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CLIFFORD MULTIPLICATION AND /-STRUCTURES

CLARK JEFFRIES

1. Introduction

M. F. Atiyah [1], [2] has neatly applied Clifford multiplication of exterior
forms on (smooth, compact) Riemannian manifolds to certain reduction prob-
lems of the structure groups of tangent bundles, and considered Clifford multi-
plication by orientation forms associated with global splittings of tangent
bundles into subbundles, that is, plane fields.

We suppose an m-dimensional manifold M admits a (l,l)-tensor solution /
of f + f = 0 with (constant) rank 2/ > 0, that is, an /-structure. One may
choose a Riemannian structure ^ for M so that / is skew. Thus the tangent
bundle T(M) of M splits globally as the sum of ker / and the orthogonal com-
plement ker f1, on which / induces an almost complex structure. Associated
with / and ^ is a 2-form ω. The purpose of this paper is to study Clifford
multiplication by ω and the orientation form (f\ω)1 of the plane field ker /-1.

The existence of an /-structure is, of course, equivalent to the reduction of
the structure group of Γ(M) from Θ{m) to Θ(m — 21) x <%(Q. The literature
devoted to /-structures and related topics is extensive, beginning, it seems, with
K. Yano [4].

2. Algebraic considerations

First we review Clifford multiplication. Clifford multiplication of cross sec-
tions of the exterior algebra A of M depends upon the choice of Riemannian
structure ^ . We consider ^ as extended throughout the tensor algebra of M.
Right and left Clifford multiplications are algebra homomorphisms from cross
sections of A to function-linear cross sections of Horn (A, A). Suppose a is a
p-form and β a g-form. Define the adjoint of exterior multiplication /\ as fol-
lows. If p < q, then a V β = 0. If p > q, then

a V β = Σ SKtf> β Λ μj)μj ,
j

where {μj} is a local orthonormal basis of the p — q floor of A. This extends
to a global definition of a V β. If v is a 1-form and a is a p-form, then define
the Clifford product v aasv-a = vΛa — aVv. If v19 , vq are ortho-
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normal 1-forms, then define ( ^ Λ Λ v ί ) α = Vi ( (<y? α) ). Clearly
this extends to a global multiplication, Clifford multiplication, for any pair of
cross sections a and β of A. This leads to right and left Clifford multiplications
R and L; that is, a-β — Rβ(a) = La(β). Clifford multiplication is associative,
so Rβ and La always commute.

Now suppose vλ and v2 are local orthonormal 1-forms. Then locally,

R V l — —I >

where here and hereafter / denotes the identity transformation in whatever
context it may occur. Also, RVl is skew with respect to the natural extension
of 0 to Horn (A, A). Note that RΌlRV2 = -RV2RVl and RVlAVt = RV2RVl. Lastly,

RVl: Λeven -> Λodd and RVl: Aoάά -> Λeven.
Given a global oriented plane field on M of dimension ft, we may locally

express a (unit) orientation form 4̂ for the plane field as some exterior product
A = vx Λ Λ vk of orthonormal 1-forms. Thus 2?^ is locally i?ϋjfc RV2RVl,
so globally R\ = + / if ft = 0, 3 mod 4 and Jft = - / if ft = 1, 2 mod 4.
Such operators were used extensively in [2].

Now suppose M admits an /-structure /, an adapted Riemannian structure
^ , and an associated 2-form ω all as in the Introduction.

We first derive a minimal polynomial satisfied by Rω. The two lemmas which
follow may be proved easily using the following fact: Given two vector space
homomorphisms which commute and are almost complex, there is a natural
splitting of the vector space into two subspaces with the homomorphisms equal
on one subspace and additive inverses on the other.

Lemma 1. The sum J of 2p + 1 commuting almost complex vector space
homomorphisms (not necessarily distinct) satisfies

jθdά,l<j<2p + l

Lemma 2. The sum J of 2p commuting almost complex vector space
homomorphisms satisfies

Π (P + pi) = o ,
jeven,0<j<2p

that is,

J Π (J2 + f/) = o .

Note that one may always choose an inner product so that each of the given
almost complex homomorphisms is skew, and hence so that / is skew. Now
since ω may be locally expressed as vλ Λ v2 + v3 Λ v4 + + v2l_1 /\ v2t,
it follows that Rω may be locally expressed as the sum of / commuting almost
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complex structures, namely Rω = RV2AVl + . . . + RV2lAV2l_x. In view of
Lemmas 1 and 2, we have

Lemma 3.

Π (Ri + pi) = 0 for odd / ,
j odd,l j l

Π (* 1 + FD = 0 for even / .
2< j<l

Furthermore, these are minimal polynomials for Rω. For if we apply Rω

repeatedly to the constant 0-form 1, then we have Rs

ω(l) = (/\ω)s + (forms of
degree less than 2s).

Now let / be the sum, and K be the product of 2p commuting almost com-
plex vector space homomorphisms. Thus K2 — I. Using an inner product with
respect to which each of the almost complex homomorphisms is skew, consid-
er the orthogonal + 1 and — 1 eigenspaces of K. Since / and K commute, we
may write J = J+ + J_ where J+ and /_ denote the restrictions of / to the
eigenspaces. We have

Lemma 4. / + restricted to the +1 eigenspace of K satisfies

j + π (Jl + (2/)2/) - o ,
j even,2<j<p

and J_ restricted to the — 1 eigenspace of K satisfies

Π (/2_ + (2/)2/) = 0 .
j odd,l< jζp

Again the proof uses only elementary linear algebra and is omitted.
It is clear that the relations in Lemma 4 hold globally for Rω and RΛ, pro-

vided rank / = 21 = 0 mod 4.

3. Analytic results

We assume henceforth that the dimension of M is congruent to 1 mod 4,
and that M is compact and orientable. Let B denote a unit orientation form
for M. Let d and d* denote the usual exterior and coexterior derivatives. It
may be shown that L\ = — / and that LB commutes with d + d* when rest-
ricted to Λeγen. We may form an elliptic differential operator T of degree one
by setting T = LB{d + d*): Λeven -> Λeven. Now the symbol of d + d* is
V — \LB. Thus, since R and L commute, RVlAV2 commutes with T in highest,
that is, first order terms, where vx Λ v2 is a local unit 2-form. Similarly any
real polynomial of images of such unit 2-forms commutes with T in first order
terms. Recall that the real Kervaire semi-characteristic of an odd-dimensional
manifold is the sum mod 2 of the even Betti numbers of the manifold. Thus
(dim ker T) mod 2 = k(M) the real Kervaire semi-characteristic of M. Finally,
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note that T is skew with respect to the usual extension of ^ to the (infinite-
dimensional) real vector space AeΎen over (compact) M.

Next we prove
Theorem 1. Suppose R is a cross section of Hom(Λeγen, Aeγen) which com-

mutes with T in first order terms. If R satisfies a minimal polynomial p{x) =
xs + + bλx + b0 with s distinct roots, real or complex, then we may
choose constants ai:jr / = 0, , s — 1 / = 1, , s — 1, such that the new
differential operator

S = T + Σ dijWiTW - RjT)

commutes with R. Furthermore, if the adjoint of R is a polynomial in R, then
S is skew.

Proof. We note that any such S has the same first order terms as T.
Next we derive the numbers {aiό} in terms of p(x). One may regard TRj —

RjT as the derivative of Rj with respect to T. Thus we will define S so that the
derivative of R with respect to 5 is 0. We generally follow our proof of a dif-
ferent version of this result involving connections in vector bundles given in
[3, Theorem 1].

Our first step is to complexify the real vector bundle A so that if λ19 , λs

are the distinct roots of p(x), then R = Σα=i,...,s ^ Λ where {πa} are projec-
tions onto the eigenbundles of R. Our last step will be to take the real parts
of the constants {aί3) which we derive, and this will obviously suffice.

Each πa may be described explicitly as follows. Define new complex poly-
nomials pa{x) by

Pαto =
bΦa

Then πa = paQa) W S ) , Thus πaπb = δabπa, Σ πa = h and R = Σ h^a-
Define a new operator S on the complexification of A by

* s

α = l α = l

Now for each τrδ, 57rδ — ττδS = 0, so SR — RS = 0. Note also that if the
adjoint of R is a polynomial in R, that is, if the complex ajoint of each πb is
itself, then the complex adjoint of S is —S.

Now define complex numbers ci5\i— 1, ,s / = 1, ,s — 1, by πt =
Σj CijRj. It follows that

o = i + 2_J 2_i aijK'VlK'1 — K31 \ ,
ί = 0 .7 = 1

where ΛO = Σί-i c tA/
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Clearly the real part S of S on Λeγen satisfies SR — RS = 0 and has the same
first order terms as T. Also, S is skew provided the adjoint of R is a poly-
nomial in R. q.e.d.

In the special case p(x) = x2 + 1, S = T - ±{TR - RT} = \{T + RTR-1},
as originally used in [2, p. 16].

Theorem 1 simply implies that the (real finite dimensional) kernel of S
admits R. We will be concerned with the case where R is skew and the case
where p(R) [1] Φ 0 unless p divides p, that is, the case when p remains the
minimal polynomial of R in ker S.

4. Applications

Among other results, Atiyah showed that if a compact, orientable, ( Ξ I
mod 4)-dimensional manifold admits an orientable plane field of dimension
Ξ 2 m o d 4 (or, complementarily Ξ 3 m o d 4 ) , then the real Kervaire semi-
characteristic of the manifold vanishes. We next derive some associated results
for /-structures with rank Ξ O mod 4.

Theorem 2. Suppose M admits an j-structure of rank 4/ with associated 2-
jorm ω and associated cross section Rω of Horn (Aeγen, Λeγen). Let S be defined
in terms of Rω and T according to Theorem 1. Then the dimension mod 2 of
the kernel of Rω in the kernel of S is k(M).

Proof. Rω is skew and commutes with T in first order terms. Therefore S
defined from Theorem 1 is a skew elliptic differential operator with the same
first order terms as T. Using the stability of the mod 2 index as explained in
[2], it follows that dim ker S = dim ker T mod 2. According to Lemma 2,

p(x) = x Π (*2 + f)
je\en,2<j<2l

has the property p(Rω) = 0. Applying Rω to the constant 0-form 1 show that
p(x) is the minimal polynomial of Rω in ker S as well as in AeΎen. Thus

dim ker Rω in ker S = dim ker S = dim ker Γ = k(M) mod 2. q.e.d.

In view of Lemma 1, the analogous considerations for an /-structure of
rank 4/ + 2 would lead to the vanishing of k(M), a consequence already im-
plied just by the existence of an orientable (4/ + 2)-plane.

Now suppose M admits two /-structures e and /, both of rank 41 and both
skew with respect to &. Suppose ker e = ker /. Let ψ and ω denote the as-
sociated 2-forms. We will say such /-structures are orientation complementary
provided (Λψ) 2 ί = -(Aω)n (necessarily (Λψ) 2 i = ±(Aω)21).

Theorem 3. // M admits two orientation complementary f-structures of

rank 4/, then k(M) = 0.
Proof. Denote the orientation form (Aψ)21 for the 4/-plane kere by A.
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Consider the cross sections RΨ, Rω, and RA of Horn (Λeγen, Λeven). Define a new
cross section R by

R = l(/ - RA)Rψ + l(/ + RA)Rω .

It follows from Lemma 4 that on the — 1 eigenvalue of RA in Λeγen, R+ has
minimal polynomial

p(x) = Π (*2 + (2/)2)
yodd,i<y<i

Similarly, /?(*) is the minimal polynomial of Rω on the + 1 eigenbundle of RA.
Thus the minimal polynomial of R is /?(*). Now jRΨ, Rω and 1?^, and hence R,
all commute with T in first order terms. Since RA is symmetric and RΨ and
2?ω are skew, R is skew. Applying Theorem 1 leads to a skew elliptic operator
S, which commutes with R and has the same first order terms as Γ. In view
of the minimal polynomial of R, d imkerS is even. Thus k(M) = 0. q.e.d.

Note that if e and / are two orientation complementary /-structures of rank
4, then the associated 4-plane necessarily splits as the sum of two 2-ρlanes
with e = / on one and e = —/on the other. Since the existence of an orientable
2-ρlane implies k{M) = 0, Theorem 3 is of no interest for orientation comple-
mentary /-structures of rank 4.

On the other hand, spheres Su+2 of dimension greater than seven and con-
gruent to 3 mod 4 admit triplets of /-structures with rank 4/ and equal kernels.
Since k(Su+*) = 1, Theorem 3 implies no two such /-structures could be orien-
tation complementary.
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