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NONSINGULAR DEFORMATIONS OF SPACES
WITH NORMAL CROSSINGS. I

JAMES A. MORRCW

Introduction

We wish to study one-parameter families of compact complex spaces. We
will describe a certain construction which can be performed on a class of
complex spaces and which will yield a topological manifold homeomorphic to
any nonsingular fibre of a one-parameter family containing the given complex
space as singular fibre (as long as the given structure sheaf on the complex
space is the same as the one which is induced as a fibre of a family). The
structure sheaf plays a nontrivial role since, for example, if z: # — 4 =
{z]|z] < 1,z € C"} is a one-parameter family M, = n~(¢) such that with respect
to appropriate local coordinates z(wy, - - -, w,) = w¥, then M, for t =0 is a
k-sheeted covering of M, which in general will be topologically distinct from
M, even though M, is a nonsingular submanifold of .#.

The class of complex spaces which we study is the one with normal crossing
singularities. For these spaces we will give a simple condition which must be
satisfied if they are to belong to a one-parameter family. For those spaces
which are members of a one-parameter family we will show how they determine
the topology of the nonsingular fibres.

0. Basic definitions and assumptions

We remind the reader of some standard definitions (consult, for example,
Grauert and Kerner [2]). Let X be a topological space, and &/ a sheaf of
local complex algebras on X. We suppose that the unit 1, € &7, varies continu-
ously with x € X. If .# is the maximal ideal of </, then <7,/ .# , is isomorphic
to C under the isomorphism which sends 1, + .#, into 1 € C. The pair (X, &)
is called a complex ringed space, and o/ the structure sheaf.

Let (X, ) and (Y, %) be two complex ringed spaces: By a morphism
?: (X, ) — (Y, %) we mean a pair of continuous maps (p, ¢*), where ¢ maps
X into Y, and ¢* maps the sheaf ¢p™'%# = {(x,b)|x e X, b e &#,,,} into & so
that o* is a sheaf map which is a homomorphism of local complex algebras
on each stalk. @ is a bimorphism if there is a morphism ¥ = (v, ¥v*): (Y, &)
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— (X, &) such that @ o ¥ = identity and ¥ o @ = identity where the notation
is obvious.

Let G be an open region in C*, and 4 an analytic set in G. Let 0(G) be
the sheaf of germs of holomorphic functions on G, and # C @(G) be a coher-
ent sheaf of ideals .#, such that 4 = {x e G| £, # 0,(G)}. Then the stalks
of the sheaf O(G)/ # are zero outside of A, and therefore s# = O(G)/# can
be considered to be a sheaf of local complex algebras on 4. Hence (4, ) is
a complex ringed space. Such spaces are called complex models. A complex
ringed space is a complex space if:

(i) X is Hausdorfi,

(i) toevery x e X there are a neighborhood U and a complex model (4, o)
such that (U, & ;) is bimorphic to (4, 5#). One can easily see that the complex
spaces form a category. A morphism of complex spaces will be called a holo-
morphic mapping.

Let A, be an analytic set in a region G, of C"4, where A = 1 or 2. Suppose
A, has structure sheaf #, where s, = O(G,)/ 7, as in the definition of a
complex model. Let 4: G, — G, be a holomorphic mapping in the classical
sense such that y»(4,) C A4,. Then the inverse image +~'0(G,) is contained in
0(G,). Suppose »"'.#, C £,. Then by passing to quotients we can define a
sheaf map ¢*: 7'(5#,) — ;. If we set 4»| 4, = ¢, we have defined a mor-
phism (g, 0*): (4,, ) — (4,, ,). Such a morphism will be said to be
generated by yr. The following result is well-known (see e.g. Grauert [1]).

Proposition 1. Let (¢, *): (4,, #)) — (A4,, 3#,) be a morphism of complex
spaces. Let x € A, and y = ¢(x) € A,. Then there are complex models (M,, </,),
(M,, «/,) with M, C G, C C", M, C G, C C™ where G, and G, are regions
in C™ and C™, and there are neighborhoods U of x and V of y and bimor-
phisms (Y, W) : My, ) — (U, H#,1p), (g ¥i) 2 (M, ) — (V, H4y) such
that the composition (Y, ¥§) (@, 0*) (Y, ¥¥) is generated by a holomorphic
map ¥: G, — G,.

Let (X, 5#) be a complex space, and (M, @) a complex manifold where O is
the sheaf of germs of holomorphic functions on M. Suppose (z, z*): (X, 5#)
— (M, 0) is a holomorphic map. For ¢t ¢ M, X, = n~'(¢) is an analytic subset
of X. Let A4, C 0, be the maximal ideal of @,, and .#,ox the ideal of s#
generated by z*(z7'.#,). If one defines #, = #/.M#,on, then S, vanishes
outside of X;, and (X, 5#,) is a complex space. The morphism (z, z*): (X, o)
— (M, 0) hence defines a family of complex spaces (X,, #,). We abbreviate
this notation to n: X — M.

Now let .# be a complex manifold, and w be a proper holomorphic map of
M onto 4 = {z||z| < 1, z e C}, the unit disk in C. Let .« and @ be the sheaves
of germs of holomorphic functions on 4 and .# respectively. If we give each
fibre M, = »~'(¢) the structure sheaf described above, then we say that the
triple (A, w,4) is a one-parameter family of compact complex spaces. For
simplicity, in subsequent work we will always assume .# and M, to be con-
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nected for all # € 4. By a one-parameter family we shall always mean a one-
parameter family of connected compact complex spaces. We have

Proposition 2. Let (A, w, 4) be a one-parameter family. Then any general
member (M,, #,) is a nonsingular complex manifold with reduced structure
sheaf. By this we mean that the set of points t € 4, for which (M,, 5#,) is not
a complex manifold with #, the sheaf of germs of holomorphic functions on
M,, is a set without accumulation point in 4.

Proof. If we are willing to use the proper mapping theorem of Remmert
the proof would be immediate. We propose instead the following elementary
argument. Let z,: T.#4 — T4 be the induced map of tangent spaces. Let
A C A be the analytic subset consisting of all points p ¢ .# for which z,.: T, #
— T, pd is the zero map. Let 4, be the singular points of 4. Then 4 — A4;
is a complex manifold, and r is constant on each component of A — A4,. Thus
« is constant on each irreducible component of 4. Now suppose n(A4) has an
accumulation point in 4. Call it s. Then there is a sequence of distinct points
{t.} < =(A4) for which ¢, — s. Since = is proper (by passing to a subsequence
if necessary) we find a sequence p, € 4, p ¢ A4 such that z(p,) = ¢,, n(p) = s
and p, — p. But then z is zero on T,.#, so p ¢ A. Since the ¢, are distinct,
each p, belongs to a different irreducible component of 4. Thus we conclude
that any neighborhood of the point p € 4 has infinitely many irreducible com-
ponents. This is impossible for an analytic set (see, for example, Gunning and
Rossi [3, pp. 89, 116]). q.e.d.

We will refer to this proposition as Bertini’s theorem.

Let X be a complex space. We wish to define what it means for X to have
only normal crossing singularities. Let X also refer to the underlying topological
space of X. Suppose X = UX,, 1 < « < [, where each X, is a nonsingular
complex manifold. Let x ¢ X, and let («;, - - -, ,) be the set of integers for
which x € X,,. Then we suppose that there are aset § = (8, - - -, B,) of positive
integers and a neighborhood of x in X, which is bimorphic to the complex
model in an open disk D around the origin (0) ¢ C?(g > p) defined by z, - - - z,
= 0 with structure sheaf 0(D)/(z?), where @O(D) is the sheaf of germs of holo-
morphic functions of D, and (z#) is the ideal of @(D) generated by the holo-
morphic function z# = z{* ... zf». We also suppose that this biholomorphic
map takes x into 0. If this situation holds for every x e X, we say that X has
only normal crossing singularities.

Now let (#, w, 4) be a one-parameter family. Suppose (M,, ) is a singular
fibre (i.e., M, singular as a complex analytic set or #, not reduced). Then by
Bertini’s theorem there is a neighborhood of O such that for all points ¢ in the
neighborhood, except 0, M, is nonsingular and s#, is reduced. We restrict our
attention to the portion of .# above this neighborhood. By changing coordi-
nates on 4 we may assume that this small neighborhood again is 4 =
{z]]z] < 1, z e C}. We denote the new family by the same symbols (4, w, 4),
although o has really been changed by the change of coordinates. If (M,, o)



198 JAMES A. MORROW

has only normal crossing singularities, we may assume that o is given locally
by w(z;, +++,2,) = 2 where B = (B, -+, Bn), fi > 0,BeZ and zf =z{* - - -
zf». We will use this multi-index notation when convenient in order not to get
lost in a cloud of indices. A connected compact complex space will be said to
be admissible, if it has only normal crossing singularities, and there exists a
one-parameter family in which it occurs as a singular fibre.

We shall give the construction of the topological nonsingular model, and
prove that it is indeed homeomorphic to the nonsingular fibres of any one-
parameter family in which the complex space occurs as singular fibre for a set
of cases in ascending order of difficulty. We could have done only the most
difficult case, since it contains all of the easier cases. We think this would have
made the procedure more difficult to understand, so we have built up from the
simple to the complicated. The cases are as follows. (In each case we list the
“worst” possible local behavior of w.)

Case I.  (M,, #,) occurs as a singular fibre with w(z) = z¥, in terms of
local coordinates z = (z;, + - -, Z,)-

Case II. (M,, o#,) occurs as a singular fibre with w(z) = zf1zfe.

Case III. (M,, o)) occurs as a singular fibre with w(z) = zf:z82zf.

Case IV. The general case: w(z) = 2, B = (B, - -+, Bu)> Bi € Z, B: > 0.

1. The nonsingular model in Case I

Let (M, o) be an admissible complex space which occurs as a singular fibre
in a one-parameter family (.#,w, ) for which (M, »#) = (M,, 5#,) and for
which one can find local coordinates z = (z;, - - -, z,) for a neighborhood in
# of an arbitrary point in M, such that w(z) = z¢ with e > 1 (= means
bimorphic). Since M is connected, ¢ will be the same for all points in M,. We
can find a finite covering {U;} of M with open sets such that on each set U;, #
is bimorphic to the sheaf O(D)/(z%,), with D an open disk around 0 in C". If
U; N U, + @, then a nonvanishing holomorphic function f;;(x) on U; N U,
is defined by the relations

Ljn = ij(zlch ] an)'zlcn )
fjk(x) = ij(Zm(x), teey an—1(x), 0) .

It is easy to see that {f;;} defines a 1-cocycle on the nerve of the covering {U;}
and thus gives an element f ¢ H'(M, 0*) where ¢0* denotes the sheaf of germs
of nonvanishing holomorphic functions on the complex manifold M (reduce
the complex space (M, 5#)). In fact, since o = 25, f5, = 1. Thus f;; is an e-th
root of unity. Let Z, denote the group of e-th roots of unity (a multiplicative
subgroup of S' C C). Then fe H'(M, Z,), and thus f defines an e-sheeted
unbranched covering v(M,) of M,, which is the nonsingular model for Case I.

We will show that the cohomology class f depends only on the structure
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sheaf s and not on the particular choice of family (#, w, 4). For let (A", n, 4)
be any other one-parameter family for which (M, s#) = (N,, #",), where N, =
x~%(0), &, is the induced structure sheaf, and locally = = w%. Let {U;} cover
M such that locally M is given by A4, = {z;€D,|z}, = 0} and A4,, =
{w; e D,,|w%, = 0}, where z; and w; are local coordinates for .# and .#", and
D,,D, are open disks around O e C". Since (M, s#) is bimorphic to both
(M,, s#,) and (N,, ), there is a bimorphism between (4., d(D,)/(z%,)) and
(A, O(D,,)/(w5,)). By Proposition 1, § 0, we may assume that this bimorphism
is induced by a map ¢,: D, — D,,. It is not hard to see that this map takes
the form

Sojn(zjl, e ,Zjn) = Zjnfj(zjn Y Z]'n) 3

where f;(z;,(x), - -+, 2j,_,(%),0) # 0, and ¢; = (¢4, - - -, ¢;,). Then it follows
that fjlc = f}lfjkfk, Where

wjk = ij(wkla Tty wkn) > fjlc(x) = ij(wkl(-x)9 M) wkn-l(x)9 0) .

Thus f = {f;;} and f = {f;;} define the same class in H'(M, C*), so that f and
f define the same class in H'(M, Z,). Therefore the covering defined by f
depends only on s and not on (#, w, 4). We denote this e-sheeted covering
by v(M, ), and call it the topological nonsingular model of (M, 5#). Note
that this terminology has very little to do with the same expression in algebraic
geometry.

Remark. This covering could be defined as follows. The cocycle {f;}
determines a complex line bundle [f] over M. Let &; be a local fibre coordinate
for [f]. Then it is easy to see that the collection of local subvarieties {& = 1}
fits together to form a nonsingular submanifold W of [f]. The fibre projection
makes W into an unramified e-sheeted covering of M. Then W = v(M, 5#).

2. The deformation theorem for Case I spaces

In this section we prove the following theorem.

Theorem. Let (A,w,4) = {M,|t € 4} be a one-parameter family. Suppose
M, is nonsingular for t # 0, and (M,, 5#,) is a Case 1 space. Then M, is
diffeomorphic to (M,, #,) for t + O.

Remark. We know two proofs of this result, and since they are both easy
we give them both.

Proof 1. We suppose v(M,, #,) is an e-sheeted covering of M,. Let 4 be
another copy of 4, and ¢: 4 — 4 be given by ¢(¢) = {¢. Then we define a
space W C 4 X M by

W ={( 2= )} .
Then W = U W; where
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Wj = {(C? Zj)[ce = Z?‘n} >

and z; = (2, - - -, Z;,) is a local coordinate in .# around a point of M,. Here
n = dim .#, and we are assuming that the domains of these local coordinates
cover # (if not, we could just take .# to be a little smaller). W; itself is a
union W; = | Ji_, W} with

Wy = {916 = 2} ,

where p = exp (2zi/e). We construct a new manifold .# as follows. W, is a
union of e-sheets which intersect along a portion of M,. We separate these,
and consider W; = |\ J;_, W} as a disjoint union. Then .Z = U W; where we
make the following identifications. As in § 1 we have

Zjn = F(2)  Zgn onV; NV,
with F%, = 1, where V; is the domain of z;. We also have
7y = Gy(ze) onV,NV,,

where z; = (z;,, - -+, Z;,_1). We see that F;; is locally constant, and is an e-th
root of unity. As before we set f;;, = F;,(z;, 0). We identify (, z;) e W’ with
& ze) e Wi if

Z’j = ij(zk) s> Zjn = ij(zk)'zkn s Pl = 0™ fi .

This makes .# into a complex manifold. We have a natural projection z: .#
— 4 and a commuting diagram

M —> M
Tri lw
4 —> 4

14

It is easy to see that the differential of z has rank 1, and thus each fibre is a
nonsingular complex manifold. In fact 7 is proper, and thus M, o is diffeomorphic
to M, forted.1f t + 0, then M, = M,, and if ¢ = 0, then M, = v(M,, £ ,).
Hence M, is diffeomorphic to v(M,, 5#,).

Proof 2. Cover M, with a finite number of open sets W; which are domains
of coordinate charts z; for .#. We assume W; = {x|sup,, |2;»(x)| < 1} where
Z; = (21, -+ +» Zjn)- On W; we assume w(x) = 25,(x) = z5, (we omit x). Let
2y = (24, -+ *» Zjn-). Then on W; N W, we have

Zjn = Fi(2) * Zkn » Z; = G;(Zhs Zen) -

Since z%, = z§,, we conclude F¢, = 1. Thus |F;.| =1, and |z;,| = |2¢xs| OD
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W; N W,. Letr = |z;,| on W;. Then we get a continuous function r defined
on UW;=W.

Letd* ={t|0<t <1} C 4, 4% = 0(4%), and z;, = rf; with |§,]| = 1.
Then 25, > 0, on #* implies ¢ = 1. Thus we can write W; = W; N A4 in
the form

W = {(z’,.,ra,.)m <r< L0 =1, supfem| < 1} .

(Here, as elsewhere, we identify W; with its image under the chart map z;).
Let W* = | J; W}. Then M, is the subspace defined by r = 0. The points
(2}, r0;) and (z;, rf;) are identified if and only if

(2) 0; = Fi(24,16,) -0y » Z; = Gj(2;, 16) .

That is, (2}, r6;) and (z}, rf,) are identified if and only if they define the same
point of W; N W;. We define v(W7) by

W) ={&,r,0p0<r<1,0;e8,6=1,|z;] <1},

where S is the unit circle in §', and | z;| = sup,,, |Z;» |- Then we form a union
Uj v(W3) = u(W*) by identifying (2}, r, 8,) € v(W}) with (2}, 7, 6,) € v(W}) if
and only if

0; = F (25, 100)0% » z; = ij(Z;c, réy) ,

where (z;, r6,) defines a point of Wiy N W;. Thus (W}) is a (disjoint) union
of e copies of {(z},r |0 < r <1,|z;] <1}, and (W) is a topological mani-
fold with boundary B = U {(z},6,)}. Then u: (z},r,6,) — (2}, r6;) defines a
continuous map from v(W*) onto W*, which is a homeomorphism from v(W+)
— B onto W* — M,. Next we replace W* with v(W*), forming a new manifold
v(Ml) = (M — W*) U u(W*). We extend x to a continuous map p: v(#*)
— M#* by setting it equal to the identity on v(A*) — v(W*). Then p is a
homeomorphism from v(#*) — p~'(M,) onto A#* — M, where p~'(M,) = B.
If we write ¢~ '(M,) = v(M,), then it is easy to see that v(M,) = v(M,, #,) is
the topological nonsingular model.

The map wp: v(A*) — 4* is continuous, and (wy)~'(t) = M, for ¢ > 0.
Fort =0,

(0p)710) = v(M,, ) = v(M,) .

It is clear that y(#*) — v(M,) is a smooth manifold. We will show that M, is
homeomorphic to v(M,, #,) by introducing a differentiable structure on v(.#*),
which is an extension of the given differentiable structure on v(A*) — v(M,),
and we will find a differentiable function on v(.#*) with no critical points,
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which has as level sets the manifolds (wp)~'(f) = M, for 1 > ¢t > 0. Hence M,
will be homeomorphic to M,.
If we set

exp(—1/q) forg >0,

e(q) =
7 { 0 forg=0,

then e(g) is a smooth monotone increasing function of g. If R* = {r|r > 0},
the map r — ¢ defined by e(zr) = r® is a homeomorphism from [0, 1) to RY,
and r(z) = [e(z)]¥¢ is a smooth function of z. Then we introduce coordinates
(z;,r,6;) on u(W7), and we have replacing (2)

(3) 0; = Fir(@, 1(2)0) -0, , 27 = Gy(Z, 1(2)6,)

Hence (z;, 7, 0,) — (2}, 7,0;) is a smooth map. So the coordinates (z, 6;, y;, z;)
form a system of differentiable coordinates (¢; is not really a coordinate ; it
is more like an index) in a neighborhood v(W*) of v(M,). It is clear that this
is a continuation of the smooth structure on v(#*) — v(M,). The function <
is a smooth function on v(#*) with no critical points, and has the manifolds
(0)~'(®) as level sets. Hence (wp) '(0) is diffeomorphic to (wg)~'(#). Thus M,
is diffeomorphic to v(M,, #,).

Remark. There is no need to introduce the function ¢ into this proof. We
could have used the function r instead. However for later proofs we must use
e(g), so in analogy with these later proofs we introduced e(g) into this proof.
In fact y(#*) is already a smooth manifold in this case.

3. The nonsingular model in Case II

According to our definition in § 0 a Case II space (M, 5#) is at worse locally
isomorphic to a complex model of the form (4, &7, ;) where

A={z2:22=0,2=(, ---,z)eDCC"}, oA, = 0](zz]) ,

D is an open neighborhood of 0 e C*, @ = @(D), and e,f are nonnegative
integers. (We assume that somewhere (M, 5#) is locally isomorphic to a model
(4, o,,;) withe > 0, f > 0.) The integers e, f of course depend on the locality.
As a set M = U M, a finite union of connected nonsingular compact complex
manifolds such that no point of M belongs to three or more M;; and to each
M we associate integers e; (the multiplicity of M ;). These integers are defined
as follows:

(i) If pe M, p in exactly one M;, then near p,(M, s#) is isomorphic to
A, o). B

(i) If pe M; N M,, then near p, (M, 5¢) is isomorphic to (4, ,,.,). (So
near p, M; will be given by z, = 0, M; by z, = 0.)
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For the present let us consider the case M = M, U M,, and let e = ¢,
f =e,. The case M = |_J5_, M, s > 2, is not essentially harder. Let

AZZ{ZGDCCn:ZIZZ:'O}7 As:{CeACCn:C1C2:0}:»

where 2 = (2, - -+, 2,), £ = (&, - - -, &), and D, 4 are open neighborhoods of
0. Let

Aoy = O(D)[(2z]) , ey = 0L .
Suppose @ = (p, p*) is an isomorphism
@: (Az,zﬂe,f) - (Ac,c%e,f) .
We know (§ 0) that @ is induced by a map z — (F\(2), - - -, F,(2)).

Lemma 1. Fl(z) = f(z)zv Fz(z) = g(Z)Zz, where f(O: 0’ 35t 0" Zn) * O,
g(oyo’ AT "Zn) +* 0.

We omit the easy proof.

In what follows we shall assume the dimension of M is 2. The case dim M
> 2 is not essentially different. We divide the discussion into parts as follows.

Part (i). We assume that the greatest common divisor (e, f) = 1, and that
bothe > 1and f> 1. Let M = {U;} U {V;} U {W,}, a union of open subsets
of M where U; € M,,V, C M, and the sets {W,} cover R = M, N M,. We
assume each (U;, »#) is isomorphic to a model (B, %,), (V;, o) to a model
(B, %), and (W, #) to (A, L, ), where B={zeD C C*: z, = 0} and D
is an open disk around O ¢ C°. We define bundles E, and F, on M, as follows.
Let Wi = M, N W,. Then {U;} U {W}} is an open covering of M,. Let z =
(2455 225, Z55) on U; or Wi, We then have

(1) zy =T Zk>Z)ze 00 U; N U, (oron U; N Wi or Wi N W) .

Asin § 1, or by Lemma 1, we see that e;;(0, 2,4, Z;) iS a nonvanishing holo-
morphic function, and we set

( 2 ) ejk(o, Zoks ng) = ejk(zzk, z3k) .

The 1-cocycle {e;;} defines the line bundle E,, and the divisor R C M, defines
the line bundle F,. Using the fact that (M, 5#) can occur as a fibre in a one-
parameter family one can easily verify that F{ - E¢ is the trivial line bundle on
M,. Notice that F, is defined by the 1-cocycle f,;(z;, z;) where R = {z,, = 0}
and

(3) Zy; = f16(Zans Za) 2ok -

We proceed in a similar manner to define line bundles E, and F, on M,,



204 JAMES A. MORROW

and we find that E¢F] is the trivial line bundle. Notice that E, is the bundle
of the divisor R C M,.

We now begin the discription of the nonsingular model »(M, 5#). Since
E:F] is trivial, by choosing our covering appropriately we can find nonvanish-
ing holomorphic functions #; such that

(4) fiem = uslug -

Now consider the line bundle E;* on M,. Let &; be a fibre coordinate for E;*
over W3 (or U,). Then one can easily check that the equations

(5) u;E5 =z, on Wi, u;gs =1 on U,

define local varieties which fit together to give a global subvariety V, of E;*.
Let z: E;' — M, be the projection map. Then we see that = makes V, an I
sheeted covering of M, branched over R. Notice that if f fe,z = u/uj, for some
other set of nonvanishing holomorphic functions, then u; = Cu; where C is a
nonzero constant (independent of j of course). We want our constructions to
be independent of the particular trivialization {u;}. Notice that Cu;&5 = z,} can
be mapped onto u;&% = z} by sending (&, 2,5, 25;) to (CV¢&;, 2,5, 25;), and this
map defines an isomorphism. So V, is well defined independent of the particular
choice of the {u;}. We let R, = =7'(R).

We define a differentiable manifold J, with boundary as follows. Let $' =
{z e C™:|z| = 1}. We think of $' as a multiplicative group. We suppose that
W5 = {25, 239 |252] < 1, |255] < 1} and we introduce spaces

W= {(r;»0;,2,):0<r;<1,0;¢e8, |z < 1},
choose v; so that
(6) VS =u; .
Then let

€iu(Zors Zaw) = | €55 (Zans Zaw) |71 (Za» Za)
fjk(zzks Zy) = Ifjk(zzks Zsx) |0'jk(zzk, Zai) »
Vi(Zors Z3x) = | Vi(Zars Zar) | Br(Zan Zai) »

where 7,4, 7,1, Bi take values in S*. Notice that we have maps
(7) A2 (ry, 05 29) — (r]67 [0,01565, 209)5 15055 Z5)

on W}-, where (£;, 2,5, 2;;) are coordinates on E;*. This map 4 is an isomorphism
of {(r;,6;,2,) € W}: r; > 0} onto z-\(W} — R) N V,. We then form a union
W' = UW!} by identifying (r;, 8;, z,;) € W} with (s, 0y, z,) € W} if and only if
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15 = |f 5 (ri05, 2 |75 05 = 05u(rifi; 2)0% »
(8) o1 = [z-;,j(riﬁi,zsk)ﬁ,(rfﬁi,zm) ] o |
ﬂk(’iﬂfw sz)
where we may think of 8; as a holomorphic function of (z,z,) € W} N Wi.

That the second two equations uniquely define 8, if (r;, 65, z;,) are given follows
from the following lemma and the fact that

(9) ojftie = BilB: -

Lemma 2. Let a,b,c,deS' = {z:|z| = 1}. Suppose e,f are relatively
prime integers, greater than 1. Consider the following equations for a

2y = hu(r50%, za)

10) at = cb®, a’ =db’ .

If b,c,d are fixed with ¢/ = d®, then a is uniquely determined, i.e., there is
a unique solution to these equations.

We omit the easy proof. 3

We thus get a manifold W* with boundary and a map 2: W' — V/, such that
2@W"Y) = R,, and 2 maps W' — oW" isomorphically onto z~'(U W} — R) N
V.. We can thus form

J,=(W,—R) U aWw' (disjoint union)
=W, —R)U W'

with the identification made by 2. J, is a manifold with boundary oJ; = oW
This boundary is an S* bundle over R, = R, which can be described as follows :

aJ1 = U {(01,231): [Zsjl <1, 01€S1} ,

where (;, z;;) is identified with (6, z;) if and only if

, .
65 = 010, Zaw)i 0] = [Tjk(o’zsk)ﬂf(o’z”‘) ]0;{ ,

(11) Be(0, z51)

25 = hy(0, 23) = h;(Zs) -

We define V,, J, similarly for M,. V, is an f-sheeted covering of M, branched
over R, and J, = (V, — R,) U dJ,. 3], is an ' bundle over R such that

o, = U {(pj> 2e9)* 12051 < 1, 0;€ 8},
where (p;, z;;) is identified with (¢, Z;) if and only if

of = [ a]_lcl(os Zoi)ets (0, Z51) ] ¢
! (0, Z31)

(12)
SD.{ = z-j,c(O, Z3k)§0{ ) 235 = hjk(zalc) 5
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where (0, z;,) = (0, z5,). Now dJ; and 4/, are diffeomorphic. In fact, by
using

(13) ofesi = BB = offaf ,
Lemma 2, and equations (11) and (12) one can easily check that the equations
(14) 90; = B0, Z3J')0;f s 95 = a;(0,2,))07° ,  zy5 = 2y

give a well defined diffeomorphism of 4/, with dJ,, and thus we form J, U J,
where we identify 9/, and 4J, to get a topological 4-manifold (without
boundary). Then J, U J, = v(M, ) is the nonsingular model for (M, 5#).
Since the trivializations of F{-E¢, F{-E¢ are uniquely determined up to a con-
stant factor so are the functions j;, ;. Thus as a topological manifold v(M, #°)
is uniquely determined.

Part (if). We assume that e > 1,f > 1, and that e = al, f = bl with the
greatest common divisor (a, b)) = 1. We define the variety V, in the same way.
However instead of W} we have | J,2, W,} (disjoint union), where each W}
={(r;,0;,25):0<r; <1,80;e8",|z;| < 1}. The variety V, is locally given
by equations (v;£;,)* = z,,°%, where v;% = uy, f;,"'e;;* = u;/uy, as before.
In this case the map 2: W,} — V, is given by

15) A(rs, 05, 255) = (Prif5/v(r$65, z55), 1505, 255)

for (r;,6;, 2y € W]-,}, where » = exp (2zi/al). With the notation as before we

identify (r;, ;,2;;) € W“} with (ry, 0y, 231) € Wk,}, (where k + j) if and only if

ry = [fi(reb, za) |13 07 = 050y, 2)0%
(16) (rege
g0, = BIROBZ) aage 2 ymage | 2y = hy(r208, 700 |
Bi(ri0z, zax)

To see that these equations uniquely determine an identification we need the
following lemma.

Lemma 3. Let x,y,p,veS', and let 7 = exp (2zi/al), where (a,b) = 1,
and a, b, are integers greater than 1. Consider the following equations:

an PPx’ = uy®° , X% = py% .

If y, pt,v, and q are fixed with 'y € §*, p* = 1", and 0 < q < I, then there are
a unique x € S* and p with 0 < p <l satisfying (17).

We omit the easy proof.

Again we get a manifold Wi=uWw ;» with boundary oW, In this case oW
is a fibre space over R with fibre a union of / circles. We now construct

J,=W,—R) U W'  (disjoint union)
:(V1_R1)UW1>
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where the identification is made by 2 as before. We construct J, similarly, and
form J, U J, = v(M, 5#).

Part (iii). 'We assume at least one oflthe integers fis 1.[Suppose e =1, f > 1.
Then V, = M,, and V, is described as before. The description of J, is easy, and
J, is as before. Again one checks that J, U J, gives a manifold which we call
v(M, o). Notice we cannot define E, in this case, but it is not needed since we
take V, = M,. If e = f = 1, we take V, = M,, V, = M,. The reader should
be able to supply the rest of the details. This ends the description of v(M, 7).

4. Examples

First we make a remark which is a consequence of the discussion in § 3.
We use the notation of §4, so M = M, U M, and 2# is also the same. The
following proposition is then a consequence of the discussion there.

Proposition. Suppose that (M, 5#) occurs as a fibre in a one-parameter
family, and further that (M, 5#) is a Case 11 space. Let R = M, N M,, and
let y; be the (holomorphic) normal bundle of R in M,. Let the integers e and
f be defined as in § 3. Then {7 = 1 (holomorphically trivial).

Remark. This gives a necessary condition for a space (M, 5#°) to occur as
a fibre in a one-parameter family.

Example 1. Let M = {(¢,(,8,8) € PPl =0 or {, = 0}. Then M =
W, U W,, and each W, is isomorphic to P?. The intersection W, N W, is
isomorphic to P'. Let @ be the sheaf of germs of holomorphic functions on P3,
and £ be the ideal sheaf of germs of holomorphic functions on P* which vanish
on M. Let s# = (0] #)|y. Then we claim (M, 5#) cannot occur as a fibre in
a one-parameter family. For, let N; be the bundle of the divisor W, N W, in
W, restricted to W, N W,. Then N,-N, = [2p] where p is a point of W, N W,
= P'. Since [2p] is not trivial, the proposition implies that (M, >#) cannot
occur as a fibre in a one-parameter family. If we allow s# to have nilpotents,
say let W, have multiplicity e;, then we get N¢.N% = [(e;, + e,)p]. Thus we
see that the underlying space M has no structure sheaf # such that (M, #)
occurs as a fibre in some one-parameter family.

Example 2. We recall some definitions from Kodaira’s paper [5]. By an
elliptic surface we mean a triple (V,®, R) where V is a connected complex
compact manifold of complex dimension 2, R is a nonsingular algebraic curve
(compact Riemann surface), @ is a proper surjective holomorphic map, and
the general fibre @~'(u) is a nonsingular elliptic curve. Thus an elliptic surface
is a one-parameter family of complex spaces of dimension 1. Assuming that
all of the fibres are free from nonsingular rational curves C with self intersec-
tion (C* = —1, Kodaira has given a list of every possible singular fibre which
can occur in an elliptic surface (see Kodaira [5, Theorem 6.2]). We shall verify
that for each of these singular spaces (M, 5#) that (M, 5#) is a torus thus
checking the theorem of § 5 in these cases.
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(i) The first type of singular fibre listed by Kodaira is a nonsingular elliptic
curve O with multiplicity m > 1. An m-sheeted unramified covering of O is
again a torus so v(0, ) is a torus.

(i) Next we consider a rational curve ® with an ordinary double point
with multiplicity m > 0. @ is not yet a space with normal crossings. However,
if we blow up the double point, we get a curve m0O, + 2m®,, where O, are
nonsingular rational curves, the integers preceeding the curves represent their
multiplicities, and 6,, 6, intersect normally in two points. @, is the proper
transform of @. The g.c.d. (m, 2m) = m, so the boundaries of the varieties J,
and J, (described in § 3) are bundles over two points, each with fibre a union
of m circles. The varieties L, and L, from which J, and J, are constructed can
be described as follows. L, is just a union of m copies of ©, in which all m
copies are pinched together at two distinct points. L, is formed from a union
of m copies of a 2-sheeted covering of @, branched over two points with

- branching order 1 at each point. These branched coverings are all pinched
together at two points. All of the points above one of the branch points are
pinched to a single point, and all of the points above the other branch point
are pinched to a single point. Thus J, = | ™, J,;, where each J,; is a 2-sphere
with two open disks removed. By using the Riemann-Hurwitz formula we see
that J, = U, J,;, where each J,; is a 2-sphere with two open disks removed.
J, and J, are pasted together according to the following scheme. We glue J,;
to J,; along one of the boundary circles, and J,; is glued to J,;,, along the other
boundary circle where i + 1 is reduced modulo m. The resulting manifold is
a closed chain of spheres glued together, and is clearly a torus.

(iii) Another possibility is M = mB, + mO, with m > 1, where the 0,
are nonsingular rational curves, m is the multiplicity of each curve, and 6,
intersects ®, normally in two distinct points. Thus (M, #°) is a space with
normal crossings. To see that (M, 5#) is a torus is quite similar to (but easier
than) the last part of the discussion in (ii).

(iv) M = O where O is a rational curve with one cusp. The multiplicity
of M is one, so & is the reduced structure sheaf, i.e., 5 is the structure sheaf
induced on @, considered as a subset of P?. A neighborhood of the cusp of the
curve O is isomorphic to a neighborhood of the origin of the analytic set
{Cx,y) € C*|x* = y°}. Thus (M, 5#) is not a space with normal crossings. We
perform a sequence of quadratic transformations to resolve the singularity of
0. We represent this resolution by the following sequence of symbols:

2 s L
3 ! | ]
1

1 2 1 2 3

These symbols have the following meaning. The first symbol represents a
rational curve with a cusp; it has multiplicity 1. We blow up the cuspidal
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point to get two nonsingular rational curves which are tangent at one point.
The cuspidal point is replaced by a rational curve with multiplicity 2. The
curve with the cusp has as proper transform a nonsingular rational curve with
multiplicity 1. Next we blow up the point of tangency to get three nonsingular
rational curves intersecting non-tangentially at the same point. The curve with
multiplicity three is the result of blowing up the point of tangency. Finally we
blow up the point of intersection to get a nonsingular rational curve of multi-
plicity 6 intersecting the three other rational curves normally (at three different
points). This space is a space with normal crossings (C, %) where C = C, U
C, U C, U C,. The curves C, have multiplicity k. We must construct the
branched coverings L, of C, described in §3. L; is a 6-sheeted covering of
C, = P! branched over 3 points. Over the first point there is one branch point
of order 6, over the next point there are two branch points of order 3, and
over the last point there are three branch points of order 2. First we separate
the branch points of order 3 (they are pinched together in L), and then we
separate those of order 2. This gives a nonsingular ramified covering L{ of C,.
Recall the Riemann-Hurwitz formula

g=%2C, —1)—n+1
14

for a branched covering R of the sphere P' where g is the genus of R, where
the sum is over all branch points p in R, e is the branching order at p, and n
is the number of sheets in the covering. With R = L] we get g(Ly) = 1, and
thus L; is a torus. Hence J; is a torus with six disks cut out of it. J; is clearly
a sphere with a disk cut out. J, is a union of two disjoint spheres, each with a
disk cut out. Finally J, is a union of three disjoint spheres each with a disk
cut out (L, is a union of three spheres P’, pinched together at one point). Thus
Jo+J, 4+ T, + J, = v(O, o) is a torus.

(v) M = 0, + 0, where O, and O, are nonsingular rational curves inter-
secting tangentially at a point p. One checks that resolving the singularities
gives the following graph of nonsingular rational curves:

It is an easy exercise to verify that the nonsingular model is a torus.

(vij M =06, + 6, + 0, where O, are nonsingular rational curves inter-
secting transversally at a common point p. The structure sheaf is the reduced
structure sheaf. The resolution of singularities gives:
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One easily verifies that the nonsingular model is a torus.

(vi) M =m®O, + mO, 4+ --. + mO, where O; is a nonsingular rational
curve, m is its multiplicity, and the ©@; are connected in a cyclic graph as
follows:

With the usual notation J, = J; U .- U Ji, where each J,; is a 2-sphere
with two open disks cut out. Gluing these J;; together cyclically one gets the
nonsingular model which is clearly a torus.

(viii) The next possibility is M =60, + --- + 0, + 20, + 20, 4+ --- +
20,, b > 5. The nonsingular rational curves @; are connected together in the
following graph:

In this picture b = 9. All of the intersections are normal, and the multiplicities
of the curves are given by the adjacent integers. The curves are labeled as
follows. The four outside curves are 0;, 1 < i < 4. O, intersects 6, 0,, O;. O,
intersects ©; and O,. This pattern continues until we get to @, which intersects
0,_1,0,, and O,. The space J;, 1 < k < 4, is a 2-sphere with one open disk
removed. The space J,, 5 < k < b, is a union of two 2-spheres, each 2-sphere
with two open disks removed. Using the Riemann-Hurwitz formula one finds
that J; and J, are 2-spheres each with three disks cut out. One easily sees that
the nonsingular model (_J)?_, J, is a torus.

(ix) M =06, + 20, + 30, + 40, + 50, + 60, + 40, + 30, + 26,. These
nine nonsingular rational curves are connected together in the following graph:
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4
T2

3
2 —
1!

From the graph one easily sees which curves 0, intersect. Using the Riemann-
Hurwitz formula one easily finds that J, is a 2-sphere with two disks cut out
for 2 < k < 5. J, is a 2-sphere with one disk cut out. J; is a union of three
2-spheres, each with a disk cut out. J, is a union of two 2-spheres, each with
a disk cut out. J, is a union of two 2-spheres, each with two disks cut out. J,
is a torus with six disks cut out. The union is clearly a torus.

(x) M=06,+ 20, + 30, + 40, + 360, + 260, + 20, + O,. Each 0, is a
nonsingular rational curve. They are joined in the following graph:

| 4
P

3 3

2

|
n

The notation is such that @, intersects 8,. Again apply the Riemann-Hurwitz
formula to find that the nonsingular model is a torus.

(xi) The final example has the following graph (each curve is nonsingular
rational) :

| 2
i

N

Follow the standard procedure, and find that the nonsingular model is a torus.

(xii)) These examples yield the following information. If C is one of the
singular fibres of an elliptic surface, and M is an arbitrary compact complex
manifold, then v(C X M, o#) = T* X M, where 5 is chosen appropriately,
and T? is a 2-torus. For example, let C be the curve discussed in Example 2
(xi). Then 5# is the structure sheaf which can be defined on C X M in an
obvious way locally, and these local pieces can thus be fitted together to give 5#.

Example 3. Let 4/ = P' X 4,4 = {z: ze C,|z| < ¢}. Blow up a point
on P' X {0} to get a curve C = I'; U I',, where each I'; = P*, and I', inter-

sects ', normally at one point. We get a family # T 4 with 1T 0 =C
and II-Y(¥) = P, t + 0. The naturally induced structure sheaf # on P' X P!
is the reduced structure sheaf, and one easily computes that »(C, 5#) = S°.
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Thus the theorem is verified in this case. Notice that the only complex structure
on $? is that of P'. We could go further with this idea. One could produce for

example a one-parameter family % —H—> 4, with II-'(¢f) = P! if ¢t # 0 and
II7'(0) being a collection of nonsingular rational curves represented by the
following graph, where each intersection is normal, and the integers represent
the multiplicity of /I on each curve:

One easily sees that v(I17%(0), o) = S where s is the structure sheaf. It is
obvious that one could easily produce examples with v(C, #) = S* whose
graphs are much more complicated. (The author would like to thank the referee
for the idea of this example.)

Example 4. Let P' = W, U W,, where W, = C, and the coordinates z,
on W, are related by the equation z,z, = 1. Let R"™ = P' X W, U P! X W,
where (w,, z,) is identified with (w,, z,) if and only if z,z, = 1 and w, = zl'w,.
This is a P! bundle over P! (a ruled surface). Then S is a surface with an
ordinary double curve (a Case II surface with e = m = 1) obtained from R‘™
by identifying the two sections D, and D,,, which are defined respectively by
w, =w, = 0 and w, = w, = oo. If we let s#™ be the reduced structure sheaf
on S, then Kodaira has shown [6] that y(§™, #™) = §' X §® form > 1.
If m = 0, then S is # X P! where Z is a rational curve with a double point.
Then by Example 2 (ii) and 2 (xii), the nonsingular model is 7% X S

5. The deformation theorem for Case II spaces

Theorem. Let(#,@,4) = {M,:tec 4} be a one-parameter family. Suppose
M, is nonsingular for t + 0, and (M,, 5#,) is a Case 11 space. Then M, is
homeomorphic to v(M,, #,) for t + 0.

(The proof of this theorem should be divided into parts as in the discussion
in § 3. However, we shall only supply the proof corresponding to part (i) of
the discussion in § 3. The proofs for the other parts are similar. For simplicity
we assume dim 4 = 3.)

Proof. Remember we are assuming that 4 = {z e C: [z| < 1}. We shall
suppose that My, = X U Y (as in § 3) and that we have a covering {#";} U
{#%;} U {7;} of M, by open sets in .# with coordinates (z,;, z,;, Z;;) such that

a(Z!j’ sz, z3]) = 21;125 on W‘] 5
@(Z,75 Zp55 Zaj) =z} on%;,
&—)(le922], z3]) == Zz’; on ’V] .
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We suppose that X is given by {z,; = 0}, and Y is defined by {z,; = 0}. On
W ; N W, we have

Ziy = €5(Zux» Zows Zak)  Zakc »
(1) Zy5 = f6Ziks Zow> Zo) * o >
Zyj = M2k Zows Zon) -

On #", N %; we have

215 = €;1(Ziks Zok> Zak) * Zuke »
(2) 25 = [36(Zoks Zons Zax) »

L35 = hjk(zllm Zok> Zax) -

Similarly we have on %", N ¥,

215 = €5x(Ziks Zo»> Zax) >
( 3 ) sz - fjlc(zlk’ 2ok Zsk) Lok 5
Zy = hi(Zows Zow> Zax) -
We shall assume that %; N ¥", = ¢ for all j, k.

Let #" = U #°;. We define continuous functions r and s on #" as follows.
We let {a;} be a system of positive differentiable functions on #"; such that

(4) lej| = ax/a; on#; N W, .
Then

(5) 'fjk|=bk/bj ’

where

(6) by = a7 .

We let

X; =425, Y3=biz;, z5=12y,
and introduce differentiable coordinates (x;,y;, z;) on #";. We may assume
Wj = {('xhyjazj): }le < erly.il < & |Z.7'] < 1} ’

where ¢ > 0 is a small number. Since |x;| = |x;| and |y;| = |[y|on #"; N W4,

r = |x;| = |x;| and s = |y;] = |y, define nonnegative continuous functions on
# . On ¥, the function @ is given by @(x;,y;,2;) = x5y].
If 4* = {t: 0 < ¢ < 1}, then we set #* = @ '(4*). From now on we will

restrict our attention to this subspace. Let #7,* = #* N #"; so that
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Wit = {5,952 X597 = 0, [x5] <&, |y5] <e z5] < 1} .
We set
U(Wj+) = {(r,s,ﬁj,Zj): 0 <r < 6,0 <s<e, OJESI,|ZJ'| < 1} .

Consider equations (1) and think of the functions e, , f;x, and h;, as func-

tions of (xx, Y&, Z,). Then
ejk(qu Vies Zi) = Iejk(xka Yk,zk)lfjk(xk,Yk,Zk) ’
fjk(xk,}’mzk) = ifjk(xka YkaZk)IO'jk(xk,)’k,Zk) .

(7)

Then we construct a space
(") = Jv(#;") ,
7

by identifying (r, s, 6;, z;) € v(#";%) with (r, s, 6x,2;) € v(#";,*) if and only if

0] = 7567, s0%, 701
(8) 0 = a;:(r6;7, 565, 2,)6;
z; = hy(Zues Zows Zax) -
As before these equations uniquely determine an identification, so v(#"*) is

well defined.
On %; N %, we have

2y = e;(Zik> Zoks Z3i) ik
(9) Zy; = fi(Zik, Zok»> Zak) >
235 = hjk,(zlk’ Zoke> Zax) -

We let

v(%j+) = {(R5 0j’zzjs zaj): 0 S_ R S & 0j € Sl’
0= 1,12, < 1]z, < 1} .

Notice that e,;f = 1 since z,¢ = z,{. We construct a space v(%*) = |J; v(%}),
where (R, 0;, 2,5, 27) € (%) is identified with (R, 0, 2o, 25x) € v(%;) if and
only if

0; = e (RO, 24k, Z)05 »
(10) - 2y = fix(ROCY, Zoks Zak) »

2y = hj (RO, Zois Zx) -

Notice-that R = |z,;| = [z;z| is a well defined functionon U %, = %. We have
a similar construction for v(#"*) = |, »(¥"}).



NONSINGULAR DEFORMATIONS. I 215

Next we want to construct v(#*). First we define (7" *) U v(# %) U w(%*)
where, for example we identify (r,s, 6, 2,) € v #7}) with (R, 6;,z,;,2,;) €
v(%7) if and only if

R = s/ler 0; = t50(r6;7, 565, 2,)0%
zzj = fjk(ral:fasai’ zk) ’ z3j = hjk(rﬁ;f’ Sﬁi, zk) )

(11

where e, comes from (2), and ¢, is defined as in (7), and we consider e;,, 7,
as functions of (x, yi, Z:). Notice that the inverse of relation (11) is

0] = Tk;l(Rafla 255> 23005 » 6; = Ukj(R‘g;l; s Zsj) s
(12) r= Iek](Ré;l’ ZZ]'? Z.’s])lR > § = 'fk](Raj_l’ Z2j) Zsj)’ 3
2y = hkj(Ra;la sz> zaj) s

where

X = (2155 Z2j> L)%
(13) Vi = Fei(Zij» Z2g» Zag) »
Zi = hii(21)5 2255 235) 5
exj = |exs|Trs frs = |frslows -
Notice also that
(14) tad = 1.

Obviously (r, s, 0, 2;) uniquely determines (R, 8;, 2,5, 2;;) by (11). One should
notice here that

z'},f(rﬂ,;f,sﬁic, Zk)ﬁicf = 1 .

Conversely, by using a lemma similar to Lemma 2 in §3 we see that
R0, 255, Z3;) uniquely determines (r, s, 6, 2x) by (12) and (14). Thus we get
a space

w(AN*) = v(@*) U (™) U u(¥™),

where /"' =% U % U and /'t =47 N A, and also have a map
pi v(N'*) — A given for example by
ﬂ(R’ 0]5 sz, z3j) = (Rﬁj_la sz, Zsj) ’ on V(%;) 3
wr,s,0;,2;) = (r6;7,565,2,) » ony(#}),

where (x;,y;, z;) are the coordinates on %"} defined before. Notice that v(A" )
— p~Y(M,) is a differentiable manifold, which is in fact diffiecomorphic to A4"*
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— M, via the map g which is a diffieomorphism on v(A"*) — p™'(M,) =
L (AN — M,). Thus we can define
M) = (M — M) U v(NT)
=(A#" — M) U p'(M, , (disjoint union),

where we use g to identify (A" — M,) with /% — M, C A" — M,. We
can obviously extend g and think of yx as a map p: v(A*) — A", where u
maps (A — M) = vu(A*) — p ' (M,) diffeomorphically onto A4+ — M,. It
is easy to see that v(£*) is a topological manifold with boundary gu(A*) =

1My = v(M)).
We claim that

V(Mo) = U(Mo’ %ﬂo) )

where v(M,, 5#,) is the manifold constructed in § 3, the topological nonsingular
model of the space (M,, 5#,). To prove this, set U; = M, N %;, V; = M, N
v, Wi =X N #; where X N #; is given in terms of the coordinates
(244, 205, Z35) for #7; by the equation z;; = 0. If we compare equations (1), (2),
and (3) of this section with equations (1), (2), and (3) of § 3 we see that (for
example)

fjk(zzlw Z3k) = fjk(Oy zzka Zsk) > on W‘; n W‘}c ’

(15)
€iu(Zor> Zax) = €30, Zyk, Zan) on W N W5 .

For this choice of f;,(Z,x, Z;x) and e;;(2,x, Z;) We can choose the functions u;
of equation (4) in § 3 to be u; = 1. Thus we can choose the v; and B, to be
v; = 1, B; = 1. We claim that there are maps

G: v(M) — p\(Y) = "M, — Y) >V, — R, ,
H: (M) — p'(X) = p”"M, — X) >V, — R, ,

which are in fact homeomorphisms. For example

My —Y) Nw(#}) ={0,5,0;,2): 0 <s<eb;e8,|z;] <1},
and on this set
(16) G(0,s,0;,z;) = ((s/by)?e6, (s| b))%, z) eV,

where b; = b,(0,56%,z;) and is considered as a function of (x;,y;,2;). On
p' My — Y) N v(%;) we have

(17) G(09 0j, sz, sz) = (0j, sz’ Zsj) .

We can easily check that this map is a well-defined homeomorphism and in
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fact extends to a homeomorphism
G p'X) =vX) >,
where G: v(R) — 8/, is given by
18) G(0,0,6,,z,) = (0,0,,z,) e W, C al, ,
and (0,0,0,,z,) € v RNW 7). The analogous equations for H are
H(r,0,0;,z;) = ((r/a)’6;5¢,(r|a)6;7,z;) e V, ,
(20) H(0,0,6,,z;) = (0,0;%,z;) € W* C dJ, .

Now consider equations (14) in § 3, which become ¢; = ;" since «; = B; =
1. Let &: 8J, — a7, denote this identification. Then H = £o G on »(R). Since
v(M,, #,) = J, U J, where 0/, is identified with aJ, by £, we see that H and
G give rise to a homeomorphism between v(M,) and v(M,, 5#,).

The map @y: v(A+) — A" satisfies

@O =M, fort>0, (@ 0) = vM,) .

Moreover v(A#*) — v(M,) is a differentiable manifold. We will put a differen-
tiable structure on yv(.#*) which extends the differentiable structure on y(.#*)
— v(M,). We will have in this new structure a differentiable function with no
critical points, which has as level sets the surfaces {(@p)~*(#): t > 0}.

We define a C* monotone increasing function as follows:

exp(—1/q) forg > 1,
e(q) = 0 forq =0,
—exp (1/9) forg <O0.

For r,s e R* = {t: t > 0}, the equations
21 e(r) = r/.sve, 2e(q) = r''/ — s'¢

define a topological map (r,s) — (z, g) of a neighborhood of (0, 0) in R* X R*
to a neighborhood of (0,0) in R* X R. We easily check that the functions

r(z, @) = (e(q) + Ve q) + e(r)

22 I
(22) s(z, @) = (—e(q) + Ve q) + e())*

are C* functions of g and z in a neighborhood of (0, 0), and invert equations
(21). Hence we may use (z, g, 6;, z;) as new coordinates on v(#"}), so that (8)
becomes
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07 = 75:(r(z, 07, s(z, 6%, )0
(23) 03 = Tjk(r(T7 q)0;f1 S(Ta q)ﬂfw zk)éi )
Zj = hjk(r(z.9 q)al:fy S(Ta Q)éi, zk) .

On v(%;) we use the equation e(r)’ = R to introduce (z, 8, 2,;,2;;) as new
coordinates. As in (23) we easily check that (10), (11), and (12), due to (21)
and (22), are turned into a differentiable change of coordinates between
(z, 6,2, 25;) and (z,q,0;,2;). In order to check this we need to assume
that %, is bounded away from R = X N Y so that we can verify that the
Jacobian

det [a(T, sz: Zsj7 zzj; i:}j)/a(T’ q: 6]" zj, zj)]

is bounded away from zero. We operate similarly on v(7"}). Thus we get a
differentiable structure on v(Z*) U v(#"*) U v(¥"*), which extends the given
structure on v(#Z*) U v(#"*) U u(¥"*) — v(M,). The function

t = —ef/log (@p)

is a differentiable function with no critial point on v(.#*), and

M, ift >0,
() = )
oM) ift=0.
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