# NONSINGULAR DEFORMATIONS OF SPACES WITH NORMAL CROSSINGS. I 

JAMES A. MORRCW

## Introduction

We wish to study one-parameter families of compact complex spaces. We will describe a certain construction which can be performed on a class of complex spaces and which will yield a topological manifold homeomorphic to any nonsingular fibre of a one-parameter family containing the given complex space as singular fibre (as long as the given structure sheaf on the complex space is the same as the one which is induced as a fibre of a family). The structure sheaf plays a nontrivial role since, for example, if $\pi: \mathscr{M} \rightarrow \Delta=$ $\left\{z\left||z|<1, z \in C^{1}\right\}\right.$ is a one-parameter family $M_{t}=\pi^{-1}(t)$ such that with respect to appropriate local coordinates $\pi\left(w_{1}, \cdots, w_{n}\right)=w_{1}^{k}$, then $M_{t}$ for $t \neq 0$ is a $k$-sheeted covering of $M_{0}$ which in general will be topologically distinct from $M_{0}$ even though $M_{0}$ is a nonsingular submanifold of $\mathscr{M}$.

The class of complex spaces which we study is the one with normal crossing singularities. For these spaces we will give a simple condition which must be satisfied if they are to belong to a one-parameter family. For those spaces which are members of a one-parameter family we will show how they determine the topology of the nonsingular fibres.

## 0. Basic definitions and assumptions

We remind the reader of some standard definitions (consult, for example, Grauert and Kerner [2]). Let $X$ be a topological space, and $\mathscr{A}$ a sheaf of local complex algebras on $X$. We suppose that the unit $1_{x} \in \mathscr{A}_{x}$ varies continuously with $x \in X$. If $\mathscr{M}_{x}$ is the maximal ideal of $\mathscr{A}_{x}$, then $\mathscr{A}_{x} / \mathscr{M}_{x}$ is isomorphic to $C$ under the isomorphism which sends $1_{x}+\mathscr{M}_{x}$ into $1 \in C$. The pair ( $X, \mathscr{A}$ ) is called a complex ringed space, and $\mathscr{A}$ the structure sheaf.

Let $(X, \mathscr{A})$ and $(Y, \mathscr{B})$ be two complex ringed spaces; By a morphism $\Phi:(X, \mathscr{A}) \rightarrow(Y, \mathscr{B})$ we mean a pair of continuous maps $\left(\varphi, \varphi^{*}\right)$, where $\varphi$ maps $X$ into $Y$, and $\varphi^{*}$ maps the sheaf $\varphi^{-1} \mathscr{B}=\left\{(x, b) \mid x \in X, b \in \mathscr{B}_{\varphi(x)}\right\}$ into $\mathscr{A}$ so that $\varphi^{*}$ is a sheaf map which is a homomorphism of local complex algebras on each stalk. $\Phi$ is a bimorphism if there is a morphism $\Psi=\left(\psi, \psi^{*}\right):(Y, \mathscr{B})$

[^0]$\rightarrow(X, \mathscr{A})$ such that $\Phi \circ \Psi=$ identity and $\Psi \circ \Phi=$ identity where the notation is obvious.

Let $G$ be an open region in $C^{n}$, and $A$ an analytic set in $G$. Let $\mathcal{O}(G)$ be the sheaf of germs of holomorphic functions on $G$, and $\mathscr{I} \subseteq \mathcal{O}(G)$ be a coherent sheaf of ideals $\mathscr{I}_{x}$ such that $A=\left\{x \in G \mid \mathscr{I}_{x} \neq \mathcal{O}_{x}(G)\right\}$. Then the stalks of the sheaf $\mathcal{O}(G) / \mathscr{I}$ are zero outside of $A$, and therefore $\mathscr{H}=\mathcal{O}(G) / \mathscr{I}$ can be considered to be a sheaf of local complex algebras on $A$. Hence $(A, \mathscr{H})$ is a complex ringed space. Such spaces are called complex models. A complex ringed space is a complex space if:
(i) $X$ is Hausdorff,
(ii) to every $x \in X$ there are a neighborhood $U$ and a complex model $(A, \mathscr{H})$ such that $\left(U,\left.\mathscr{A}\right|_{U}\right)$ is bimorphic to $(A, \mathscr{H})$. One can easily see that the complex spaces form a category. A morphism of complex spaces will be called a holomorphic mapping.

Let $A_{\lambda}$ be an analytic set in a region $G_{2}$ of $C^{n_{\lambda}}$, where $\lambda=1$ or 2 . Suppose $A_{\lambda}$ has structure sheaf $\mathscr{H}_{\lambda}$ where $\mathscr{H}_{\lambda}=\mathcal{O}\left(G_{\lambda}\right) / \mathscr{I}_{\lambda}$ as in the definition of a complex model. Let $\psi: G_{1} \rightarrow G_{2}$ be a holomorphic mapping in the classical sense such that $\psi\left(A_{1}\right) \subset A_{2}$. Then the inverse image $\psi^{-1} \mathcal{O}\left(G_{2}\right)$ is contained in $\mathcal{O}\left(G_{1}\right)$. Suppose $\psi^{-1} \mathscr{I}_{2} \subset \mathscr{I}_{1}$. Then by passing to quotients we can define a sheaf map $\varphi^{*}: \psi^{-1}\left(\mathscr{H}_{2}\right) \rightarrow \mathscr{H}_{1}$. If we set $\psi \mid A_{1}=\varphi$, we have defined a morphism $\left(\varphi, \varphi^{*}\right):\left(A_{1}, \mathscr{H}_{1}\right) \rightarrow\left(A_{2}, \mathscr{H}_{2}\right)$. Such a morphism will be said to be generated by $\psi$. The following result is well-known (see e.g. Grauert [1]).

Proposition 1. Let $\left(\varphi, \varphi^{*}\right):\left(A_{1}, \mathscr{H}_{1}\right) \rightarrow\left(A_{2}, \mathscr{H}_{2}\right)$ be a morphism of complex spaces. Let $x \in A_{1}$ and $y=\varphi(x) \in A_{2}$. Then there are complex models $\left(M_{1}, \mathscr{A}_{1}\right)$, $\left(M_{2}, \mathscr{A}_{2}\right)$ with $M_{1} \subseteq G_{1} \subseteq C^{n_{1}}, M_{2} \subseteq G_{2} \subseteq C^{n_{2}}$ where $G_{1}$ and $G_{2}$ are regions in $C^{n_{1}}$ and $C^{n_{2}}$, and there are neighborhoods $U$ of $x$ and $V$ of $y$ and bimorphisms $\left(\psi_{1}, \psi_{1}^{*}\right):\left(M_{1}, \mathscr{A}_{1}\right) \rightarrow\left(U,\left.\mathscr{H}_{1}\right|_{U}\right),\left(\psi_{2}, \psi_{2}^{*}\right):\left(M_{2}, \mathscr{A}_{2}\right) \rightarrow\left(V,\left.\mathscr{H}_{2}\right|_{V}\right)$ such that the composition $\left(\psi_{2}, \psi_{2}^{*}\right)^{-1}\left(\varphi, \varphi^{*}\right)\left(\psi_{1}, \psi_{1}^{*}\right)$ is generated by a holomorphic map $\psi: G_{1} \rightarrow G_{2}$.

Let $(X, \mathscr{H})$ be a complex space, and $(M, \mathcal{O})$ a complex manifold where $\mathcal{O}$ is the sheaf of germs of holomorphic functions on $M$. Suppose $\left(\pi, \pi^{*}\right):(X, \mathscr{H})$ $\rightarrow(M, \mathcal{O})$ is a holomorphic map. For $t \in M, X_{t}=\pi^{-1}(t)$ is an analytic subset of $X$. Let $\mathscr{M}_{t} \subseteq \mathcal{O}_{t}$ be the maximal ideal of $\mathcal{O}_{t}$, and $\mathscr{M}_{t} \circ \pi$ the ideal of $\mathscr{H}$ generated by $\pi^{*}\left(\pi^{-1} \mathscr{M}_{t}\right)$. If one defines $\mathscr{H}_{t}=\mathscr{H}^{\prime} \mid \mathscr{M}_{t} \circ \pi$, then $\mathscr{H}_{t}$ vanishes outside of $X_{t}$, and $\left(X_{t}, \mathscr{H}_{t}\right)$ is a complex space. The morphism $\left(\pi, \pi^{*}\right):(X, \mathscr{H})$ $\rightarrow(M, \mathcal{O})$ hence defines a family of complex spaces $\left(X_{t}, \mathscr{H}_{t}\right)$. We abbreviate this notation to $\pi: X \rightarrow M$.

Now let $\mathscr{M}$ be a complex manifold, and $\omega$ be a proper holomorphic map of $\mathscr{M}$ onto $\Delta=\{z| | z \mid<1, z \in C\}$, the unit disk in $C$. Let $\mathscr{A}$ and $\mathcal{O}$ be the sheaves of germs of holomorphic functions on $\Delta$ and $\mathscr{M}$ respectively. If we give each fibre $M_{t}=\omega^{-1}(t)$ the structure sheaf described above, then we say that the triple $(\mathscr{M}, \omega, \Delta)$ is a one-parameter family of compact complex spaces. For simplicity, in subsequent work we will always assume $\mathscr{M}$ and $M_{t}$ to be con-
nected for all $t \in \Delta$. By a one-parameter family we shall always mean a oneparameter family of connected compact complex spaces. We have

Proposition 2. Let $(\mathscr{M}, \omega, \Delta)$ be a one-parameter family. Then any general member $\left(M_{t}, \mathscr{H}_{t}\right)$ is a nonsingular complex manifold with reduced structure sheaf. By this we mean that the set of points $t \in \Delta$, for which $\left(M_{t}, \mathscr{H}_{t}\right)$ is not a complex manifold with $\mathscr{H}_{t}$ the sheaf of germs of holomorphic functions on $M_{t}$, is a set without accumulation point in $\Delta$.

Proof. If we are willing to use the proper mapping theorem of Remmert the proof would be immediate. We propose instead the following elementary argument. Let $\pi_{*}: T \mathscr{M} \rightarrow T \Delta$ be the induced map of tangent spaces. Let $A \subseteq \mathscr{M}$ be the analytic subset consisting of all points $p \in \mathscr{M}$ for which $\pi_{*}: T_{p} \mathscr{M}$ $\rightarrow T_{\pi(p)} \Delta$ is the zero map. Let $A_{s}$ be the singular points of $A$. Then $A-A_{s}$ is a complex manifold, and $\pi$ is constant on each component of $A-A_{s}$. Thus $\pi$ is constant on each irreducible component of $A$. Now suppose $\pi(A)$ has an accumulation point in $\Delta$. Call it $s$. Then there is a sequence of distinct points $\left\{t_{\nu}\right\} \subseteq \pi(A)$ for which $t_{\nu} \rightarrow s$. Since $\pi$ is proper (by passing to a subsequence if necessary) we find a sequence $p_{\nu} \in A, p \in \mathscr{M}$ such that $\pi\left(p_{\nu}\right)=t_{\nu}, \pi(p)=s$ and $p_{\nu} \rightarrow p$. But then $\pi_{*}$ is zero on $T_{p} \mathscr{M}$, so $p \in A$. Since the $t_{\nu}$ are distinct, each $p_{\nu}$ belongs to a different irreducible component of $A$. Thus we conclude that any neighborhood of the point $p \in A$ has infinitely many irreducible components. This is impossible for an analytic set (see, for example, Gunning and Rossi [3, pp. 89, 116]). q.e.d.

We will refer to this proposition as Bertini's theorem.
Let $X$ be a complex space. We wish to define what it means for $X$ to have only normal crossing singularities. Let $X$ also refer to the underlying topological space of $X$. Suppose $X=U X_{\alpha}, 1 \leq \alpha \leq l$, where each $X_{\alpha}$ is a nonsingular complex manifold. Let $x \in X$, and let $\left(\alpha_{1}, \cdots, \alpha_{p}\right)$ be the set of integers for which $x \in X_{\alpha_{i}}$. Then we suppose that there are a set $\beta=\left(\beta_{1}, \cdots, \beta_{p}\right)$ of positive integers and a neighborhood of $x$ in $X$, which is bimorphic to the complex model in an open disk $D$ around the origin ( 0 ) $\in \boldsymbol{C}^{q}\left(q \geq p\right.$ ) defined by $z_{1} \cdots z_{p}$ $=0$ with structure sheaf $\mathcal{O}(D) /\left(z^{\beta}\right)$, where $\mathcal{O}(D)$ is the sheaf of germs of holomorphic functions of $D$, and $\left(z^{\beta}\right)$ is the ideal of $\mathcal{O}(D)$ generated by the holomorphic function $z^{\beta}=z_{1}^{\beta_{1}} \cdots z_{p}^{\beta_{p}}$. We also suppose that this biholomorphic map takes $x$ into 0 . If this situation holds for every $x \in X$, we say that $X$ has only normal crossing singularities.

Now let $(\mathscr{K}, \omega, \Delta)$ be a one-parameter family. Suppose $\left(M_{0}, \mathscr{H}_{0}\right)$ is a singular fibre (i.e., $M_{0}$ singular as a complex analytic set or $\mathscr{H}_{0}$ not reduced). Then by Bertini's theorem there is a neighborhood of 0 such that for all points $t$ in the neighborhood, except $0, M_{t}$ is nonsingular and $\mathscr{H}_{t}$ is reduced. We restrict our attention to the portion of $\mathscr{M}$ above this neighborhood. By changing coordinates on $\Delta$ we may assume that this small neighborhood again is $\Delta=$ $\{z||z|<1, z \in C\}$. We denote the new family by the same symbols $(\mathscr{M}, \omega, \Delta)$, although $\omega$ has really been changed by the change of coordinates. If ( $M_{0}, \mathscr{H}_{0}$ )
has only normal crossing singularities, we may assume that $\omega$ is given locally by $\omega\left(z_{1}, \cdots, z_{n}\right)=z^{\beta}$ where $\beta=\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{i} \geq 0, \beta \in Z$ and $z^{\beta}=z_{1}^{\beta_{1}} \cdots$ $z_{n}^{\beta_{n}}$. We will use this multi-index notation when convenient in order not to get lost in a cloud of indices. A connected compact complex space will be said to be admissible, if it has only normal crossing singularities, and there exists a one-parameter family in which it occurs as a singular fibre.

We shall give the construction of the topological nonsingular model, and prove that it is indeed homeomorphic to the nonsingular fibres of any oneparameter family in which the complex space occurs as singular fibre for a set of cases in ascending order of difficulty. We could have done only the most difficult case, since it contains all of the easier cases. We think this would have made the procedure more difficult to understand, so we have built up from the simple to the complicated. The cases are as follows. (In each case we list the "worst" possible local behavior of $\omega$.)

Case I. $\quad\left(M_{0}, \mathscr{H}_{0}\right)$ occurs as a singular fibre with $\omega(z)=z_{1}^{k}$, in terms of local coordinates $z=\left(z_{1}, \cdots, z_{n}\right)$.

Case II. $\quad\left(M_{0}, \mathscr{H}_{0}\right)$ occurs as a singular fibre with $\omega(z)=z_{1}^{\beta_{1}} z_{2}^{\beta_{2}}$.
Case III. ( $M_{0}, \mathscr{H}_{1}$ ) occurs as a singular fibre with $\omega(z)=z_{1}^{\beta_{1}} z_{2}^{\beta_{2}} z_{3}^{\beta_{3}}$.
Case IV. The general case : $\omega(z)=z^{\beta}, \beta=\left(\beta_{1}, \cdots, \beta_{n}\right), \beta_{i} \in Z, \beta_{i} \geq 0$.

## 1. The nonsingular model in Case $I$

Let $(M, \mathscr{H})$ be an admissible complex space which occurs as a singular fibre in a one-parameter family $(\mathscr{M}, \omega, \Delta)$ for which $(M, \mathscr{H}) \cong\left(M_{0}, \mathscr{H}_{0}\right)$ and for which one can find local coordinates $z=\left(z_{1}, \cdots, z_{n}\right)$ for a neighborhood in $\mathscr{M}$ of an arbitrary point in $M_{0}$ such that $\omega(z)=z_{n}^{e}$ with $e>1$ ( $\cong$ means bimorphic). Since $M$ is connected, $e$ will be the same for all points in $M_{0}$. We can find a finite covering $\left\{U_{j}\right\}$ of $M$ with open sets such that on each set $U_{j}$, $\mathscr{H}$ is bimorphic to the sheaf $\mathcal{O}(D) /\left(z_{j n}^{e}\right)$, with $D$ an open disk around 0 in $C^{n}$. If $U_{j} \cap U_{k} \neq \emptyset$, then a nonvanishing holomorphic function $f_{j k}(x)$ on $U_{j} \cap U_{k}$ is defined by the relations

$$
\begin{aligned}
z_{j n} & =F_{j k}\left(z_{k 1}, \cdots, z_{k n}\right) \cdot z_{k n} \\
f_{j k}(x) & =F_{j k}\left(z_{k 1}(x), \cdots, z_{k n-1}(x), 0\right) .
\end{aligned}
$$

It is easy to see that $\left\{f_{j k}\right\}$ defines a 1 -cocycle on the nerve of the covering $\left\{U_{j}\right\}$ and thus gives an element $f \in H^{1}\left(M, \mathcal{O}^{*}\right)$ where $\mathcal{O}^{*}$ denotes the sheaf of germs of nonvanishing holomorphic functions on the complex manifold $M$ (reduce the complex space ( $M, \mathscr{H}$ )). In fact, since $\omega=z_{j n}^{e}, f_{j k}^{e}=1$. Thus $f_{j k}$ is an $e$-th root of unity. Let $Z_{e}$ denote the group of $e$-th roots of unity (a multiplicative subgroup of $\left.S^{1} \subseteq C\right)$. Then $f \in H^{1}\left(M, Z_{e}\right)$, and thus $f$ defines an $e$-sheeted unbranched covering $\nu\left(M_{0}\right)$ of $M_{0}$, which is the nonsingular model for Case I.

We will show that the cohomology class $f$ depends only on the structure
sheaf $\mathscr{H}$ and not on the particular choice of family $(\mathscr{M}, \omega, \Delta)$. For let $(\mathscr{N}, \pi, \Delta)$ be any other one-parameter family for which $(M, \mathscr{H}) \cong\left(N_{0}, \mathscr{K}_{0}\right)$, where $N_{0}=$ $\pi^{-1}(0), \mathscr{K}_{0}$ is the induced structure sheaf, and locally $\pi=w_{n}^{e}$. Let $\left\{U_{j}\right\}$ cover $M$ such that locally $M$ is given by $A_{z_{j}}=\left\{z_{j} \in D_{z} \mid z_{j n}^{e}=0\right\}$ and $A_{w_{j}}=$ $\left\{w_{j} \in D_{w} \mid w_{j n}^{e}=0\right\}$, where $z_{j}$ and $w_{j}$ are local coordinates for $\mathscr{M}$ and $\mathscr{N}$, and $D_{z}, D_{w}$ are open disks around $0 \in C^{n}$. Since ( $M, \mathscr{H}$ ) is bimorphic to both $\left(M_{0}, \mathscr{H}_{0}\right)$ and $\left(N_{0}, \mathscr{K}_{0}\right)$, there is a bimorphism between $\left(A_{z}, \mathcal{O}\left(D_{z}\right) /\left(z_{j n}^{e}\right)\right)$ and $\left(A_{w}, \mathcal{O}\left(D_{w}\right) /\left(w_{j n}^{e}\right)\right)$. By Proposition 1, § 0, we may assume that this bimorphism is induced by a map $\varphi_{j}: D_{z} \rightarrow D_{w}$. It is not hard to see that this map takes the form

$$
\varphi_{j_{n}}\left(z_{j_{1}}, \cdots, z_{j_{n}}\right)=z_{j_{n}} f_{j}\left(z_{j_{1}}, \cdots, z_{j_{n}}\right)
$$

where $f_{j}\left(z_{j_{1}}(x), \cdots, z_{j n-1}(x), 0\right) \neq 0$, and $\varphi_{j}=\left(\varphi_{j 1}, \cdots, \varphi_{j n}\right)$. Then it follows that $f_{j k}=f_{j}^{-1} \bar{f}_{j k} f_{k}$, where

$$
w_{j k}=\bar{F}_{j k}\left(w_{k 1}, \cdots, w_{k n}\right), \quad \bar{f}_{j k}(x)=\bar{F}_{j k}\left(w_{k 1}(x), \cdots, w_{k n-1}(x), 0\right)
$$

Thus $f=\left\{f_{j k}\right\}$ and $\bar{f}=\left\{\bar{f}_{j k}\right\}$ define the same class in $H^{1}\left(M, C^{*}\right)$, so that $f$ and $\bar{f}$ define the same class in $H^{1}\left(M, Z_{e}\right)$. Therefore the covering defined by $f$ depends only on $\mathscr{H}$ and not on $(\mathscr{M}, \omega, \Delta)$. We denote this $e$-sheeted covering by $\nu(M, \mathscr{H})$, and call it the topological nonsingular model of ( $M, \mathscr{H}$ ). Note that this terminology has very little to do with the same expression in algebraic geometry.

Remark. This covering could be defined as follows. The cocycle $\left\{f_{j k}\right\}$ determines a complex line bundle $[f]$ over $M$. Let $\xi_{i}$ be a local fibre coordinate for $[f]$. Then it is easy to see that the collection of local subvarieties $\left\{\xi_{i}^{e}=1\right\}$ fits together to form a nonsingular submanifold $W$ of $[f]$. The fibre projection makes $W$ into an unramified $e$-sheeted covering of $M$. Then $W=\nu(M, \mathscr{H})$.

## 2. The deformation theorem for Case I spaces

In this section we prove the following theorem.
Theorem. Let $(\mathscr{M}, \omega, \Delta)=\left\{M_{t} \mid t \in \Delta\right\}$ be a one-parameter family. Suppose $M_{t}$ is nonsingular for $t \neq 0$, and $\left(M_{0}, \mathscr{H}_{0}\right)$ is a Case I space. Then $M_{t}$ is diffeomorphic to $\left(M_{0}, \mathscr{H}_{0}\right)$ for $t \neq 0$.

Remark. We know two proofs of this result, and since they are both easy we give them both.

Proof 1. We suppose $\nu\left(M_{0}, \mathscr{H}_{0}\right)$ is an $e$-sheeted covering of $M_{0}$. Let $\bar{\Delta}$ be another copy of $\Delta$, and $\varphi: \bar{\Delta} \rightarrow \Delta$ be given by $\varphi(\zeta)=\zeta^{e}$. Then we define a space $W \subseteq \bar{\Delta} \times \mathscr{M}$ by

$$
W=\left\{(\zeta, z) \mid \zeta^{e}=\omega(z)\right\}
$$

Then $W=\cup W_{j}$ where

$$
W_{j}=\left\{\left(\zeta, z_{j}\right) \mid \zeta^{e}=z_{j n}^{e}\right\},
$$

and $z_{j}=\left(z_{j_{1}}, \cdots, z_{j n}\right)$ is a local coordinate in $\mathscr{M}$ around a point of $M_{0}$. Here $n=\operatorname{dim} \mathscr{M}$, and we are assuming that the domains of these local coordinates cover $\mathscr{M}$ (if not, we could just take $\mathscr{M}$ to be a little smaller). $W_{j}$ itself is a union $W_{j}=\bigcup_{l=1}^{e} W_{j}^{l}$ with

$$
W_{j}^{l}=\left\{(\zeta, z) \mid \rho^{l} \zeta=z_{j n}\right\},
$$

where $\rho=\exp (2 \pi i / e)$. We construct a new manifold $\overline{\mathscr{M}}$ as follows. $W_{j}$ is a union of $e$-sheets which intersect along a portion of $M_{0}$. We separate these, and consider $\bar{W}_{j}=\bigcup_{l=1}^{e} W_{j}^{l}$ as a disjoint union. Then $\overline{\mathscr{M}}=\cup \bar{W}_{j}$ where we make the following identifications. As in § 1 we have

$$
z_{j n}=F_{j k}\left(z_{k}\right) \cdot z_{k n} \quad \text { on } V_{j} \cap V_{k}
$$

with $F_{j k}^{e}=1$, where $V_{j}$ is the domain of $z_{j}$. We also have

$$
z_{j}^{\prime}=G_{j k}\left(z_{k}\right) \quad \text { on } V_{j} \cap V_{k}
$$

where $z_{j}^{\prime}=\left(z_{j 1}, \cdots, z_{j n-1}\right)$. We see that $F_{j k}$ is locally constant, and is an $e$-th root of unity. As before we set $f_{j k}=F_{j k}\left(z_{k}^{\prime}, 0\right)$. We identify $\left(\zeta, z_{j}\right) \in W_{j}^{l}$ with $\left(\zeta, z_{k}\right) \in W_{k}^{m}$ if

$$
z_{j}^{\prime}=G_{j k}\left(z_{k}\right), \quad z_{j n}=F_{j k}\left(z_{k}\right) \cdot z_{k n}, \quad \rho^{l}=\rho^{m} \cdot f_{j k}
$$

This makes $\overline{\mathscr{M}}$ into a complex manifold. We have a natural projection $\bar{\pi}: \overline{\mathscr{M}}$ $\rightarrow \bar{\Delta}$ and a commuting diagram


It is easy to see that the differential of $\bar{\pi}$ has rank 1 , and thus each fibre is a nonsingular complex manifold. In fact $\bar{\pi}$ is proper, and thus $\bar{M}_{0}$ is diffeomorphic to $\bar{M}_{t}$ for $t \in \bar{\Delta}$. If $t \neq 0$, then $\bar{M}_{t}=M_{t}$, and if $t=0$, then $\bar{M}_{0}=\nu\left(M_{0}, \mathscr{H}_{0}\right)$. Hence $M_{t}$ is diffeomorphic to $\nu\left(M_{0}, \mathscr{H}_{0}\right)$.

Proof 2. Cover $M_{0}$ with a finite number of open sets $W_{j}$ which are domains of coordinate charts $z_{j}$ for $\mathscr{M}$. We assume $W_{j}=\left\{x\left|\sup _{m}\right| z_{j m}(x) \mid<1\right\}$ where $z_{j}=\left(z_{j 1}, \cdots, z_{j n}\right)$. On $W_{j}$ we assume $\omega(x)=z_{j n}^{e}(x)=z_{j n}^{e}$ (we omit $x$ ). Let $z_{j}^{\prime}=\left(z_{j_{1}}, \cdots, z_{j_{n-1}}\right)$. Then on $W_{j} \cap W_{k}$ we have

$$
z_{j n}=F_{j k}\left(z_{k}\right) \cdot z_{k n}, \quad z_{j}^{\prime}=G_{j k}\left(z_{k}^{\prime}, z_{k n}\right)
$$

Since $z_{j n}^{e}=z_{k n}^{e}$, we conclude $F_{j k}^{e}=1$. Thus $\left|F_{j k}\right|=1$, and $\left|z_{j n}\right|=\left|z_{k n}\right|$ on
$W_{j} \cap W_{k}$. Let $r=\left|z_{j n}\right|$ on $W_{j}$. Then we get a continuous function $r$ defined on $\cup W_{j}=W$.
Let $\Delta^{+}=\{t \mid 0 \leq t<1\} \subseteq \Delta, \mathscr{M}^{+}=\omega^{-1}\left(\Delta^{+}\right)$, and $z_{j n}=r \theta_{j}$ with $\left|\theta_{j}\right|=1$. Then $z_{j n}^{e} \geq 0$, on $\mathscr{M}^{+}$implies $\theta_{j}^{e}=1$. Thus we can write $W_{j}^{+}=W_{j} \cap \mathscr{M}^{+}$in the form

$$
W_{j}^{+}=\left\{\left(z_{j}^{\prime}, r \theta_{j}\right)\left|0 \leq r<1, \theta_{j}^{e}=1, \sup _{m<n}\right| z_{j m} \mid<1\right\} .
$$

(Here, as elsewhere, we identify $W_{j}$ with its image under the chart map $z_{j}$ ). Let $W^{+}=\bigcup_{j} W_{j}^{+}$. Then $M_{0}$ is the subspace defined by $r=0$. The points ( $z_{j}^{\prime}, r \theta_{j}$ ) and ( $z_{k}^{\prime}, r \theta_{k}$ ) are identified if and only if

$$
\begin{equation*}
\theta_{j}=F_{j k}\left(z_{k}^{\prime}, r \theta_{k}\right) \cdot \theta_{k}, \quad z_{j}^{\prime}=G_{j k}\left(z_{k}^{\prime}, r \theta_{k}\right) \tag{2}
\end{equation*}
$$

That is, $\left(z_{j}^{\prime}, r \theta_{j}\right)$ and $\left(z_{k}^{\prime}, r \theta_{k}\right)$ are identified if and only if they define the same point of $W_{j}^{+} \cap W_{k}^{+}$. We define $\nu\left(W_{j}^{+}\right)$by

$$
\left(W_{j}^{+}\right)=\left\{\left(z_{j}^{\prime}, r, \theta_{j}\right)\left|0 \leq r<1, \theta_{j} \in S^{1}, \theta_{j}^{e}=1,\left|z_{j}^{\prime}\right|<1\right\},\right.
$$

where $S^{1}$ is the unit circle in $S^{1}$, and $\left|z_{j}^{\prime}\right|=\sup _{m<n}\left|z_{j m}\right|$. Then we form a union $\bigcup_{j} \nu\left(W_{j}^{+}\right)=\nu\left(W^{+}\right)$by identifying $\left(z_{j}^{\prime}, r, \theta_{j}\right) \in \nu\left(W_{j}^{+}\right)$with $\left(z_{k}^{\prime}, r, \theta_{k}\right) \in \nu\left(W_{k}^{+}\right)$if and only if

$$
\theta_{j}=F_{j k}\left(z_{k}^{\prime}, r \theta_{k}\right) \theta_{k}, \quad z_{j}^{\prime}=G_{j k}\left(z_{k}^{\prime}, r \theta_{k}\right)
$$

where $\left(z_{k}^{\prime}, r \theta_{k}\right)$ defines a point of $W_{k}^{+} \cap W_{j}^{+}$. Thus ( $W_{j}^{+}$) is a (disjoint) union of $e$ copies of $\left\{\left(z_{j}^{\prime}, r\right)\left|0 \leq r<1,\left|z_{j}^{\prime}\right|<1\right\}\right.$, and $\nu\left(W^{+}\right)$is a topological manifold with boundary $B=U\left\{\left(z_{j}^{\prime}, \theta_{j}\right)\right\}$. Then $\mu:\left(z_{j}^{\prime}, r, \theta_{j}\right) \rightarrow\left(z_{j}^{\prime}, r \theta_{j}\right)$ defines a continuous map from $\nu\left(W^{+}\right)$onto $W^{+}$, which is a homeomorphism from $\nu\left(W^{+}\right)$ $-B$ onto $W^{+}-M_{0}$. Next we replace $W^{+}$with $\nu\left(W^{+}\right)$, forming a new manifold $\nu\left(\mathscr{M}^{+}\right)=\left(\mathscr{M}^{+}-W^{+}\right) \cup \nu\left(W^{+}\right)$. We extend $\mu$ to a continuous map $\mu: \nu\left(\mathscr{M}^{+}\right)$ $\rightarrow \mathscr{M}^{+}$by setting it equal to the identity on $\nu\left(\mathscr{M}^{+}\right)-\nu\left(W^{+}\right)$. Then $\mu$ is a homeomorphism from $\nu\left(\mathscr{M}^{+}\right)-\mu^{-1}\left(M_{0}\right)$ onto $\mathscr{M}^{+}-M_{0}$ where $\mu^{-1}\left(M_{0}\right)=B$. If we write $\mu^{-1}\left(M_{0}\right)=\nu\left(M_{0}\right)$, then it is easy to see that $\nu\left(M_{0}\right)=\nu\left(M_{0}, \mathscr{H}_{0}\right)$ is the topological nonsingular model.

The map $\omega \mu: \nu\left(\mathscr{M}^{+}\right) \rightarrow \Delta^{+}$is continuous, and $(\omega \mu)^{-1}(t)=M_{t}$ for $t>0$. For $t=0$,

$$
(\omega \mu)^{-1}(0)=\nu\left(M_{0}, \mathscr{H}_{0}\right)=\nu\left(M_{0}\right) .
$$

It is clear that $\nu\left(\mathscr{M}^{+}\right)-\nu\left(M_{0}\right)$ is a smooth manifold. We will show that $M_{t}$ is homeomorphic to $\nu\left(M_{0}, \mathscr{H}_{0}\right)$ by introducing a differentiable structure on $\nu\left(\mathscr{M}^{+}\right)$, which is an extension of the given differentiable structure on $\nu\left(\mathscr{M}^{+}\right)-\nu\left(M_{0}\right)$, and we will find a differentiable function on $\nu\left(\mathscr{M}^{+}\right)$with no critical points,
which has as level sets the manifolds $(\omega \mu)^{-1}(t)=M_{t}$ for $1>t \geq 0$. Hence $M_{t}$ will be homeomorphic to $M_{0}$.

If we set

$$
e(q)=\left\{\begin{array}{cc}
\exp (-1 / q) & \text { for } q>0 \\
0 & \text { for } q=0
\end{array}\right.
$$

then $e(q)$ is a smooth monotone increasing function of $q$. If $\boldsymbol{R}^{+}=\{r \mid r \geq 0\}$, the map $r \rightarrow \tau$ defined by $e(\tau)=r^{e}$ is a homeomorphism from $[0,1)$ to $\boldsymbol{R}^{+}$, and $r(\tau)=[e(\tau)]^{1 / e}$ is a smooth function of $\tau$. Then we introduce coordinates ( $z_{j}^{\prime}, r, \theta_{j}$ ) on $\nu\left(W_{j}^{+}\right)$, and we have replacing (2)

$$
\begin{equation*}
\theta_{j}=F_{j k}\left(z_{k}^{\prime}, r(\tau) \theta_{k}\right) \cdot \theta_{k}, \quad z_{j}^{\prime}=G_{j k}\left(z_{k}^{\prime}, r(\tau) \theta_{k}\right) . \tag{3}
\end{equation*}
$$

Hence $\left(z_{k}^{\prime}, \tau, \theta_{k}\right) \rightarrow\left(z_{j}^{\prime}, \tau, \theta_{j}\right)$ is a smooth map. So the coordinates $\left(\tau, \theta_{j}, y_{j}, z_{j}\right)$ form a system of differentiable coordinates ( $\theta_{j}$ is not really a coordinate; it is more like an index) in a neighborhood $\nu\left(W^{+}\right)$of $\nu\left(M_{0}\right)$. It is clear that this is a continuation of the smooth structure on $\nu\left(\mathscr{M}^{+}\right)-\nu\left(M_{0}\right)$. The function $\tau$ is a smooth function on $\nu\left(\mathscr{M}^{+}\right)$with no critical points, and has the manifolds $(\omega \mu)^{-1}(t)$ as level sets. Hence $(\omega \mu)^{-1}(0)$ is diffeomorphic to $(\omega \mu)^{-1}(t)$. Thus $M_{t}$ is diffeomorphic to $\nu\left(M_{0}, \mathscr{H}_{0}\right)$.

Remark. There is no need to introduce the function $\tau$ into this proof. We could have used the function $r$ instead. However for later proofs we must use $e(q)$, so in analogy with these later proofs we introduced $e(q)$ into this proof. In fact $\nu\left(\mathscr{M}^{+}\right)$is already a smooth manifold in this case.

## 3. The nonsingular model in Case II

According to our definition in $\S 0$ a Case II space $(M, \mathscr{H})$ is at worse locally isomorphic to a complex model of the form ( $A, \mathscr{A}_{e, f}$ ) where

$$
A=\left\{z: z_{1} z_{2}=0, z=\left(z_{1}, \cdots, z_{n}\right) \in D \subset C^{n}\right\}, \quad \mathscr{A}_{e, f}=\mathcal{O} /\left(z_{1}^{e} z_{2}^{f}\right),
$$

$D$ is an open neighborhood of $0 \in C^{n}, \mathcal{O}=\mathcal{O}(D)$, and $e, f$ are nonnegative integers. (We assume that somewhere ( $M, \mathscr{H}$ ) is locally isomorphic to a model ( $A, \mathscr{A}_{e, f}$ ) with $e>0, f>0$.) The integers $e, f$ of course depend on the locality. As a set $M=\cup \bar{M}_{j}$, a finite union of connected nonsingular compact complex manifolds such that no point of $M$ belongs to three or more $\bar{M}_{j}$; and to each $\bar{M}_{j}$ we associate integers $e_{j}$ (the multiplicity of $\bar{M}_{j}$ ). These integers are defined as follows:
(i) If $p \in M, p$ in exactly one $\bar{M}_{j}$, then near $p,(M, \mathscr{H})$ is isomorphic to ( $A, \mathscr{A}_{e_{j}, 0}$ ).
(ii) If $p \in \bar{M}_{j} \cap \bar{M}_{k}$, then near $p,(M, \mathscr{H})$ is isomorphic to $\left(A, \mathscr{A}_{e_{j}, e_{k}}\right)$. (So near $p, \bar{M}_{j}$ will be given by $z_{1}=0, \bar{M}_{k}$ by $z_{2}=0$.)

For the present let us consider the case $M=\bar{M}_{1} \cup \bar{M}_{2}$, and let $e=e_{1}$, $f=e_{2}$. The case $M=\bigcup_{j=1}^{s} \bar{M}_{j}, s>2$, is not essentially harder. Let

$$
A_{z}=\left\{z \in D \subset C^{n}: z_{1} z_{2}=0\right\}, \quad A_{s}=\left\{\zeta \in \Delta \subset C^{n}: \zeta_{1} \zeta_{2}=0\right\}
$$

where $z=\left(z_{1}, \cdots, z_{n}\right), \zeta=\left(\zeta_{1}, \cdots, \zeta_{n}\right)$, and $D, \Delta$ are open neighborhoods of 0 . Let

$$
{ }_{z} \mathscr{A}_{e, f}=\mathcal{O}(D) /\left(z_{1}^{e} z_{2}^{f}\right), \quad{ }_{\imath} \mathscr{A}_{e, f}=\mathcal{O}(\Delta) /\left(\zeta_{1}^{e} \xi_{2}^{f}\right) .
$$

Suppose $\Phi=\left(\varphi, \varphi^{*}\right)$ is an isomorphism

$$
\Phi:\left(A_{z, z} \mathscr{A}_{e, f}\right) \rightarrow\left(A_{\zeta, \zeta} \mathscr{A}_{e, f}\right) .
$$

We know (§ 0 ) that $\Phi$ is induced by a map $z \mapsto\left(F_{1}(z), \cdots, F_{n}(z)\right)$.
Lemma 1. $F_{1}(z)=f(z) z_{1}, F_{2}(z)=g(z) z_{2}$, where $f\left(0,0, z_{3}, \cdots, z_{n}\right) \neq 0$, $g\left(0,0, z_{3}, \cdots, z_{n}\right) \neq 0$.

We omit the easy proof.
In what follows we shall assume the dimension of $M$ is 2 . The case $\operatorname{dim} M$ $>2$ is not essentially different. We divide the discussion into parts as follows.

Part ( $i$ ). We assume that the greatest common divisor $(e, f)=1$, and that both $e>1$ and $f>1$. Let $M=\left\{U_{j}\right\} \cup\left\{V_{k}\right\} \cup\left\{W_{l}\right\}$, a union of open subsets of $M$ where $U_{j} \subset \bar{M}_{1}, V_{k} \subset \bar{M}_{2}$ and the sets $\left\{W_{l}\right\}$ cover $\bar{R}=\bar{M}_{1} \cap \bar{M}_{2}$. We assume each $\left(U_{j}, \mathscr{H}\right)$ is isomorphic to a model $\left(B, \mathscr{B}_{e}\right),\left(V_{k}, \mathscr{H}\right)$ to a model $\left(B, \mathscr{B}_{f}\right)$, and $\left(W_{l}, \mathscr{H}\right)$ to $\left(A, \mathscr{A}_{e, f}\right)$, where $B=\left\{z \in D \subset C^{3}: z_{1}=0\right\}$ and $D$ is an open disk around $0 \in C^{3}$. We define bundles $E_{1}$ and $F_{1}$ on $\bar{M}_{1}$ as follows. Let $W_{l}^{1}=\bar{M}_{1} \cap W_{l}$. Then $\left\{U_{j}\right\} \cup\left\{W_{l}^{1}\right\}$ is an open covering of $\bar{M}_{1}$. Let $z=$ $\left(z_{1 j}, z_{2 j}, z_{3 j}\right)$ on $U_{j}$ or $W_{j}^{1}$. We then have
(1) $z_{1 j}=e_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right) z_{1 k} \quad$ on $U_{j} \cap U_{k}\left(\right.$ or on $U_{j} \cap W_{k}^{1}$ or $\left.W_{j}^{1} \cap W_{k}^{1}\right)$.

As in $\S 1$, or by Lemma 1 , we see that $e_{j k}\left(0, z_{2 k}, z_{3 k}\right)$ is a nonvanishing holomorphic function, and we set

$$
\begin{equation*}
e_{j k}\left(0, z_{2 k}, z_{3 k}\right)=e_{j k}\left(z_{2 k}, z_{3 k}\right) \tag{2}
\end{equation*}
$$

The 1-cocycle $\left\{e_{j k}\right\}$ defines the line bundle $E_{1}$, and the divisor $\bar{R} \subset \bar{M}_{1}$ defines the line bundle $F_{1}$. Using the fact that $(M, \mathscr{H})$ can occur as a fibre in a oneparameter family one can easily verify that $F_{1}^{f} \cdot E_{1}^{e}$ is the trivial line bundle on $\bar{M}_{1}$. Notice that $F_{1}$ is defined by the 1-cocycle $f_{j k}\left(z_{2 k}, z_{3 k}\right)$ where $\bar{R}=\left\{z_{2 k}=0\right\}$ and

$$
\begin{equation*}
z_{2 j}=f_{j k}\left(z_{2 k}, z_{3 k}\right) z_{2 k} \tag{3}
\end{equation*}
$$

We proceed in a similar manner to define line bundles $E_{2}$ and $F_{2}$ on $M_{2}$,
and we find that $E_{2}^{e} F_{2}^{f}$ is the trivial line bundle. Notice that $E_{2}$ is the bundle of the divisor $\bar{R} \subset M_{2}$.

We now begin the discription of the nonsingular model $\nu(M, \mathscr{H})$. Since $E_{1}^{e} F_{1}^{f}$ is trivial, by choosing our covering appropriately we can find nonvanishing holomorphic functions $u_{j}$ such that

$$
\begin{equation*}
f_{j k}^{f} e_{j k}^{e}=u_{j} / u_{k} \tag{4}
\end{equation*}
$$

Now consider the line bundle $E_{1}^{-1}$ on $\bar{M}_{1}$. Let $\xi_{j}$ be a fibre coordinate for $E_{1}^{-1}$ over $W_{j}^{1}$ (or $U_{j}$ ). Then one can easily check that the equations

$$
\begin{equation*}
u_{j} \xi_{j}^{e}=z_{2 j}^{f} \quad \text { on } W_{j}^{1}, \quad u_{j} \xi_{j}^{e}=1 \quad \text { on } U_{j} \tag{5}
\end{equation*}
$$

define local varieties which fit together to give a global subvariety $V_{1}$ of $E_{1}^{-1}$. Let $\pi: E_{1}^{-1} \rightarrow \bar{M}_{1}$ be the projection map. Then we see that $\pi$ makes $V_{1}$ an $l$ sheeted covering of $\bar{M}_{1}$ branched over $\bar{R}$. Notice that if $f_{j k}^{f} e_{j k}^{e}=u_{j}^{\prime} / u_{k}^{\prime}$ for some other set of nonvanishing holomorphic functions, then $u_{j}^{\prime}=C u_{j}$ where $C$ is a nonzero constant (independent of $j$ of course). We want our constructions to be independent of the particular trivialization $\left\{u_{j}\right\}$. Notice that $C u_{j} \xi_{j}^{e}=z_{2 j}^{f}$ can be mapped onto $u_{j} \xi_{j}^{e}=z_{2 j}^{f}$ by sending $\left(\xi_{j}, z_{2 j}, z_{3 j}\right)$ to $\left(C^{1 / e} \xi_{j}, z_{2 j}, z_{3 j}\right)$, and this map defines an isomorphism. So $V_{1}$ is well defined independent of the particular choice of the $\left\{u_{j}\right\}$. We let $R_{1}=\pi^{-1}(\bar{R})$.

We define a differentiable manifold $J_{1}$ with boundary as follows. Let $S^{1}=$ $\left\{z \in C^{n}:|z|=1\right\}$. We think of $S^{1}$ as a multiplicative group. We suppose that $W_{j}^{1}=\left\{\left(z_{2 j}, z_{3 j}\right):\left|z_{j 2}\right|<1,\left|z_{j 3}\right|<1\right\}$ and we introduce spaces

$$
\hat{W}_{j}^{1}=\left\{\left(r_{j}, \theta_{j}, z_{3 j}\right): 0 \leq r_{j}<1, \theta_{j} \in S^{1},\left|z_{3 j}\right|<1\right\},
$$

choose $v_{j}$ so that

$$
\begin{equation*}
v_{j}^{e}=u_{j} . \tag{6}
\end{equation*}
$$

Then let

$$
\begin{aligned}
e_{j k}\left(z_{2 k}, z_{3 k}\right) & =\left|e_{j k}\left(z_{2 k}, z_{3 k}\right)\right| \tau_{j k}\left(z_{2 k}, z_{3 k}\right), \\
f_{j k}\left(z_{2 k}, z_{3 k}\right) & =\left|f_{j k}\left(z_{2 k}, z_{3 k}\right)\right| \sigma_{j k}\left(z_{2 k}, z_{3 k}\right), \\
v_{k}\left(z_{2 k}, z_{3 k}\right) & =\left|v_{k}\left(z_{2 k}, z_{3 k}\right)\right| \beta_{k}\left(z_{2 k}, z_{3 k}\right),
\end{aligned}
$$

where $\tau_{j k}, \tau_{j k}, \beta_{k}$ take values in $S^{1}$. Notice that we have maps

$$
\begin{equation*}
\lambda:\left(r_{j}, \theta_{j}, z_{3 j}\right) \rightarrow\left(r_{j}^{f} \theta_{j}^{f} / v_{j}\left(r_{j}^{e} \theta_{j}^{e}, z_{3 j}\right), r_{j}^{e} \theta_{j}^{e}, z_{3 j}\right) \tag{7}
\end{equation*}
$$

on $\hat{W}_{j}^{1}$, where $\left(\xi_{j}, z_{2 j}, z_{3 j}\right)$ are coordinates on $E_{1}^{-1}$. This map $\lambda$ is an isomorphism of $\left\{\left(r_{j}, \theta_{j}, z_{3 j}\right) \in \hat{W}_{j}^{1}: r_{j}>0\right\}$ onto $\pi^{-1}\left(W_{j}^{1}-\bar{R}\right) \cap V_{1}$. We then form a union $\hat{W}^{1}=U \hat{W}_{j}^{1}$ by identifying $\left(r_{j}, \theta_{j}, z_{3 j}\right) \in \hat{W}_{j}^{1}$ with $\left(r_{k}, \theta_{k}, z_{3 k}\right) \in \hat{W}_{k}^{1}$ if and only if

$$
\begin{align*}
r_{j}^{e}=\left|f_{j k}\left(r_{k}^{e} \theta_{k}^{e}, z_{3 k}\right)\right| r_{k}^{e}, & \theta_{j}^{e}=\sigma_{j k}\left(r_{k}^{e} \theta_{k}^{e}, z_{3 k}\right) \theta_{k}^{e}, \\
\theta_{j}^{f}=\left[\frac{\tau_{j k}^{-1}\left(r_{k}^{e} \theta_{k}^{e}, z_{3 k}\right) \beta_{j}\left(r_{k}^{e} \theta_{k}^{e}, z_{3 k}\right)}{\beta_{k}\left(r_{k}^{e} \theta_{k}^{e}, z_{3 k}\right)}\right] \theta_{k}^{f}, & z_{3 j}=h_{j k}\left(r_{k}^{e} \theta_{k}^{e}, z_{3 k}\right), \tag{8}
\end{align*}
$$

where we may think of $\beta_{j}$ as a holomorphic function of $\left(z_{2 k}, z_{3 k}\right) \in W_{j}^{1} \cap W_{k}^{1}$. That the second two equations uniquely define $\theta_{j}$ if $\left(r_{k}, \theta_{k}, z_{3 k}\right)$ are given follows from the following lemma and the fact that

$$
\begin{equation*}
\sigma_{j k}^{f} \tau_{j k}^{e}=\beta_{j}^{e} / \beta_{k}^{e} \tag{9}
\end{equation*}
$$

Lemma 2. Let $a, b, c, d \in S^{1}=\{z:|z|=1\}$. Suppose $e, f$ are relatively prime integers, greater than 1. Consider the following equations for a

$$
\begin{equation*}
a^{e}=c b^{e}, \quad a^{f}=d b^{f} \tag{10}
\end{equation*}
$$

If $b, c, d$ are fixed with $c^{f}=d^{e}$, then $a$ is uniquely determined, i.e., there is a unique solution to these equations.

We omit the easy proof.
We thus get a manifold $\hat{W}^{1}$ with boundary and a map $\lambda: \hat{W}^{1} \rightarrow V_{1}$ such that $\lambda\left(\partial \hat{W}^{1}\right)=R_{1}$, and $\lambda$ maps $\hat{W}^{1}-\partial \hat{W}^{1}$ isomorphically onto $\pi^{-1}\left(\cup W_{j}^{1}-\bar{R}\right) \cap$ $V_{1}$. We can thus form

$$
\begin{aligned}
J_{1} & =\left(V_{1}-R_{1}\right) \cup \partial \hat{W}^{1} \quad \text { (disjoint union) } \\
& =\left(V_{1}-R_{1}\right) \cup \hat{W}^{1}
\end{aligned}
$$

with the identification made by $\lambda . J_{1}$ is a manifold with boundary $\partial J_{1}=\partial \hat{W}^{1}$. This boundary is an $S^{1}$ bundle over $R_{1}=\bar{R}$, which can be described as follows:

$$
\partial J_{1}=U\left\{\left(\theta_{j}, z_{3 j}\right):\left|z_{3 j}\right|<1, \theta_{j} \in S^{1}\right\}
$$

where $\left(\theta_{j}, z_{3 j}\right)$ is identified with $\left(\theta_{k}, z_{3 k}\right)$ if and only if

$$
\begin{align*}
& \theta_{j}^{e}=\sigma_{j k}\left(0, z_{3 k}\right)_{k}^{e}, \quad \theta_{j}^{f}=\left[\frac{\tau_{j k}^{-1}\left(0, z_{3 k}\right) \beta_{j}\left(0, z_{3 k}\right)}{\beta_{k}\left(0, z_{3 k}\right)}\right] \theta_{k}^{f},  \tag{11}\\
& z_{3 j}=h_{j k}\left(0, z_{3 k}\right)=h_{j k}\left(z_{3 k}\right)
\end{align*}
$$

We define $V_{2}, J_{2}$ similarly for $\bar{M}_{2} . V_{2}$ is an $f$-sheeted covering of $\bar{M}_{2}$ branched over $\bar{R}$, and $J_{2}=\left(V_{2}-R_{2}\right) \cup \partial J_{2} . \partial J_{2}$ is an $S^{1}$ bundle over $\bar{R}$ such that

$$
\partial J_{2}=U\left\{\left(\varphi_{j}, z_{3 j}\right):\left|z_{3 j}\right|<1, \varphi_{j} \in S^{1}\right\}
$$

where $\left(\varphi_{j}, z_{3 j}\right)$ is identified with $\left(\varphi_{k}, z_{3 k}\right)$ if and only if

$$
\begin{align*}
& \varphi_{j}^{e}=\left[\frac{\sigma_{j k}^{-1}\left(0, z_{3 k}\right) \alpha_{j}\left(0, z_{3 k}\right)}{\alpha_{k}\left(0, z_{3 k}\right)}\right] \varphi_{k}^{e},  \tag{12}\\
& \varphi_{j}^{f}=\tau_{j k}\left(0, z_{3 k}\right) \varphi_{k}^{f}, \quad z_{3 j}=h_{j k}\left(z_{3 k}\right),
\end{align*}
$$

where $\alpha_{k}^{f}\left(0, z_{3 k}\right)=\beta_{k}^{e}\left(0, z_{3 k}\right)$. Now $\partial J_{1}$ and $\partial J_{2}$ are diffeomorphic. In fact, by using

$$
\begin{equation*}
\sigma_{j k}^{f} \tau_{j k}^{e}=\beta_{j}^{e} / \beta_{k}^{e}=\alpha_{j}^{f} / \alpha_{k}^{f}, \tag{13}
\end{equation*}
$$

Lemma 2, and equations (11) and (12) one can easily check that the equations

$$
\begin{equation*}
\varphi_{j}^{f}=\beta_{j}\left(0, z_{3 j}\right) \theta_{j}^{-f}, \quad \varphi_{j}^{e}=\alpha_{j}\left(0, z_{3 j}\right) \theta_{j}^{-e}, \quad z_{3 j}=z_{3 j} \tag{14}
\end{equation*}
$$

give a well defined diffeomorphism of $\partial J_{1}$ with $\partial J_{2}$, and thus we form $J_{1} \cup J_{2}$ where we identify $\partial J_{1}$ and $\partial J_{2}$ to get a topological 4-manifold (without boundary). Then $J_{1} \cup J_{2}=\nu(M, \mathscr{H})$ is the nonsingular model for ( $M, \mathscr{H}$ ). Since the trivializations of $F_{1}^{f} \cdot E_{1}^{e}, F_{2}^{f} \cdot E_{2}^{e}$ are uniquely determined up to a constant factor so are the functions $\beta_{j}, \alpha_{j}$. Thus as a topological manifold $\nu(M, \mathscr{H})$ is uniquely determined.

Part (ii). We assume that $e>1, f>1$, and that $e=a l, f=b l$ with the greatest common divisor $(a, b)=1$. We define the variety $V_{1}$ in the same way. However instead of $\hat{W}_{j}^{1}$ we have $\bigcup_{p=0}^{l-1} \hat{W}_{j p}^{1}$ (disjoint union), where each $\hat{W}_{j p}^{1}$ $=\left\{\left(r_{j}, \theta_{j}, z_{3 j}\right): 0 \leq r_{j}<1, \theta_{j} \in S^{1},\left|z_{3 j}\right|<1\right\}$. The variety $V_{1}$ is locally given by equations $\left(v_{j} \xi_{j}\right)^{a l}=z_{2 j}{ }^{b l}$, where $v_{j}{ }^{a l}=u_{j}, f_{j k}{ }^{b l} e_{j k}^{a l}=u_{j} / u_{k}$, as before. In this case the map $\lambda: \hat{W}_{j p}^{1} \rightarrow V_{1}$ is given by

$$
\begin{equation*}
\lambda\left(r_{j}, \theta_{j}, z_{3 j}\right)=\left(\eta^{p} r_{j}^{b} \theta_{j}^{b} / v_{j}\left(r_{j}^{a} \theta_{j}^{a}, z_{3 j}\right), r_{j}^{a} \theta_{j}^{a}, z_{3 j}\right) \tag{15}
\end{equation*}
$$

for $\left(r_{j}, \theta_{j}, z_{3 j}\right) \in \hat{W}_{j p}^{1}$, where $\eta=\exp (2 \pi i / a l)$. With the notation as before we identify $\left(r_{j}, \theta_{j}, z_{3 j}\right) \in \hat{W}_{j p}{ }^{1}$ with $\left(r_{k}, \theta_{k}, z_{3 k}\right) \in \hat{W}_{k p}{ }^{1}$, (where $k \neq j$ ) if and only if

$$
\begin{array}{rlrl}
r_{j}^{a} & =\left|f_{j k}\left(r_{k}^{a} \theta_{k}^{a}, z_{3 k}\right)\right| r_{k}^{a}, & & \theta_{j}^{a}=\sigma_{j k}\left(r_{k}^{a} \theta_{k}^{a}, z_{3 k}\right) \theta_{k}^{a}, \\
\eta^{p} \theta_{j}^{b} & =\frac{\beta_{j}\left(r_{k}^{a} \theta_{k}^{a}, z_{3 k}\right)}{\beta_{k}\left(r_{k}^{a} \theta_{k}^{a}, z_{3 k}\right)} \tau_{j k}^{-1}\left(r_{k}^{a} \theta_{k}^{a}, z_{3 k}\right) \eta^{q} \theta_{k}^{b}, & z_{3 j}=h_{j k}\left(r_{k}^{a} \theta_{k}^{a}, z_{3 k}\right) .
\end{array}
$$

To see that these equations uniquely determine an identification we need the following lemma.

Lemma 3. Let $x, y, \mu, \nu \in S^{1}$, and let $\eta=\exp (2 \pi i / a l)$, where $(a, b)=1$, and $a, b, l$ are integers greater than 1 . Consider the following equations:

$$
\begin{equation*}
\eta^{p} x^{b}=\mu \eta^{q} y^{b}, \quad x^{a}=\nu y^{a} . \tag{17}
\end{equation*}
$$

If $y, \mu, \nu$, and $q$ are fixed with $y \in S^{1}, \mu^{a l}=\nu^{b l}$, and $0 \leq q<l$, then there are $a$ unique $x \in S^{1}$ and $p$ with $0 \leq p<l$ satisfying (17).

We omit the easy proof.
Again we get a manifold $\hat{W}^{1}=U \hat{W}_{j p}^{1}$ with boundary $\partial \hat{W}^{1}$. In this case $\partial \hat{W}^{1}$ is a fibre space over $\bar{R}$ with fibre a union of $l$ circles. We now construct

$$
\begin{aligned}
J_{1} & =\left(V_{1}-R_{1}\right) \cup \partial \hat{W}^{1} \quad \text { (disjoint union) } \\
& =\left(V_{1}-R_{1}\right) \cup \hat{W}^{1},
\end{aligned}
$$

where the identification is made by $\lambda$ as before. We construct $J_{2}$ similarly, and form $J_{1} \cup J_{2}=\nu(M, \mathscr{H})$.

Part (iii). We assume at least one of the integers is 1 .'Suppose $e=1, f>1$. Then $V_{1}=\bar{M}_{1}$, and $V_{2}$ is described as before. The description of $J_{1}$ is easy, and $J_{2}$ is as before. Again one checks that $J_{1} \cup J_{2}$ gives a manifold which we call $\nu(M, \mathscr{H})$. Notice we cannot define $E_{1}$ in this case, but it is not needed since we take $V_{1}=\bar{M}_{1}$. If $e=f=1$, we take $V_{1}=\bar{M}_{1}, V_{2}=\bar{M}_{2}$. The reader should be able to supply the rest of the details. This ends the description of $\nu(M, \mathscr{H})$.

## 4. Examples

First we make a remark which is a consequence of the discussion in § 3 . We use the notation of $\S 4$, so $M=\bar{M}_{1} \cup \bar{M}_{2}$ and $\mathscr{H}$ is also the same. The following proposition is then a consequence of the discussion there.

Proposition. Suppose that ( $M, \mathscr{H}$ ) occurs as a fibre in a one-parameter family, and further that $(M, \mathscr{H})$ is a Case II space. Let $\bar{R}=\bar{M}_{1} \cap \bar{M}_{2}$, and let $\eta_{i}$ be the (holomorphic) normal bundle of $\bar{R}$ in $\bar{M}_{i}$. Let the integers e and $f$ be defined as in § 3. Then $\eta_{1}^{f} \eta_{2}^{e}=1$ (holomorphically trivial).

Remark. This gives a necessary condition for a space ( $M, \mathscr{H}$ ) to occur as a fibre in a one-parameter family.

Example 1. Let $M=\left\{\left(\zeta_{0}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right) \in \boldsymbol{P}^{3} \mid \zeta_{0}=0\right.$ or $\left.\zeta_{1}=0\right\}$. Then $M=$ $W_{1} \cup W_{2}$, and each $W_{i}$ is isomorphic to $\boldsymbol{P}^{2}$. The intersection $W_{1} \cap W_{2}$ is isomorphic to $\boldsymbol{P}^{1}$. Let $\mathcal{O}$ be the sheaf of germs of holomorphic functions on $\boldsymbol{P}^{3}$, and $\mathscr{I}$ be the ideal sheaf of germs of holomorphic functions on $P^{3}$ which vanish on $M$. Let $\mathscr{H}=\left.(\mathcal{O} \mid \mathscr{I})\right|_{M}$. Then we claim ( $M, \mathscr{H}$ ) cannot occur as a fibre in a one-parameter family. For, let $N_{i}$ be the bundle of the divisor $W_{1} \cap W_{2}$ in $W_{i}$ restricted to $W_{1} \cap W_{2}$. Then $N_{1} \cdot N_{2}=[2 p]$ where $p$ is a point of $W_{1} \cap W_{2}$ $=\boldsymbol{P}^{1}$. Since $[2 p]$ is not trivial, the proposition implies that ( $M, \mathscr{H}$ ) cannot occur as a fibre in a one-parameter family. If we allow $\mathscr{H}$ to have nilpotents, say let $W_{i}$ have multiplicity $e_{i}$, then we get $N_{1}^{e_{1}} \cdot N_{2}^{e_{2}}=\left[\left(e_{1}+e_{2}\right) p\right]$. Thus we see that the underlying space $M$ has no structure sheaf $\mathscr{J}$ such that $(M, \mathscr{J})$ occurs as a fibre in some one-parameter family.

Example 2. We recall some definitions from Kodaira's paper [5]. By an elliptic surface we mean a triple ( $V, \Phi, R$ ) where $V$ is a connected complex compact manifold of complex dimension $2, R$ is a nonsingular algebraic curve (compact Riemann surface), $\Phi$ is a proper surjective holomorphic map, and the general fibre $\Phi^{-1}(u)$ is a nonsingular elliptic curve. Thus an elliptic surface is a one-parameter family of complex spaces of dimension 1 . Assuming that all of the fibres are free from nonsingular rational curves $C$ with self intersection $\left(C^{2}\right)=-1$, Kodaira has given a list of every possible singular fibre which can occur in an elliptic surface (see Kodaira [5, Theorem 6.2]). We shall verify that for each of these singular spaces $(M, \mathscr{H})$ that $\nu(M, \mathscr{H})$ is a torus thus checking the theorem of $\S 5$ in these cases.
(i) The first type of singular fibre listed by Kodaira is a nonsingular elliptic curve $\Theta$ with multiplicity $m>1$. An $m$-sheeted unramified covering of $\Theta$ is again a torus so $\nu(\Theta, \mathscr{H})$ is a torus.
(ii) Next we consider a rational curve $\Theta$ with an ordinary double point with multiplicity $m>0 . \Theta$ is not yet a space with normal crossings. However, if we blow up the double point, we get a curve $m \Theta_{1}+2 m \Theta_{2}$, where $\Theta_{i}$ are nonsingular rational curves, the integers preceeding the curves represent their multiplicities, and $\Theta_{1}, \Theta_{2}$ intersect normally in two points. $\Theta_{1}$ is the proper transform of $\Theta$. The g.c.d. $(m, 2 m)=m$, so the boundaries of the varieties $J_{1}$ and $J_{2}$ (described in §3) are bundles over two points, each with fibre a union of $m$ circles. The varieties $L_{1}$ and $L_{2}$ from which $J_{1}$ and $J_{2}$ are constructed can be described as follows. $L_{1}$ is just a union of $m$ copies of $\Theta_{1}$ in which all $m$ copies are pinched together at two distinct points. $L_{2}$ is formed from a union of $m$ copies of a 2 -sheeted covering of $\Theta_{2}$ branched over two points with branching order 1 at each point. These branched coverings are all pinched together at two points. All of the points above one of the branch points are pinched to a single point, and all of the points above the other branch point are pinched to a single point. Thus $J_{1}=\bigcup_{i=1}^{m} J_{1 i}$, where each $J_{1 i}$ is a 2 -sphere with two open disks removed. By using the Riemann-Hurwitz formula we see that $J_{2}=\bigcup_{i=1}^{m} J_{2 i}$, where each $J_{2 i}$ is a 2 -sphere with two open disks removed. $J_{1}$ and $J_{2}$ are pasted together according to the following scheme. We glue $J_{1 i}$ to $J_{2 i}$ along one of the boundary circles, and $J_{1 i}$ is glued to $J_{2 i+1}$ along the other boundary circle where $i+1$ is reduced modulo $m$. The resulting manifold is a closed chain of spheres glued together, and is clearly a torus.
(iii) Another possibility is $M=m \Theta_{0}+m \Theta_{1}$ with $m>1$, where the $\Theta_{i}$ are nonsingular rational curves, $m$ is the multiplicity of each curve, and $\Theta_{0}$ intersects $\Theta_{1}$ normally in two distinct points. Thus $(M, \mathscr{H})$ is a space with normal crossings. To see that $\nu(M, \mathscr{H})$ is a torus is quite similar to (but easier than) the last part of the discussion in (ii).
(iv) $M=\Theta$ where $\Theta$ is a rational curve with one cusp. The multiplicity of $M$ is one, so $\mathscr{H}$ is the reduced structure sheaf, i.e., $\mathscr{H}$ is the structure sheaf induced on $\Theta_{0}$ considered as a subset of $\boldsymbol{P}^{2}$. A neighborhood of the cusp of the curve $\Theta$ is isomorphic to a neighborhood of the origin of the analytic set $\left\{(x, y) \in C^{2} \mid x^{2}=y^{3}\right\}$. Thus ( $M, \mathscr{H}$ ) is not a space with normal crossings. We perform a sequence of quadratic transformations to resolve the singularity of $\Theta$. We represent this resolution by the following sequence of symbols:


These symbols have the following meaning. The first symbol represents a rational curve with a cusp; it has multiplicity 1 . We blow up the cuspidal
point to get two nonsingular rational curves which are tangent at one point. The cuspidal point is replaced by a rational curve with multiplicity 2 . The curve with the cusp has as proper transform a nonsingular rational curve with multiplicity 1 . Next we blow up the point of tangency to get three nonsingular rational curves intersecting non-tangentially at the same point. The curve with multiplicity three is the result of blowing up the point of tangency. Finally we blow up the point of intersection to get a nonsingular rational curve of multiplicity 6 intersecting the three other rational curves normally (at three different points). This space is a space with normal crossings $(C, \mathscr{C})$ where $C=C_{1} \cup$ $C_{2} \cup C_{3} \cup C_{6}$. The curves $C_{k}$ have multiplicity $k$. We must construct the branched coverings $L_{k}$ of $C_{k}$ described in $\S 3 . L_{6}$ is a 6 -sheeted covering of $C_{6}=\boldsymbol{P}^{1}$ branched over 3 points. Over the first point there is one branch point of order 6 , over the next point there are two branch points of order 3 , and over the last point there are three branch points of order 2. First we separate the branch points of order 3 (they are pinched together in $L_{6}$ ), and then we separate those of order 2 . This gives a nonsingular ramified covering $L_{6}^{\prime}$ of $C_{6}$. Recall the Riemann-Hurwitz formula

$$
g=\frac{1}{2} \sum_{\rho}\left(e_{\rho}-1\right)-n+1
$$

for a branched covering $R$ of the sphere $P^{1}$ where $g$ is the genus of $R$, where the sum is over all branch points $\rho$ in $R, e$ is the branching order at $\rho$, and $n$ is the number of sheets in the covering. With $R=L_{6}^{\prime}$ we get $g\left(L_{6}^{\prime}\right)=1$, and thus $L_{6}^{\prime}$ is a torus. Hence $J_{6}$ is a torus with six disks cut out of it. $J_{1}$ is clearly a sphere with a disk cut out. $J_{2}$ is a union of two disjoint spheres, each with a disk cut out. Finally $J_{3}$ is a union of three disjoint spheres each with a disk cut out ( $L_{3}$ is a union of three spheres $\boldsymbol{P}^{1}$, pinched together at one point). Thus $J_{6}+J_{1}+J_{2}+J_{3}=\nu(\Theta, \mathscr{H})$ is a torus.
(v) $M=\Theta_{1}+\Theta_{2}$ where $\Theta_{1}$ and $\Theta_{2}$ are nonsingular rational curves intersecting tangentially at a point $p$. One checks that resolving the singularities gives the following graph of nonsingular rational curves:


It is an easy exercise to verify that the nonsingular model is a torus.
(vi) $M=\Theta_{1}+\Theta_{2}+\Theta_{3}$ where $\Theta_{1}$ are nonsingular rational curves intersecting transversally at a common point $p$. The structure sheaf is the reduced structure sheaf. The resolution of singularities gives:


One easily verifies that the nonsingular model is a torus.
(vii) $\quad M=m \Theta_{1}+m \Theta_{2}+\cdots+m \Theta_{b}$ where $\Theta_{i}$ is a nonsingular rational curve, $m$ is its multiplicity, and the $\Theta_{i}$ are connected in a cyclic graph as follows:


With the usual notation $J_{k}=J_{k_{1}} \cup \cdots \cup J_{k m}$ where each $J_{k l}$ is a 2 -sphere with two open disks cut out. Gluing these $J_{k l}$ together cyclically one gets the nonsingular model which is clearly a torus.
(viii) The next possibility is $M=\Theta_{1}+\cdots+\Theta_{4}+2 \Theta_{5}+2 \Theta_{6}+\cdots+$ $2 \Theta_{b}, b \geq 5$. The nonsingular rational curves $\Theta_{j}$ are connected together in the following graph :


In this picture $b=9$. All of the intersections are normal, and the multiplicities of the curves are given by the adjacent integers. The curves are labeled as follows. The four outside curves are $\Theta_{i}, 1 \leq i \leq 4$. $\Theta_{5}$ intersects $\Theta_{1}, \Theta_{2}, \Theta_{6}$. $\Theta_{6}$ intersects $\Theta_{5}$ and $\Theta_{7}$. This pattern continues until we get to $\Theta_{b}$ which intersects $\Theta_{b-1}, \Theta_{3}$, and $\Theta_{4}$. The space $J_{k}, 1 \leq k \leq 4$, is a 2 -sphere with one open disk removed. The space $J_{k}, 5<k<b$, is a union of two 2 -spheres, each 2-sphere with two open disks removed. Using the Riemann-Hurwitz formula one finds that $J_{5}$ and $J_{b}$ are 2 -spheres each with three disks cut out. One easily sees that the nonsingular model $\bigcup_{k=1}^{b} J_{k}$ is a torus.
(ix) $\quad M=\Theta_{1}+2 \Theta_{2}+3 \Theta_{3}+4 \Theta_{4}+5 \Theta_{5}+6 \Theta_{6}+4 \Theta_{7}+3 \Theta_{8}+2 \Theta_{9}$. These nine nonsingular rational curves are connected together in the following graph:


From the graph one easily sees which curves $\Theta_{j}$ intersect. Using the RiemannHurwitz formula one easily finds that $J_{k}$ is a 2 -sphere with two disks cut out for $2 \leq k \leq 5 . J_{1}$ is a 2 -sphere with one disk cut out. $J_{8}$ is a union of three 2 -spheres, each with a disk cut out. $J_{9}$ is a union of two 2 -spheres, each with a disk cut out. $J_{7}$ is a union of two 2 -spheres, each with two disks cut out. $J_{6}$ is a torus with six disks cut out. The union is clearly a torus.
(x) $\quad M=\Theta_{1}+2 \Theta_{2}+3 \Theta_{3}+4 \Theta_{4}+3 \Theta_{5}+2 \Theta_{6}+2 \Theta_{7}+\Theta_{8}$. Each $\Theta_{j}$ is a nonsingular rational curve. They are joined in the following graph :


The notation is such that $\Theta_{6}$ intersects $\Theta_{4}$. Again apply the Riemann-Hurwitz formula to find that the nonsingular model is a torus.
(xi) The final example has the following graph (each curve is nonsingular rational):


Follow the standard procedure, and find that the nonsingular model is a torus.
(xii) These examples yield the following information. If $C$ is one of the singular fibres of an elliptic surface, and $M$ is an arbitrary compact complex manifold, then $\nu(C \times M, \mathscr{H})=T^{2} \times M$, where $\mathscr{H}$ is chosen appropriately, and $T^{2}$ is a 2 -torus. For example, let $C$ be the curve discussed in Example 2 (xi). Then $\mathscr{H}$ is the structure sheaf which can be defined on $C \times M$ in an obvious way locally, and these local pieces can thus be fitted together to give $\mathscr{H}$.

Example 3. Let $\mathscr{N}=\boldsymbol{P}^{1} \times \Delta, \Delta=\{z: z \in C,|z|<\varepsilon\}$. Blow up a point on $\boldsymbol{P}^{1} \times\{0\}$ to get a curve $C=\Gamma_{1} \cup \Gamma_{2}$, where each $\Gamma_{i} \cong \boldsymbol{P}^{1}$, and $\Gamma_{1}$ intersects $\Gamma_{2}$ normally at one point. We get a family $\mathscr{M} \xrightarrow{\Pi} \Delta$ with $\Pi^{-1}(0)=C$ and $\Pi^{-1}(t)=\boldsymbol{P}, t \neq 0$. The naturally induced structure sheaf $\mathscr{H}$ on $\boldsymbol{P}^{1} \times \boldsymbol{P}^{1}$ is the reduced structure sheaf, and one easily computes that $\nu(C, \mathscr{H})=S^{2}$.

Thus the theorem is verified in this case. Notice that the only complex structure on $S^{2}$ is that of $\boldsymbol{P}^{1}$. We could go further with this idea. One could produce for example a one-parameter family $\mathscr{L} \xrightarrow{\Pi} \Delta$, with $\Pi^{-1}(t)=\boldsymbol{P}^{1}$ if $t \neq 0$ and $\Pi^{-1}(0)$ being a collection of nonsingular rational curves represented by the following graph, where each intersection is normal, and the integers represent the multiplicity of $\Pi$ on each curve:


One easily sees that $\nu\left(\Pi^{-1}(0), \mathscr{H}\right)=S^{2}$ where $\mathscr{H}$ is the structure sheaf. It is obvious that one could easily produce examples with $\nu(C, \mathscr{H})=S^{2}$ whose graphs are much more complicated. (The author would like to thank the referee for the idea of this example.)

Example 4. Let $\boldsymbol{P}^{1}=W_{1} \cup W_{2}$, where $W_{i}=\boldsymbol{C}$, and the coordinates $z_{i}$ on $W_{i}$ are related by the equation $z_{1} z_{2}=1$. Let $\boldsymbol{R}^{(m)}=\boldsymbol{P}^{1} \times W_{1} \cup \boldsymbol{P}^{1} \times W_{2}$ where ( $w_{1}, z_{1}$ ) is identified with $\left(w_{2}, z_{2}\right)$ if and only if $z_{1} z_{2}=1$ and $w_{2}=z_{1}^{m} w_{1}$. This is a $\boldsymbol{P}^{1}$ bundle over $\boldsymbol{P}^{1}$ (a ruled surface). Then $S^{(m)}$ is a surface with an ordinary double curve (a Case II surface with $e=m=1$ ) obtained from $R^{(m)}$ by identifying the two sections $D_{0}$ and $D_{\infty}$, which are defined respectively by $w_{1}=w_{2}=0$ and $w_{1}=w_{2}=\infty$. If we let $\mathscr{H}^{(m)}$ be the reduced structure sheaf on $S^{(m)}$, then Kodaira has shown [6] that $\nu\left(S^{(m)}, \mathscr{H}^{(m)}\right)=S^{1} \times S^{3}$ for $m \geq 1$. If $m=0$, then $S^{(m)}$ is $\mathscr{R} \times \boldsymbol{P}^{1}$ where $\mathscr{R}$ is a rational curve with a double point. Then by Example 2 (ii) and 2 (xii), the nonsingular model is $T^{2} \times S^{2}$.

## 5. The deformation theorem for Case II spaces

Theorem. Let $(\mathscr{M}, \bar{\omega}, \Delta)=\left\{M_{t}: t \in \Delta\right\}$ be a one-parameter family. Suppose $M_{t}$ is nonsingular for $t \neq 0$, and $\left(M_{0}, \mathscr{H}_{0}\right)$ is a Case II space. Then $M_{t}$ is homeomorphic to $\nu\left(M_{0}, \mathscr{H}_{0}\right)$ for $t \neq 0$.
(The proof of this theorem should be divided into parts as in the discussion in §3. However, we shall only supply the proof corresponding to part (i) of the discussion in §3. The proofs for the other parts are similar. For simplicity we assume $\operatorname{dim} \mathscr{M}=3$.)

Proof. Remember we are assuming that $\Delta=\{z \in C:|z|<1\}$. We shall suppose that $M_{0}=X \cup Y$ (as in §3) and that we have a covering $\left\{\mathscr{W}_{j}\right\} \cup$ $\left\{\mathbb{U}_{j}\right\} \cup\left\{\mathscr{V}_{j}\right\}$ of $M_{0}$ by open sets in $\mathscr{M}$ with coordinates $\left(z_{1 j}, z_{2 j}, z_{3 j}\right)$ such that

$$
\begin{array}{ll}
\bar{\omega}\left(z_{1 j}, z_{2 j}, z_{3 j}\right)=z_{1 j}^{e} z_{2 j}^{f} & \text { on } \mathscr{W}_{j}, \\
\bar{\omega}\left(z_{1 j}, z_{2 j}, z_{3 j}\right)=z_{1 j}^{e} & \text { on } \mathscr{U}_{j}, \\
\bar{\omega}\left(z_{1 j}, z_{2 j}, z_{3 j}\right)=z_{2 j}^{f} & \text { on } \mathscr{V}_{j} .
\end{array}
$$

We suppose that $X$ is given by $\left\{z_{1 j}=0\right\}$, and $Y$ is defined by $\left\{z_{2 j}=0\right\}$. On $\mathscr{W}_{j} \cap \mathscr{W}_{k}$ we have

$$
\begin{align*}
& z_{1 j}=e_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right) \cdot z_{1 k} \\
& z_{2 j}=f_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right) \cdot z_{2 k}  \tag{1}\\
& z_{3 j}=h_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)
\end{align*}
$$

On $\mathscr{W}_{k} \cap \mathscr{U}_{j}$ we have

$$
\begin{align*}
& z_{1 j}=e_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right) \cdot z_{1 k} \\
& z_{2 j}=f_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)  \tag{2}\\
& z_{3 j}=h_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)
\end{align*}
$$

Similarly we have on $\mathscr{W}_{k} \cap \mathscr{V}_{j}$

$$
\begin{align*}
& z_{1 j}=e_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right), \\
& z_{2 j}=f_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right) \cdot z_{2 k},  \tag{3}\\
& z_{3 j}=h_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)
\end{align*}
$$

We shall assume that $\mathscr{U}_{j} \cap \mathscr{V}_{k}=\phi$ for all $j, k$.
Let $\mathscr{W}=U \mathscr{W}_{j}$. We define continuous functions $r$ and $s$ on $\mathscr{W}$ as follows. We let $\left\{a_{j}\right\}$ be a system of positive differentiable functions on $\mathscr{W}_{j}$ such that

$$
\begin{equation*}
\left|e_{j k}\right|=a_{k} / a_{j} \quad \text { on } \mathscr{W}_{j} \cap \mathscr{W}_{k} . \tag{4}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|f_{j k}\right|=b_{k} / b_{j}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=a_{k}-e / f \tag{6}
\end{equation*}
$$

We let

$$
x_{j}=a_{j} z_{1 j}, \quad y_{j}=b_{j} z_{2 j}, \quad z_{j}=z_{3 j}
$$

and introduce differentiable coordinates $\left(x_{j}, y_{j}, z_{j}\right)$ on $\mathscr{W}_{j}$. We may assume

$$
\mathscr{W}_{j}=\left\{\left(x_{j}, y_{j}, z_{j}\right):\left|x_{j}\right|<\varepsilon,\left|y_{j}\right|<\varepsilon,\left|z_{j}\right|<1\right\},
$$

where $\varepsilon>0$ is a small number. Since $\left|x_{j}\right|=\left|x_{k}\right|$ and $\left|y_{j}\right|=\left|y_{k}\right|$ on $\mathscr{W}_{j} \cap \mathscr{W}_{k}$, $r=\left|x_{j}\right|=\left|x_{k}\right|$ and $s=\left|y_{j}\right|=\left|y_{k}\right|$ define nonnegative continuous functions on $\mathscr{W}$. On $\mathscr{W}_{j}$ the function $\bar{\omega}$ is given by $\bar{\omega}\left(x_{j}, y_{j}, z_{j}\right)=x_{j}^{e} y_{j}^{f}$.

If $\Delta^{+}=\{t: 0 \leq t<1\}$, then we set $\mathscr{M}^{+}=\bar{\omega}^{-1}\left(\Delta^{+}\right)$. From now on we will restrict our attention to this subspace. Let $\mathscr{W}_{j}^{+}=\mathscr{M}^{+} \cap \mathscr{W}_{j}$ so that

$$
\mathscr{W}_{j}^{+}=\left\{\left(x_{j}, y_{j}, z_{j}\right): x_{j}^{e} y_{j}^{f} \geq 0,\left|x_{j}\right|<\varepsilon,\left|y_{j}\right|<\varepsilon,\left|z_{j}\right|<1\right\} .
$$

We set

$$
\nu\left(\mathscr{W}_{j}^{+}\right)=\left\{\left(r, s, \theta_{j}, z_{j}\right): 0 \leq r<\varepsilon, 0 \leq s<\varepsilon, \theta_{j} \in S^{1},\left|z_{j}\right|<1\right\} .
$$

Consider equations (1) and think of the functions $e_{j k},, f_{j k}$, and $h_{j k}$ as functions of $\left(x_{k}, y_{k}, z_{k}\right)$. Then

$$
\begin{align*}
e_{j k}\left(x_{k}, y_{k}, z_{k}\right) & =\left|e_{j k}\left(x_{k}, y_{k}, z_{k}\right)\right| \tau_{j k}\left(x_{k}, y_{k}, z_{k}\right),  \tag{7}\\
f_{j k}\left(x_{k}, y_{k}, z_{k}\right) & =\left|f_{j k}\left(x_{k}, y_{k}, z_{k}\right)\right| \sigma_{j k}\left(x_{k}, y_{k}, z_{k}\right) .
\end{align*}
$$

Then we construct a space

$$
\nu\left(\mathscr{W}^{+}\right)=\bigcup_{j} \nu\left(\mathscr{W}_{j}^{+}\right)
$$

by identifying $\left(r, s, \theta_{j}, z_{j}\right) \in \nu\left(\mathscr{W}_{j}{ }^{+}\right)$with $\left(r, s, \theta_{k}, z_{k}\right) \in \nu\left(\mathscr{W}_{k}{ }^{+}\right)$if and only if

$$
\begin{align*}
\theta_{j}^{f} & =\tau_{j k}^{-1}\left(r \theta_{k}^{-f}, s \theta_{k}^{e}, z_{k}\right) \theta_{k}^{f} \\
\theta_{j}^{e} & =\sigma_{j k}\left(r \theta_{k}^{-f}, s \theta_{k}^{e}, z_{k}\right) \theta_{k}^{e}  \tag{8}\\
z_{j} & =h_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)
\end{align*}
$$

As before these equations uniquely determine an identification, so $\nu\left(\mathscr{W}^{+}\right)$is well defined.

On $\mathscr{U}_{j} \cap \mathscr{U}_{k}$ we have

$$
\begin{align*}
& z_{1 j}=e_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right) z_{1 k} \\
& z_{2 j}=f_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)  \tag{9}\\
& z_{3 j}=h_{j k}\left(z_{1 k}, z_{2 k}, z_{3 k}\right)
\end{align*}
$$

We let

$$
\begin{aligned}
\nu\left(\mathscr{U}_{j}^{+}\right)=\left\{\left(R, \theta_{j}, z_{2 j}, z_{3 j}\right): 0 \leq R \leq \varepsilon, \theta_{j} \in S^{1},\right. \\
\left.\theta_{j}^{e}=1,\left|z_{2 j}\right|<1,\left|z_{3 j}\right|<1\right\} .
\end{aligned}
$$

Notice that $e_{j k}^{e}=1$ since $z_{1 j}^{e}=z_{1 k}^{e}$. We construct a space $\nu\left(\mathscr{U}^{+}\right)=\bigcup_{j} \nu\left(\mathscr{U}_{j}^{+}\right)$, where $\left(R, \theta_{j}, z_{2 j}, z_{3 j}\right) \in \nu\left(\mathscr{U}_{j}^{+}\right)$is identified with $\left(R, \theta_{k}, z_{2 k}, z_{3 k}\right) \in \nu\left(\mathscr{U}_{k}^{+}\right)$if and only if

$$
\begin{align*}
\theta_{j} & =e_{j k}^{-1}\left(R \theta_{k}^{-1}, z_{2 k}, z_{3 k}\right) \theta_{k}, \\
z_{2 j} & =f_{j k}\left(R \theta_{k}^{-1}, z_{2 k}, z_{3 k}\right)  \tag{10}\\
z_{3 j} & =h_{j k}\left(R \theta_{k}^{-1}, z_{2 k}, z_{3 k}\right)
\end{align*}
$$

Notice that $R=\left|z_{1 j}\right|=\left|z_{1 k}\right|$ is a well defined function on $\cup \mathscr{U}_{j}=\mathscr{U}$. We have a similar construction for $\nu\left(\mathscr{V}^{+}\right)=\bigcup_{j,}^{-} \nu\left(\mathscr{V}_{j}^{+}\right)$.

Next we want to construct $\nu\left(\mathscr{M}^{+}\right)$. First we define $\nu\left(\mathscr{V}^{+}\right) \cup \nu\left(\mathscr{W}^{+}\right) \cup \nu\left(\mathscr{U}^{+}\right)$ where, for example we identify $\left(r, s, \theta_{k}, z_{k}\right) \in \nu\left(\nu \mathscr{W}_{k}^{+}\right)$with $\left(R, \theta_{j}, z_{2 j}, z_{3 j}\right) \in$ $\nu\left(\mathscr{U}_{j}^{+}\right)$if and only if

$$
\begin{align*}
R & =s^{f / e} r, & \theta_{j} & =\tau_{j k}^{-1}\left(r \theta_{k}^{-f}, s \theta_{k}^{e}, z_{k}\right) \theta_{k}^{f}, \\
z_{2 j} & =f_{j k}\left(r \theta_{k}^{-f}, s \theta_{k}^{e}, z_{k}\right), & z_{3 j} & =h_{j k}\left(r \theta_{k}^{-f}, s \theta_{k}^{e}, z_{k}\right), \tag{11}
\end{align*}
$$

where $e_{j k}$ comes from (2), and $\tau_{j k}$ is defined as in (7), and we consider $e_{j k}, \tau_{j k}$ as functions of $\left(x_{k}, y_{k}, z_{k}\right)$. Notice that the inverse of relation (11) is

$$
\begin{array}{rlrl}
\theta_{k}^{f} & =\tau_{k j}^{-1}\left(R \theta_{j}^{-1}, z_{2 j}, z_{3 j}\right) \theta_{j}, & \sigma_{k}^{e}=\sigma_{k j}\left(R \theta_{j}^{-1}, z_{2 j}, z_{3 j}\right), \\
r & =\left|e_{k j}\left(R \theta_{j}^{-1}, z_{2 j}, z_{3 j}\right)\right| R, & s=\left|f_{k j}\left(R \theta_{j}^{-1}, z_{2 j}, z_{3 j}\right)\right|,  \tag{12}\\
z_{k} & =h_{k j}\left(R \theta_{j}^{-1}, z_{2 j}, z_{3 j}\right), & &
\end{array}
$$

where

$$
\begin{gather*}
x_{k}=e_{k j}\left(z_{1 j}, z_{2 j}, z_{3 j}\right) z_{1 j}, \\
y_{k}=f_{k j}\left(z_{1 j}, z_{2 j}, z_{3 j}\right),  \tag{13}\\
z_{k}=h_{k j}\left(z_{1 j}, z_{2 j}, z_{3 j}\right) \\
e_{k j}=\left|e_{k j}\right| \tau_{k j}, \quad f_{k j}=\left|f_{k j}\right| \sigma_{k j} .
\end{gather*}
$$

Notice also that

$$
\begin{equation*}
\tau_{k j}^{e} \cdot \cdot \sigma_{k j}^{f}=1 \tag{14}
\end{equation*}
$$

Obviously ( $r, s, \theta_{k}, z_{k}$ ) uniquely determines ( $R, \theta_{j}, z_{2 j}, z_{3 j}$ ) by (11). One should notice here that

$$
\tau_{j k}^{-e}\left(r \theta_{k}^{-f}, s \theta_{k}^{e}, z_{k}\right) \theta_{k}^{e f}=1
$$

Conversely, by using a lemma similar to Lemma 2 in $\S 3$ we see that $R\left(\theta_{j}, z_{2 j}, z_{3 j}\right)$ uniquely determines ( $r, s, \theta_{k}, z_{k}$ ) by (12) and (14). Thus we get a space

$$
\nu\left(\mathscr{N}^{+}\right)=\nu\left(\mathscr{U}^{+}\right) \cup \nu\left(\mathscr{W}^{+}\right) \cup \nu\left(\mathscr{V}^{+}\right),
$$

where $\mathscr{N}=\mathscr{U} \cup \mathscr{W} \cup \mathscr{V}$ and $\mathscr{N}^{+}=\mathscr{M}^{+} \cap \mathscr{N}$, and also have a map $\mu: \nu\left(\mathscr{N}^{+}\right) \rightarrow \mathscr{N}^{+}$given for example by

$$
\begin{aligned}
\mu\left(R, \theta_{j}, z_{2 j}, z_{3 j}\right) & =\left(R \theta_{j}^{-1}, z_{2 j}, z_{3 j}\right), & & \text { on } \nu\left(\mathscr{U}_{j}^{+}\right) \\
\mu\left(r, s, \theta_{j}, z_{j}\right) & =\left(r \theta_{j}^{-f}, s \theta_{j}^{e}, z_{j}\right), & & \text { on } \nu\left(\mathscr{W}_{j}^{+}\right),
\end{aligned}
$$

where $\left(x_{j}, y_{j}, z_{j}\right)$ are the coordinates on $\mathscr{W}_{j}^{+}$defined before. Notice that $\nu\left(\mathscr{N}^{+}\right)$ $-\mu^{-1}\left(M_{0}\right)$ is a differentiable manifold, which is in fact diffieomorphic to $\mathscr{N}^{+}$
$-M_{0}$ via the map $\mu$ which is a diffieomorphism on $\nu\left(\mathscr{N}^{+}\right)-\mu^{-1}\left(M_{0}\right)=$ $\mu^{-1}\left(\mathscr{N}^{+}-M_{0}\right)$. Thus we can define

$$
\begin{aligned}
\nu\left(\mathscr{M}^{+}\right) & =\left(\mathscr{M}^{+}-M_{0}\right) \cup \nu\left(\mathscr{N}^{+}\right) \\
& =\left(\mathscr{M}^{+}-M_{0}\right) \cup \mu^{-1}\left(M_{0}\right), \quad \text { (disjoint union) },
\end{aligned}
$$

where we use $\mu$ to identify $\nu\left(\mathscr{N}^{+}-M_{0}\right)$ with $\mathscr{N}^{+}-M_{0} \subset \mathscr{M}^{+}-M_{0}$. We can obviously extend $\mu$ and think of $\mu$ as a map $\mu: \nu\left(\mathscr{M}^{+}\right) \rightarrow \mathscr{M}^{+}$, where $\mu$ maps $\nu\left(\mathscr{M}^{+}-M_{0}\right)=\nu\left(\mathscr{M}^{+}\right)-\mu^{-1}\left(M_{0}\right)$ diffeomorphically onto $\mathscr{M}^{+}-M_{0}$. It is easy to see that $\nu\left(\mathscr{M}^{+}\right)$is a topological manifold with boundary $\partial \nu\left(\mathscr{M}^{+}\right)=$ $\mu^{-1}\left(M_{0}\right)=\nu\left(M_{0}\right)$.

We claim that

$$
\nu\left(M_{0}\right)=\nu\left(M_{0}, \mathscr{H}_{0}\right),
$$

where $\nu\left(M_{0}, \mathscr{H}_{0}\right)$ is the manifold constructed in § 3, the topological nonsingular model of the space ( $M_{0}, \mathscr{H}_{0}$ ). To prove this, set $U_{j}=M_{0} \cap \mathscr{U}_{j}, V_{j}=M_{0} \cap$ $\mathscr{V}_{j}, W_{j}^{1}=X \cap \mathscr{W}_{j}$ where $X \cap \mathscr{W}_{j}$ is given in terms of the coordinates $\left(z_{1 j}, z_{2 j}, z_{3 j}\right)$ for $\mathscr{W}_{j}$ by the equation $z_{1 j}=0$. If we compare equations (1), (2), and (3) of this section with equations (1), (2), and (3) of $\S 3$ we see that (for example)

$$
\begin{array}{ll}
f_{j k}\left(z_{2 k}, z_{3 k}\right)=f_{j k}\left(0, z_{2 k}, z_{3 k}\right), & \text { on } \mathscr{W}_{j}^{1} \cap \mathscr{W}_{k}^{1}  \tag{15}\\
e_{j k}\left(z_{2 k}, z_{3 k}\right)=e_{j k}\left(0, z_{2 k}, z_{3 k}\right), & \text { on } \mathscr{W}_{j}^{1} \cap \mathscr{W}_{k}^{1}
\end{array}
$$

For this choice of $f_{j k}\left(z_{2 k}, z_{3 k}\right)$ and $e_{j k}\left(z_{2 k}, z_{3 k}\right)$ we can choose the functions $u_{j}$ of equation (4) in $\S 3$ to be $u_{j}=1$. Thus we can choose the $v_{j}$ and $\beta_{1}$ to be $v_{j}=1, \beta_{j}=1$. We claim that there are maps

$$
\begin{aligned}
& G: \nu\left(M_{0}\right)-\mu^{-1}(Y)=\mu^{-1}\left(M_{0}-Y\right) \rightarrow V_{1}-R_{1} \\
& H: \nu\left(M_{0}\right)-\mu^{-1}(X)=\mu^{-1}\left(M_{0}-X\right) \rightarrow V_{2}-R_{2}
\end{aligned}
$$

which are in fact homeomorphisms. For example

$$
\mu^{-1}\left(M_{0}-Y\right) \cap \nu\left(\mathscr{W}_{j}^{+}\right)=\left\{\left(0, s, \theta_{j}, z_{j}\right): 0<s<\varepsilon, \theta_{j} \in S^{1},\left|z_{j}\right|<1\right\},
$$

and on this set

$$
\begin{equation*}
G\left(0, s, \theta_{j}, z_{j}\right)=\left(\left(s / b_{j}\right)^{f / e} \theta_{j}^{f},\left(s / b_{j}\right) \theta_{j}^{e}, z_{j}\right) \in V_{1} \tag{16}
\end{equation*}
$$

where $b_{j}=b_{j}\left(0, s \theta_{j}^{e}, z_{j}\right)$ and is considered as a function of $\left(x_{j}, y_{j}, z_{k}\right)$. On $\mu^{-1}\left(M_{0}-Y\right) \cap \nu\left(\mathscr{U}_{j}^{+}\right)$we have

$$
\begin{equation*}
G\left(0, \theta_{j}, z_{2 j}, z_{3 j}\right)=\left(\theta_{j}, z_{2 j}, z_{3 j}\right) . \tag{17}
\end{equation*}
$$

We can easily check that this map is a well-defined homeomorphism and in
fact extends to a homeomorphism

$$
G: \mu^{-1}(X)=\nu(X) \rightarrow J_{1}
$$

where $G: \nu(\bar{R}) \rightarrow \partial J_{1}$ is given by

$$
\begin{equation*}
G\left(0,0, \theta_{j}, z_{j}\right)=\left(0, \theta_{j}, z_{j}\right) \in \partial \hat{W}_{j}^{1} \subset \partial J_{1} \tag{18}
\end{equation*}
$$

and $\left(0,0, \theta_{j}, z_{j}\right) \in \nu\left(\bar{R} \cap \mathscr{W}_{j}^{+}\right)$. The analogous equations for $H$ are

$$
\begin{gather*}
H\left(r, 0, \theta_{j}, z_{j}\right)=\left(\left(r / a_{j}\right)^{e / f} \theta_{j}^{-e},\left(r / a_{j}\right) \theta_{j}^{-f}, z_{j}\right) \in V_{2} \\
H\left(0,0, \theta_{j}, z_{j}\right)=\left(0, \theta_{j}^{-1}, z_{j}\right) \in \partial \hat{W}_{j}^{2} \subset \partial J_{2} \tag{20}
\end{gather*}
$$

Now consider equations (14) in §3, which become $\varphi_{j}=\theta_{j}^{-1}$ since $\alpha_{j}=\beta_{j}=$ 1. Let $\kappa: \partial J_{1} \rightarrow \partial J_{2}$ denote this identification. Then $H=\kappa \circ G$ on $\nu(\bar{R})$. Since $\nu\left(M_{0}, \mathscr{H}_{0}\right)=J_{1} \cup J_{2}$ where $\partial J_{1}$ is identified with $\partial J_{2}$ by $\kappa$, we see that $H$ and $G$ give rise to a homeomorphism between $\nu\left(M_{0}\right)$ and $\nu\left(M_{0}, \mathscr{H}_{0}\right)$.

The map $\bar{\omega} \mu: \nu\left(\mathscr{M}^{+}\right) \rightarrow \Delta^{+}$satisfies

$$
(\bar{\omega} \mu)^{-1}(t)=M_{t} \quad \text { for } t>0, \quad(\bar{\omega} \mu)^{-1}(0)=\nu\left(M_{0}\right)
$$

Moreover $\nu\left(\mathscr{M}^{+}\right)-\nu\left(M_{0}\right)$ is a differentiable manifold. We will put a differentiable structure on $\nu\left(\mathscr{M}^{+}\right)$which extends the differentiable structure on $\nu\left(\mathscr{M}^{+}\right)$ $-\nu\left(M_{0}\right)$. We will have in this new structure a differentiable function with no critical points, which has as level sets the surfaces $\left\{(\bar{\omega} \mu)^{-1}(t): t \geq 0\right\}$.

We define a $C^{\infty}$ monotone increasing function as follows:

$$
e(q)=\left\{\begin{array}{cc}
\exp (-1 / q) & \text { for } q>1 \\
0 & \text { for } q=0 \\
-\exp (1 / q) & \text { for } q<0
\end{array}\right.
$$

For $r, s \in \boldsymbol{R}^{+}=\{t: t \geq 0\}$, the equations

$$
\begin{equation*}
e(\tau)=r^{1 / f} \cdot s^{1 / e}, \quad 2 e(q)=r^{1 / f}-s^{1 / e} \tag{21}
\end{equation*}
$$

define a topological map $(r, s) \rightarrow(\tau, q)$ of a neighborhood of $(0,0)$ in $\boldsymbol{R}^{+} \times \boldsymbol{R}^{+}$ to a neighborhood of $(0,0)$ in $\boldsymbol{R}^{+} \times \boldsymbol{R}$. We easily check that the functions

$$
\begin{align*}
& r(\tau, q)=\left(e(q)+\sqrt{e^{2}(q)+e(\tau)}\right)^{f} \\
& s(\tau, q)=\left(-e(q)+\sqrt{e^{2}(q)+e(\tau)}\right)^{e} \tag{22}
\end{align*}
$$

are $C^{\infty}$ functions of $q$ and $\tau$ in a neighborhood of $(0,0)$, and invert equations (21). Hence we may use ( $\tau, q, \theta_{j}, z_{j}$ ) as new coordinates on $\nu\left(\mathscr{W}_{j}^{+}\right)$, so that (8) becomes

$$
\begin{align*}
\theta_{j}^{f} & =\tau_{j k}^{-1}\left(r(\tau, q) \theta_{k}^{-f}, s(\tau, q) \theta_{k}^{e}, z_{k}\right) \theta_{k}^{f}, \\
\theta_{j}^{e} & =\tau_{j k}\left(r(\tau, q) \theta_{k}^{-f}, s(\tau, q) \theta_{k}^{e}, z_{k}\right) \theta_{k}^{e}  \tag{23}\\
z_{j} & =h_{j k}\left(r(\tau, q) \theta_{k}^{-f}, s(\tau, q) \theta_{k}^{e}, z_{k}\right)
\end{align*}
$$

On $\nu\left(\mathscr{U}_{j}^{+}\right)$we use the equation $e(\tau)^{f}=R$ to introduce $\left(\tau, \theta_{j}, z_{2 j}, z_{3 j}\right)$ as new coordinates. As in (23) we easily check that (10), (11), and (12), due to (21) and (22), are turned into a differentiable change of coordinates between $\left(\tau, \theta_{j}, z_{2 j}, z_{3 j}\right)$ and ( $\tau, q, \theta_{k}, z_{k}$ ). In order to check this we need to assume that $\mathscr{U}_{j}$ is bounded away from $\bar{R}=X \cap Y$ so that we can verify that the Jacobian

$$
\operatorname{det}\left[\partial\left(\tau, z_{2 j}, z_{3 j}, \bar{z}_{2 j}, \bar{z}_{3 j}\right) / \partial\left(\tau, q, \theta_{j}, z_{j}, \bar{z}_{j}\right)\right]
$$

is bounded away from zero. We operate similarly on $\nu\left(\mathscr{V}_{j}^{+}\right)$. Thus we get a differentiable structure on $\nu\left(\mathscr{U}^{+}\right) \cup \nu\left(\mathscr{W}^{+}\right) \cup \nu\left(\mathscr{V}^{+}\right)$, which extends the given structure on $\nu\left(\mathscr{U}^{+}\right) \cup \nu\left(\mathscr{W}^{+}\right) \cup \nu\left(\mathscr{V}^{+}\right)-\nu\left(M_{0}\right)$. The function

$$
\tau=-e f / \log (\bar{\omega} \mu)
$$

is a differentiable function with no critial point on $\nu\left(\mathscr{M}^{+}\right)$, and

$$
\tau^{-1}(t)= \begin{cases}M_{t} & \text { if } t>0 \\ \nu\left(M_{0}\right) & \text { if } t=0\end{cases}
$$

## Bibliography

[1] H. Grauert, Ein Theorem der analytischen Garbentheorie und die Modulraume komplexer Strukturen, Inst. Hautes Études Sci. Publ. Math. No. 5 (1960).
[2] H. Grauert \& J. Kerner, Deformationen von Singularitaten komplexer Raume, Math. Ann. 153 (1964) 236-260.
[3] R. Gunning \& H. Rossi, Analytic functions of several complex variables, PrenticeHall, Englewood Cliffs, N. J., 1965.
[4] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. 79 (1964) 109-326.
[5] K. Kodaira, On compact analytic surfaces. II, Ann. of Math. 77 (1963) 563-626.
[6] -, On the structure of compact complex analytic surfaces. III, Amer. J. Math. 90 (1968) 55-83.
[7] J. Wavrik, Deformations of branched coverings of complex manifolds, Amer. J. Math. 90 (1968) 926-960.


[^0]:    Received February 14, 1972, and, in revised form, January 14, 1974.

