ξ π(A) for which tv —• s. Since π is proper (by passing to a subsequence
if necessary) we find a sequence pve A, p e Jί such that π{pv) = tv, π{p) = s
and pv —> p. But then π* is zero on TpJί, so p e A. Since the tv are distinct,
each pv belongs to a different irreducible component of A. Thus we conclude
that any neighborhood of the point p e A has infinitely many irreducible com-
ponents. This is impossible for an analytic set (see, for example, Gunning and
Rossi [3, pp. 89, 116]). q.e.d.

We will refer to this proposition as Bertini's theorem.
Let Z b e a complex space. We wish to define what it means for X to have

only normal crossing singularities. Let X also refer to the underlying topological
space of X. Suppose X = UXa, 1 < a < I, where each Xa is a nonsingular
complex manifold. Let x e X, and let (a19 , ap) be the set of integers for
which x e Xai. Then we suppose that there are a set β = (β19 , βp) of positive
integers and a neighborhood of x in X, which is bimorphic to the complex
model in an open disk D around the origin (0) € Cq (q > p) defined by zλ zp

= 0 with structure sheaf Θ(D)/(zβ), where Θ(D) is the sheaf of germs of holo-
morphic functions of D, and (zβ) is the ideal of Θ(D) generated by the holo-
morphic function zβ = z{x zβ/. We also suppose that this biholomorphic
map takes x into 0. If this situation holds for every x € X, we say that X has
only normal crossing singularities.

Now let {Jί, ω, Δ) be a one-parameter family. Suppose (Mo, tf0) is a singular
fibre (i.e., Mo singular as a complex analytic set or «^0 not reduced). Then by
Bertini's theorem there is a neighborhood of 0 such that for all points t in the
neighborhood, except 0, Mt is nonsingular and 3^t is reduced. We restrict our
attention to the portion of Jί above this neighborhood. By changing coordi-
nates on Δ we may assume that this small neighborhood again is Δ =
{z\\z\< 1, zeC}. We denote the new family by the same symbols {Jί, ω,Δ),
although ω has really been changed by the change of coordinates. If (Mo, Jf0)
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has only normal crossing singularities, we may assume that ω is given locally
by ω(z19 - , zn) = zβ where β = (β19 , βn), βt > 0, β e Z and zβ = zf1

zβ

n

n. We will use this multi-index notation when convenient in order not to get
lost in a cloud of indices. A connected compact complex space will be said to
be admissible, if it has only normal crossing singularities, and there exists a
one-parameter family in which it occurs as a singular fibre.

We shall give the construction of the topological nonsingular model, and
prove that it is indeed homeomorphic to the nonsingular fibres of any one-
parameter family in which the complex space occurs as singular fibre for a set
of cases in ascending order of difficulty. We could have done only the most
difficult case, since it contains all of the easier cases. We think this would have
made the procedure more difficult to understand, so we have built up from the
simple to the complicated. The cases are as follows. (In each case we list the
"worst" possible local behavior of ω.)

Case I. (Mo, JΊ?0) occurs as a singular fibre with ω(z) = zf, in terms of
local coordinates z — (zί9 , zn).

Case II. (Mo, Jf0) occurs as a singular fibre with ω(z) = z[xz{%.
Case III. (Mo, 2/?^ occurs as a singular fibre with ω(z) = z[xz{*z{*.
Case IV. The general case: ω(z) = zβ, β = (β19 , βn), βt eZ, βt> 0.

1. The nonsingular model in Case I

Let (M, Jf) be an admissible complex space which occurs as a singular fibre
in a one-parameter family (Jί, ω, Δ) for which (M, jtf) ^ (Mo, j(?0) and for
which one can find local coordinates z = (zu ,zn) for a neighborhood in
JC of an arbitrary point in Mo such that ω(z) = ze

n with e > 1 ( ^ means
bimorphic). Since M is connected, e will be the same for all points in Mo. We
can find a finite covering {Uj} of M with open sets such that on each set Uj9 £?
is bimorphic to the sheaf Θ(D)/(ze

jn), with D an open disk around 0 in Cn. If
Uj Π Uk Φ 0, then a nonvanishing holomorphic function fjk(x) on Uj Π Uk

is defined by the relations

fJk(x) = F]k(zkl(x)9 ' ' ,Zitn-iW»0) .

It is easy to see that {fjk} defines a 1-cocycle on the nerve of the covering {Uj}
and thus gives an element / e H\M, Θ*) where Θ* denotes the sheaf of germs
of nonvanishing holomorphic functions on the complex manifold M (reduce
the complex space (M, tf)). In fact, since ω = ze

Jn, {% = 1. Thus fJk is an e-th
root of unity. Let Ze denote the group of e-th roots of unity (a multiplicative
subgroup of 51 C C). Then f e Hι(M,Ze), and thus / defines an e-sheeίed
unbranched covering v(M0) of Mo, which is the nonsingular model for Case I.

We will show that the cohomology class / depends only on the structure
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sheaf $P and not on the particular choice of family {Jί, ω, Δ). For let {Jί, π, Δ)
be any other one-parameter family for which (M, Jf) ^ (7V0, Jf 0), where No =
TΓ^CO), Jf0 is the induced structure sheaf, and locally π = we

n. Let {Uj\ cover
M such that locally M is given by ΛZj = {Zj e Dz\ze

jn = 0} and AWj =
{wj € Dw I we

jn = 0}, where Zj and Wj are local coordinates for Jί and Jί, and
DZ,DW are open disks around 0 € Cn. Since (M, Jf) is bimorphic to both
(Mo, ^f0) and (7V0, JΓ0), there is a bimorphism between (AZ9Θ(Dz)/(ze

jn)) and
04 w , 0(Aϋ)/(w? n)) By Proposition 1, § 0, we may assume that this bimorphism
is induced by a map φά: Dz —> Dw. It is not hard to see that this map takes
the form

where //z^O), , z^^W, 0) ^ 0, and Ψj = (^^ , ̂  J . Then it follows
that fjk = fjΊjJic, where

Wjk = FjkiWki, - - , Wkn) , fjk(x) = Fjk(wkι(x), , wkn_γ(x), 0) .

Thus / = {fjk} and / = {fjk} define the same class in H\M, C*), so that / and
/ define the same class in Hι(M,Ze). Therefore the covering defined by /
depends only on 2tf and not on (J£,ω, Δ). We denote this e-sheeted covering
by ι>(M, Jf), and call it the ίopologίcal nonsingular model of (M9Jf). Note
that this terminology has very little to do with the same expression in algebraic
geometry.

Remark. This covering could be defined as follows. The cocycle {fjk}
determines a complex line bundle [/] over M. Let ξt be a local fibre coordinate
for [/]. Then it is easy to see that the collection of local subvarieties {ff = 1}
fits together to form a nonsingular submanifold W of [/]. The fibre projection
makes W into an unramified e-sheeted covering of M. Then W = v(M, Jf).

2. The deformation theorem for Case I spaces

In this section we prove the following theorem.
Theorem. Let {Jί, ω, Δ) = {Mt \t e Δ) be a one-parameter family. Suppose

Mt is nonsingular for t Φ 0, and (Mo, tf0) is a Case I space. Then Mt is
diffeomorphic to (Mo, ̂ 0 ) for t Φ 0.

Remark. We know two proofs of this result, and since they are both easy
we give them both.

Proof 1. We suppose v(M0, jf 0) is an e-sheeted covering of Mo. Let Δ be
another copy of J , and ψ\ Δ -> Δ be given by <p(ζ) = ζe. Then we define a
space W c Δ X Jί by

Then W = U Ws where
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and Zj = (Zj19 , zjn) is a local coordinate in Jt around a point of Mo. Here
n = dim f̂, and we are assuming that the domains of these local coordinates
cover Jί (if not, we could just take Jί to be a little smaller). Wό itself is a
union W3 = Uf=i ^ with

where ^ = exp (2πί/e). We construct a new manifold Jg as follows. PF̂  is a
union of ^-sheets which intersect along a portion of Mo. We separate these,
and consider Ws = IJ?=i Wj as a disjoint union. Then ΰ? = U flFj where we
make the following identifications. As in § 1 we have

Zjn = Fjk(zk)'Zkn on Vj Π Vk

with Fe

jk = 1, where F^ is the domain of Zj. We also have

zfj = Gjk(zk) on F , Π Vk ,

where ẑ  = (zjl9 , z./TO_i). We see that Fjk is locally constant, and is an e-th
root of unity. As before we set fjk = Fjk(zfk9 0). We identify (ζ, Zj) € W) with

( ζ , z f c ) €^ Γ i f

Zy = Gjk(Zk) , Z i n = F^foO Zfcn , ^ = /0m /ifc .

This makes Jϊ into a complex manifold. We have a natural projection TΓ : Ji
—> J and a commuting diagram

Δ > Δ .
ψ

It is easy to see that the differential of π has rank 1, and thus each fibre is a
nonsingular complex manifold. In fact π is proper, and thus Mo is diffeomorphic
to Mt for tzΔ.'VίtφO, then Mt = M ί ? and if t = 0, then Mo = v(M0, ̂ 0 ) .
Hence Mt is diffeomorphic to v(M0, ^ 0 ) .

Proo/ 2. Cover Mo with a finite number of open sets Wj which are domains
of coordinate charts Zj for Jl. We assume W3 = {x\supm\zjm(x)\ < 1} where
Zj = (zJ19 -,zJn). On ^ we assume ω(x) = z%(x) = zjn (we omit Λ). Let
zfj == (zJ1? , z^n_i). Then on HPj Π Ψ fe we have

Zjn = Fjk\Zk)'Zkn ? £/ == Gjk{Zk, Zkn)

Since zjn = zjn, we conclude F^. == 1. Thus \Fjk\ = 1, and | z i n | = |z* n | on
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Wj Π Wk. Let r = \zjn\ on Wj. Then we get a continuous function r denned
on U Wj = W.

Let J + = {ί|0 < t < 1} C J , ^ + = ω- 1(J+), and z, w = r0, with |0, | = 1.
Then zjn > 0, on Jl+ implies 05 = 1. Thus we can write ϊFJ = Wj Π JK+ in
the form

; = ί(zfj9rθj)\O <r<l,θej = 1, s u p | z ,
I m<n

(Here, as elsewhere, we identify Wj with its image under the chart map Zj).
Let W+ = \Jj Wj. Then Mo is the subspace denned by r = 0. The points
(Zp rθj) and (z'k, r0 t) are identified if and only if

( 2 ) ^ = F, , ( 4 , rθk) - θk , z = Gjktfk, rθk) .

That is, (z'j, rθj) and (z^, rθk) are identified if and only if they define the same
point of Wj Π Wi. We define y(^+) by

(Wj) = {(z , r, ^ ) 10 < r < 1, θj € S1, β; - 1, |z; | < 1} ,

where Sι is the unit circle in Sι, and \zfj,| = suρm < r ι |z^m | . Then we form a union
( J , x,(»7) = p(jy+) by identifying tfj9 r, ^ ) e v(Wj) with (z7,, r, ί 4 ) e v(Wi) if
and only if

θj = Fjk(zk, rθk)θk , z'j = Gjk(z'k, rθk) ,

where (zk,rθk) defines a point of W^ Π Wj. Thus (Wt) is a (disjoint) union
of e copies of {(z ,̂ r) |0 < r < 1, \zfj\ < 1}, and i^(ίF+) is a topological mani-
fold with boundary B = U {(zj,0,)}. Then ^ : (z^r,θj) -+ (z^rθ3) defines a
continuous map from v(W+) onto Ψ + , which is a homeomorphism from v(ίF+)
— B onto Ψ + — Mo. Next we replace Ŵ + with v(W+), forming a new manifold
v(Jί+) = (Jί+ - W+) U v(W+). We extend μ to a continuous map μ: p(^r+)
-+Jt* by setting it equal to the identity on v{Jί*) — y(iPF+). Then μ is a
homeomorphism from i ;(^ + ) — μ~\M0) onto ^ # + — Mo where μ~\M0) = B.
If we write μ~\M0) = v(MQ), then it is easy to see that v(M0) = v(M0, ^f 0) is
the topological nonsingular model.

The map ωμ: v(Jί+) -> Δ+ is continuous, and (ωμ)~\t) = Mt for / > 0.
For t = 0,

It is clear that v(Jί+) — v(M0) is a smooth manifold. We will show that Mt is
homeomorphic to v(M0, 2tf0) by introducing a diίϊerentiable structure on v(J?+),
which is an extension of the given differentiable structure on v(JK+) — v(M0),
and we will find a differentiable function on v(Jί+) with no critical points,
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which has as level sets the manifolds (ωμ)~\t) = Mt for 1 > t > 0. Hence Mt

will be homeomorphic to Mo.
If we set

fexp(-l/ 9) f o r ^ > 0 ,
e(q) = {

{ 0 f or q = 0 ,

then e(g) is a smooth monotone increasing function oί q. If R+ = {r\r > 0},
the map r —» r defined by e(τ) = re is a homeomorphism from [0,1) to R+,
and r(τ) = [e(τ)]1/e is a smooth function of τ. Then we introduce coordinates
(zfj, r, θj) on v(Wj), and we have replacing (2)

( 3 ) θj = Fjk(z'k, r(τ)θk) θk , z'j = Gjk(z'k, r{τ)θk) .

Hence (z'k,τ, θk) —• (zfj9 τ, θ3) is a smooth map. So the coordinates (τ, ̂  , y^, Zj)
form a system of differentiate coordinates {θj is not really a coordinate it
is more like an index) in a neighborhood v(W+) of v(M0). It is clear that this
is a continuation of the smooth structure on v(J^+) — v(M0). The function τ
is a smooth function on v(Jί+) with no critical points, and has the manifolds
(ωμ)~\t) as level sets. Hence (ωμ)~\0) is diίfeomorphic to (ωμ)~ι(t). Thus Mt

is diffeomorphic to v(MQ, 2tf0).
Remark. There is no need to introduce the function τ into this proof. We

could have used the function r instead. However for later proofs we must use
e(q), so in analogy with these later proofs we introduced e(q) into this proof.
In fact v(^+) is already a smooth manifold in this case.

3. The nonsingular model in Case II

According to our definition in § 0 a Case II space (M, 2#?) is at worse locally
isomorphic to a complex model of the form (A, s/e>f) where

A = {z: zγz2 = 0, z = fe, , zn) € D c Cn} , s/e,f = (9/(ztz{) ,

D is an open neighborhood of 0 e Cn, 0 = Θ(D), and e,f are nonnegative
integers. (We assume that somewhere (M, Jf) is locally isomorphic to a model
(A, s/βtf) with e > 0, / > 0.) The integers e, f of course depend on the locality.
As a set M = U M J ? a finite union of connected nonsingular compact complex
manifolds such that no point of M belongs to three or more Mj and to each
Mj we associate integers e3 (the multiplicity of Mj). These integers are defined
as follows:

(i) If p € M, p in exactly one Mj9 then near p, (M, Jf) is isomorphic to
(A,<stfe.i0). _ _

(ii) If p € Mj Π Mfc, then near p, (M, Jί?) is isomorphic to (A,s/ejte]). (So
near p, Mj will be given by zx = 0, M k by z2 = 0.)
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For the present let us consider the case M = Mx U M2, and let e = e19

f z= e2. The case M = U* =i ̂ Γ/> s > 2, is not essentially harder. Let

Λ = {ze£> c C»: % = 0} , A. = {ζ e Δ c C": ζxζ2 = 0} ,

where z = (z15 , zn), ζ = (ζ1? , ζ n ), and D, J are open neighborhoods of
0. Let

Suppose Φ = (̂ >, <p*) is an isomorphism

Φ: (Az>z<sfe>f)->(Aζ>ζs/e>f) .

We know (§ 0) that Φ is induced by a map z «-• (F^z), , Fn(z)).

Lemma 1. F^z) = /(z)z1? F2(z) = g(z)z2, w/zere /(0,0, z3, , z j Φ 0,

We omit the easy proof.
In what follows we shall assume the dimension of M is 2. The case dim M

> 2 is not essentially different. We divide the discussion into parts as follows.
Part (/). We assume that the greatest common divisor (e,f) = 1, and that

both e > 1 and / >_1. Let M_= {Uj} U {Vk} U {Wt}9 a union of_open subsets
of M where C/̂  C M19 Vk C M 2 and the sets {Wt} cover ^ = M1 Π M 2. We
assume each (Uj,Jf) is isomorphic to a model (B,&e), (Vk, Jf) to a model
(β, af), and ( ^ , ^ ) to (A, s/βtf)9 where J ? - { z e / ) c C 3 : Zj_= 0} and D
is an open disk around 0 € C3. We define bundles E1 and Fx on M1 as follows.
Let W1

ι = M1Γϊ Wt. Then {C/̂  } U {W\} is an open covering of Mλ. Let z =
iZιj,z2j,zzj) on t/j or ΨJ. We then have

( 1 ) zu = ejk(zιk, z2k, Z3k)zιk on Uj Π ϋ * (or on Uj Π ^ or MPy Π ^ ) .

As in § 1, or by Lemma 1, we see that eJk(0, Z2k,zik) is a nonvanishing holo-
morphic function, and we set

( 2 ) ejk(0, z2k, z3fc) = ejk(z2k, z3k) .

The 1-cocycle {ejk} defines the line bundle E19 and the divisor R C Mx defines
the line bundle Fx. Using the fact that (M, Jf7) can occur as a fibre in a one-
parameter family one can easily verify that F{ E\ is the trivial line bundle on
Mx. Notice that Fx is defined by the 1-cocycle fjk(z2k, z3k) where R = {z2k = 0}
and

( 3 ) Z2j = I jkxZ ϊki ZzkjZik

We proceed in a similar manner to define line bundles E2 and F2 on M2,
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and we find that E;F,f is the trivial line bundle. Notice that E, is the bundle 
of the divisor R c M,. 

We now begin the discription of the nonsingular model u(M, Z).  Since 
E:Ff is trivial, by choosing our covering appropriately we can find nonvanish- 
ing holomorphic functions uj such that 

Now consider the line bundle E;' on M I .  Let E j  be a fibre coordinate for E;' 
over Wi (or Uj). Then one can easily check that the equations 

define local varieties which fit together to give a global subvariety V ,  of E;'. 
Let n :  E;' --+ M ,  be the projection map. Then we see that n makes V, an 1- 
sheeted covering of Ml branched over R.  Notice that if fjf,ej; = u;./u', for some 
other set of nonvanishing holomorphic functions, then uj. = Cu, where C is a 
nonzero constant (independent of j of course). We want our constructions to 
be independent of the particular trivialization {uj). Notice that CuJ; = zd can 
be mapped onto u,E; = zk by sending (E j ,  zzj, z3 ,) to (C1IeEj, z , ~ ,  z, j), and this 
map defines an isomorphism. So V ,  is well defined independent of the particular 
choice of the {uj). We let R, = n-I(R). 

We define a differentiable manifold J ,  with boundary as follows. Let S1 = 
{z E Cn: Iz I  = 1). We think of S1 as a multiplicative group. We suppose that 
W; = {(zzj, zsj) : 1 zj, 1 < 1, 1 zj3 1 < 1) and we introduce spaces 

choose v j  so that 

Then let 

where rjk, r jk,  Pk take values in S1. Notice that we have maps 

on w:, where (E,, z,,, z ,~ )  are coordinates on Ecl. This map A is an isomorphism 
of {(r,, ej, z,,) E W$ : r j  > 0) onto K-'(W; - R) fl V 1 .  We then form a union 
f i l  = U ~ j '  by identifying (rj, e,, z ,~ )  E ~ j '  with (r,, ek, z,&) E W: if and only if 
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Ί = \fjM0l, z3k)\n , Θ) - σjMθl, z3k)θ%,

where we may think of βj as a holomorphic function of (z2k,z3k) e W) ΓΊ W\.
That the second two equations uniquely define θ3 if (rk, θk, z2k) are given follows
from the following lemma and the fact that

(9) ΦΛ = RIΆ.
Lemma 2. Let a,b,c, d e S1 = {z: \z\ = 1}. Suppose e,f are relatively

prime integers, greater than 1. Consider the following equations for a

(10) ae = c6e , 0 ' = dbf .

If b,c,d are fixed with cf = de, then a is uniquely determined, i.e., there is
a unique solution to these equations.

We omit the easy proof.
We thus get a manifold Wι with boundary and a map λ: W1 —> Vx such that

λ(dWι) = Rly and λ maps P^1 - dWι isomorphically onto π~\{J W) - R) Π
Fj. We can thus form

/x = (V, - R,) U aPF1 (disjoint union)

= (V, - RJ U W1

with the identification made by λ. Jλ is a manifold with boundary 9/j — dWι.
This boundary is an S1 bundle over Rx — R, which can be described as follows:

dJx= U {(0, ,z3, ) : | ^ l < UθjeS1} ,

where (θj,z2j) is identified with (θk,z3k) if and only if

βe _ /Λ ? Y βf _ Γ ^7fc(Q? Z3k)βj(O, Z3k)

3̂j = hjk(p, zzk) = hjk(z3k) .

We define V2, J2 similarly for M2. V2 is an /-sheeted covering of M2 branched
over R, and J2 = (V2 — R2) U dJ2. dJ2 is an Sι bundle over R such that

dJ2= U

where (φj9 z3j) is identified with (φk, z3k) if and only if

e = [ ^ ( Q , Z A (Q ; ^)
(12) L α*(0,z3*)

y = ^ Λ ( 0 ^3A;)̂ ί > ^3j = hjk(z2k) ,



206 JAMES A. MORROW

where aζ(O,z3k) = βk(O,z3k). Now dJλ and 3J2 are diffeomorphic. In fact, by
using

(13) afro = βej/βl = aί/ccί ,

Lemma 2, and equations (11) and (12) one can easily check that the equations

(14) φξ = βj(O, Z3j)θjf , φ) = aj(0, Z3j)θje , Z3j = Z3j

give a well denned difϊeomorphism of BJλ with 3/2, and thus we form /x U /2

where we identify dJλ and d/2 to get a topological 4-manifold (without
boundary). Then Jλ U J2 = v(M,Jf) is the nonsingular model for (M, ^f).
Since the trivializations of F{ Έ\, F{ Έe

2 are uniquely determined up to a con-
stant factor so are the functions βj9 aό. Thus as a topological manifold v(M, Jf)
is uniquely determined.

Part (//). We assume that e > 1, / > 1, and that e = al, f = bl with the
greatest common divisor (a, b) = 1. We define the variety Vx in the same way.
However instead of W) we have Up~=Ό Wόl (disjoint union), where each Wόl
= {(rj9 θj9 z3j): 0 < Γj < 1, θj e S\ \z3j\ < 1}. The variety Vx is locally given
by equations (Vjξo)

al = z2j

b\ where Vjal = Uj, fjk

bιejk

al = Uj/uk, as before.
In this case the map λ: WJI —> Vx is given by

(15) λ(rj9 ΘJ9 z3j) = {γr)θ)lvό{ηθ% z3j), ηffj, z3j)

for (rj, (9J, Z 3 J) € ίVjp, where η = exp (2πi/al). With the notation as before we
identify (rj9 θj9 z3j) € Wjl with (rfe, θk, z3k) e Wk^ (where k Φ j) if and only if

To see that these equations uniquely determine an identification we need the
following lemma.

Lemma 3. Let x, y, μ, v e S\ and let η = exp (2πi/al), where (α, b) = 1,
and a, b, I are integers greater than 1. Consider the following equations:

(17) ηpxb = μηqyb , Xa = vya .

If y, μ, v, and q are fixed with y e 51, μal — vbι, and 0 < q < /, then there are
a unique x e S1 and p with 0 < p < / satisfying (17).

We omit the easy proof.
Again we get a manifold Wι = U W^ with boundary a^ 1 . In this case dWι

is a fibre space over R with fibre a union of / circles. We now construct

J, = (F x - tfj) U dWι (disjoint union)

= <yx - Rx) u w1,
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where the identification is made by λ as before. We construct J2 similarly, and
formΛ U J2 = v(M,JP).

Part (Hi). We assume at least one-of^the integers jis 1.[Suppose e=l,f>l.
Then Vλ — Mγ, and F 2 is described as before. The description of Jx is easy, and
J2 is as before. Again one checks that Jλ U J2 gives a manifold which we call
v(M, 2fl?). Notice we cannot define Eλ in this case, but it is not needed since we
take Vx = Mλ. If e = f = 1, we take Vx = M19 V2 = M2. The reader should
be able to supply the rest of the details. This ends the description of v(M,

4. Examples

First we make a remark which is a consequence of the discussion in § 3.
We use the notation of § 4, so M = Mx U M2 and ^ is also the same. The
following proposition is then a consequence of the discussion there.

Proposition. Suppose that (M, Jf7) occurs as a fibre in a one-parameter
family, and further that (M, J-f) is a Case II space. Let R = Mλ Π M2, and
let Ύ}i be the {holomorphic) normal bundle of R in M^. Let the integers e and
f be defined as in § 3. Then η{η\ = 1 (holomorphically trivial).

Remark. This gives a necessary condition for a space (M, Jf) to occur as
a fibre in a one-parameter family.

Example 1. Let M = {(ζ0, Ci, C2? Q € P31 ζ0 = 0 or ζλ = 0}. Then M -
Wί Ό W2, and each W^ is isomorphic to P 2 . The intersection TFX Π W2 is
isomorphic to P 1 . Let 0 be the sheaf of germs of holomorphic functions on P 3 ,
and J be the ideal sheaf of germs of holomorphic functions on P 3 which vanish
on M. Let J f = (Θ/J')\M. Then we claim (M, J^7) cannot occur as a fibre in
a one-parameter family. For, let Nt be the bundle of the divisor Wλ Π W2 in
Wt restricted to Wλ Π W2. Then N1-N2 = [2p] where p is a point of ^ Π W2

= P 1 . Since [2p] is not trivial, the proposition implies that (M,3Ί?) cannot
occur as a fibre in a one-parameter family. If we allow Jίf to have nilpotents,
say let Wt have multiplicity ei9 then we get N{l-Nf = [(^ + ^ P ] - Thus we
see that the underlying space M has no structure sheaf / such that (M, ̂ /)
occurs as a fibre in some one-parameter family.

Example 2. We recall some definitions from Kodaira's paper [5]. By an
elliptic surface we mean a triple (F, Φ, R) where V is a connected complex
compact manifold of complex dimension 2, R is a nonsingular algebraic curve
(compact Riemann surface), Φ is a proper surjective holomorphic map, and
the general fibre Φ~ι(u) is a nonsingular elliptic curve. Thus an elliptic surface
is a one-parameter family of complex spaces of dimension 1. Assuming that
all of the fibres are free from nonsingular rational curves C with self intersec-
tion (C2) = — 1, Kodaira has given a list of every possible singular fibre which
can occur in an elliptic surface (see Kodaira [5, Theorem 6.2]). We shall verify
that for each of these singular spaces (M, j f ) that v(M, J f) is a torus thus
checking the theorem of § 5 in these cases.
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(i) The first type of singular fibre listed by Kodaira is a nonsingular elliptic
curve Θ with multiplicity m > 1. An m-sheeted unramified covering of θ is
again a torus so v(θ, Jf) is a torus.

(ii) Next we consider a rational curve θ with an ordinary double point
with multiplicity m > 0. θ is not yet a space with normal crossings. However,
if we blow up the double point, we get a curve mθι + 2mθ2, where Θt are
nonsingular rational curves, the integers preceeding the curves represent their
multiplicities, and Θl9Θ2 intersect normally in two points. Θλ is the proper
transform of Θ. The g.c.d. (m, 2m) = m, so the boundaries of the varieties Jλ

and J2 (described in § 3) are bundles over two points, each with fibre a union
of m circles. The varieties Lx and L2 from which J1 and J2 are constructed can
be described as follows. Lλ is just a union of m copies of Θλ in which all m
Copies are pinched together at two distinct points. L2 is formed from a union
of m copies of a 2-sheeted covering of Θ2 branched over two points with
branching order 1 at each point. These branched coverings are all pinched
together at two points. All of the points above one of the branch points are
pinched to a single point, and all of the points above the other branch point
are pinched to a single point. Thus Jx = IJΓ=i J\u where each JH is a 2-sphere
with two open disks removed. By using the Riemann-Hurwitz formula we see
that J2 — UΓ=i hu where each J2ί is a 2-sρhere with two open disks removed.
Jx and J2 are pasted together according to the following scheme. We glue JH

to J2ί along one of the boundary circles, and JH is glued to J2ί+1 along the other
boundary circle where / + 1 is reduced modulo m. The resulting manifold is
a closed chain of spheres glued together, and is clearly a torus.

(iii) Another possibility is M = mθ0 + mθι with m > 1, where the Qt

are nonsingular rational curves, m is the multiplicity of each curve, and Θo

intersects Θx normally in two distinct points. Thus (M, $F) is a space with
normal crossings. To see that v(M, $?) is a torus is quite similar to (but easier
than) the last part of the discussion in (ii).

(iv) M = Θ where θ is a rational curve with one cusp. The multiplicity
of M is one, so 2%* is the reduced structure sheaf, i.e., ^f is the structure sheaf
induced on θ0 considered as a subset of P2. A neighborhood of the cusp of the
curve θ is isomorphic to a neighborhood of the origin of the analytic set
{(x,y) e C2\x2 = y3}. Thus (M, Jf) is not a space with normal crossings. We
perform a sequence of quadratic transformations to resolve the singularity of
Θ. We represent this resolution by the following sequence of symbols:

3 >κ
2 3

These symbols have the following meaning. The first symbol represents a

rational curve with a cusp; it has multiplicity 1. We blow up the cuspidal



NONSINGULAR DEFORMATIONS. I 209

point to get two nonsingular rational curves which are tangent at one point.
The cuspidal point is replaced by a rational curve with multiplicity 2. The
curve with the cusp has as proper transform a nonsingular rational curve with
multiplicity 1. Next we blow up the point of tangency to get three nonsingular
rational curves intersecting non-tangentially at the same point. The curve with
multiplicity three is the result of blowing up the point of tangency. Finally we
blow up the point of intersection to get a nonsingular rational curve of multi-
plicity 6 intersecting the three other rational curves normally (at three different
points). This space is a space with normal crossings (C, # ) where C = Cx U
C2 U C3 U C6. The curves Ck have multiplicity k. We must construct the
branched coverings Lk of Ck described in § 3. L6 is a 6-sheeted covering of
C6 = P1 branched over 3 points. Over the first point there is one branch point
of order 6, over the next point there are two branch points of order 3, and
over the last point there are three branch points of order 2. First we separate
the branch points of order 3 (they are pinched together in Lβ), and then we
separate those of order 2. This gives a nonsingular ramified covering L'6 of C6.
Recall the Riemann-Hurwitz formula

8 = έ Σ (*, ~ 1) - n + 1
9

for a branched covering R of the sphere P1 where g is the genus of R, where
the sum is over all branch points p in R, e is the branching order at p, and n
is the number of sheets in the covering. With R — L'6 we get g(L0 = 1, and
thus LQ is a torus. Hence Jβ is a torus with six disks cut out of it. Jλ is clearly
a sphere with a disk cut out. J2 is a union of two disjoint spheres, each with a
disk cut out. Finally /3 is a union of three disjoint spheres each with a disk
cut out (L3 is a union of three spheres Pι, pinched together at one point). Thus
/„ + /i + /2 + /3 = v(Θ, tf) is a torus.

(v) M = θλ + θ2 where θλ and θ2 are nonsingular rational curves inter-
secting tangentially at a point p. One checks that resolving the singularities
gives the following graph of nonsingular rational curves:

It is an easy exercise to verify that the nonsingular model is a torus.
(vi) M = θλ + θ2 + θ2 where Θλ are nonsingular rational curves inter-

secting transversally at a common point p. The structure sheaf is the reduced
structure sheaf. The resolution of singularities gives:
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One easily verifies that the nonsingular model is a torus.

(vii) M = mΘλ + mθ2 + + mθb where θi is a nonsingular rational
curve, m is its multiplicity, and the Θi are connected in a cyclic graph as
follows:

With the usual notation /fe = /Λ 1 U U Jkm where each Jkl is a 2-sphere
with two open disks cut out. Gluing these Jkl together cyclically one gets the
nonsingular model which is clearly a torus.

(viii) The next possibility is M = Θλ + + Θ4 + 2Θ5 + 2Θ6 + +
2θ δ , b > 5. The nonsingular rational curves θj are connected together in the
following graph :

1 1

In this picture b = 9. All of the intersections are normal, and the multiplicities
of the curves are given by the adjacent integers. The curves are labeled as
follows. The four outside curves are θi9 1 < i < 4. θ 5 intersects θ ^ ί ^ Θ e Θ6

intersects θ 5 and θ 7 . This pattern continues until we get to θb which intersects
θδ-i>®3> and Θ4. The space /fc, 1 < k < 4, is a 2-sphere with one open disk
removed. The space Jk, 5 < k < b, is a union of two 2-spheres, each 2-sphere
with two open disks removed. Using the Riemann-Hurwitz formula one finds
that /5 and Jb are 2-spheres each with three disks cut out. One easily sees that
the nonsingular model U L i Λ is a torus.

(ix) M = θί + 2Θ2 + 3Θ3 + 4Θ4 + 5θδ + 6Θ6 + 4Θ7 + 3Θ8 + 2Θ9. These
nine nonsingular rational curves are connected together in the following graph:
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From the graph one easily sees which curves Θj intersect. Using the Riemann-
Hurwitz formula one easily finds that Jk is a 2-sphere with two disks cut out
for 2 < k < 5. Jλ is a 2-sphere with one disk cut out. /8 is a union of three
2-spheres, each with a disk cut out. /9 is a union of two 2-sρheres, each with
a disk cut out. J7 is a union of two 2-spheres, each with two disks cut out. /6

is a torus with six disks cut out. The union is clearly a torus.

(x) M = Θλ + 2Θ2 + 3Θ3 + 4Θ4 + 3(95 + 2<96 + 2θ7 + 6>8. Each θj is a
nonsingular rational curve. They are joined in the following graph:

The notation is such that Θ6 intersects Θ4. Again apply the Riemann-Hurwitz
formula to find that the nonsingular model is a torus.

(xi) The final example has the following graph (each curve is nonsingular
rational):

Follow the standard procedure, and find that the nonsingular model is a torus.
(xii) These examples yield the following information. If C is one of the

singular fibres of an elliptic surface, and M is an arbitrary compact complex
manifold, then v(C X M, 34?) = T2 X M, where £F is chosen appropriately,
and T2 is a 2-torus. For example, let C be the curve discussed in Example 2
(xi). Then ^f is the structure sheaf which can be defined on C x M in an
obvious way locally, and these local pieces can thus be fitted together to give 2tf.

Example 3. Let Jί = P1 X J , Δ = {z: z e C,\z\ < ε}. Blow up a point

on P1 X {0} to get a curve C = Γx U Γ2, where each Γt = P\ and Γ1 inter-

sects Γ 2 normally at one point. We get a family Jί > Δ with Π~\0) = C

and Π~\t) = P,t φ 0. The naturally induced structure sheaf J f on P 1 X P1

is the reduced structure sheaf, and one easily computes that v(C, 34?) = S2.
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Thus the theorem is verified in this case. Notice that the only complex structure
on S2 is that of P\ We could go further with this idea. One could produce for

example a one-parameter family J£? > Δ, with Π~ι(t) = P1 if t Φ 0 and
Π~ι(0) being a collection of nonsingular rational curves represented by the
following graph, where each intersection is normal, and the integers represent
the multiplicity of Π on each curve:

One easily sees that v(Π~ι(ϋ), 34?) = S2 where 2/f is the structure sheaf. It is
obvious that one could easily produce examples with v(C, JP) = S2 whose
graphs are much more complicated. (The author would like to thank the referee
for the idea of this example.)

Example 4. Let P1 = Wλ U W2, where Wt = C, and the coordinates zt

on Wi are related by the equation zxz2 = 1. Let R{m) = P1 X Wλ U P1 X W2

where (w19 Zi) is identified with (w2, z2) if and only if zxz2 = 1 and w2 = zψwx.
This is a Pι bundle over P1 (a ruled surface). Then 5 ( m ) is a surface with an
ordinary double curve (a Case II surface with e = m = 1) obtained from R(m)

by identifying the two sections Do and DTO, which are defined respectively by
wx — w2 = 0 and wx = >v2 = oo. If we let Jf7(m) be the reduced structure sheaf
on 5 ( m ) , then Kodaira has shown [6] that v(S{m\ J f ( m ) ) = S1 x S3 for m > 1.
If m = 0, then 5 ( m ) is ̂ ? X P 1 where ^ is a rational curve with a double point.
Then by Example 2 (ii) and 2 (xii), the nonsingular model is T2 x S2.

5. The deformation theorem for Case II spaces

Theorem. Let (Jί, ω, Δ) = {Mt: t e Δ} be a one-parameter family. Suppose
Mt is nonsingular for t Φ 0, and (Mo, ̂ 0 ) is a Case II space. Then Mt is
homeomorphίc to v(M0, £?0) for t Φ 0.

(The proof of this theorem should be divided into parts as in the discussion
in § 3. However, we shall only supply the proof corresponding to part (i) of
the discussion in § 3. The proofs for the other parts are similar. For simplicity
we assume dim Jί = 3.)

Proof. Remember we are assuming that Δ = {zeC: \z\ < 1}. We shall
suppose that Mo = X U Y (as in § 3) and that we have a covering {i^j} U

U {i^j} of Mo by open sets in Jί with coordinates (z u ,z2^ ̂ 3j) s u c h that

ω(zu , z2j, z3j) = z^Za J on Ί T ^ ,

ω(z l j ,z2i7 ,z3<7 ) = zυ

e on °Uj ,

ω(zl7 ,z2y,z3^ = Z2 $ on ̂  .
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We suppose that X is given by {zu = 0}, and Y is defined by {z2j = 0}. On
iΓj Π ITk we have

\ *• ) Z>2j = fjk\Zik9 Z-ik ) Zzk) 'Z i

Z3j = hjk{Zijc, Z2k, Zzk) .

On 7r fc Π ^ we have

Similarly we have on ifk Π

We shall assume that <%s Π ^ f c = φ for all /, k.
Let T F = U # V We define continuous functions r and ̂  on ̂  as follows.

We let {dj} be a system of positive differentiate functions on Ψ*j such that

( 4 ) \eJk\ = ak/aj on TTJ Π T T . .

Then

( 5 )

where

( 6 )

We let

and introduce differentiable coordinates (Xj9yj9Zj) on ̂ ^ . We may assume

IT, = {(xj,yj,Zj): \xj\ < e,\yj\ < e, \Zj\ < 1} ,

where e > 0 is a small number. Since 1^1 = 1**1 and \yj\ = |yfc| on iΓj Π 1^^,
r == \xj\ = Ijtjfe I and 5 = | ^ | = |yfc| define nonnegative continuous functions on
if. On Ψ'j the function ω is given by ω(Xj, yj, z3) = x)yfj.

If Δ+ = {t: 0 < t < 1}, then we set Jf+ = ω~\J+). From now on we will
restrict our attention to this subspace. Let iΓj+ = Jί+ Π #",; so that
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* V = {(xj,yj,Zj): *& > 0 , | * ; | < e, \y,\ < ε, \Zj\ < 1} .

We set

» ( * V ) = {(r,s,θj,Zj): 0 < r < ε,0 < s < ε, θj ε S\\Zj\ < 1} .

Consider equations (1) and think of the functions ejk, ,fjk, and hjk as func-
tions of (xk,yk,zk). Then

ejk(χk,yk,zk) = |^fc(Λfc,y

Then we construct a space

+) = u
3

by identifying (r, 5, ̂  , z3) € v{iΓ^) with (r, s, ^fc, 2fc) € v(i^k
+) if and only if

( 8 ) Pj = σJk(rθϊ',sθi,zk)θi,

Zj = hjk\Ziki Z2ki Zzk)

As before these equations uniquely determine an identification, so v(τF+) is
well defined.

On <%j Π ^ f c we have

Z\j = e'jk(Zik, Z2k > ZskJZik ?

( 9 ) Z2 j : = fjk\Zιk-> Z2ki Z^ic) •>

Z3j = rϊjk\Zιk, Z2ki ZzJc) .

We let

^ ( ^ + ) = {(RiθjtZtjyZij): 0 < R < ε , θ j ζ S\

θ°j = I,\z2j\< I , |z 3 , | < l } .

Notice that e^ = 1 since zx) = Zχ|. We construct a space y(^ + ) = [Jj v(Wf),
where (R,θj,z2j,zυ) e v(^j) is identified with (R,θk,z2k,z3k) € y(^ί) if and
only if

(10) z2i7- = ίjkiRθk1) z2k,z3k) ,

z3>/ = hjk(Rθk

1,z2k,z3k) .

Notice that 2? = | z υ | = |z lfc| is a well defined function on (J ^ = ^ . We have
a similar construction for i>0Γ+) = U J ̂ (^y )•
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Next we want to construct v(Jί+). First we define v("Γ+) U v{ir+) U v(W+)
where, for example we identify (r,s,θk,zk) e v{vi^ΐ) with (R,θj,z2j,z3j) e
»(?%•}) if and only if

R = *f/er > θj = τji(rθϊ', sθ% zk)θ{ ,

z2j = fjk(rθk

f, sθl, zk) , Z3, = hjk(rθk

f, sθi, zk) ,

where ejk comes from (2), and τjk is defined as in (7), and we consider ejk, τjk

as functions of (xk, yk,zk). Notice that the inverse of relation (11) is

θ{ = τkj\Rθj\ z2j, z3j)θj , θ% = σkj(Rθj\ z2h z3j) ,

(12) r = \ekJ{R6j\z2j,z3j)\R , s = \fkj(Rθ]\z2j,z3j)\ ,

where

xk : r r ekj\Z\j, Z2j, Z3j)Zιj

(13) yk = fkAzίj,z2j,z3j) ,

zk = hkj(zιj,z2j,z3j)

Notice also that

(14) Γij ̂  - 1 .

Obviously (r, ̂ , ̂ Λ, zk) uniquely determines (R, θj, z2j, z3j) by (11). One should

notice here that

τjZ(rθk

f,sθe

k,zkW = 1 .

Conversely, by using a lemma similar to Lemma 2 in § 3 we see that
R(θj,z2j,z3j) uniquely determines (r,s,θk,zk) by (12) and (14). Thus we get
a space

v(jr+) = v(%+) u v(ir+) u v(rr+),

where Jί = % U T Γ U Ψ* and ^K+ = Jl+ Π ̂ Γ, and also have a map
μ: v(Jί+) —* uV+ given for example by

μ(#, ^ , z2 i, z3J) = (Rθj\ z2j, z3j) , on v(^r ) ,

μ(r, j , θj9 Zj) = (rθjf, sθej, Zj) , on v{Ψ)) ,

where (xj9 yj9 Zj) are the coordinates on iΓj defined before. Notice that v(Jf+)

— /ΓWo) i s a differentiable manifold, which is in fact diffieomorphic to Jί+
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— Mo via the map μ which is a diffieomorphism on v(J^+) — μ~\M^ =

μ~\Jf* — Mo). Thus we can define

= (J(+ - Mo) U

= (Jl* — Mo) U μ'KM0) , (disjoint union),

where we use μ to identify v{Jf* — Mo) with Jί+ — Mo c ^ + — Mo. We
can obviously extend μ and think of μ as a map μ: v(^+) —> Jί+, where μ
maps v{Jt* — Mo) = v(Jt+) — μ~λ(M^ diίϊeomorphically onto Jί^ — MQ. It
is easy to see that v(Jί+) is a topological manifold with boundary dv(J%+) =
μ-KM0) = v(M0).

We claim that

where ι̂ (M0, j f 0) is the manifold constructed in § 3, the topological nonsingular
model of the space (Mo, jf 0). To prove this, set Uj = Mo Π ^ , F 7 = Mo Π
^ i ? ϊ^J = Z ΓΊ TFJ where Z Π TS^^ is given in terms of the coordinates
(Zij, z2j, zZ3) for Ψ*j by the equation z u = 0. If we compare equations (1), (2),
and (3) of this section with equations (1), (2), and (3) of § 3 we see that (for
example)

fjk(z2k, z3k) = fjk(0, z2k, z2k) , on IV) Π iT\ ,

ejk(z2k,z3k) = ejk(O,z2k,z3k) , on ΊT) Π 1^\ .

For this choice of fjk(z2k,z3k) and ejk(z2k,z3k) we can choose the functions uό

of equation (4) in § 3 to be uά = 1. Thus we can choose the Vj and βx to be
^ = 1 , ^ = 1. We claim that there are maps

G: v(M0) - μ-\Y) = μ~\MQ -Y)^Vι-Rι,

H: v(M0) - μ~\X) = μ~KM0 - X) — V2 - R2 ,

which are in fact homeomorphisms. For example

μ~\M0 - Y) Π * ( r ; ) = {(0,^,^ ,z, ): 0 < s < e, ^ € 51, |z,| < 1} ,

and on this set

(16) G(0, s, θj, zj) = ((s/bjy/eθj, (s/bjPj, Zj) e Vλ ,

where bό = bjiO^Θ^Zj) and is considered as a function of (Xj,yj,zk). On
/ΓWo - Y) Π i^(^t) we have

(17) G(0, ̂  , z2, , z3j) = (0j, z2j, Zsi)

We can easily check that this map is a well-defined homeomorphism and in
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fact extends to a homeomorphism

G: μ-1(X) = v(X)^J1 ,

where G: v(R) —> dJx is given by

(18) G(0,0, ΘJ9 Zj) = (0, θj, Zj) e dW) c dJx ,

and (0,0,0,, ẑ  ) 6 v(R ΓΊ TFt). The analogous equations for H are

H(r,0,θj9Zj) = ((r/ajrfθjeΛr/aj)βjf,Zj) e V2 ,

(20) fl(0,0, 0,, Zj) = (0,0 j\ z,) e dW) c 3/2 .

Now consider equations (14) in § 3, which become φ3 = θj1 since aό = ^ =
1. Let κ\ 3Jι—> 3J2 denote this identification. Then H = κo G on v(R). Since
v(M0, J4?o) = Jλ U h where dJλ is identified with dJ2 by tc, we see that H and
G give rise to a homeomorphism between v(M0) and v(M0, Jf0).

The map ω/i*. v(JK+) —> A+ satisfies

{ωμY\i) = Mt for t > 0 , ( ^ " ' ( O ) = v(M0) .

Moreover v(JK+) — v(M0) is a difϊerentiable manifold. We will put a difϊeren-
tiable structure on v{Jt*) which extends the differentiate structure on v{Jt*)
— v(MQ). We will have in this new structure a differentiate function with no
critical points, which has as level sets the surfaces {(ωμ)~ι(t): t > 0}.

We define a C°° monotone increasing function as follows:

exp(-l/g)

0

-exp(l/<?)

for

for

for

q

q

>

=

<

1 ,

o,
0 .

For r, s e 2?+ = {*: t > 0}, the equations

(21) e(τ) = rι/f-sι/e ,

define a topological map (r, s) —• (r, g) of a neighborhood of (0, 0) in R+ x i?+

to a neighborhood of (0,0) in R+ X 7?. We easily check that the functions

r(τ, q) = (e(q) + Ve\q) + e(τ)Y ,

J(r, q) = (~e(q) + Je\q) + e{τ)Y

are C°° functions of q and r in a neighborhood of (0,0), and invert equations

(21). Hence we may use (τ, q, θj, z3) as new coordinates on v(iΓJ)9 so that (8)

becomes
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θ'j = τjMτ9q)θif

9s(τ9q)Oi9zk)θί ,

(23) θ) = τjMτ, q)θ^f, s(τ, q)θe

k, zk)6\ ,

Zj = hJk(r(τ, q)θlf, s(τ, q)6e

k, zk) .

On v(<Wj) we use the equation e(τ)f = R to introduce (τ,θj,z2j,z3j) as new

coordinates. As in (23) we easily check that (10), (11), and (12), due to (21)

and (22), are turned into a differentiable change of coordinates between

(τ,θj,z2j,zυ) and (τ9q9θk9zk). In order to check this we need to assume

that °Uj is bounded away from R = X Π Y so that we can verify that the

Jacobian

d e t [3(r, Z 2 J , Z3<7 , z*j9 Z3J)/d(τ9 q9 θj9 zj9 Zj)]

is bounded away from zero. We operate similarly on virΓj). Thus we get a

differentiable structure on v(^+) U v(Ψ~+) U v(^+), which extends the given

structure on v(W+) U v(i^+) U v(7^+) — v(MQ). The function

r = -ef/log(ωμ)

is a differentiable function with no critial point on v(J?+), and

' " ί > 0

M 0) if ί = 0 .
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